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A parameter estimation problem for a tumour growth model .
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FaMAF, Universidad Nacional de Ćordoba - CIEM-CONICET. Ćordoba, Argentina.

Abstract

In this paper we present a method for estimating unknown parameters that appear on an
avascular, spheric tumour growth model. The model for the tumour is based on nutrient driven
growth of a continuum of live cells, whose birth and death generate volume changes described
by a velocity field. The drug is applied externally, and is assumed to be a diffusible substance
capable of killing cells.

The model consists on a coupled system of partial differential equations which is solved
numerically. As the domain on which the equations are definedis the tumour, that changes in size
over time, the problem can be formulated as a moving boundaryone.

After solving the forward problem properly, we are concerned in using the model for the
estimation of parameters, by fitting the numerical solutionwith real data. We define a functional
to compare both of them and we use the pattern search method for minimizing it, obtaining good
accuracy for the recovery of a few parameters.

Keywords: avascular tumour, constrained optimization, inverse problem, mathematical modeling.

1 Introduction.

The interest for research in modeling cancer has grown enormously over the last decades, [1, 2].
Pioneers have been, for example, [11, 15], where the first spatio-temporal models of an avascular
multicellular spheroid’s (MCS) growth have been developed. The study of MCS is interesting be-
cause they provide the best insight into the effectiveness of chemotherapeutic drugs on tumours in
vivo, and their behaviour can be studied experimentally (invitro) by controlling environmental con-
ditions in which they grow: for example, the radii of the tumour can be monitored by changing the
chemotherapeutic drug or oxygen levels.

In addition, another variables can be measured. If possible, experimentalists can get information
about the distribution of substances within the tumour. Moreover, via medical imaging or histological
cuts, they can also get data about the density of the different kind of cells conforming it: proliferating,
quiescent, necrotic.

That is why in this general approach of modeling the key variables are the tumour size (radius)
and the concentration within the tumour of growth-rate limiting diffusible chemicals (nutrients such
as oxygen or glucose or a chemotherapeutic drug). Since the tumour changes in size over time, the
domain on which the models are formulated must be determinedas part of the solution process, giving
a vast class of moving boundary problems, [6, 7].

In this article, we propose a framework for estimating unknown parameters via PDE-constrained
optimization, following the PDE-based model by Ward and King, [16]. In this approach, avascular
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tumour growth is modeled via a coupled nonlinear system of differential equations, which make the
numerical solution procedure quite challenging.

We are concerned with developing a robust PDE-constrained formulation that let us find the best
set of parameters of a tumour growth model that fits patient orexperimental data. We choose the
parameters that should be of applied interest and try to obtain them by defining a functional to be
minimized.

The paper is organized as follows: section 2 introduces the tumour growth model (forward prob-
lem). Section 3 shows the numerical solution of the forward problem and checks its accuracy by
proving some theoretical results. Section 4 introduces theinverse problem approach, by defining the
functional to be minimized. Finally, in section 5 the numerical procedure to solve the inverse problem
is discussed.

2 Mathematical model.

We consider the model proposed by Ward and King in [16]. The tumour is a spheroid which consists
of a continuum of living cells, in one of two states: live or dead. The rates of birth and death depend
on the nutrient and chemotherapeutic drug concentration. It is supposed that those processes generate
volume changes, leading to cell movement described by a velocity field. The system of equations to
be studied is:

∂n
∂t

+
1
r2

∂(r2vn)
∂r

= [km(c)−kd(c)−KG(km(c))w]n, (2.1)

∂c
∂t

+
1
r2

∂(r2vc)
∂r

=
D
r2

∂
∂r

(
r2 ∂c

∂r

)
−βkm(c)n, (2.2)

1
r2

∂(r2v)
∂r

= [VLkm(c)− (VL −VD){kd(c)+KG(km(c))w}]n, (2.3)

∂w
∂t

+
1
r2

∂(r2vw)
∂r

=
Dw

r2

∂
∂r

(
r2 ∂w

∂r

)
−

K
ω

G(km(c))wn, (2.4)

where the dependent variablesn, c, v and w are the live cell density (cells/unit volume), nutrient
concentration, velocity and drug concentration, respectively. As it is described in [16], equation (2.1)
states that the rate of change ofn is dependent on the difference between the birthkm(c) and death
kd(c) rates, where this one is either natural (as described in [17]) or due to the drug effects, at a rate
KG(km(c))w. The functonskm andkd are taken to be generalised Michaelis-Menten kinetics with
exponent 1, i.e.

km(c) = A

(
c

cc+c

)
, (2.5)

kd(c) = B

(
1−σ

c
cd +c

)
. (2.6)

The constantK is the maximum possible rate of drug induced cell death. The constantsA, B andσ
are positive parameters of the Michaelis-Menten kinetics,while cc andcd are critical concentrations.
G(km(c)) is a function that represents the dependence between drug action and cell-cycle. As it is
considered in [16] it is a good idea to choose a linear dependence, giving

G(km(c)) = km(c)/A.
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Equation (2.2) states that the nutrient is consumed at a rateproportional to the rate of mitosis,
and its diffusion is described by Ficks law. Equation (2.3) states that the rate of volume change is
given by the difference in volume generated via birth from that lost by death (it is assumed that a live
cell occupies a volumeVL that is twice the volume of a death cellVD). The diffusion of the drug is
described also by Ficks law, and it is assumed that it is degraded only when it attacks a living cell,
giving a maximum degradation rateK/ω. ω is a dimensionless constant that can be interpreted as a
measure of the drugs effectiveness, as explained in [16], with increasingω implying that less drug
is consumed to produce the same effects during the killing process. These considerations lead to
equation (2.4).

2.1 Moving boundary problem

As it has been mentioned, the tumour is assumed to be a spheroid that exhibits radial simmetry. That
is why, not only the state variablesn, c, v andw are important, but the outer tumour radius is also a
key variable to be determined. Since the tumour changes in size over time, the domains on which the
models are formulated (and the PDEs are valid) must be determined as part of the solution.

