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Abstract

In this paper we present a method for estimating unknownnpeters that appear on an
avascular, spheric tumour growth model. The model for tineotur is based on nutrient driven
growth of a continuum of live cells, whose birth and deathegate volume changes described
by a velocity field. The drug is applied externally, and isumssd to be a diffusible substance
capable of killing cells.

The model consists on a coupled system of partial diffea¢iiuations which is solved
numerically. As the domain on which the equations are defisttk tumour, that changes in size
over time, the problem can be formulated as a moving bouratzey

After solving the forward problem properly, we are concertire using the model for the
estimation of parameters, by fitting the numerical solutidgth real data. We define a functional
to compare both of them and we use the pattern search methotifimnizing it, obtaining good
accuracy for the recovery of a few parameters.

Keywords avascular tumour, constrained optimization, inversélem, mathematical modeling.

1 Introduction.

The interest for research in modeling cancer has grown emasiy over the last decades, [1, 2].
Pioneers have been, for example, [11, 15], where the firgtosfgmporal models of an avascular
multicellular spheroid’s (MCS) growth have been develop&tie study of MCS is interesting be-
cause they provide the best insight into the effectivenésh@motherapeutic drugs on tumours in
vivo, and their behaviour can be studied experimentallyiiiro) by controlling environmental con-
ditions in which they grow: for example, the radii of the tum@an be monitored by changing the
chemotherapeutic drug or oxygen levels.

In addition, another variables can be measured. If possllgerimentalists can get information
about the distribution of substances within the tumour. &dwer, via medical imaging or histological
cuts, they can also get data about the density of the diffé&red of cells conforming it: proliferating,
guiescent, necrotic.

That is why in this general approach of modeling the key Wéem are the tumour size (radius)
and the concentration within the tumour of growth-rate ting diffusible chemicals (nutrients such
as oxygen or glucose or a chemotherapeutic drug). Sinceiutheur changes in size over time, the
domain on which the models are formulated must be deterna@ageart of the solution process, giving
a vast class of moving boundary problems, [6, 7].

In this article, we propose a framework for estimating unkngarameters via PDE-constrained
optimization, following the PDE-based model by Ward and&ifl6]. In this approach, avascular
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tumour growth is modeled via a coupled nonlinear system fédreintial equations, which make the
numerical solution procedure quite challenging.

We are concerned with developing a robust PDE-constraioedufiation that let us find the best
set of parameters of a tumour growth model that fits patier@xperimental data. We choose the
parameters that should be of applied interest and try tarolitem by defining a functional to be
minimized.

The paper is organized as follows: section 2 introducesutmtrr growth model (forward prob-
lem). Section 3 shows the numerical solution of the forwambfem and checks its accuracy by
proving some theoretical results. Section 4 introducesniverse problem approach, by defining the
functional to be minimized. Finally, in section 5 the nuncatiprocedure to solve the inverse problem
is discussed.

2 Mathematical moddl.

We consider the model proposed by Ward and King in [16]. Theotr is a spheroid which consists
of a continuum of living cells, in one of two states: live orade The rates of birth and death depend
on the nutrient and chemotherapeutic drug concentratiés supposed that those processes generate
volume changes, leading to cell movement described by &itgliteld. The system of equations to
be studied is:
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where the dependent variablesc, v andw are the live cell density (cells/unit volume), nutrient
concentration, velocity and drug concentration, respelsti As it is described in [16], equation (2.1)
states that the rate of changerois dependent on the difference between the bigtfc) and death

ki (c) rates, where this one is either natural (as described i) fi”due to the drug effects, at a rate
KG(km(c))w. The functonsky andky are taken to be generalised Michaelis-Menten kinetics with
exponent 1, i.e.

i) =A (55 ) @5)
kd(c):B<1—oCdC+C>. (2.6)

The constanK is the maximum possible rate of drug induced cell death. DhetantsA, B ando
are positive parameters of the Michaelis-Menten kinetidsle c. andcy are critical concentrations.
G(km(c)) is a function that represents the dependence between diiog aod cell-cycle. As it is
considered in [16] it is a good idea to choose a linear deper@egiving



Equation (2.2) states that the nutrient is consumed at goraf@ortional to the rate of mitosis,
and its diffusion is described by Ficks law. Equation (2)es that the rate of volume change is
given by the difference in volume generated via birth fromit tbst by death (it is assumed that a live
cell occupies a volum¥, that is twice the volume of a death c®lh). The diffusion of the drug is
described also by Ficks law, and it is assumed that it is diegr@nly when it attacks a living cell,
giving a maximum degradation rake/w. w is a dimensionless constant that can be interpreted as a
measure of the drugs effectiveness, as explained in [16f, mwtreasingw implying that less drug
is consumed to produce the same effects during the killimggss. These considerations lead to
equation (2.4).

2.1 Moving boundary problem

As it has been mentioned, the tumour is assumed to be a sghkabiexhibits radial simmetry. That
is why, not only the state variables c, v andw are important, but the outer tumour radius is also a
key variable to be determined. Since the tumour changegéosier time, the domains on which the
models are formulated (and the PDEs are valid) must be ditednas part of the solution.

