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NEW TECHNIQUES FOR POINTED HOPF ALGEBRAS

NICOLÁS ANDRUSKIEWITSCH AND FERNANDO FANTINO

Abstract. We present techniques that allow to decide that the dimen-

sion of some pointed Hopf algebras associated with non-abelian groups

is infinite. These results are consequences of [AHS]. We illustrate each

technique with applications.

Dedicado a Isabel Dotti y Roberto Miatello en su sexagésimo cumpleaños.

Introduction

0.1. Let G be a finite group and let C G
C GYD be the category of Yetter-

Drinfeld modules over CG. The most delicate of the questions raised by
the Lifting Method for the classification of finite-dimensional pointed Hopf
algebras H with G(H) ' G [AS1, AS3], is the following:

Given V ∈ C G
C GYD, decide when the Nichols algebra B(V ) is

finite-dimensional.
Recall that a Yetter-Drinfeld module over the group algebra CG (or over

G for short) is a left CG-module and left CG-comodule M satisfying the
compatibility condition δ(g.m) = ghg−1 ⊗ g.m, for all m ∈ Mh, g, h ∈ G.
The list of all objects in C G

C GYD is known: any such is completely reducible,
and the class of irreducible ones is parameterized by pairs (O, ρ), where O is
a conjugacy class in G and ρ is an irreducible representation of the isotropy
group Gs of a fixed s ∈ O. We denote the corresponding Yetter-Drinfeld
module by M(O, ρ).

In fact, our present knowledge of Nichols algebras is still preliminary.
However, an important remark is that the Nichols algebra B(V ) depends (as
algebra and coalgebra) just on the underlying braided vector space (V, c)–
see for example [AS3]. This observation allows to go back and forth be-
tween braided vector spaces and Yetter-Drinfeld modules. Indeed, the same
braided vector space could be realized as a Yetter-Drinfeld module over dif-
ferent groups, and even in different ways over the same group, or not at
all. The braided vector spaces that do appear as Yetter-Drinfeld modules
over some finite group are those coming from racks and 2-cocycles [AG].
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2 ANDRUSKIEWITSCH AND FANTINO

Thus, a comprehensive approach to the question above would be to solve
the following:

Given a braided vector space (V, c) determined by a rack and
a 2-cocycle, decide when dim B(V ) < ∞.

But at the present moment and with the exception of the diagonal case
mentioned below, we know explicitly very few Nichols algebras of braided
vector spaces determined by racks and 2-cocycles; see [FK, MS, G1, AG, G2].

0.2. The braided vector spaces that appear as Yetter-Drinfeld modules over
some finite abelian group are the diagonal braided vector spaces. This leads
to the following question: Given a braided vector space (V, c) of diagonal
type, decide when the Nichols algebra B(V ) is finite-dimensional. The full
answer to this problem was given in [H2], see [AS2, H1] for braided vector
spaces of Cartan type– and [AS4] for applications. These results on Nichols
algebras of braided vector spaces of diagonal type were in turn used for
more general pointed Hopf algebras. Let us fix a non-abelian finite group
G and let V ∈ C G

C GYD irreducible. If the underlying braided vector space
contains a braided vector subspace of diagonal type, whose Nichols algebra
has infinite dimension, then dim B(V ) = ∞. In turns out that, for several
finite groups considered so far, many Nichols algebras of irreducible Yetter-
Drinfeld modules have infinite dimension; and there are short lists of those
not attainable by this method. See [G1, AZ, AF1, AF2, FGV].

0.3. An approach of a different nature, inspired by [H1], was presented in
[AHS]. Let us consider V = V1 ⊕ · · · ⊕ Vθ ∈ C G

C GYD, where the Vi’s are
irreducible. Then the Nichols algebra of V is studied, under the assumption
that the B(Vi) are known and finite-dimensional, 1 ≤ i ≤ θ. Under some
circumstances, there is a Coxeter group W attached to V , so that B(V )
finite-dimensional implies W finite. Although the picture is not yet complete,
the previous result implies that, for a few G– explicitly, S3, S4, Dn– the
Nichols algebras of some V have infinite dimension. These applications rely
on the lists mentioned at the end of 0.2.

0.4. The purpose of the present paper is to apply the results in 0.3 to
discard more irreducible Yetter-Drinfeld modules. Namely, let V = V1⊕V2 ∈
C Γ
C ΓYD, where Γ = S3, S4 or Dn, such that dim B(V ) = ∞ by [AHS, Section
4]. Then there is a rack (X, .) and a cocycle q such that (V, c) ' (CX, cq).
Let G be a finite group, let O be a conjugacy class in G, s ∈ O, ρ ∈ Ĝs and
M(O, ρ) ∈ C G

C GYD the irreducible Yetter-Drinfeld module corresponding to
(O, ρ). We give conditions on (O, ρ) such that M(O, ρ) contains a braided
vector subspace isomorphic to (CX, cq); thus, necessarily, dim B(O, ρ) = ∞.
We illustrate these new techniques with several examples; see in particular
Example 3.9 for one that can not be treated via abelian subracks.
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0.5. The facts glossed in the previous points strengthen our determination
to consider families of finite groups, in order to discard those irreducible
Yetter-Drinfeld modules over them with infinite-dimensional Nichols algebra
by the ‘subrack method’. Natural candidates are the families of simple
groups, or closely related; cf. the classification of simple racks in [AG]. The
case of symmetric and alternating groups is treated in [AZ, AF1, AF2, AFZ];
Mathieu groups in [F1]; other sporadic groups in [AFGV]; some finite groups
of Lie type with rank one in [FGV, FV]. Particularly, a list of only 9 types
of pairs (O, ρ) for Sm whose Nichols algebras might be finite-dimensional is
given in [AFZ]; an analogous list of 7 pairs out of 1137 (for all 5 Mathieu
simple groups) is given in [F1]; the sporadic groups J1, J2, J3, He and Suz
are shown to admit no non-trivial pointed finite-dimensional Hopf algebra
in [AFGV]. Our new techniques are crucial for these results.

0.6. If for some finite group G there is at most one irreducible Yetter-
Drinfeld module V with finite-dimensional Nichols algebra, then [AHS, Th.
4.2] can be applied again. If the conclusion is that dim B(V ⊕ V ) = ∞,
then we can build a new rack together with a 2-cocycle realizing V ⊕V , and
investigate when a conjugacy class in another group G′ contains this rack,
and so on.

1. Notations and conventions

The base field is C (the complex numbers).

1.1. Braided vector spaces. A braided vector space is a pair (V, c), where
V is a vector space and c : V ⊗V → V ⊗V is a linear isomorphism such that
c satisfies the braid equation: (c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

Let V be a vector space with a basis (vi)1≤i≤θ, let (qij)1≤i,j≤θ be a matrix
of non-zero scalars and let c : V ⊗ V → V ⊗ V be given by c(vi ⊗ vj) =
qijvj ⊗ vi. Then (V, c) is a braided vector space, called of diagonal type.

Examples of braided vector spaces come from racks. A rack is a pair
(X, .) where X is a non-empty set and . : X ×X → X is a function– called
the multiplication, such that φi : X → X, φi(j) := i . j, is a bijection for all
i ∈ X, and

i . (j . k) = (i . j) . (i . k) for all i, j, k ∈ X.(1.1)

For instance, a group G is a rack with x.y = xyx−1. In this case, j .i = i
whenever i . j = j and i . i = i for all i ∈ G. We are mainly interested in
subracks of G, e. g. in conjugacy classes in G.