Let S(t) be the tumour radius at timet. So, if we suppose that the treatment begins at timet = 0,
in which the tumour has a radiusSI , with living cell density and nutrient concentration distributions
nI (r) andcI (r), respectively, then the initial conditions of the problem can be formulated as

n(r,0) = nI (r), (2.7)

c(r,0) = cI (r), (2.8)

w(r,0) = 0, (2.9)

S(0) = SI . (2.10)

Because symmetry is assumed about the tumour center, there is no flux there. That is why, as
boundary conditions aboutr = 0, are taken:

∂c
∂r

(0, t) = 0, (2.11)

v(0, t) = 0, (2.12)
∂w
∂r

(0, t) = 0. (2.13)

Moreover, on the external boundary (which is also the boundary of the complement of the tumour
as a subset of the body), the following conditions are taken:

c(S(t), t) = c0, (2.14)
dS
dt

= v(S(t), t), (2.15)

w(S(t), t) = w0(t), (2.16)

wherec0 andw0(t) are external nutrient and drug concentrations, respectively. The functionw0(t)
depends on the chemotherapeutic protocol. In our simulations it will be considered as a constant that
does not depend ont. However, other functions may be adopted, for example in section 3 we show
an example in which drug is provided for some intervals of time, but not for other ones.
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2.2 Nondimensionalisation

Before analysing the model equations, we re-scale the mathematical model in the following way,
denoting non-dimensional variables with bars:

n=VLn; c= c/c0; v= v/r0A; t = At r = r/r0; S= S/r0; w= w/W0

wherer0 = (3VL/4π)1/3 is the radius of a single cell andW0 is a suitable reference drug concentration
(typically W0 = max(w0(t))).

It is important to remark that inherent in this problem are two timescales: the tumour growth
timescale (≈ 1 day) and the much shorter drug and nutrient diffusions (≈ 1 min). That is why,
following [2, 1, 16, 6] we adopt a quasi-steady assumption inthe nutrient and drug equations.

Following [16], and relabeling the variables with bar againwithout it, these rescalings lead to the
following system of differential equations:

∂n
∂t

+v
∂n
∂r

= [a(c,w)−b(c,w)n]n, (2.17)

1
r2

∂
∂r

(
r2 ∂c

∂r

)
= k(c)n, (2.18)

1
r2

∂(r2v)
∂r

= b(c,w)n, (2.19)

1
r2

∂
∂r

(
r2∂w

∂r

)
=

K̂
α

km(c)wn, (2.20)

where

α = ωDwVLW0/Ar2
0, (2.21)

K̂ = KW0/A,

a(c,w) =
1
A
[km(c)−kd(c)−KG(km(c))w],

b(c,w) =
1
A
{km(c)− (1−δ)[kd(c)−KG(km(c))w]},

k(c) = β̂km(c)/A,

with δ =VD/VL and(̂β) = r2
0βA/VLc0D.

We note that theconstantα defined above comprises many model parameters that should be
interesting to know exactly. It will be of great importance in the next sections, whereα will be
considered as a key parameter of the problem.

Also, it is worth saying that rigorous mathematical analysis including existence, uniqueness, and
stability theorems, as well as properties of the free boundaries for similar tumour growth models in
which different kind of PDEs are combined, have been obtained, [4] and [8].
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3 Numerical solution of the forward problem

After the assumptions made in the previous section, we have to solve the following system of PDEs:

nt +vnr = [a(c,w)−b(c,w)n]n 0< r ≤ S(t), t > 0, (3.1)

vr +
2
r

v= b(c,w)n 0< r ≤ S(t), t > 0, (3.2)

crr +
2
r

cr = k(c)n 0< r ≤ S(t), t > 0, (3.3)

wrr +
2
r

wr =
K̂
α

km(c)w 0< r ≤ S(t), t > 0. (3.4)

The initial conditions att = 0 are

n(r,0) = nI (r), (3.5)

S(0) = SI , (3.6)

w(r,0) = 0, (3.7)

and the boundary conditions are

v(0, t) = 0, (3.8)

cr(0, t) = 0, (3.9)

wr(0, t) = 0, (3.10)

c(S(t), t) = 1, (3.11)

w(S(t), t) = 1, (3.12)

Ṡ(t) = v(S(t), t). (3.13)

It is important to remark that the density of living cells in the boundary,n(S(t), t), can be calcu-
lated explicitly. Indeed, consider equation (3.1) and notethat, using the chain rule, the total variation
of n in time is

dn
dt

=
∂n
∂t

+
∂n
∂r

dr
dt

. (3.14)

At the point(S(t), t) the expressiondr
dt is equal tov(S(t), t). So, substitution in (3.1 ) gives

dn
dt

(S(t), t) = [a(1,1)−b(1,1)n(S(t), t)]n(S(t), t),

wherea(1,1) andb(1,1) are the corresponding values of the functionsa andb on the boundary at any
time. The last equation is a separable ODE, that can be transformed into

dn∗

[a∗−b∗n∗]n∗
= dt, (3.15)

where for simplicity we wrotea∗ = a(1,1), b∗ = b(1,1) andn∗ = n(S(t), t).
Now, we use expansion into simple fractions:
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1
(a∗−b∗n∗)n∗

=
b∗

a∗
1

a∗−b∗n∗
+

1
a∗

1
n∗

. (3.16)

Combining equations (3.15) and (3.16) and integrating overtime we get

∫ t

0
dt =

∫ n(S(t),t)

1

dn∗

(a∗−b∗n∗)n∗
= ln

(
(a∗−b∗)n(S(t), t)
a∗−b∗n(S(t), t)

)
. (3.17)

Finally, solving forn on the boundary, we obtain

n(S(t), t) =
a∗ea∗t

a∗−b∗+b∗ea∗t . (3.18)

Equation (3.18) is not only an elegant analytical result, but also it will become of really importance
when calculating numerically the value ofn in the boundary. As we shall see, when defining the
spatial grid to solve equation (3.1) with a forward finite difference scheme, for each pointr j of the
grid we will need to take also the pointr j+1 but that is impossible in the last point of the grid, sayS(t)

3.1 Fixed domain method

The first step for solving this moving boundary problem will be transforming the original domain to
a fixed one, i.e., re-writing the whole system for the change of coordinatesy= r/S(t). In this way,
the spatial domain will be the interval[0,1].

Observation 3.1 If r = yS(t), then dr
dy = S(t) and dr

dt = yṠ(t).