Let S(t) be the tumour radius at time So, if we suppose that the treatment begins at time,
in which the tumour has a radi, with living cell density and nutrient concentration dilstitions
n(r) andc (r), respectively, then the initial conditions of the probleam de formulated as

n(r,0) =ny(r), (2.7)
c(r,0) = ¢ (r), (2.8)
w(r,0) =0, (2.9)
S0)=S. (2.10)

Because symmetry is assumed about the tumour center, thaefiux there. That is why, as
boundary conditions about= 0, are taken:

g_f(o,n o, (2.11)
v(0,t) = 0, (2.12)

ow

5 (0. =0. (2.13)

Moreover, on the external boundary (which is also the boyndéthe complement of the tumour
as a subset of the body), the following conditions are taken:

c(S(t),t) = co, (2.14)
:l—tsz V(S(t), 1), (2.15)
W(S(t),t) = wo(t), (2.16)

wherecy andwy(t) are external nutrient and drug concentrations, respégtiviene functionwy(t)
depends on the chemotherapeutic protocol. In our simulsitowill be considered as a constant that
does not depend dn However, other functions may be adopted, for example itide8 we show
an example in which drug is provided for some intervals ogtitout not for other ones.



2.2 Nondimensionalisation

Before analysing the model equations, we re-scale the mmatiieal model in the following way,
denoting non-dimensional variables with bars:

n=w.n; C=c/co; V=V/roA, t=At T=r/ro; S= S/ro; W= w/W

whererg = (3V, /4m)/3 is the radius of a single cell av is a suitable reference drug concentration
(typically Wo = maxWo(t))).

It is important to remark that inherent in this problem ar® tivnescales: the tumour growth
timescale £ 1 day) and the much shorter drug and nutrient diffusioasl(min). That is why,
following [2, 1, 16, 6] we adopt a quasi-steady assumptiaiénnutrient and drug equations.

Following [16], and relabeling the variables with bar agaithout it, these rescalings lead to the
following system of differential equations:

a3 +VE = [a(c,w) — b(c,w)n|n, (2.17)
10 (,0c\
10(r2v)
2 b(c,w)n, (2.19)
10 ([ ,0w\ K
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o = WDV Wo/Ar3, (2.21)
K = KWp/A,
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a(c,w) = A

b(e.w) = 5 {kin(C) — (1 8)[ks(€) ~ KG{kn(c) i},

with 3 = Vp /M. and(B) = r2BA/VLcoD.

We note that theonstanta defined above comprises many model parameters that should be
interesting to know exactly. It will be of great importanaethe next sections, wherme will be
considered as a key parameter of the problem.

Also, it is worth saying that rigorous mathematical anaystluding existence, uniqueness, and
stability theorems, as well as properties of the free botesldor similar tumour growth models in
which different kind of PDEs are combined, have been obthif§ and [8].



3 Numerical solution of the forward problem

After the assumptions made in the previous section, we taselte the following system of PDEs:

N + vne = [a(c,w) — b(c,w)n|n 0<r<St), t>0, (3.1)
vr+$v:b(c,w)n 0<r<St), t>0, (3.2)
Crr + %cr =k(c)n 0<r<St), t>0, (3.3)
2 K
Wir + er = akm(c)w 0<r<St), t>0. (3.4)

The initial conditions at = 0 are

n(r,0) = ni(r), (3.5)
S(0)=S§. (3.6)
w(r,0) =0, (3.7)
and the boundary conditions are
v(0,t) =0, (3.8)
¢ (0,t) =0, (3.9
w; (0,t) =0, (3.10)
c(St),t) =1, (3.11)
w(S(t),t) =1, (3.12)
S(t) = v(S(t),1). (3.13)

It is important to remark that the density of living cells leetboundaryn(S(t),t), can be calcu-
lated explicitly. Indeed, consider equation (3.1) and rb&t, using the chain rule, the total variation
of nintime is

dn_on  ondr
dt ot  ordt’
At the point(S(t),t) the expressior%{ is equal tov(S(t),t). So, substitution in (3.1) gives

(3.14)

dn
a(s(t)vt) = [a(17 1) - b(17 1)n(s(t)7t)]n(s(t)7t)v
wherea(1,1) andb(1,1) are the corresponding values of the functiar@db on the boundary at any
time. The last equation is a separable ODE, that can be tranetl into
dn*

[a* _ b*n*]n*

where for simplicity we wrota* = a(1,1), b* = b(1,1) andn* = n(S(t),t).
Now, we use expansion into simple fractions:

—dt, (3.15)
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=— —— 3.16
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Combining equations (3.15) and (3.16) and integrating tues we get

(SH).t dn* (@ =b)n(S(t),1)
/ dt_/ (a —bno)n* _In< a*—b*n(S(t),t) > @17

Finally, solving forn on the boundary, we obtain

aelt
S = oo et (3.18)

Equation (3.18) is not only an elegant analytical result atgo it will become of really importance
when calculating numerically the value ofin the boundary. As we shall see, when defining the
spatial grid to solve equation (3.1) with a forward finitefelience scheme, for each poimtof the
grid we will need to take also the point, 1 but that is impossible in the last point of the grid, $4#)

3.1 Fixed domain method

The first step for solving this moving boundary problem wil tbansforming the original domain to
a fixed one, i.e., re-writing the whole system for the chanigeoordinatesy = r /S(t). In this way,
the spatial domain will be the intervi, 1].

Observation 3.1 If r = ySt), thengl = S(t) and §f = yS(t).