Let (X, .) be a rack. A function q : X × X → C× is a 2-cocycle if
qi,j.k qj,k = qi.j,i.k qi,k, for all i, j, k ∈ X. Then (CX, cq) is a braided vector
space, where CX is the vector space with basis ek, k ∈ X, and the braiding
is given by

cq(ek ⊗ el) = qk,l ek.l ⊗ ek, for all k, l ∈ X.
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A subrack T of X is abelian if k . l = l for all k, l ∈ T . If T is an abelian
subrack of X, then CT is a braided vector subspace of (CX, cq) of diagonal
type.

Definition 1.1. Let X be a rack. Let X1 and X2 be two disjoint copies
of X, together with bijections ϕi : X → Xi, i = 1, 2. The square of X

is the rack with underlying set the disjoint union X1
∐

X2 and with rack
multiplication

ϕi(x) . ϕj(y) = ϕj(x . y),

x, y ∈ X, 1 ≤ i, j ≤ 2. We denote the square of X by X(2). This is a
particular case of an amalgamated sum of racks, see e. g. [AG].

1.2. Yetter-Drinfeld modules. We shall use the notation given in [AF1].
Let G be a finite group. We denote by |g| the order of an element g ∈ G;
and by Ĝ the set of isomorphism classes of irreducible representations of G.
We shall often denote a representant of a class in Ĝ with the same symbol
as the class itself.

Here is an explicit description of the irreducible Yetter-Drinfeld module
M(O, ρ). Let t1 = s, . . . , tM be a numeration of O and let gi ∈ G such that
gi . s = ti for all 1 ≤ i ≤ M . Then M(O, ρ) = ⊕1≤i≤M gi ⊗ V , where V is
the vector space affording the representation ρ. Let giv := gi⊗v ∈ M(O, ρ),
1 ≤ i ≤ M , v ∈ V . If v ∈ V and 1 ≤ i ≤ M , then the action of g ∈ G
is given by g · (giv) = gj(γ · v), where ggi = gjγ, for some 1 ≤ j ≤ M and
γ ∈ Gs, and the coaction is given by δ(giv) = ti ⊗ giv. Then M(O, ρ) is a
braided vector space with braiding c(giv ⊗ gjw) = gh(γ · w) ⊗ giv, for any
1 ≤ i, j ≤ M , v, w ∈ V , where tigj = ghγ for unique h, 1 ≤ h ≤ M and
γ ∈ Gs. Since s ∈ Z(Gs), the center of Gs, the Schur Lemma implies that

(1.2) s acts by a scalar qss on V.

Lemma 1.2. If U is a subspace of W such that c(U ⊗ U) = U ⊗ U and
dim B(U) = ∞, then dim B(W ) = ∞. �

Lemma 1.3. [AZ, Lemma 2.2] Assume that s is real (i. e. s−1 ∈ O). If
dim B(O, ρ) < ∞, then qss = −1 and s has even order. �

Let σ ∈ Sm be a product of nj disjoint cycles of length j, 1 ≤ j ≤ m.
Then the type of σ is the symbol (1n1 , 2n2 , . . . ,mnm). We may omit jnj

when nj = 0. The conjugacy class Oσ of σ coincides with the set of all
permutations in Sm with the same type as σ; we may use the type as a
subscript of a conjugacy class as well. If some emphasis is needed, we add
a superscript m to indicate that we are taking conjugacy classes in Sm, like
Om

j for the conjugacy class of j-cycles in Sm.
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2. A technique from the dihedral group Dn, n odd

Let n > 1 be an odd integer. Let Dn be the dihedral group of order 2n,
generated by x and y with defining relations x2 = e = yn and xyx = y−1. Let
Ox be the conjugacy class of x and let sgn ∈ D̂x

n be the sign representation
(Dx

n = 〈x〉 ' Z2). The goal of this Section is to apply the next result, cf.
[AHS, Th. 4.8], or [AHS, Th. 4.5] for n = 3.

Theorem 2.1. The Nichols algebra B(M(Ox, sgn)⊕M(Ox, sgn)) has infi-
nite dimension. �

Note that M(Ox, sgn) ⊕ M(Ox, sgn) is isomorphic as a braided vector
space to (CXn, q), where

• Xn is the rack with 2n elements si, tj , i, j ∈ Z/n, and with structure

si.sj = s2i−j , si.tj = t2i−j , ti.sj = s2i−j , ti.tj = t2i−j , i, j ∈ Z/n;

• q is the constant cocycle q ≡ −1.

If d divides n, then Xd can be identified with a subrack of Xn. Hence, it
is enough to consider braided vector spaces (CXp, q), with p an odd prime.

We fix a finite group G with the rack structure given by conjugation
x . y = xyx−1, x, y ∈ G. Let O be a conjugacy class in G.

Definition 2.2. Let p > 1 be an integer. A family (µi)i∈Z/p of distinct
elements of G is of type Dp if

(2.1) µi . µj = µ2i−j , i, j ∈ Z/p.

Let (µi)i∈Z/p and (νi)i∈Z/p be two families of type Dp in G, such that µi 6= νj

for all i, j ∈ Z/p. Then (µ, ν) := (µi)i∈Z/p ∪ (νi)i∈Z/p is of type D
(2)
p if

(2.2) µi . νj = ν2i−j , νi . µj = µ2i−j , i, j ∈ Z/p.

It is useful to denote i . j = 2i− j, for i, j ∈ Z/p.
We state some consequences of this definition for further use.

Remark 2.3. If (µi)i∈Z/p is of type Dp then

µ−1
i . µj = µ2i−j , µi . µ−1

j = µ−1
2i−j , µ−1

i . µ−1
j = µ−1

2i−j ,(2.3)

µk
i . µj = µ2i−j , µi . µk

j = µk
2i−j , µk

i . µk
j = µk

2i−j ,(2.4)

for all i, j ∈ Z/p, and for all k odd.

Remark 2.4. Assume that p is odd. If (µ, ν) = (µi)i∈Z/p∪ (νi)i∈Z/p is of type

D
(2)
p , then for all i, j,

µ2
i = µ2

j , ν2
i = ν2

j , µ2
i νj = νjµ

2
i , ν2

i µj = µjν
2
i .(2.5)

Indeed, µ2
hµj = µjµ

2
h, hence µ2

2h−j = µhµ2
jµ

−1
h = µ2

j . Take now h =
i + j

2
.
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Lemma 2.5. If (µ, ν) = (µi)i∈Z/p ∪ (νi)i∈Z/p is of type D
(2)
p , then

(i) µkµl = µt(l−k)+k µt(l−k)+l,
(ii) µkνl = µ2t(l−k)+k ν2t(l−k)+l,
(iii) µkνl = ν(2t+1)(l−k)+k µ(2t+1)(l−k)+l,

for all k, l, t ∈ Z/p.

Notice that we have the analogous relations interchanging µ by ν.

Proof. We proceed by induction on t. We will prove (i); (ii) and (iii) are
similar. The result is obvious when t = 0. Since µkµl = µl µl.k, then the
result holds for t = 1. Let us suppose that (i) holds for every s ≤ t. Now,

µkµl = µt(l−k)+k µt(l−k)+l

= µt(l−k)+l µ(t(l−k)+l).(t(l−k)+k) = µ(t+1)(l−k)+k µ(t+1)(l−k)+l

by the recursive hypothesis. �

Lemma 2.6. Assume that p is odd. If (µ, ν) is of type D
(2)
p , then for i ∈ Z/p,

µiνi = µ0ν0,(2.6)

νiµi = ν0µ0.(2.7)

Proof. Let i, j ∈ Z/p, with i 6= j. If we write (ii) of Lemma 2.5 with k = i,
l = j and t = −1/2 we have that µiνj = µ2i−jνi. Thus, µiνiν

2
j = µiνjνjνi =

µ2i−jνiνiν2i−j = µ2i−jν2i−jν
2
i , and, by (2.5),

µiνi = µ2i−jν2i−j .