We briefly illustrate the way in which the new equations are obtained, using (3.1).
Let N(y, t)

.
= n(r, t) = n(yS(t), t). Differentiating this expression respect toy, we obtain

Ny = nr ry+ntty = nrS(t),

and thennr =
Ny

S .
And differentiation respect tot gives

Nt = nr
dr
dt

+nt ,

and so we deduce thatnt = Nt −
Ny

S yṠ.
Substitution in (3.1) gives

Nt −
Ṡ
S

yNy+
V
S

Ny = N[a(C)−b(C)N]N 0< r ≤ 1, t > 0. (3.19)

The same procedure is applied to the other equations, and we obtain

Cyy+
2
y
Cy = k(C)S2N, (3.20)

Vy+
2
y
V = b(C)NS, (3.21)

Wyy+
2
y
Wy =

K̂
α

km(C)S
2WN. (3.22)
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The initial conditions for the transformed problem are

N(y,0) = NI(y), 0≤ y≤ 1, (3.23)

S(0) = SI , (3.24)

W(y,0) = 0, 0≤ y≤ 1, (3.25)

and the boundary conditions are

V(0, t) = 0, t > 0, (3.26)

Cy(0, t) = 0, t > 0, (3.27)

Wy(0, t) = 0, t > 0, (3.28)

C(1, t) = 1, t > 0, (3.29)

W(1, t) = 1, t > 0, (3.30)

Ṡ(t) =V(1, t), t > 0. (3.31)

3.2 Numerical procedure

The drug is first applied att = 0, by which time the tumour has grown following the model without
drug, [17]. Originally, att ≈−500, a single cell started to take nutrients from the environment, letting
it grow up to a dimensionless size ofSI ≈ 202. The solution for the variablesN, C andV is taken as
the initial distribution of them for the drug treatment case.

All the simulations described in this section use the following parameter values, as suggested in
[16]:

B/A= 1, σ = 0.9, δ = 0.5, β = 0.005, cc = 0.1, cd = 0.05, K = 50.

The problem (3.19)-(3.22) subject to the initial and boundary conditions is solved in the following
way:

1. Given the distributions ofN, V, C andW at timek we solve (3.19) using a finite-difference
scheme to obtainN at timek+1. The value ofN at the boundary is updated directly by solving
equation (3.18).

2. The ODEs system (3.20)-(3.22) is solved using theMATLAB’s packagebbvp4c to obtainC, V
andW at timek+1.

3. Using the valueV(1,k+1) we solve equation (3.31) forSat timek+1 using Eulers method.

We remark that solving the system (3.20)-(3.22) is challenging in the sense that there is a sin-
gularity at r = 0. The packagebbvp4c let us deal with this singularity by using aSingular Term
tool.

3.3 Numerical results

The numerical solution for this problem is very well discussed and analized in many aspects by Ward
and King, [16]. The parameterα is taken as a variable in the sense that we are interested in studying
how the solution behaves whenα is changed.
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Figure 1: Evolution of the tumour radius for different values of α.
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Figure 2: Velocity at the tumour’s boundary for a fixed time (t = 10) for different values ofα.

We are able to confirm thatα can, indeed, be considered ameasure of the treatment effectiveness.
We plot how the radius of the tumour evolves in time when varying this parameter, as showed in
figure 1.

We can observe that a valueα = 10 does not stop the growth of the tumour, although there is a
killing cell process. However, ifα = 100 orα = 1000 the radius of the tumour decreases (of course
the mass could never disappear because the drug does not act over the already formed necrotic core).

An interesting question to answer is:for which value ofα can be stated that tumour will decrease
in size? That should be helpful, for example, w hen choosing some dosewhen the drug coefficient
diffusion and the initial spheroid size are known. To determine this value we take into account the
velocity in the boundary at a fixed time for different values of α. For example, in figure 2 we can see
that if we fix the non-dimensional timet = 10, the functionv(S(t), t) has a root inα ≈ 25.

The problem has also be solved for a different treatment protocol. We took a drug withα = 1000
and provided it for some time intervals, so that the boundarycondition is the following:

w0(t) = 1, t ∈ [0,20),
w0(t) = 0, t ∈ [20,50),
w0(t) = 1, t ≥ 50.
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Figure 3: Evolution of the tumour radius for a pulse-type drug provision.

In [16] the surviving fraction is plotted for a boundary condition similar to this one. In contrast,
in figure 3 we plot the evolution of the tumour radius for this situation, which should be considered
when designing a treatment, because it is really important in the effectiveness-toxicity balance.

4 Inverse problem

The main idea of this section is to recover some of the parameters which appear in the mathemat-
ical model, motivated in the lack of references that exist inliterature. In reality, some of them are
unknown, especially in vivo.

We consider that the parameterα defined above is important because it provides a measure of the
treatment effectiveness. In particular, it can provide information about the drug diffusion coefficient,
the optimal dose to get a desired effect or, eventually, Michaelis-Menten kinetics, see equation (2.21).

Thus, we are interested in the recovery of this parameter using available scans (MR images from
real patients that could let us follow the tumour size evolution over time) or reliable measurements
such as histological studies (obtained experimentally forin vitro cases). The data should be obtained
at different moments in time over a time interval of lenghtT. The inverse problem can be formulated
as follows:

Find a parameter value able to generate data that best match the available information over time
0≤ t ≤ T.

Because of the nature of the mathematical model, we have to solve a PDE constrained optimiza-
tion problem. The constraints are given by the model equations (2.1)-(2.14), which can be written
in a short way asP (φ) = 0, whereP is the differential operator given by the set of equations and
φ = (N,C,V,W).

4.1 The objective functional

We should construct an objective functional which gives us somedistancebetween the experimental
(real) data and the solution of the system of PDEs for each value ofα.

First of all, it is important to decide which variables are capable to be measured experimentally.
For instance, it is clear that the tumour radiusS(t) can be known at certain timestk, k= 1, ...,M. So,
the first possibility for defining a functional could be
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J(S;α) =
∫ T

0
[Sα(t)−S∗(t)]2dt, (4.1)

whereSα(t) is the radius evolution obtained solving the direct problemfor a certain value ofα and
S∗(t) is the evolution measured experimentally (real data).

Other variable that could be measured is the concentration of living cells, via biomedical imaging.
Thus, we are motivated to define a functional that reproducesin a better way the knowledge we have
about the process, i.e.