We briefly illustrate the way in which the new equations areaied, using (3.1).
LetN(y,t) =n(r,t) = n(ySt),t). Differentiating this expression respectytone obtain
Ny = nery + ety = neS(t),

and them, = %
And differentiation respect tbgives

dr
I\It - rdt + nt7
and so we deduce that=N; — 2
Substitution in (3.1) gives
S Y%
Nt—éyl\l)nL gl\ly:N[a(C)—b(C)N]N 0<r<1, t>0. (3.19)
The same procedure is applied to the other equations, anthtamo
Cyy+ écy =k(C)SN, (3.20)
2
Vy + 9V —=Db(C)NS (3.21)
2 K
Wy + 9\Ny = akm(C)SZW N. (3.22)



The initial conditions for the transformed problem are

N(y,0) = Ni(y), 0<y<1, (3.23)
S0) =Ss, (3.24)
W(y,0) =0, 0<y<1, (3.25)
and the boundary conditions are
V(0,t) =0, t>0, (3.26)
G0Ot)=0  t>0 (3.27)
W, (0,t) =0, t>0, (3.28)
C(1,t) =1, t>0, (3.29)
W(1,t) =1, t>0, (3.30)
S(t) =V(1,1), t>0. (3.31)

3.2 Numerical procedure

The drug is first applied d@t= 0, by which time the tumour has grown following the model wiih
drug, [17]. Originally, at &~ —500, a single cell started to take nutrients from the envirent, letting
it grow up to a dimensionless size §f~ 202. The solution for the variablé$, C andV is taken as
the initial distribution of them for the drug treatment case

All the simulations described in this section use the follayyparameter values, as suggested in
[16]:

B/A=1, 0=09, =05 B=0005 ¢ =01  c=005 K=50

The problem (3.19)-(3.22) subject to the initial and bougiad@nditions is solved in the following
way:

1. Given the distributions o, V, C andW at timek we solve (3.19) using a finite-difference
scheme to obtaill at timek+ 1. The value o at the boundary is updated directly by solving
equation (3.18).

2. The ODEs system (3.20)-(3.22) is solved usingMhE_AB's packagebbvp4c to obtainC, V
andW at timek + 1.

3. Using the valu®/(1,k+ 1) we solve equation (3.31) f@at timek+ 1 using Eulers method.

We remark that solving the system (3.20)-(3.22) is challampgn the sense that there is a sin-
gularity atr = 0. The packagdbvp4c let us deal with this singularity by using $ingular Term
tool.

3.3 Numerical results

The numerical solution for this problem is very well disegsnd analized in many aspects by Ward
and King, [16]. The parameter is taken as a variable in the sense that we are interesteddyist
how the solution behaves whernis changed.
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Figure 1: Evolution of the tumour radius for different vadusf a.
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Figure 2: Velocity at the tumour’s boundary for a fixed tinhe=(10) for different values of.

We are able to confirm that can, indeed, be consideredneasure of the treatment effectiveness
We plot how the radius of the tumour evolves in time when vagyihis parameter, as showed in
figure 1.

We can observe that a valoe= 10 does not stop the growth of the tumour, although there is a
killing cell process. However, ift = 100 ora = 1000 the radius of the tumour decreases (of course
the mass could never disappear because the drug does neeatt®already formed necrotic core).

An interesting question to answer fer which value ofx can be stated that tumour will decrease
in size? That should be helpful, for example, w hen choosing some dden the drug coefficient
diffusion and the initial spheroid size are known. To deteerthis value we take into account the
velocity in the boundary at a fixed time for different valuésio For example, in figure 2 we can see
that if we fix the non-dimensional tinte= 10, the functiorv(S(t),t) has a root irot ~ 25.

The problem has also be solved for a different treatmenbpaobt We took a drug witlm = 1000
and provided it for some time intervals, so that the boundandition is the following:

wo(t) = 1, te[0,20),
Wo(t) 0, te[20,50),
Wo(t) = 1,  t>50
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In [16] the surviving fraction is plotted for a boundary cdai@h similar to this one. In contrast,
in figure 3 we plot the evolution of the tumour radius for thisigtion, which should be considered
when designing a treatment, because it is really importatiteé effectiveness-toxicity balance.

4 Inverseproblem

The main idea of this section is to recover some of the paensmethich appear in the mathemat-
ical model, motivated in the lack of references that exiditarature. In reality, some of them are
unknown, especially in vivo.

We consider that the parametedefined above is important because it provides a measure of th
treatment effectiveness. In particular, it can provideinfation about the drug diffusion coefficient,
the optimal dose to get a desired effect or, eventually, Biétis-Menten kinetics, see equation (2.21).

Thus, we are interested in the recovery of this parametagusiailable scans (MR images from
real patients that could let us follow the tumour size evolubver time) or reliable measurements
such as histological studies (obtained experimentallyrfeitro cases). The data should be obtained
at different moments in time over a time interval of lenghtThe inverse problem can be formulated
as follows:

Find a parameter value able to generate data that best maelavailable information over time
0<t<T.

Because of the nature of the mathematical model, we havedve ad’DE constrained optimiza-
tion problem. The constraints are given by the model eqoat{@.1)-(2.14), which can be written
in a short way as?(@) = 0, where? is the differential operator given by the set of equationd an
@=(N,C,V,W).

4.1 The objective functional

We should construct an objective functional which givesarmmedistancebetween the experimental
(real) data and the solution of the system of PDESs for eaalewaila.

First of all, it is important to decide which variables ar@ahle to be measured experimentally.
For instance, it is clear that the tumour rad#js) can be known at certain timés k= 1,...,M. So,
the first possibility for defining a functional could be
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Aso) = [ [S() - S )P, (4.1)

where& (1) is the radius evolution obtained solving the direct probfema certain value of and
S(t) is the evolution measured experimentally (real data).

Other variable that could be measured is the concentrafitirirg cells, via biomedical imaging.
Thus, we are motivated to define a functional that reprodircasetter way the knowledge we have
about the process, i.e.

J(N,Sa) // [Na(y,t) — N*(y, )]zdtdy+u/ — S(1))?dt, (4.2)

whereNg (y,t) andN*(y,t) are the living cell concentration for the direct problemveadl with the
value a and the real data, respectively (both of them in the donf@if] x [0,T]). The positive
constaniuis introduced, as we shall see, to take into account therdiffeorder of magnitude between
N andS.