Now (2.6) follows taking j = 2i. Now (2.7) follows from (2.6) by (2.2). �

We now set up some notation that will be used in the rest of this section.
Let (µi)i∈Z/p be a family of type Dp in G, with p odd. Set

gi = µi/2,(2.8)

αij = g−1
i.j µi gj = µ−1

i−j/2 µi µj/2,(2.9)

for all i, j ∈ Z/p. Then

gi . µ0 = µi, αij ∈ Gµ0 , i, j ∈ Z/p.

Let now (µ, ν) be of type D
(2)
p and suppose that there exists g∞ ∈ G such

that g∞ . µ0 = ν0. Set

fi = νi/2 g∞,(2.10)

βij = f−1
i.j µi fj = g−1

∞ ν−1
i−j/2 µi νj/2 g∞,(2.11)

γij = g−1
i.j νi gj = µ−1

i−j/2 νi µj/2,(2.12)

δij = f−1
i.j νi fj = g−1

∞ ν−1
i−j/2 νi νj/2 g∞.(2.13)
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Then
fi . µ0 = νi, βij , γij , δij ∈ Gµ0 , i, j ∈ Z/p.

We assume from now on that p is an odd prime. This is required in the
proof of the next lemma, needed for the main result of the section.

Lemma 2.7. Let (µ, ν) = (µi)i∈Z/p ∪ (νi)i∈Z/p be of type D
(2)
p , and suppose

that there exists g∞ ∈ G such that g∞ .µ0 = ν0. Let gi and fi be as in (2.8)
and (2.10), respectively. Then, for all i, j ∈ Z/p,

(a) αij = δij = µ0,
(b) βij = g−1

∞ µ0g∞,
(c) γij = ν0.

Proof. Let k, l be in Z/p. Then, for all r ∈ Z/p, we have

(2.14) µkµl = µk+rµl+r, µkνl = µk+rνl+r, µkνl = νk+rµl+r.

This follows from (2.5) and Lemma 2.6 (when k = l), and Lemma 2.5 (when
k 6= l). There are similar equalities interchanging µ’s and ν’s. Now

αij = µ−1
i−j/2 µi µj/2

(2.14)
= µ0,

δij = g−1
∞ ν−1

i−j/2 νi νj/2 g∞
(2.14)
= g−1

∞ ν0 g∞ = µ0,

βij = g−1
∞ ν−1

i−j/2 µi νj/2 g∞
(2.14)
= g−1

∞ µ0 g∞,

γij = µ−1
i−j/2 νi µj/2

(2.14)
= µ−1

i−j/2 µi−j/2ν0 = ν0,

and the Lemma is proved. �

We can now prove one of the main results of this paper.

Theorem 2.8. Let (µ, ν) = (µi)i∈Z/p ∪ (νi)i∈Z/p be a family of elements in
G with µ0 ∈ O. Let (ρ, V ) be an irreducible representation of the centralizer
Gµ0. We assume that

(H1) (µ, ν) is of type D
(2)
p ;

(H2) (µ, ν) ⊆ O, with g∞ ∈ G such that g∞ . µ0 = ν0;
(H3) qµ0µ0 = −1;
(H4) there exist v, w ∈ V − 0 such that,

ρ(g−1
∞ µ0g∞)w = −w,(2.15)

ρ(ν0)v = −v.(2.16)

Then dim B(O, ρ) = ∞.
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Proof. We keep the notation (2.10)–(2.13) above. Let v, w ∈ V −0 as in (H4)
and let W := span-{giv : i ∈ Z/p} ∪ {fiw : i ∈ Z/p}. Let Ψ : CXp → W be
given by Ψ(si) = giv, Ψ(ti) = fiw, i ∈ Z/p. Since the elements µi and νj

are all different, Ψ is a linear isomorphism. We claim that W is a braided
vector subspace of M(O, ρ) and that Ψ is an isomorphism of braided vector
spaces. We compute the braiding in W :

c(giv ⊗ gjv) = µigjv ⊗ giv = gi.jαijv ⊗ giv
(H3)
= −gi.jv ⊗ giv,

c(giv ⊗ fjw) = µifjw ⊗ giv = fi.jβijw ⊗ giv
(2.15)
= −fi.jw ⊗ giv,

c(fiw ⊗ gjv) = νigjv ⊗ fiw = gi.jγijv ⊗ fiw
(2.16)
= −gi.jv ⊗ fiw,

c(fiw ⊗ fjw) = νifjw ⊗ fiw = fi.jδijw ⊗ fiw
(H3)
= −fi.jw ⊗ fiw,

by Lemma 2.7. The claim is proved. Hence, dim B(W ) = ∞ by Theorem
2.1. Now the Theorem follows from Lemma 1.2. �

As a consequence of Theorem 2.8, we can state a very useful criterion.

Corollary 2.9. Let G be a finite group, µi, 0 ≤ i ≤ p− 1, distinct elements
in G, with p an odd prime. Let us suppose that there exists k ∈ Z such that
µk

0 6= µ0 and µk
0 ∈ O, the conjugacy class of µ0. Let ρ = (ρ, V ) ∈ Ĝµ0.

Assume further that

(i) (µi)i∈Z/p is of type Dp,
(ii) qµ0µ0 = −1.

Then dim B(O, ρ) = ∞.

Proof. We may assume that 1 < k < |µ0|. By hypothesis (ii), the order of µ0

is even; hence k is odd, say k = 2t+1, with t ≥ 1. Let νi := µk
i , 0 ≤ i ≤ p−1,

and pick g∞ ∈ G such that g∞ . µ0 = µk
0. Set (µ, ν) = (µi)i∈Z/p ∪ (νi)i∈Z/p.

Clearly (µ, ν) ⊆ O. We claim that (µ, ν) is of type D
(2)
p . Indeed, using (i)

it is easy to see that (µi)i∈Z/p ∪ (νi)i∈Z/p are all distinct. Then the claim
follows by (2.4).

It remains to check the hypothesis (H4) of Theorem 2.8. As g∞µ0g
−1
∞ =

µk
0, gl

∞µ0g
−l
∞ = µkl

0 , for all l ≥ 0. In particular,

g−1
∞ µ0g∞ = g|g∞|−1

∞ µ0g
−|g∞|+1
∞ = µk|g∞|−1

0 .

Then, since qµ0µ0 = −1 and k is odd, we see that ρ(g−1
∞ µ0g∞) = − id. Hence

(2.15) holds, for any w ∈ V − 0. Also, ρ(ν0) = ρ(µk
0) = (− id)k = − id,

because k is odd; thus, (2.16) holds for any v ∈ V −0. Thus, for any v, w in
V −0, we are in the conditions of Theorem 2.8. Then dim B(O, ρ) = ∞. �
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Example 2.10. Let m ≥ 6. Let σ ∈ Sm of type (1n1 , 2n2 , . . . ,mnm), O the
conjugacy class of σ and ρ ∈ Ŝσ

m. If there exists j, 1 ≤ j ≤ m, such that

• 2p divides j, for some odd prime p, and
• nj ≥ 1;

then dim B(O, ρ) = ∞.

Before proving the Example, we state a more general Lemma that might
be of independent interest. Here p is no longer an odd prime.

Lemma 2.11. Let m, p ∈ Z>1. Let σ ∈ Sm of type (1n1 , 2n2 , . . . ,mnm) and
O the conjugacy class of σ. If there exists j 6= 4, 1 ≤ j ≤ m, such that

• 2p divides j, and
• nj ≥ 1;

then O contains a subrack of type D
(2)
p .