J(N,S;α) =
∫ 1

0

∫ T

0
[Nα(y, t)−N∗(y, t)]2dtdy+µ

∫ T

0
[Sα(t)−S∗(t)]2dt, (4.2)

whereNα(y, t) andN∗(y, t) are the living cell concentration for the direct problem solved with the
value α and the real data, respectively (both of them in the domain[0,1]× [0,T]). The positive
constantµ is introduced, as we shall see, to take into account the different order of magnitude between
N andS.

So, the constrained optimization problem can be formulatedas

min
α∈C

J(α),

s.t.P (φ) = 0,

whereC denotes the set ofadmissible valuesof α.
We remark that, in general, there is a fundamental difference between the direct and the inverse

problems. In fact, the latter is usually ill-posed in the sense of existence, uniqueness and stability of
the solution. This inconvenient is often treated by using some regularization techniques, [12, 10].

4.2 Discretization of the objective functional

Even if the functionsS(t) andN(y, t) are not known in their whole domains, it is sufficient to know
the values that they take at several points (defining a convenient grid mesh fory andt).

First of all, suppose that we have experimental measurements of N andS at different timestk,
k= 1, ...,M. That would give us temporal information about the variables.

On the other hand, the distribution of living cells depends also on the position along the tumour.
A common techniche in medical imaging islandmark registration: landmarks are points placed at
meaningful parts of the tumour, with the intention of representing it as good as possible with a few
isolated points. Lety j , j = 1, ...,Q denote a set of points in the interval[0,1] that are chosen by an
expert. Note that the points should be chosen in the interval[0,S(t)], but for simplicity we will assume
that they are fixed in time.

Then, the objective functional (4.2) can be discretized as

J(N,S;α) =
Q

∑
j=1

M

∑
k=1

[Nα(y j , tk)−N∗(y j , tk)]
2+µ

M

∑
k=1

[Sα(tk)−S∗(tk)]
2dt. (4.3)
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5 Numerical experiments

The pattern search method, [9]-[13], was employed to estimate the parameter of interest by minimiz-
ing the objective functional. It is a direct method, i.e. a method that neither compute nor explicitly
approximate derivatives ofJ. For this purpose we use the functionpattern search of MATLAB.

We study the functionals behaviour by solving some test cases. The living cell density and the
tumour radius are generated via the forward problem. We showhere the results obtained by assuming
a standard valueα = 1000. It seems that this value is quite reasonable, see [16],although in a next
step we are trying to determine whether or not the dose considered is tolerable for a patient.

1. Model-generated data

Consider first an optimization problem that consist in minimizing the functional (4.3), where
N∗(y, t) andS∗(t) are generated via the forward model, for a choice of the modelparameter
α = 1000.

Working with the functional (4.3) requires to define the landmark pointsy j and the timestk
where the measurements are made. For simplicity, and to be consistent with the way we solved
the direct problem, we took the same spatial grid for the landmarks, i.e. 30 equidistant points
0 = y1 < ... < y30 = 1. Regarding to the time selection, it is apparent from the experiments
that 20 time steps are enough to obtain the desired results, so we take 20 equidistant points
t1 < ... < t20. The factorµ is taken to be 1.

The idea of this test case is to investigate how close the original value of the parameter can
be retrieved. However, it is not a trivial one, because we do not know, for instance, if the
optimization problem has a solution or, in that case, if it isunique or if the method converges
to another local minima.

We emphasize we have run the algorithm several times using different initial random conditions
and in all cases the results were similar. They can be summarized in the following table:

• Stopping criteria:difference between two consecutive iterations lower than10−5

• Iterations/elapsed time:25/45 min

• Final point:α = 1001

• Functional final value:J(α) = 1.8871.10−4

2. Model-generated data with5%of random noise

It is well known that the presence of noise in the data may imply the appearance of strong
numerical instabilities in the solution of an inverse problem, [5].

The outputs of the detectors and the experimental equipmentwhere the variablesN∗ andS∗ are
measured are often affected by perturbations, usually random ones. As stated in [3], it is in
general valid to consider a 5% of random noise.

The functional (4.3) is the same used for case 1, except from the constantµ. It was clear from
numerical experiments that the factorµ= 1 was not suitable for this case, as it is showed in
figures 4 and 5, where we can see that the order of magnitude between both terms in the
objective functional is different. Indeed, in the case of the living cell density, we can see that
both lines are almost indistinguishable. By a trial and error procedure, we determined that
µ= 10−4 is a suitable factor.

Again, starting with different points, the results of the procedure are the following:
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Figure 4: Evolution of the tumour radius without (red line) and with 5% random noise (blue line).

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius (adimensional)

L
iv

in
g

 c
el

l d
en

si
ty

Figure 5: Living cell distribution without (red line) and with 5% random noise (blue line), for the
initial time.

12



• Stopping criteria:difference between two consecutive iterations lower than10−5

• Iterations/elapsed time:24/36 min

• Final point:α = 992.97

• Functional final value:J(α) = 0.100886

6 Conclusions and future work

A simple methodology was developed for the estimation of biochemical parameters involved in the
growth of an avascular tumour using data that could be obtained from medical imaging. The inverse
problem has been solved using the Pattern Search algorithm,coupled with a finite different scheme
and a boundary value problem solver for the resolution of thedirect problem. The presented results
demonstrate the feasibility of the proposed methodology. Even in the case when 5% of noise was
added to the input data the methodology estimates the desired parameter with very good accuracy

According to the results, this methodology can help to estimate several chemical/biological pa-
rameters involved in the process (diffusion coefficient, mitosis and death rates, Michaelis-Menten
constants, etc.) that could be useful and important to studyfor the design of a treatment procedure.
As future work we plan to recover more parameters involved inthe model, and focus on the regular-
ization of the problem considering different regularization methods and iterative algorithms. In order
to solve the optimization problem, we will use an algorithm that take into account the derivative of
the functional like the conjugate gradient method.

In addition, we are trying to use these optimization ideas towork with vascular tumour’s model.
That will surely give a more realistic idea of a chemotherapeutic treatment and its protocol.
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A parameter estimation problem for a tumour growth model .