So, the constrained optimization problem can be formulased

minJ(a
aeC ( )’

st.?(@) =0,

where( denotes the set @dmissible valuesf a.

We remark that, in general, there is a fundamental diffexdyetween the direct and the inverse
problems. In fact, the latter is usually ill-posed in thesseof existence, uniqueness and stability of
the solution. This inconvenient is often treated by usingeoegularization techniques, [12, 10].

4.2 Discretization of the objective functional

Even if the functionsS(t) andN(y,t) are not known in their whole domains, it is sufficient to know
the values that they take at several points (defining a céentgrid mesh foy andt).

First of all, suppose that we have experimental measurenadit and S at different timeg,
k=1,...,M. That would give us temporal information about the variable

On the other hand, the distribution of living cells depenids an the position along the tumour.
A common techniche in medical imaginglandmark registration landmarks are points placed at
meaningful parts of the tumour, with the intention of rep@mg it as good as possible with a few
isolated points. Ley;, j = 1,...,Q denote a set of points in the inter@l 1] that are chosen by an
expert. Note that the points should be chosen in the inté@y&{t)], but for simplicity we will assume
that they are fixed in time.

Then, the objective functional (4.2) can be discretized as

Q
J(N,Sa) =
=1

Mz

M
Nayi.t) — N (. 812+ 1Y [Ss(8) — S (1) et (4.3)
k=1

=
i

1

10



5 Numerical experiments

The pattern search method, [9]-[13], was employed to estiree parameter of interest by minimiz-
ing the objective functional. It is a direct method, i.e. atinoel that neither compute nor explicitly
approximate derivatives df For this purpose we use the functipattern search of MATLAB.

We study the functionals behaviour by solving some testsasée living cell density and the
tumour radius are generated via the forward problem. We $teperthe results obtained by assuming
astandard valuen = 1000. It seems that this value is quite reasonable, seedltBhugh in a next
step we are trying to determine whether or not the dose cerezids tolerable for a patient.

1. Model-generated data

Consider first an optimization problem that consist in mizing the functional (4.3), where
N*(y,t) and S‘(t) are generated via the forward model, for a choice of the mpdedmeter
o = 1000.

Working with the functional (4.3) requires to define the laraatk pointsy; and the timesy
where the measurements are made. For simplicity, and torisstent with the way we solved
the direct problem, we took the same spatial grid for theneeudks, i.e. 30 equidistant points
0=y < ... <ysp= 1. Regarding to the time selection, it is apparent from theegrments
that 20 time steps are enough to obtain the desired resaltwegake 20 equidistant points
t1 < ... < tyo. The factoruis taken to be 1.

The idea of this test case is to investigate how close thénatigalue of the parameter can
be retrieved. However, it is not a trivial one, because we ooknow, for instance, if the
optimization problem has a solution or, in that case, if tiisque or if the method converges
to another local minima.

We emphasize we have run the algorithm several times usifegetit initial random conditions
and in all cases the results were similar. They can be surmethim the following table:

Stopping criteriadifference between two consecutive iterations lower tt@u?

Iterations/elapsed tim&5/45 min
Final point:a = 1001
¢ Functional final valueJ(a) = 1.8871104

2. Model-generated data with% of random noise

It is well known that the presence of noise in the data may yntipé appearance of strong
numerical instabilities in the solution of an inverse pesh| [5].

The outputs of the detectors and the experimental equipwiesite the variablelsl* andS* are
measured are often affected by perturbations, usuallyoranghes. As stated in [3], it is in
general valid to consider a 5% of random noise.

The functional (4.3) is the same used for case 1, except fnencanstanfL It was clear from
numerical experiments that the facior= 1 was not suitable for this case, as it is showed in
figures 4 and 5, where we can see that the order of magnitusedetboth terms in the
objective functional is different. Indeed, in the case & lkiiing cell density, we can see that
both lines are almost indistinguishable. By a trial and epmcedure, we determined that
= 10"*is a suitable factor.

Again, starting with different points, the results of thegedure are the following:

11
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Stopping criteriadifference between two consecutive iterations lower tt@u?

Iterations/elapsed tim&4/36 min
Final point:a = 99297
Functional final valued(a) = 0.100886

6 Conclusions and future work

A simple methodology was developed for the estimation o€fiémnical parameters involved in the
growth of an avascular tumour using data that could be obdairom medical imaging. The inverse
problem has been solved using the Pattern Search algomtumpled with a finite different scheme
and a boundary value problem solver for the resolution ofdihect problem. The presented results
demonstrate the feasibility of the proposed methodologyenEn the case when 5% of noise was
added to the input data the methodology estimates the dgsr@meter with very good accuracy

According to the results, this methodology can help to esinseveral chemical/biological pa-
rameters involved in the process (diffusion coefficienttosis and death rates, Michaelis-Menten
constants, etc.) that could be useful and important to stodthe design of a treatment procedure.
As future work we plan to recover more parameters involvethénmodel, and focus on the regular-
ization of the problem considering different regularisatmethods and iterative algorithms. In order
to solve the optimization problem, we will use an algorithmtttake into account the derivative of
the functional like the conjugate gradient method.

In addition, we are trying to use these optimization ideasadk with vascular tumour’'s model.
That will surely give a more realistic idea of a chemothetaioereatment and its protocol.
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A parameter estimation problem for a tumour growth model .

D. A. Knopoff, D. R. Fernandez, G. A. Torres and C. V. Turher

FaMAF, Universidad Nacional de@@doba - CIEM-CONICET. 6rdoba, Argentina.

Abstract

In this paper we present a method for estimating unknownnpeters that appear on an
avascular, spheric tumour growth model. The model for tineotur is based on nutrient driven
growth of a continuum of live cells, whose birth and deathegate volume changes described
by a velocity field. The drug is applied externally, and isumssd to be a diffusible substance
capable of killing cells.