Proof. Let j = 2p κ, with κ ≥ 1. Let α = (i1 i2 · · · ij) be a j-cycle that
appears in the decomposition of σ as product of disjoint cycles and define

I := (i1 i3 i5 · · · ij−1) and P := (i2 i4 i6 · · · ij).

We claim that

(a) I and P are disjoint pκ-cycles,
(b) α2 = IP,
(c) αIα−1 = P, (and then σIσ−1 = P),
(d) PtαPt = α2t+1, Ptα−1Pt = α2t−1, for all integers t.

The first two items are clear, while (c) follows from the well-known formula
α(l1 l2 . . . lk)α−1 = (α(l1) α(l2) . . . α(lk)). (d). By (c), Pt = αItα−1. Then
PtαPt = αItPt; by (b), PtαPt = αα2t, as claimed.

We define

σi := PiκσP−iκ, 0 ≤ i ≤ p− 1.(2.17)

Notice that σi = PiκαP−iκ σ̃, where σ̃ := α−1σ. The elements (σi)i∈Z/p

are all distinct; indeed, if σi = σl, with i, l ∈ Z/p, then PiκσP−iκ =
PlκσP−lκ, i. e. P(i−l)κσP−(i−l)κ = σ, which implies that i2 = σ(i1) =
P(i−l)κσP−(i−l)κ(i1) = P(i−l)κ(i2) = i2(i−l)κ+2, and this means that 2(i −
l)κ = 0 in Z/j. Thus i = l, as desired.
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We claim that (σi)i∈Z/p is of type Dp. If i, l ∈ Z/p, then

σi . σl = PiκσP−iκ PlκσP−lκ Piκσ−1P−iκ

= Piκ αP−iκ Plκ αP−lκ Piκα−1P−iκ σ̃

= P(2i−l)κ P(l−i)κ αP(l−i)κ αP(i−l)κ α−1 P(i−l)κ P−(2i−l)κ σ̃

= P(2i−l)κ α2(l−i)κ+1 α α2(i−l)κ−1 P−(2i−l)κ σ̃

= P(2i−l)κ αP−(2i−l)κ σ̃ = P(2i−l)κ σ P−(2i−l)κ = σi.l,

by (d), and the claim follows. Finally, the family of type D
(2)
p we are looking

for is (σi)i∈Z/p∪(σ−1
i )i∈Z/p. It remains to show that σt 6= σ−1

l for all t, l ∈ Zp.
If σt = σ−1

l , then σ2
t (i1) = σ−2

l (i1), that is i3 = ij−1, a contradiction to the
hypothesis j 6= 4. �

Proof of the Example 2.10. We may assume that qσσ = −1, by Lemma 1.3.
By Lemma 2.11, we have a family (σi)i∈Z/p of type Dp, with σ0 = σ. Now
Corollary 2.9 applies, with µ0 = σ0, k = |σ0|−1. Thus dim B(O, ρ) = ∞. �

3. A technique from the symmetric group S3

We study separately the case p = 3 because of the many applications
found. In this setting, D3 ' S3 and Ox = O3

2 = {(1 2), (2 3), (1 3)} is the
conjugacy class of transpositions in S3. The rack X3 is described as a set of
6 elements X3 = {x1, x2, x3, y1, y2, y3} with the multiplication

xi . xj = xk, yi . yj = yk, xi . yj = yk, yi . xj = xk,

for i, j, k, all distinct or all equal.

3.1. Families of type D3 and D
(2)
3 . We fix a finite group G and O a

conjugacy class in G. Our aim is to give criteria to detect when O contains
a subrack isomorphic to X3.

Definition 3.1. Let σ1, σ2, σ3 ∈ G distinct. We say that (σi)1≤i≤3 is of
type D3 if

σi . σj = σk, where i, j, k are all distinct.(3.1)

The requirement (3.1) consists of 6 identities, but actually 3 are enough.

Remark 3.2. If

σ1 . σ2 = σ3,(3.2)

σ1 . σ3 = σ2,(3.3)

σ2 . σ3 = σ1,(3.4)

then (σi)1≤i≤3 is of type D3. �
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Here is a characterization of D3 families.

Proposition 3.3. Let σ1, σ2 ∈ O. Define σ3 := σ1 . σ2. Then (σi)1≤i≤3 is
of type D3 if and only if

σ1 6∈ Gσ2 ,(3.5)

σ2
1 ∈ Gσ2 ,(3.6)

σ1 = σ2 . (σ1 . σ2).(3.7)

Proof. The definition of σ3 is equivalent to (3.2) and (3.7) is equivalent to
(3.4). Assume that (σi)1≤i≤3 is of type D3. As σ3 6= σ2, σ1 6∈ Gσ2 . Also,
σ2

1 . σ2 = σ1 . (σ1 . σ2) = σ1 . σ3 = σ2. Hence σ2
1 ∈ Gσ2 .

Conversely, if σ1 6∈ Gσ2 , then σ1 6= σ2, σ2 6= σ3. From (3.5) and (3.7), we
see that σ1 6= σ3. It remains to check (3.3): σ1 . σ3 = σ2

1 . σ2 = σ2. �

Definition 3.4. Let σ1, σ2, σ3, τ1, τ2, τ3 ∈ G be distinct elements. We say
that (σ, τ) = (σ1, σ2, σ3, τ1, τ2, τ3) is of type D

(2)
3 , if (σi)1≤i≤3 and (τj)1≤j≤3

are of type D3, and

σi . τj = τk, τi . σj = σk,(3.8)

where i, j, k are either all equal, or all distinct.

The requirement (3.8) consists of 18 identities, but less are enough. We
begin by a first reduction.

Lemma 3.5. Let (σi)1≤i≤3 and (τj)1≤j≤3 such that (3.2), (3.3), (3.4) hold
for σ and for τ . If

σ1 . τ1 = τ1,(3.9)

σ1 . τ2 = τ3,(3.10)

σ2 . τ1 = τ3,(3.11)

also hold, then σi .τi = τi, 1 ≤ i ≤ 3, and σi .τj = τk, for all i, j, k distinct.

Proof. We have to prove

σ1 . τ3 = τ2,(3.12)

σ3 . τ3 = τ3,(3.13)

σ2 . τ2 = τ2,(3.14)

σ3 . τ1 = τ2,(3.15)

σ3 . τ2 = τ1,(3.16)

σ2 . τ3 = τ1,(3.17)
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The identity (3.12) holds because σ1 . τ3 = σ1 . (τ1 . τ2) = τ1 . τ3 = τ2; in
turn, (3.13) and (3.14) hold because

σ3 . τ3 = (σ2 . σ1) . (σ2 . τ1) = σ2 . (σ1 . τ1) = σ2 . τ1 = τ3,

σ2 . τ2 = (σ1 . σ3) . (σ1 . τ3) = σ1 . (σ3 . τ3) = σ1 . τ3 = τ2.

Also, σ3 . τ1 = (σ1 . σ2) . (σ1 . τ1) = σ1 . (σ2 . τ1) = σ1 . τ3 = τ2, showing
(3.15). Finally, σ3.τ2 = σ3.(σ1.τ3) = σ2.(σ3.τ3) = σ2.τ3 = σ2.(τ1.τ2) =
τ3 . τ2 = τ1, proving (3.16) and (3.17). �

Therefore, given 6 distinct elements σ1, σ2, σ3, τ1, τ2, τ3 ∈ G, if the 12
identities: (3.2), (3.3), (3.4), for σ and for τ , (3.9), (3.10), (3.11), and the
analogous identities

τ1 . σ1 = σ1,(3.18)

τ1 . σ2 = σ3,(3.19)

τ2 . σ1 = σ3,(3.20)

hold, then (σ, τ) is of type D
(2)
3 . But we can get rid of 3 of these 12 identities.