D. A. Knopoff, D. R. Fernández, G. A. Torres and C. V. Turner∗

FaMAF, Universidad Nacional de Ćordoba - CIEM-CONICET. Ćordoba, Argentina.

Abstract

In this paper we present a method for estimating unknown parameters that appear on an
avascular, spheric tumour growth model. The model for the tumour is based on nutrient driven
growth of a continuum of live cells, whose birth and death generate volume changes described
by a velocity field. The drug is applied externally, and is assumed to be a diffusible substance
capable of killing cells.

The model consists on a coupled system of partial differential equations which is solved
numerically. As the domain on which the equations are definedis the tumour, that changes in size
over time, the problem can be formulated as a moving boundaryone.

After solving the forward problem properly, we are concerned in using the model for the
estimation of parameters, by fitting the numerical solutionwith real data. We define a functional
to compare both of them and we use the pattern search method for minimizing it, obtaining good
accuracy for the recovery of a few parameters.

Keywords: avascular tumour, constrained optimization, inverse problem, mathematical modeling.

1 Introduction.

The interest for research in modeling cancer has grown enormously over the last decades, [1, 2].
Pioneers have been, for example, [11, 15], where the first spatio-temporal models of an avascular
multicellular spheroid’s (MCS) growth have been developed. The study of MCS is interesting be-
cause they provide the best insight into the effectiveness of chemotherapeutic drugs on tumours in
vivo, and their behaviour can be studied experimentally (invitro) by controlling environmental con-
ditions in which they grow: for example, the radii of the tumour can be monitored by changing the
chemotherapeutic drug or oxygen levels.

In addition, another variables can be measured. If possible, experimentalists can get information
about the distribution of substances within the tumour. Moreover, via medical imaging or histological
cuts, they can also get data about the density of the different kind of cells conforming it: proliferating,
quiescent, necrotic.

That is why in this general approach of modeling the key variables are the tumour size (radius)
and the concentration within the tumour of growth-rate limiting diffusible chemicals (nutrients such
as oxygen or glucose or a chemotherapeutic drug). Since the tumour changes in size over time, the
domain on which the models are formulated must be determinedas part of the solution process, giving
a vast class of moving boundary problems, [6, 7].

In this article, we propose a framework for estimating unknown parameters via PDE-constrained
optimization, following the PDE-based model by Ward and King, [16]. In this approach, avascular

∗E-mail address: knopoff@famaf.unc.edu.ar, dfernandez@famaf.unc.edu.ar, torres@gmail.com,
turner@famaf.unc.edu.ar
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tumour growth is modeled via a coupled nonlinear system of differential equations, which make the
numerical solution procedure quite challenging.

We are concerned with developing a robust PDE-constrained formulation that let us find the best
set of parameters of a tumour growth model that fits patient orexperimental data. We choose the
parameters that should be of applied interest and try to obtain them by defining a functional to be
minimized.

The paper is organized as follows: section 2 introduces the tumour growth model (forward prob-
lem). Section 3 shows the numerical solution of the forward problem and checks its accuracy by
proving some theoretical results. Section 4 introduces theinverse problem approach, by defining the
functional to be minimized. Finally, in section 5 the numerical procedure to solve the inverse problem
is discussed.

2 Mathematical model.

We consider the model proposed by Ward and King in [16]. The tumour is a spheroid which consists
of a continuum of living cells, in one of two states: live or dead. The rates of birth and death depend
on the nutrient and chemotherapeutic drug concentration. It is supposed that those processes generate
volume changes, leading to cell movement described by a velocity field. The system of equations to
be studied is:

∂n
∂t

+
1
r2

∂(r2vn)
∂r

= [km(c)−kd(c)−KG(km(c))w]n, (2.1)

∂c
∂t

+
1
r2

∂(r2vc)
∂r

=
D
r2

∂
∂r

(
r2 ∂c

∂r

)
−βkm(c)n, (2.2)

1
r2

∂(r2v)
∂r

= [VLkm(c)− (VL −VD){kd(c)+KG(km(c))w}]n, (2.3)

∂w
∂t

+
1
r2

∂(r2vw)
∂r

=
Dw

r2

∂
∂r

(
r2 ∂w

∂r

)
−

K
ω

G(km(c))wn, (2.4)

where the dependent variablesn, c, v and w are the live cell density (cells/unit volume), nutrient
concentration, velocity and drug concentration, respectively. As it is described in [16], equation (2.1)
states that the rate of change ofn is dependent on the difference between the birthkm(c) and death
kd(c) rates, where this one is either natural (as described in [17]) or due to the drug effects, at a rate
KG(km(c))w. The functonskm andkd are taken to be generalised Michaelis-Menten kinetics with
exponent 1, i.e.

km(c) = A

(
c

cc+c

)
, (2.5)

kd(c) = B

(
1−σ

c
cd +c

)
. (2.6)

The constantK is the maximum possible rate of drug induced cell death. The constantsA, B andσ
are positive parameters of the Michaelis-Menten kinetics,while cc andcd are critical concentrations.
G(km(c)) is a function that represents the dependence between drug action and cell-cycle. As it is
considered in [16] it is a good idea to choose a linear dependence, giving

G(km(c)) = km(c)/A.
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Equation (2.2) states that the nutrient is consumed at a rateproportional to the rate of mitosis,
and its diffusion is described by Ficks law. Equation (2.3) states that the rate of volume change is
given by the difference in volume generated via birth from that lost by death (it is assumed that a live
cell occupies a volumeVL that is twice the volume of a death cellVD). The diffusion of the drug is
described also by Ficks law, and it is assumed that it is degraded only when it attacks a living cell,
giving a maximum degradation rateK/ω. ω is a dimensionless constant that can be interpreted as a
measure of the drugs effectiveness, as explained in [16], with increasingω implying that less drug
is consumed to produce the same effects during the killing process. These considerations lead to
equation (2.4).

2.1 Moving boundary problem

As it has been mentioned, the tumour is assumed to be a spheroid that exhibits radial simmetry. That
is why, not only the state variablesn, c, v andw are important, but the outer tumour radius is also a
key variable to be determined. Since the tumour changes in size over time, the domains on which the
models are formulated (and the PDEs are valid) must be determined as part of the solution.