The model consists on a coupled system of partial diffea¢iiuations which is solved
numerically. As the domain on which the equations are defisttk tumour, that changes in size
over time, the problem can be formulated as a moving bouratzey

After solving the forward problem properly, we are concertire using the model for the
estimation of parameters, by fitting the numerical solutidgth real data. We define a functional
to compare both of them and we use the pattern search methotifimnizing it, obtaining good
accuracy for the recovery of a few parameters.

Keywords avascular tumour, constrained optimization, inversélem, mathematical modeling.

1 Introduction.

The interest for research in modeling cancer has grown emasiy over the last decades, [1, 2].
Pioneers have been, for example, [11, 15], where the firgtosfgmporal models of an avascular
multicellular spheroid’s (MCS) growth have been develop&tie study of MCS is interesting be-
cause they provide the best insight into the effectivenésh@motherapeutic drugs on tumours in
vivo, and their behaviour can be studied experimentallyiiiro) by controlling environmental con-
ditions in which they grow: for example, the radii of the tum@an be monitored by changing the
chemotherapeutic drug or oxygen levels.

In addition, another variables can be measured. If possllgerimentalists can get information
about the distribution of substances within the tumour. &dwer, via medical imaging or histological
cuts, they can also get data about the density of the diffé&red of cells conforming it: proliferating,
guiescent, necrotic.

That is why in this general approach of modeling the key Wéem are the tumour size (radius)
and the concentration within the tumour of growth-rate ting diffusible chemicals (nutrients such
as oxygen or glucose or a chemotherapeutic drug). Sinceiutheur changes in size over time, the
domain on which the models are formulated must be deterna@ageart of the solution process, giving
a vast class of moving boundary problems, [6, 7].

In this article, we propose a framework for estimating unkngarameters via PDE-constrained
optimization, following the PDE-based model by Ward and&ifl6]. In this approach, avascular

*E-mail address: knopoff@famaf.unc.edu.ar, dfernandent@f.unc.edu.ar, torres@gmail.com,
turner@famaf.unc.edu.ar



tumour growth is modeled via a coupled nonlinear system fédreintial equations, which make the
numerical solution procedure quite challenging.

We are concerned with developing a robust PDE-constraioedufiation that let us find the best
set of parameters of a tumour growth model that fits patier@xperimental data. We choose the
parameters that should be of applied interest and try tarolitem by defining a functional to be
minimized.

The paper is organized as follows: section 2 introducesutmtrr growth model (forward prob-
lem). Section 3 shows the numerical solution of the forwambfem and checks its accuracy by
proving some theoretical results. Section 4 introducesniverse problem approach, by defining the
functional to be minimized. Finally, in section 5 the nuncatiprocedure to solve the inverse problem
is discussed.

2 Mathematical moddl.

We consider the model proposed by Ward and King in [16]. Theotr is a spheroid which consists
of a continuum of living cells, in one of two states: live orade The rates of birth and death depend
on the nutrient and chemotherapeutic drug concentratiés supposed that those processes generate
volume changes, leading to cell movement described by &itgliteld. The system of equations to
be studied is:

0 L0 () — o) — KGkn(c) . (2.1)
oc 10 D3 [ ,0
L (raer) _20_< _C> Bkn(ON, 2.2)
2
riza(;rv) = Vikm(€) — (Vi = Vb) {ka () + KG(Kn(c))W}]n, (2.3)
ow 10(rww) Dy 0 [ 0w\ K
S = e (5 ) - St 24

where the dependent variablesc, v andw are the live cell density (cells/unit volume), nutrient
concentration, velocity and drug concentration, respelsti As it is described in [16], equation (2.1)
states that the rate of changerois dependent on the difference between the bigtfc) and death

ki (c) rates, where this one is either natural (as described i) fi”due to the drug effects, at a rate
KG(km(c))w. The functonsky andky are taken to be generalised Michaelis-Menten kinetics with
exponent 1, i.e.

i) =A (55 ) @5)
kd(c):B<1—oCdC+C>. (2.6)

The constanK is the maximum possible rate of drug induced cell death. DhetantsA, B ando
are positive parameters of the Michaelis-Menten kinetidsle c. andcy are critical concentrations.
G(km(c)) is a function that represents the dependence between diiog aod cell-cycle. As it is
considered in [16] it is a good idea to choose a linear deper@egiving



Equation (2.2) states that the nutrient is consumed at goraf@ortional to the rate of mitosis,
and its diffusion is described by Ficks law. Equation (2)es that the rate of volume change is
given by the difference in volume generated via birth fromit tbst by death (it is assumed that a live
cell occupies a volum¥, that is twice the volume of a death c®lh). The diffusion of the drug is
described also by Ficks law, and it is assumed that it is diegr@nly when it attacks a living cell,
giving a maximum degradation rake/w. w is a dimensionless constant that can be interpreted as a
measure of the drugs effectiveness, as explained in [16f, mwtreasingw implying that less drug
is consumed to produce the same effects during the killimggss. These considerations lead to
equation (2.4).

2.1 Moving boundary problem

As it has been mentioned, the tumour is assumed to be a sghkabiexhibits radial simmetry. That
is why, not only the state variables c, v andw are important, but the outer tumour radius is also a
key variable to be determined. Since the tumour changegéosier time, the domains on which the
models are formulated (and the PDEs are valid) must be ditednas part of the solution.