Proposition 3.6. Let σ1, σ2, σ3, τ1, τ2, τ3 ∈ G, all distinct, such that
(3.2), (3.3), (3.4), hold for σ and for τ , as well as the identities (3.9), (3.11)
and (3.19). Then (σ, τ) is of type D

(2)
3 .

Proof. By Lemma 3.5, it is enough to check (3.10), (3.18) and (3.20). First,
(3.18) holds because τ1 = σ1 . τ1 = σ1τ1σ

−1
1 . If τ1 acts on both sides of

(3.11), then τ2 = τ1 . τ3 = (τ1 . σ2) . (τ1 . τ1) = σ3 . τ1; if now σ1 acts on the
last, then

σ1 . τ2 = (σ1 . σ3) . (σ1 . τ1) = σ2 . τ1
(3.11)
= τ3.

Thus, (3.10) holds. We can now conclude from Lemma 3.5 that σi . τi = τi,
1 ≤ i ≤ 3, and σi . τj = τk, for all i, j, k distinct. If now σ3 acts on (3.19),
then σ3 = (σ3 . τ1) . (σ3 . σ2) = τ2 . σ1, and (3.20) holds. �

3.2. Examples of D
(2)
3 type. We first spell out explicitly Theorem 2.8 and

Corollary 2.9 for p = 3.

Theorem 3.7. Let σ1, σ2, σ3, τ1, τ2, τ3 ∈ G distinct; denote (σ, τ) =
(σ1, σ2, σ3, τ1, τ2, τ3). Let ρ = (ρ, V ) ∈ Ĝσ1. We assume that

(H1) (σ, τ) is of type D
(2)
3 ,

(H2) (σ, τ) ⊆ O, with g ∈ G such that g . σ1 = τ1,
(H3) qσ1σ1 = −1,
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(H4) there exist v, w ∈ V − 0 such that,

ρ(g−1σ1g)w = −w,(3.21)

ρ(τ1)v = −v,(3.22)

Then dim B(O, ρ) = ∞. �

Corollary 3.8. Let σ1, σ2, σ3 ∈ O distinct. Assume that there exists k,
1 ≤ k ≤ |σ1|, such that σk

1 6= σ1 and σk
1 ∈ O. Let ρ = (ρ, V ) ∈ Ĝσ1. Assume

further that

(1) (σi)1≤i≤3 is of type D3,
(2) qσ1σ1 = −1.

Then dim B(O, ρ) = ∞. �

Corollary 3.8 applies notably to a real conjugacy class of an element of
order greater than 2. We list several applications for G = Sm.

Example 3.9. Let m ≥ 6. Let O be the conjugacy class of Sm of type
(1n1 , 2n2 , . . . ,mnm), where

• n1, n2 ≥ 1 and
• nj ≥ 1 for some j, 3 ≤ j ≤ m.

Let σ ∈ O and ρ ∈ Ŝσ
m. Then dim B(O, ρ) = ∞.

Proof. By hypothesis, we can choose σ = (1 2)β where β fixes 1, 2 and 3. If
qσσ 6= −1, then dim B(O, ρ) = ∞, by Lemma 1.3. Assume that qσσ = −1.
Now set

x = (1 2), y = (1 3), z = (2 3), σ1 = σ = xβ, σ2 = yβ, σ3 := zβ.

Clearly (σi)1≤i≤3 is of type D3, O is real and |σ1| > 2. By Corollary 3.8,
dim B(O, ρ) = ∞. �

In particular, let O be the conjugacy class of Sm of type (1, 2,m−3), with
m ≥ 6. By the preceding, dim B(O, ρ) = ∞. But, if qσσ = −1, then M(O, ρ)
has negative braiding; that is, it is not possible to decide if the dimension
of B(O, ρ) is infinite via abelian subracks. See [F2] for details.

Example 3.10. Let m ≥ 6. Let σ ∈ Sm of type (1n1 , 2n2 , . . . ,mnm), O the
conjugacy class of σ and ρ ∈ Ŝσ

m. Assume that

• there exists j, 1 ≤ j ≤ m, such that j = 2k, with k ≥ 2 and nj ≥ 3.

Then dim B(O, ρ) = ∞.
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Proof. If qσσ 6= −1, then dim B(O, ρ) = ∞, by Lemma 1.3. Assume that
qσσ = −1. Let

α1 = (i1 i2 · · · ij), α2 = (ij+1 ij+2 · · · i2j), α3 = (i2j+1 i2j+2 · · · i3j),

be three j-cycles appearing in the decomposition of σ as product of disjoint
cycles and define

I = (i1 i3 i5 · · · i3j−1), B1 = (i1 ij+1)(i2 ij+2) · · · (ij i2j),

P = (i2 i4 i6 · · · i3j), B2 = (ij+1 i2j+1)(ij+2 i2j+2) · · · (i2j i3j).

Then

(a) I and P are disjoint 3k-cycles,
(b) IkPk = B1B2,
(c) α1α2α3Iα−1

3 α−1
2 α−1

1 = P, (and then σIσ−1 = P),
(d) PkσPk = σB1B2, and
(e) P−kσP−k = σB2B1.

The first item is clear. To see (b), note that

B1B2 = (i1 ij+1 i2j+1)(i2 ij+2 i2j+2) · · · (ij i2j i3j).

(c) follows as in the proof of Lemma 2.11 (c). (d). By (b) and (c), we
have that σ−1PkσPk = IkPk = B1B2, as claimed. (e). By (b) and (c),
σ−1P−kσP−k = I−kP−k = B2B1 as claimed.

Set now σ1 := σ, σ2 := PkσP−k and σ3 := P−kσPk. As in the proof
of Example 2.10 we can see that σ1, σ2 and σ3 are distinct. We check that
(σi)1≤i≤3 is of type D3 using Remark 3.2.

By (d), PkσPk ∈ Sσ
m, i. e. PkσPkσP−kσ−1P−k = σ, or σPkσP−kσ−1 =

P−kσPk. That is, σ1.σ2 = σ3. Analogously, σ1.σ3 = σ2 is proved using (e).
To check that σ2.σ3 = σ1, note that σ2.σ3 = PkσP−kP−kσPkPkσ−1P−k =
σ, because PkσP−2k = PkσPkP−3k = σB1B2 ∈ Sσ

m, by (a) and (d).
We now apply Corollary 3.8 and conclude that dim B(O, ρ) = ∞. �

We shall need a few well-known results on symmetric groups.

Remark 3.11. (i) If ρ is a faithful representation of Sn, then ρ(τ) /∈ C id, for
every τ ∈ Sn, τ 6= id (since Sn is centerless).

(ii) If ρ = (ρ,W ) ∈ Ŝn, with ρ 6= sgn, then for any involution τ ∈ Sn

(i. e., τ2 = id), there exists w ∈ W − 0 such that ρ(τ)w = w (otherwise
ρ(τ) = − id).

Example 3.12. Let m ≥ 6. Let σ ∈ Sm of type (1n1 , 2n2 , . . . ,mnm), O the
conjugacy class of σ and ρ ∈ Ŝσ

m. Assume that
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• n2 ≥ 3 and
• there exists j, with j ≥ 3, such that nj ≥ 1.

Then dim B(O, ρ) = ∞.