Let S(t) be the tumour radius at timet. So, if we suppose that the treatment begins at timet = 0,
in which the tumour has a radiusSI , with living cell density and nutrient concentration distributions
nI (r) andcI (r), respectively, then the initial conditions of the problem can be formulated as

n(r,0) = nI (r), (2.7)

c(r,0) = cI (r), (2.8)

w(r,0) = 0, (2.9)

S(0) = SI . (2.10)

Because symmetry is assumed about the tumour center, there is no flux there. That is why, as
boundary conditions aboutr = 0, are taken:

∂c
∂r

(0, t) = 0, (2.11)

v(0, t) = 0, (2.12)
∂w
∂r

(0, t) = 0. (2.13)

Moreover, on the external boundary (which is also the boundary of the complement of the tumour
as a subset of the body), the following conditions are taken:

c(S(t), t) = c0, (2.14)
dS
dt

= v(S(t), t), (2.15)

w(S(t), t) = w0(t), (2.16)

wherec0 andw0(t) are external nutrient and drug concentrations, respectively. The functionw0(t)
depends on the chemotherapeutic protocol. In our simulations it will be considered as a constant that
does not depend ont. However, other functions may be adopted, for example in section 3 we show
an example in which drug is provided for some intervals of time, but not for other ones.
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2.2 Nondimensionalisation

Before analysing the model equations, we re-scale the mathematical model in the following way,
denoting non-dimensional variables with bars:

n=VLn; c= c/c0; v= v/r0A; t = At r = r/r0; S= S/r0; w= w/W0

wherer0 = (3VL/4π)1/3 is the radius of a single cell andW0 is a suitable reference drug concentration
(typically W0 = max(w0(t))).

It is important to remark that inherent in this problem are two timescales: the tumour growth
timescale (≈ 1 day) and the much shorter drug and nutrient diffusions (≈ 1 min). That is why,
following [2, 1, 16, 6] we adopt a quasi-steady assumption inthe nutrient and drug equations.

Following [16], and relabeling the variables with bar againwithout it, these rescalings lead to the
following system of differential equations:

∂n
∂t

+v
∂n
∂r

= [a(c,w)−b(c,w)n]n, (2.17)

1
r2

∂
∂r

(
r2 ∂c

∂r

)
= k(c)n, (2.18)

1
r2

∂(r2v)
∂r

= b(c,w)n, (2.19)

1
r2

∂
∂r

(
r2∂w

∂r

)
=

K̂
α

km(c)wn, (2.20)

where

α = ωDwVLW0/Ar2
0, (2.21)

K̂ = KW0/A,

a(c,w) =
1
A
[km(c)−kd(c)−KG(km(c))w],

b(c,w) =
1
A
{km(c)− (1−δ)[kd(c)−KG(km(c))w]},

k(c) = β̂km(c)/A,

with δ =VD/VL and(̂β) = r2
0βA/VLc0D.

We note that theconstantα defined above comprises many model parameters that should be
interesting to know exactly. It will be of great importance in the next sections, whereα will be
considered as a key parameter of the problem.

Also, it is worth saying that rigorous mathematical analysis including existence, uniqueness, and
stability theorems, as well as properties of the free boundaries for similar tumour growth models in
which different kind of PDEs are combined, have been obtained, [4] and [8].
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3 Numerical solution of the forward problem

After the assumptions made in the previous section, we have to solve the following system of PDEs:

nt +vnr = [a(c,w)−b(c,w)n]n 0< r ≤ S(t), t > 0, (3.1)

vr +
2
r

v= b(c,w)n 0< r ≤ S(t), t > 0, (3.2)

crr +
2
r

cr = k(c)n 0< r ≤ S(t), t > 0, (3.3)

wrr +
2
r

wr =
K̂
α

km(c)w 0< r ≤ S(t), t > 0. (3.4)

The initial conditions att = 0 are

n(r,0) = nI (r), (3.5)

S(0) = SI , (3.6)

w(r,0) = 0, (3.7)

and the boundary conditions are

v(0, t) = 0, (3.8)

cr(0, t) = 0, (3.9)

wr(0, t) = 0, (3.10)

c(S(t), t) = 1, (3.11)

w(S(t), t) = 1, (3.12)

Ṡ(t) = v(S(t), t). (3.13)

It is important to remark that the density of living cells in the boundary,n(S(t), t), can be calcu-
lated explicitly. Indeed, consider equation (3.1) and notethat, using the chain rule, the total variation
of n in time is

dn
dt

=
∂n
∂t

+
∂n
∂r

dr
dt

. (3.14)

At the point(S(t), t) the expressiondr
dt is equal tov(S(t), t). So, substitution in (3.1 ) gives

dn
dt

(S(t), t) = [a(1,1)−b(1,1)n(S(t), t)]n(S(t), t),

wherea(1,1) andb(1,1) are the corresponding values of the functionsa andb on the boundary at any
time. The last equation is a separable ODE, that can be transformed into

dn∗

[a∗−b∗n∗]n∗
= dt, (3.15)

where for simplicity we wrotea∗ = a(1,1), b∗ = b(1,1) andn∗ = n(S(t), t).
Now, we use expansion into simple fractions:
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1
(a∗−b∗n∗)n∗

=
b∗

a∗
1

a∗−b∗n∗
+

1
a∗

1
n∗

. (3.16)

Combining equations (3.15) and (3.16) and integrating overtime we get

∫ t

0
dt =

∫ n(S(t),t)

1

dn∗

(a∗−b∗n∗)n∗
= ln

(
(a∗−b∗)n(S(t), t)
a∗−b∗n(S(t), t)

)
. (3.17)

Finally, solving forn on the boundary, we obtain

n(S(t), t) =
a∗ea∗t

a∗−b∗+b∗ea∗t . (3.18)

Equation (3.18) is not only an elegant analytical result, but also it will become of really importance
when calculating numerically the value ofn in the boundary. As we shall see, when defining the
spatial grid to solve equation (3.1) with a forward finite difference scheme, for each pointr j of the
grid we will need to take also the pointr j+1 but that is impossible in the last point of the grid, sayS(t)

3.1 Fixed domain method

The first step for solving this moving boundary problem will be transforming the original domain to
a fixed one, i.e., re-writing the whole system for the change of coordinatesy= r/S(t). In this way,
the spatial domain will be the interval[0,1].