Let S(t) be the tumour radius at time So, if we suppose that the treatment begins at time,
in which the tumour has a radi, with living cell density and nutrient concentration dilstitions
n(r) andc (r), respectively, then the initial conditions of the probleam de formulated as

n(r,0) =ny(r), (2.7)
c(r,0) = ¢ (r), (2.8)
w(r,0) =0, (2.9)
S0)=S. (2.10)

Because symmetry is assumed about the tumour center, thaefiux there. That is why, as
boundary conditions about= 0, are taken:

g_f(o,n o, (2.11)
v(0,t) = 0, (2.12)

ow

5 (0. =0. (2.13)

Moreover, on the external boundary (which is also the boyndéthe complement of the tumour
as a subset of the body), the following conditions are taken:

c(S(t),t) = co, (2.14)
:l—tsz V(S(t), 1), (2.15)
W(S(t),t) = wo(t), (2.16)

wherecy andwy(t) are external nutrient and drug concentrations, respégtiviene functionwy(t)
depends on the chemotherapeutic protocol. In our simulsitowill be considered as a constant that
does not depend dn However, other functions may be adopted, for example itide8 we show
an example in which drug is provided for some intervals ogtitout not for other ones.



2.2 Nondimensionalisation

Before analysing the model equations, we re-scale the mmatiieal model in the following way,
denoting non-dimensional variables with bars:

n=w.n; C=c/co; V=V/roA, t=At T=r/ro; S= S/ro; W= w/W

whererg = (3V, /4m)/3 is the radius of a single cell av is a suitable reference drug concentration
(typically Wo = maxWo(t))).

It is important to remark that inherent in this problem ar® tivnescales: the tumour growth
timescale £ 1 day) and the much shorter drug and nutrient diffusioasl(min). That is why,
following [2, 1, 16, 6] we adopt a quasi-steady assumptiaiénnutrient and drug equations.

Following [16], and relabeling the variables with bar agaithout it, these rescalings lead to the
following system of differential equations:

a3 +VE = [a(c,w) — b(c,w)n|n, (2.17)
10 (,0c\
10(r2v)
2 b(c,w)n, (2.19)
10 ([ ,0w\ K
=T (r E) = akm(C)WfL (2.20)
where
o = WDV Wo/Ar3, (2.21)
K = KWp/A,

L 0(0) — ka(©) — KG(kn(c)) W,

a(c,w) = A

b(e.w) = 5 {kin(C) — (1 8)[ks(€) ~ KG{kn(c) i},

with 3 = Vp /M. and(B) = r2BA/VLcoD.

We note that theonstanta defined above comprises many model parameters that should be
interesting to know exactly. It will be of great importanaethe next sections, wherme will be
considered as a key parameter of the problem.

Also, it is worth saying that rigorous mathematical anaystluding existence, uniqueness, and
stability theorems, as well as properties of the free botesldor similar tumour growth models in
which different kind of PDEs are combined, have been obthif§ and [8].



3 Numerical solution of the forward problem

After the assumptions made in the previous section, we taselte the following system of PDEs:

N + vne = [a(c,w) — b(c,w)n|n 0<r<St), t>0, (3.1)
vr+$v:b(c,w)n 0<r<St), t>0, (3.2)
Crr + %cr =k(c)n 0<r<St), t>0, (3.3)
2 K
Wir + er = akm(c)w 0<r<St), t>0. (3.4)

The initial conditions at = 0 are

n(r,0) = ni(r), (3.5)
S(0)=S§. (3.6)
w(r,0) =0, (3.7)
and the boundary conditions are
v(0,t) =0, (3.8)
¢ (0,t) =0, (3.9
w; (0,t) =0, (3.10)
c(St),t) =1, (3.11)
w(S(t),t) =1, (3.12)
S(t) = v(S(t),1). (3.13)

It is important to remark that the density of living cells leetboundaryn(S(t),t), can be calcu-
lated explicitly. Indeed, consider equation (3.1) and rb&t, using the chain rule, the total variation
of nintime is

dn_on  ondr
dt ot  ordt’
At the point(S(t),t) the expressior%{ is equal tov(S(t),t). So, substitution in (3.1) gives

(3.14)

dn
a(s(t)vt) = [a(17 1) - b(17 1)n(s(t)7t)]n(s(t)7t)v
wherea(1,1) andb(1,1) are the corresponding values of the functiar@db on the boundary at any
time. The last equation is a separable ODE, that can be tranetl into
dn*

[a* _ b*n*]n*

where for simplicity we wrota* = a(1,1), b* = b(1,1) andn* = n(S(t),t).
Now, we use expansion into simple fractions:

—dt, (3.15)



1 b* 1 11
=— —— 3.16
(a* —b*n*)n*  a*a* —b*n* +a* n* (3.16)

Combining equations (3.15) and (3.16) and integrating tues we get

(SH).t dn* (@ =b)n(S(t),1)
/ dt_/ (a —bno)n* _In< a*—b*n(S(t),t) > @17

Finally, solving forn on the boundary, we obtain

aelt
S = oo et (3.18)

Equation (3.18) is not only an elegant analytical result atgo it will become of really importance
when calculating numerically the value ofin the boundary. As we shall see, when defining the
spatial grid to solve equation (3.1) with a forward finitefelience scheme, for each poimtof the
grid we will need to take also the point, 1 but that is impossible in the last point of the grid, $4#)

3.1 Fixed domain method

The first step for solving this moving boundary problem wil tbansforming the original domain to
a fixed one, i.e., re-writing the whole system for the chanigeoordinatesy = r /S(t). In this way,
the spatial domain will be the intervi, 1].

Observation 3.1 If r = ySt), thengl = S(t) and §f = yS(t).