Proof. By Lemma 1.3, we may suppose that qσσ = −1. Assume that (i1 i2),
(i3 i4) and (i5 i6) are three transpositions appearing in the decomposition of
σ as a product of disjoint cycles. We define

x := (i1 i2)(i3 i4)(i5 i6), y := (i1 i4)(i3 i6)(i2 i5), z := (i1 i6)(i2 i3)(i4 i5)

and α := xσ. It is easy to see, using for instance Proposition 3.3, that

σ1 := σ, σ2 := yα, σ3 := zα,

is of type D3. Then dim B(O, ρ) = ∞, by Corollary 3.8. Indeed, σ−1 ∈ O,
but σ 6= σ−1 because σ has order > 2. �

In the proof of the next Example, we need some notation for the induced
representation. Let H be a subgroup of a finite group G of index k, φ1, . . . , φk

the left cosets of H in G, with representatives gφ1 , . . . , gφk
. Let θ = (θ, W ) ∈

Ĥ, and w1, . . . wr a basis of W . Set V :=span-{gφi
wj | 1 ≤ i ≤ k, 1 ≤ j ≤ r}.

For i, j, with 1 ≤ i ≤ k, 1 ≤ j ≤ r we define ρ : G → Aut(V ) by

ρ(g)(gφi
wj) = gφl

θ(h)wj , where ggφi
= gφl

h, with h ∈ H.(3.23)

Thus ρ = (ρ, V ) is a representation of G and deg ρ = [G : H] deg θ.

Example 3.13. Let m ≥ 12. Let σ ∈ Sm of type (1n1 , 2n2 , . . . ,mnm), O the
conjugacy class of σ and ρ ∈ Ŝσ

m. If n2 ≥ 6, then dim B(O, ρ) = ∞.

Proof. By Lemma 1.3, we may suppose that qσσ = −1. We denote the n2

transpositions appearing in the decomposition of σ as product of disjoint
cycles by A1,2, . . . , An2,2 and we define A2 = A1,2 · · ·An2,2. Let us suppose
that A1,2 = (i1 i2), A2,2 = (i3 i4), A3,2 = (i5 i6), A4,2 = (i7 i8), A5,2 = (i9 i10)
and A6,2 = (i11 i12). We define x := (i1 i2)(i3 i4)(i5 i6)(i7 i8)(i9 i10)(i11 i12)
and α := xσ.

If there exists j, with j ≥ 3, such that nj ≥ 1, then the result follows
from Example 3.12. Assume that nj = 0, for every j ≥ 3, i. e. the type of σ

is (1n1 , 2n2). The centralizer of σ in Sm is Sσ
m = T1 × T2, with T1 ' Sn1 and

T2 = Γ o Λ, with

Γ := 〈A1,2, . . . , An2,2〉, Λ := 〈B1,2, . . . , Bn2−1,2〉.

Here Bl,2 := (i2l−1 i2l+1)(i2l i2l+2), for 1 ≤ l ≤ n2 − 1. Note that Γ '
(Z/2)n2 and Λ ' Sn2 . Now, ρ = ρ1 ⊗ ρ2, with ρ1 = (ρ1, V1) ∈ T̂1 and
ρ2 = (ρ2, V2) ∈ T̂2.
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For every t, 1 ≤ t ≤ n2, we define χt ∈ Γ̂, by χt(Al,2) = (−1)δt,l , 1 ≤ l ≤
n2. Then, the irreducible representations of Γ are

χt1,...,tJ := χt1 . . . χtJ , 0 ≤ J ≤ n2, 1 ≤ t1 < · · · < tJ ≤ n2.

The case J = 0 corresponds to the trivial representation of Γ.
For every J , with 0 ≤ J ≤ n2, we denote χ(J) := χ1,...,J . The action of Λ

on Γ induces a natural action of Λ on Γ̂, namely (λ ·χ)(Al,2) := χ(λ−1Al,2λ),
1 ≤ l ≤ n2, λ ∈ Λ. The orbit and the isotropy subgroup of χ(J) ∈ Γ̂ are

Oχ(J)
= {χk1,...,kJ

: 1 ≤ k1 < · · · < kJ ≤ n2},(3.24)

Λχ(J) = (Λχ(J))1 × (Λχ(J))2(3.25)

= 〈B1,2, . . . , BJ−1,2〉 × 〈BJ+1,2, . . . , Bn2−1,2〉 ' SJ × Sn2−J .

Thus, the characters χ(J), 0 ≤ J ≤ n, form a complete set of representatives
of the orbits in Γ̂ under the action of Λ.

Since ρ2 ∈ Γ̂ o Λ, we have that ρ2 = IndΓoΛ
ΓoΛ

χ(J) χ(J) ⊗ µ, with χ(J) as

above and µ = (µ,W ) ∈ Λ̂χ(J) – see [S, Section 8.2]. By (3.25), µ = µ1⊗µ2,
with µl = (µl,Wl) ∈ ̂(Λχ(J))l, l = 1, 2. Let {φ1 = Λχ(J) , . . . , φk} the left
cosets of Λχ(J) in Λ, where k = [Λ : Λχ(J) ] = n2!

J !(n2−J)! .
Note that

B1,2 = (i1 i3)(i2 i4), B3,2 = (i5 i7)(i6 i8) and B5,2 = (i9 i11)(i10 i12).

We define B := B1,2B3,2B5,2. Notice that the order of B is 2.
Since qσσ = −1, then J is odd. We will consider two cases.
CASE (1): assume that J ≤ 5. Then, B 6∈ Λχ(J) . This implies that

the left coset φ of Λχ(J) in Λ containing B is not the trivial coset φ1. We
choose as representatives of the cosets φ1 and φ to gφ1 = id and gφ = B,
respectively. We define v2 := gφ1w + gφw, with w ∈ W − 0. Notice that
Bgφ1 = gφ id and Bgφ = gφ1 id. Using (3.23), we have that

(3.26)
ρ2(B)v2 = ρ2(B)(gφ1w) + ρ2(B)(gφw)

= gφµ(id)w + gφ1µ(id)w = gφw + gφ1w = v2.

Let v := v1 ⊗ v2, with v1 ∈ V1 − 0. Then,

ρ(B)v = (ρ1 ⊗ ρ2)(id, B)(v1 ⊗ v2) = ρ1(id)v1 ⊗ ρ2(B)v2 = v1 ⊗ v2 = v,

(3.27)
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by (3.26). We define σ1 := σ,

σ2 := (i1 i6)(i3 i8)(i5 i10)(i7 i12)(i9 i2)(i11 i4)α,

σ3 := (i1 i10)(i3 i12)(i5 i2)(i7 i4)(i9 i6)(i11 i8)α,

τ1 := (i1 i4)(i3 i2)(i5 i8)(i7 i6)(i9 i12)(i11 i10)α,

τ2 := (i1 i8)(i3 i6)(i5 i12)(i7 i10)(i9 i4)(i11 i2)α,

τ3 := (i1 i12)(i3 i10)(i5 i4)(i7 i2)(i9 i8)(i11 i6)α.

We can check by straightforward computations that (σ, τ) is of type D
(2)
3 .

Let g := (i2 i4)(i6 i8)(i10 i12); thus, g . σ = τ1. Moreover, τ1 = σB = gσg

and σ2τ2 = B = gσ2τ2g. Then,

ρ(τ1)v = −v = ρ(gσ1g)v,

by (3.27). Therefore, dim B(O, ρ) = ∞, by Theorem 3.7.

CASE (2): assume that J ≥ 7. Then, B ∈ Λχ(J) ; moreover, B ∈
(Λχ(J))1. Also, Bgφ1 = gφ1B.