Observation 3.1 If r = yS(t), then dr
dy = S(t) and dr

dt = yṠ(t).

We briefly illustrate the way in which the new equations are obtained, using (3.1).
Let N(y, t)

.
= n(r, t) = n(yS(t), t). Differentiating this expression respect toy, we obtain

Ny = nr ry+ntty = nrS(t),

and thennr =
Ny

S .
And differentiation respect tot gives

Nt = nr
dr
dt

+nt ,

and so we deduce thatnt = Nt −
Ny

S yṠ.
Substitution in (3.1) gives

Nt −
Ṡ
S

yNy+
V
S

Ny = N[a(C)−b(C)N]N 0< r ≤ 1, t > 0. (3.19)

The same procedure is applied to the other equations, and we obtain

Cyy+
2
y
Cy = k(C)S2N, (3.20)

Vy+
2
y
V = b(C)NS, (3.21)

Wyy+
2
y
Wy =

K̂
α

km(C)S
2WN. (3.22)
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The initial conditions for the transformed problem are

N(y,0) = NI(y), 0≤ y≤ 1, (3.23)

S(0) = SI , (3.24)

W(y,0) = 0, 0≤ y≤ 1, (3.25)

and the boundary conditions are

V(0, t) = 0, t > 0, (3.26)

Cy(0, t) = 0, t > 0, (3.27)

Wy(0, t) = 0, t > 0, (3.28)

C(1, t) = 1, t > 0, (3.29)

W(1, t) = 1, t > 0, (3.30)

Ṡ(t) =V(1, t), t > 0. (3.31)

3.2 Numerical procedure

The drug is first applied att = 0, by which time the tumour has grown following the model without
drug, [17]. Originally, att ≈−500, a single cell started to take nutrients from the environment, letting
it grow up to a dimensionless size ofSI ≈ 202. The solution for the variablesN, C andV is taken as
the initial distribution of them for the drug treatment case.

All the simulations described in this section use the following parameter values, as suggested in
[16]:

B/A= 1, σ = 0.9, δ = 0.5, β = 0.005, cc = 0.1, cd = 0.05, K = 50.

The problem (3.19)-(3.22) subject to the initial and boundary conditions is solved in the following
way:

1. Given the distributions ofN, V, C andW at timek we solve (3.19) using a finite-difference
scheme to obtainN at timek+1. The value ofN at the boundary is updated directly by solving
equation (3.18).

2. The ODEs system (3.20)-(3.22) is solved using theMATLAB’s packagebbvp4c to obtainC, V
andW at timek+1.

3. Using the valueV(1,k+1) we solve equation (3.31) forSat timek+1 using Eulers method.

We remark that solving the system (3.20)-(3.22) is challenging in the sense that there is a sin-
gularity at r = 0. The packagebbvp4c let us deal with this singularity by using aSingular Term
tool.

3.3 Numerical results

The numerical solution for this problem is very well discussed and analized in many aspects by Ward
and King, [16]. The parameterα is taken as a variable in the sense that we are interested in studying
how the solution behaves whenα is changed.
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Figure 1: Evolution of the tumour radius for different values of α.
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Figure 2: Velocity at the tumour’s boundary for a fixed time (t = 10) for different values ofα.

We are able to confirm thatα can, indeed, be considered ameasure of the treatment effectiveness.
We plot how the radius of the tumour evolves in time when varying this parameter, as showed in
figure 1.

We can observe that a valueα = 10 does not stop the growth of the tumour, although there is a
killing cell process. However, ifα = 100 orα = 1000 the radius of the tumour decreases (of course
the mass could never disappear because the drug does not act over the already formed necrotic core).

An interesting question to answer is:for which value ofα can be stated that tumour will decrease
in size? That should be helpful, for example, w hen choosing some dosewhen the drug coefficient
diffusion and the initial spheroid size are known. To determine this value we take into account the
velocity in the boundary at a fixed time for different values of α. For example, in figure 2 we can see
that if we fix the non-dimensional timet = 10, the functionv(S(t), t) has a root inα ≈ 25.

The problem has also be solved for a different treatment protocol. We took a drug withα = 1000
and provided it for some time intervals, so that the boundarycondition is the following:

w0(t) = 1, t ∈ [0,20),
w0(t) = 0, t ∈ [20,50),
w0(t) = 1, t ≥ 50.
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Figure 3: Evolution of the tumour radius for a pulse-type drug provision.

In [16] the surviving fraction is plotted for a boundary condition similar to this one. In contrast,
in figure 3 we plot the evolution of the tumour radius for this situation, which should be considered
when designing a treatment, because it is really important in the effectiveness-toxicity balance.

4 Inverse problem

The main idea of this section is to recover some of the parameters which appear in the mathemat-
ical model, motivated in the lack of references that exist inliterature. In reality, some of them are
unknown, especially in vivo.

We consider that the parameterα defined above is important because it provides a measure of the
treatment effectiveness. In particular, it can provide information about the drug diffusion coefficient,
the optimal dose to get a desired effect or, eventually, Michaelis-Menten kinetics, see equation (2.21).

Thus, we are interested in the recovery of this parameter using available scans (MR images from
real patients that could let us follow the tumour size evolution over time) or reliable measurements
such as histological studies (obtained experimentally forin vitro cases). The data should be obtained
at different moments in time over a time interval of lenghtT. The inverse problem can be formulated
as follows:

Find a parameter value able to generate data that best match the available information over time
0≤ t ≤ T.

Because of the nature of the mathematical model, we have to solve a PDE constrained optimiza-
tion problem. The constraints are given by the model equations (2.1)-(2.14), which can be written
in a short way asP (φ) = 0, whereP is the differential operator given by the set of equations and
φ = (N,C,V,W).

4.1 The objective functional

We should construct an objective functional which gives us somedistancebetween the experimental
(real) data and the solution of the system of PDEs for each value ofα.

First of all, it is important to decide which variables are capable to be measured experimentally.
For instance, it is clear that the tumour radiusS(t) can be known at certain timestk, k= 1, ...,M. So,
the first possibility for defining a functional could be
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J(S;α) =
∫ T

0
[Sα(t)−S∗(t)]2dt, (4.1)

whereSα(t) is the radius evolution obtained solving the direct problemfor a certain value ofα and
S∗(t) is the evolution measured experimentally (real data).