We briefly illustrate the way in which the new equations areaied, using (3.1).
LetN(y,t) =n(r,t) = n(ySt),t). Differentiating this expression respectytone obtain
Ny = nery + ety = neS(t),

and them, = %
And differentiation respect tbgives

dr
I\It - rdt + nt7
and so we deduce that=N; — 2
Substitution in (3.1) gives
S Y%
Nt—éyl\l)nL gl\ly:N[a(C)—b(C)N]N 0<r<1, t>0. (3.19)
The same procedure is applied to the other equations, anthtamo
Cyy+ écy =k(C)SN, (3.20)
2
Vy + 9V —=Db(C)NS (3.21)
2 K
Wy + 9\Ny = akm(C)SZW N. (3.22)



The initial conditions for the transformed problem are

N(y,0) = Ni(y), 0<y<1, (3.23)
S0) =Ss, (3.24)
W(y,0) =0, 0<y<1, (3.25)
and the boundary conditions are
V(0,t) =0, t>0, (3.26)
G0Ot)=0  t>0 (3.27)
W, (0,t) =0, t>0, (3.28)
C(1,t) =1, t>0, (3.29)
W(1,t) =1, t>0, (3.30)
S(t) =V(1,1), t>0. (3.31)

3.2 Numerical procedure

The drug is first applied d@t= 0, by which time the tumour has grown following the model wiih
drug, [17]. Originally, at &~ —500, a single cell started to take nutrients from the envirent, letting
it grow up to a dimensionless size §f~ 202. The solution for the variablé$, C andV is taken as
the initial distribution of them for the drug treatment case

All the simulations described in this section use the follayyparameter values, as suggested in
[16]:

B/A=1, 0=09, =05 B=0005 ¢ =01  c=005 K=50

The problem (3.19)-(3.22) subject to the initial and bougiad@nditions is solved in the following
way:

1. Given the distributions o, V, C andW at timek we solve (3.19) using a finite-difference
scheme to obtaill at timek+ 1. The value o at the boundary is updated directly by solving
equation (3.18).

2. The ODEs system (3.20)-(3.22) is solved usingMhE_AB's packagebbvp4c to obtainC, V
andW at timek + 1.

3. Using the valu®/(1,k+ 1) we solve equation (3.31) f@at timek+ 1 using Eulers method.

We remark that solving the system (3.20)-(3.22) is challampgn the sense that there is a sin-
gularity atr = 0. The packagdbvp4c let us deal with this singularity by using $ingular Term
tool.

3.3 Numerical results

The numerical solution for this problem is very well disegsnd analized in many aspects by Ward
and King, [16]. The parameter is taken as a variable in the sense that we are interesteddyist
how the solution behaves whernis changed.
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Figure 2: Velocity at the tumour’s boundary for a fixed tinhe=(10) for different values of.

We are able to confirm that can, indeed, be consideredneasure of the treatment effectiveness
We plot how the radius of the tumour evolves in time when vagyihis parameter, as showed in
figure 1.

We can observe that a valoe= 10 does not stop the growth of the tumour, although there is a
killing cell process. However, ift = 100 ora = 1000 the radius of the tumour decreases (of course
the mass could never disappear because the drug does neeatt®already formed necrotic core).

An interesting question to answer fer which value ofx can be stated that tumour will decrease
in size? That should be helpful, for example, w hen choosing some dden the drug coefficient
diffusion and the initial spheroid size are known. To deteerthis value we take into account the
velocity in the boundary at a fixed time for different valuésio For example, in figure 2 we can see
that if we fix the non-dimensional tinte= 10, the functiorv(S(t),t) has a root irot ~ 25.

The problem has also be solved for a different treatmenbpaobt We took a drug witlm = 1000
and provided it for some time intervals, so that the boundandition is the following:

wo(t) = 1, te[0,20),
Wo(t) 0, te[20,50),
Wo(t) = 1,  t>50
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In [16] the surviving fraction is plotted for a boundary cdai@h similar to this one. In contrast,
in figure 3 we plot the evolution of the tumour radius for thisigtion, which should be considered
when designing a treatment, because it is really importatiteé effectiveness-toxicity balance.

4 Inverseproblem

The main idea of this section is to recover some of the paensmethich appear in the mathemat-
ical model, motivated in the lack of references that exiditarature. In reality, some of them are
unknown, especially in vivo.

We consider that the parametedefined above is important because it provides a measure of th
treatment effectiveness. In particular, it can provideinfation about the drug diffusion coefficient,
the optimal dose to get a desired effect or, eventually, Biétis-Menten kinetics, see equation (2.21).

Thus, we are interested in the recovery of this parametagusiailable scans (MR images from
real patients that could let us follow the tumour size evolubver time) or reliable measurements
such as histological studies (obtained experimentallyrfeitro cases). The data should be obtained
at different moments in time over a time interval of lenghtThe inverse problem can be formulated
as follows:

Find a parameter value able to generate data that best maelavailable information over time
0<t<T.

Because of the nature of the mathematical model, we havedve ad’DE constrained optimiza-
tion problem. The constraints are given by the model eqoat{@.1)-(2.14), which can be written
in a short way as?(@) = 0, where? is the differential operator given by the set of equationd an
@=(N,C,V,W).

4.1 The objective functional

We should construct an objective functional which givesarmmedistancebetween the experimental
(real) data and the solution of the system of PDESs for eaalewaila.

First of all, it is important to decide which variables ar@ahle to be measured experimentally.
For instance, it is clear that the tumour rad#js) can be known at certain timés k= 1,...,M. So,
the first possibility for defining a functional could be



]
Aso) = [ [S() - S )P, (4.1)

where& (1) is the radius evolution obtained solving the direct probfema certain value of and
S(t) is the evolution measured experimentally (real data).

Other variable that could be measured is the concentrafitirirg cells, via biomedical imaging.
Thus, we are motivated to define a functional that reprodircasetter way the knowledge we have
about the process, i.e.