Let v2 = gφ1w, with w ∈ W − 0. Since W = W1 ⊗W2, we may assume
that w = w1 ⊗w2, with w1 ∈ W1 − 0 and w2 ∈ W2 − 0. Then, using (3.23),

ρ2(B)v2 = ρ2(B)(gφ1w) = gφ1µ(B)w = gφ1(µ1 ⊗ µ2)(B, id)(w1 ⊗ w2)

= gφ1

(
µ1(B)(w1)⊗ µ2(id)(w2)

)
= gφ1

(
(µ1(B)(w1)⊗ w2

)
.

Notice that µ1 ∈ ̂(Λχ(J))1. Since (Λχ(J))1 ' SJ , if µ1 6= sgn, with sgn
the sign representation of SJ , then there exists w1 ∈ W1 − 0 such that
µ1(B)(w1) = w1, by Remark 3.11 (ii). In this case, we have

ρ2(B)v2 = gφ1(µ1(B)(w1)⊗ w2) = gφ1(w1 ⊗ w2) = gφ1w = v2.(3.28)

Taking v := v1 ⊗ v2, with v1 ∈ V1 − 0, we have

ρ(B)v = (ρ1 ⊗ ρ2)(id, B)(v1 ⊗ v2) = ρ1(id)v1 ⊗ ρ2(B)v2 = v1 ⊗ v2 = v,

by (3.28). Considering σi, τi, 1 ≤ i ≤ 3, as in the previous case, the
hypothesis of Corollary 3.8 hold. Therefore, dim B(O, ρ) = ∞.

On the other hand, let us suppose that µ1 = sgn. Let w ∈ W , with
w = w1 ⊗ w2, w1 ∈ W1 − 0 and w2 ∈ W2 − 0. Let v2 = gφ1w; since
µ1(B)(w1) = −w1, we have ρ2(B)v2 = −v2. Choosing v := v1 ⊗ v2, with
v1 ∈ V1 − 0, we have that

ρ(B)v = (ρ1 ⊗ ρ2)(id, B)(v1 ⊗ v2) = ρ1(id)v1 ⊗ ρ2(B)v2 = −v1 ⊗ v2 = −v.

(3.29)
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We define σ1 := σ,

σ2 := (i1 i6)(i4 i7)(i5 i10)(i8 i11)(i2 i9)(i3 i12)α,

σ3 := (i1 i10)(i4 i11)(i2 i5)(i3 i8)(i6 i9)(i7 i12)α,

τ1 := (i1 i3)(i2 i4)(i5 i7)(i6 i8)(i9 i11)(i10 i12)α,

τ2 := (i1 i7)(i2 i12)(i3 i9)(i4 i6)(i5 i11)(i8 i10)α,

τ3 := (i1 i11)(i2 i8)(i3 i5)(i4 i10)(i6 i12)(i7 i9)α.

It can be shown that (σ, τ) is of type D
(2)
3 . Let now g = (i2 i3)(i6 i7)(i10 i11);

then, g . σ = τ1. Furthermore, τ1 = B = gσg and σ2 τ2 = σB = g σ2 τ2 g.
Then

ρ(τ1)v = −v = ρ(gσg)v and ρ(σ2 τ2)v = v = ρ(g σ2 τ2 g)v,

by (3.29). Therefore, dim B(O, ρ) = ∞, by Theorem 3.7. �

A way to obtain a family of type D3 is to start from a monomorphism
ρ : S3 → G and to consider the image by ρ of the transpositions. Another
way is as follows.

Remarks 3.14. Let G be a finite group and z ∈ Z(G).
(i). Let (σi)i∈Z/3 be of type D3. Then (zσi)i∈Z/3 is also of type D3.

(ii). Let (σ, τ) = (σi)i∈Z/3 ∪ (τi)i∈Z/3 be a family of type D
(2)
3 . Then

(zσ, zτ) = (zσi)i∈Z/3 ∪ (zτi)i∈Z/3 is also a family of type D
(2)
3 .

Here is a combination of these two ways.

Example 3.15. Let p be a prime number and q = pm, m ∈ N, such that 3
divides q − 1. Let ω ∈ Fq be a primitive third root of 1.

(i). If c ∈ Fq, then (µi)i∈Z/3, where µi =

(
0 ωi

ω2ic 0

)
, is a family of type

D3 in GL(2, Fq). If c = −1, then this is a family of type D3 in SL(2, Fq).
The orbit of µi is the set of matrices with minimal polynomial T 2 − c.

(ii). Let N > 3 be an integer and let T be the subgroup of diagonal
matrices in GL(N, Fq). Let λ = diag(λ1, λ2, . . . , λN ) ∈ T. Let O be the
conjugacy class of λ. Assume that λ1 = −λ2 and let c = λ2

1. Assume also
that there exist i, j, with 3 ≤ i, j ≤ N such that λi 6= λj; say i = 3, j = 4,
for simplicity of the exposition. Then (σi)i∈Z/3 ∪ (τi)i∈Z/3, where

σi =

(
µi 0
0 diag(λ3, λ4, . . . , λN )

)
, τi =

(
µi 0
0 diag(λ4, λ3, . . . , λN )

)
,

is a family of type D
(2)
3 in the orbit O ⊂ GL(N, Fq).
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Let W = SN act on T in the natural way. Let χ : GL(N, Fq) → C× be a
character; it restricts to an irreducible representation (χ, C) of the centralizer
GL(N, Fq)σ0 . Fix a group isomorphism ϕ : F×q → Gq−1 ⊂ C×, where Gq−1

is the group of (q − 1)-th roots of 1 in C. Recall that χ = ϕ(deth) for some
integer h. Thus the restriction of χ to T is W-invariant.

Proposition 3.16. Keep the notation above. Assume that χ(λ) = −1.
Then the dimension of the Nichols algebra B(O, χ) is infinite.

Proof. The result follows from Theorem 3.7. Indeed, hypothesis (H1) and

(H2) clearly hold. The matrix g =


id2 0 0 0
0 0 1 0
0 1 0 0
0 0 0 idN−4

 is an involution

that satisfies g . σ0 = τ0. Because of the explicit form of χ, χ(σ0) = −1 =
χ(τ0), hence (H3) and (H4) hold. �

This example can be adapted to the setting of semisimple orbits in finite
groups of Lie type.

4. A technique from the symmetric group S4

The classification of the finite-dimensional Nichols algebras over S4, given
in [AHS], relies on the fact (proved in loc. cit.) that some Nichols algebras
B(Vi ⊕ Vj) have infinite dimension. According to the general strategy pro-
posed in the present paper, each of these pairs (Vi, Vj) gives rise to a rack
and a cocycle, and to a technique to discard Nichols algebras over other
groups. Here we study one of these possibilities, and leave the others for a
future publication.

The octahedral rack is the rack X = {1, 2, 3, 4, 5, 6} given by the vertices
of the octahedron with the operation of rack given by the “right-hand rule”,
i. e. if Ti is the orthogonal linear map that fixes i and rotates the orthogonal
plane by an angle of π/2 with the right-hand rule (pointing the thumb to
i), then we define . : X ×X → X by i . j := Ti(j) – see Figure 1.

Explicitly,

1 . 1 = 1, 2 . 1 = 3, 3 . 1 = 4, 4 . 1 = 5, 5 . 1 = 2, 6 . 1 = 1,

1 . 2 = 5, 2 . 2 = 2, 3 . 2 = 1, 4 . 2 = 2, 5 . 2 = 6, 6 . 2 = 3,

1 . 3 = 2, 2 . 3 = 6, 3 . 3 = 3, 4 . 3 = 1, 5 . 3 = 3, 6 . 3 = 4,

1 . 4 = 3, 2 . 4 = 4, 3 . 4 = 6, 4 . 4 = 4, 5 . 4 = 1, 6 . 4 = 5,

1 . 5 = 4, 2 . 5 = 1, 3 . 5 = 5, 4 . 5 = 6, 5 . 5 = 5, 6 . 5 = 2,

1 . 6 = 6, 2 . 6 = 5, 3 . 6 = 2, 4 . 6 = 3, 5 . 6 = 4, 6 . 6 = 6.