Other variable that could be measured is the concentration of living cells, via biomedical imaging.
Thus, we are motivated to define a functional that reproducesin a better way the knowledge we have
about the process, i.e.

J(N,S;α) =
∫ 1

0

∫ T

0
[Nα(y, t)−N∗(y, t)]2dtdy+µ

∫ T

0
[Sα(t)−S∗(t)]2dt, (4.2)

whereNα(y, t) andN∗(y, t) are the living cell concentration for the direct problem solved with the
value α and the real data, respectively (both of them in the domain[0,1]× [0,T]). The positive
constantµ is introduced, as we shall see, to take into account the different order of magnitude between
N andS.

So, the constrained optimization problem can be formulatedas

min
α∈C

J(α),

s.t.P (φ) = 0,

whereC denotes the set ofadmissible valuesof α.
We remark that, in general, there is a fundamental difference between the direct and the inverse

problems. In fact, the latter is usually ill-posed in the sense of existence, uniqueness and stability of
the solution. This inconvenient is often treated by using some regularization techniques, [12, 10].

4.2 Discretization of the objective functional

Even if the functionsS(t) andN(y, t) are not known in their whole domains, it is sufficient to know
the values that they take at several points (defining a convenient grid mesh fory andt).

First of all, suppose that we have experimental measurements of N andS at different timestk,
k= 1, ...,M. That would give us temporal information about the variables.

On the other hand, the distribution of living cells depends also on the position along the tumour.
A common techniche in medical imaging islandmark registration: landmarks are points placed at
meaningful parts of the tumour, with the intention of representing it as good as possible with a few
isolated points. Lety j , j = 1, ...,Q denote a set of points in the interval[0,1] that are chosen by an
expert. Note that the points should be chosen in the interval[0,S(t)], but for simplicity we will assume
that they are fixed in time.

Then, the objective functional (4.2) can be discretized as

J(N,S;α) =
Q

∑
j=1

M

∑
k=1

[Nα(y j , tk)−N∗(y j , tk)]
2+µ

M

∑
k=1

[Sα(tk)−S∗(tk)]
2dt. (4.3)
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5 Numerical experiments

The pattern search method, [9]-[13], was employed to estimate the parameter of interest by minimiz-
ing the objective functional. It is a direct method, i.e. a method that neither compute nor explicitly
approximate derivatives ofJ. For this purpose we use the functionpattern search of MATLAB.

We study the functionals behaviour by solving some test cases. The living cell density and the
tumour radius are generated via the forward problem. We showhere the results obtained by assuming
a standard valueα = 1000. It seems that this value is quite reasonable, see [16],although in a next
step we are trying to determine whether or not the dose considered is tolerable for a patient.

1. Model-generated data

Consider first an optimization problem that consist in minimizing the functional (4.3), where
N∗(y, t) andS∗(t) are generated via the forward model, for a choice of the modelparameter
α = 1000.

Working with the functional (4.3) requires to define the landmark pointsy j and the timestk
where the measurements are made. For simplicity, and to be consistent with the way we solved
the direct problem, we took the same spatial grid for the landmarks, i.e. 30 equidistant points
0 = y1 < ... < y30 = 1. Regarding to the time selection, it is apparent from the experiments
that 20 time steps are enough to obtain the desired results, so we take 20 equidistant points
t1 < ... < t20. The factorµ is taken to be 1.

The idea of this test case is to investigate how close the original value of the parameter can
be retrieved. However, it is not a trivial one, because we do not know, for instance, if the
optimization problem has a solution or, in that case, if it isunique or if the method converges
to another local minima.

We emphasize we have run the algorithm several times using different initial random conditions
and in all cases the results were similar. They can be summarized in the following table:

• Stopping criteria:difference between two consecutive iterations lower than10−5

• Iterations/elapsed time:25/45 min

• Final point:α = 1001

• Functional final value:J(α) = 1.8871.10−4

2. Model-generated data with5%of random noise

It is well known that the presence of noise in the data may imply the appearance of strong
numerical instabilities in the solution of an inverse problem, [5].

The outputs of the detectors and the experimental equipmentwhere the variablesN∗ andS∗ are
measured are often affected by perturbations, usually random ones. As stated in [3], it is in
general valid to consider a 5% of random noise.

The functional (4.3) is the same used for case 1, except from the constantµ. It was clear from
numerical experiments that the factorµ= 1 was not suitable for this case, as it is showed in
figures 4 and 5, where we can see that the order of magnitude between both terms in the
objective functional is different. Indeed, in the case of the living cell density, we can see that
both lines are almost indistinguishable. By a trial and error procedure, we determined that
µ= 10−4 is a suitable factor.

Again, starting with different points, the results of the procedure are the following:
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Figure 4: Evolution of the tumour radius without (red line) and with 5% random noise (blue line).
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Figure 5: Living cell distribution without (red line) and with 5% random noise (blue line), for the
initial time.
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• Stopping criteria:difference between two consecutive iterations lower than10−5

• Iterations/elapsed time:24/36 min

• Final point:α = 992.97

• Functional final value:J(α) = 0.100886

6 Conclusions and future work

A simple methodology was developed for the estimation of biochemical parameters involved in the
growth of an avascular tumour using data that could be obtained from medical imaging. The inverse
problem has been solved using the Pattern Search algorithm,coupled with a finite different scheme
and a boundary value problem solver for the resolution of thedirect problem. The presented results
demonstrate the feasibility of the proposed methodology. Even in the case when 5% of noise was
added to the input data the methodology estimates the desired parameter with very good accuracy

According to the results, this methodology can help to estimate several chemical/biological pa-
rameters involved in the process (diffusion coefficient, mitosis and death rates, Michaelis-Menten
constants, etc.) that could be useful and important to studyfor the design of a treatment procedure.
As future work we plan to recover more parameters involved inthe model, and focus on the regular-
ization of the problem considering different regularization methods and iterative algorithms. In order
to solve the optimization problem, we will use an algorithm that take into account the derivative of
the functional like the conjugate gradient method.

In addition, we are trying to use these optimization ideas towork with vascular tumour’s model.
That will surely give a more realistic idea of a chemotherapeutic treatment and its protocol.
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