J(N,Sa) // [Na(y,t) — N*(y, )]zdtdy+u/ — S(1))?dt, (4.2)

whereNg (y,t) andN*(y,t) are the living cell concentration for the direct problemveadl with the
value a and the real data, respectively (both of them in the donf@if] x [0,T]). The positive
constaniuis introduced, as we shall see, to take into account therdiffeorder of magnitude between
N andS.

So, the constrained optimization problem can be formulased

minJ(a
aeC ( )’

st.?(@) =0,

where( denotes the set @dmissible valuesf a.

We remark that, in general, there is a fundamental diffexdyetween the direct and the inverse
problems. In fact, the latter is usually ill-posed in thesseof existence, uniqueness and stability of
the solution. This inconvenient is often treated by usingeoegularization techniques, [12, 10].

4.2 Discretization of the objective functional

Even if the functionsS(t) andN(y,t) are not known in their whole domains, it is sufficient to know
the values that they take at several points (defining a céentgrid mesh foy andt).

First of all, suppose that we have experimental measurenadit and S at different timeg,
k=1,...,M. That would give us temporal information about the variable

On the other hand, the distribution of living cells depenids an the position along the tumour.
A common techniche in medical imaginglandmark registration landmarks are points placed at
meaningful parts of the tumour, with the intention of rep@mg it as good as possible with a few
isolated points. Ley;, j = 1,...,Q denote a set of points in the inter@l 1] that are chosen by an
expert. Note that the points should be chosen in the inté@y&{t)], but for simplicity we will assume
that they are fixed in time.

Then, the objective functional (4.2) can be discretized as

Q
J(N,Sa) =
=1

Mz

M
Nayi.t) — N (. 812+ 1Y [Ss(8) — S (1) et (4.3)
k=1

=
i

1

10



5 Numerical experiments

The pattern search method, [9]-[13], was employed to estiree parameter of interest by minimiz-
ing the objective functional. It is a direct method, i.e. atinoel that neither compute nor explicitly
approximate derivatives df For this purpose we use the functipattern search of MATLAB.

We study the functionals behaviour by solving some testsasée living cell density and the
tumour radius are generated via the forward problem. We $teperthe results obtained by assuming
astandard valuen = 1000. It seems that this value is quite reasonable, seedltBhugh in a next
step we are trying to determine whether or not the dose cerezids tolerable for a patient.

1. Model-generated data

Consider first an optimization problem that consist in mizing the functional (4.3), where
N*(y,t) and S‘(t) are generated via the forward model, for a choice of the mpdedmeter
o = 1000.

Working with the functional (4.3) requires to define the laraatk pointsy; and the timesy
where the measurements are made. For simplicity, and torisstent with the way we solved
the direct problem, we took the same spatial grid for theneeudks, i.e. 30 equidistant points
0=y < ... <ysp= 1. Regarding to the time selection, it is apparent from theegrments
that 20 time steps are enough to obtain the desired resaltwegake 20 equidistant points
t1 < ... < tyo. The factoruis taken to be 1.

The idea of this test case is to investigate how close thénatigalue of the parameter can
be retrieved. However, it is not a trivial one, because we ooknow, for instance, if the
optimization problem has a solution or, in that case, if tiisque or if the method converges
to another local minima.

We emphasize we have run the algorithm several times usifegetit initial random conditions
and in all cases the results were similar. They can be surmethim the following table:

Stopping criteriadifference between two consecutive iterations lower tt@u?

Iterations/elapsed tim&5/45 min
Final point:a = 1001
¢ Functional final valueJ(a) = 1.8871104

2. Model-generated data with% of random noise

It is well known that the presence of noise in the data may yntipé appearance of strong
numerical instabilities in the solution of an inverse pesh| [5].

The outputs of the detectors and the experimental equipwiesite the variablelsl* andS* are
measured are often affected by perturbations, usuallyoranghes. As stated in [3], it is in
general valid to consider a 5% of random noise.

The functional (4.3) is the same used for case 1, except fnencanstanfL It was clear from
numerical experiments that the facior= 1 was not suitable for this case, as it is showed in
figures 4 and 5, where we can see that the order of magnitusedetboth terms in the
objective functional is different. Indeed, in the case & lkiiing cell density, we can see that
both lines are almost indistinguishable. By a trial and epmcedure, we determined that
= 10"*is a suitable factor.

Again, starting with different points, the results of thegedure are the following:
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Stopping criteriadifference between two consecutive iterations lower tt@u?

Iterations/elapsed tim&4/36 min
Final point:a = 99297
Functional final valued(a) = 0.100886

6 Conclusions and future work

A simple methodology was developed for the estimation o€fiémnical parameters involved in the
growth of an avascular tumour using data that could be obdairom medical imaging. The inverse
problem has been solved using the Pattern Search algomtumpled with a finite different scheme
and a boundary value problem solver for the resolution ofdihect problem. The presented results
demonstrate the feasibility of the proposed methodologyenEn the case when 5% of noise was
added to the input data the methodology estimates the dgsr@meter with very good accuracy

According to the results, this methodology can help to esinseveral chemical/biological pa-
rameters involved in the process (diffusion coefficienttosis and death rates, Michaelis-Menten
constants, etc.) that could be useful and important to stodthe design of a treatment procedure.
As future work we plan to recover more parameters involvethénmodel, and focus on the regular-
ization of the problem considering different regularisatmethods and iterative algorithms. In order
to solve the optimization problem, we will use an algorithmtttake into account the derivative of
the functional like the conjugate gradient method.

In addition, we are trying to use these optimization ideasadk with vascular tumour’'s model.
That will surely give a more realistic idea of a chemothetaioereatment and its protocol.
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