Let G be a finite group, σ1, σ2, σ3, σ4, σ5, σ6 ∈ G distinct elements and
O the conjugacy class of σ1 in G.
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Figure 1. Octahedral rack.

Definition 4.1. We will say that (σi)1≤i≤6 is of type O if the following holds

σi . σj = σi.j , 1 ≤ i, j ≤ 6.

Here and in the rest of this section, . in the subindex is the operation of
rack in the octahedral rack. In other words, (σi)1≤i≤6 is of type O if and
only if {σi | 1 ≤ i ≤ 6} is isomorphic to the octahedral rack via i 7→ σi.

Example 4.2. Let m ≥ 4. Let us consider in Sm the following 4-cycles

(4.1)
σ̃1 = (1 2 3 4), σ̃2 = (1 2 4 3), σ̃3 = (1 3 2 4),

σ̃4 = (1 3 4 2), σ̃5 = (1 4 2 3), σ̃6 = (1 4 3 2).

It is easy to see that (σ̃i)1≤i≤6 satisfy the relations given in the previous
definition. Thus, (σ̃i)1≤i≤6 is of type O.

Let χ− ∈ Ŝσ̃1
4 be given by χ−(1 2 3 4) = −1. The goal of this Section is to

apply the next result, cf. [AHS, Theor. 4.7].

Theorem 4.3. The Nichols algebra B
(
M(O4

4, χ−)⊕M(O4
4, χ−)

)
has infi-

nite dimension. �

Remark 4.4. We note that M(O4
4, χ−) ⊕ M(O4

4, χ−) ' (CY, q) as braided
vector spaces, where

• Y = {xi, yj | 1 ≤ i, j ≤ 6} ' X(2), see Definition 1.1;
• q is the constant cocycle q ≡ −1.

Proof. We define

σ̃1 := (1 2 3 4) =: τ̃1, σ̃2 := (1 2 4 3) =: τ̃2, σ̃3 := (1 3 2 4) =: τ̃3,

σ̃4 := (1 3 4 2) =: τ̃4, σ̃5 := (1 4 2 3) =: τ̃5, σ̃6 := (1 4 3 2) =: τ̃6.
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We will denote by (σ̃j)1≤j≤6 (resp. (τ̃j)1≤j≤6) the first copy (resp. the second
copy) of O4

4, with system of left cosets representatives of S(1 2 3 4)
4 given by

g̃1 = g̃7 = σ̃1, g̃2 = g̃8 = σ̃5, g̃3 = g̃9 = σ̃2, g̃4 = g̃10 = σ̃3, g̃5 = g̃11 = σ̃4,
g̃6 = g̃12 = σ̃2

2σ̃1. The map M(O4
4, χ−)⊕M(O4

4, χ−) → (CY, q) given by

g̃i 7→ xi and g̃i+6 7→ yi, 1 ≤ i ≤ 6,

is an isomorphism of braided vector spaces. �

Proposition 4.5. A family (σi)1≤i≤6 of distinct elements in G is of type O

if and only if the following identities hold:

σ1 . σ2 = σ5, σ1 . σ3 = σ2, σ1 . σ4 = σ3, σ1 . σ5 = σ4, σ1 . σ6 = σ6,

(4.2)

σ2 . σ1 = σ3, σ2 . σ3 = σ6, σ2 . σ4 = σ4, σ2 . σ5 = σ1, σ2 . σ6 = σ5.

(4.3)

Proof. If we apply σ1 . to the relations in (4.3), then we obtain the
relations σ5 . σj = σ5.j , 1 ≤ j ≤ 6, because σ1 . σ2 = σ5. Analogously, we
obtain the relations σi . σj = σi.j , 1 ≤ j ≤ 6, for i = 3, 4; and the relations
σ6 .σj = σ6.j , 1 ≤ j ≤ 6, follow by applying σ5 . to the ones in (4.3). �

Lemma 4.6. If (σi)1≤i≤6 is of type O, then

(i) σ4
1 = σ4

2 = σ4
3 = σ4

4 = σ4
5 = σ4

6,
(ii) σ1σ6 = σ2σ4 = σ3σ5,
(iii) σ2

2σ
2
5 = σ3

1σ6 = σ2
3σ

2
2,

(iv) σ2
5σ

2
2 = σ1σ

3
6 = σ2

2σ
2
3.

Proof. (i). Since σi . (σi . (σi(.(σi . σj)))) = σj , then σ4
i ∈ Gσj , 1 ≤ i, j ≤ 6.

Hence σ4
1 = (σ3σ2σ

−1
3 )4 = σ3σ

4
2σ

−1
3 = σ4

2, and the rest is similar. (ii). By
Definition 4.1, we see that

σ3σ5 = σ3σ1σ2σ
−1
1 = σ3σ2σ5σ

−1
2 σ2σ

−1
1 = σ2σ1σ5σ

−1
1 = σ2σ4,

σ3σ5 = σ3σ2σ6σ
−1
2 = σ3σ6σ5σ

−1
6 σ6σ

−1
2 = σ6σ2σ5σ

−1
2 = σ6σ1.

Then, σ1σ6 = σ2σ4 = σ3σ5, as claimed.
(iii). By (ii), we have that

σ2
2σ

2
5 = σ2σ5σ1σ5 = σ5σ1σ1σ5 = σ5σ1σ4σ1 = σ5σ3σ

2
1 = σ1σ6σ

2
1 = σ3

1σ6.

Then, σ2
2σ

2
5 = σ3

1σ6. We apply σ1 . (σ1 . (σ1 . )) to the last expression and
we have σ2

3σ
2
2 = σ3

1σ6.
(iv) follows from (iii) applying σ2 . (σ2 . ). �
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Definition 4.7. Let σi, τi ∈ G, 1 ≤ i ≤ 6, all distinct. We say that (σ, τ)
is of type O(2) if (σi)1≤i≤6 and (τj)1≤j≤6 are both of type O, and

σi . τj = τi.j , τi . σj = σi.j , 1 ≤ i, j ≤ 6.(4.4)

Lemma 4.8. If (σ, τ) is of type O(2), then

(i) σ1τ6 = σ6τ1 = σ2τ4 = σ4τ2 = σ3τ5 = σ5τ3,
(ii) σ−1

j τj = σ−1
1 τ1, 2 ≤ j ≤ 6,

(iii) τ−2
2 σ5τ5 = τ−1

1 σ6,
(iv) τ−2

2 σ3τ3 = σ1τ
−1
6 ,

(v) σ−2
2 σ5τ5 = σ−2

1 τ1σ6,
(vi) σ−2

2 σ3τ3 = τ1σ
−1
6 .

Proof. (i). First,

σ1τ6 = σ1 σ2τ3σ
−1
2 = τ3σ2τ

−1
3 τ3σ6τ

−1
3 τ3σ

−1
2 = τ3 σ2σ6σ

−1
2 = τ3σ5 = σ5τ3.

(4.5)

Applying now σ2 . to (4.5) we get σ3τ5 = τ6σ1. Applying σ2 . to this
last identity, we have σ6τ1 = τ5σ3. The rest is similar.

(ii). By (i) and Lemma 4.6 (ii) for (τi)1≤i≤6, we have that

σ−1
2 τ2 = σ−1

2 τ−1
4 τ4τ2 = σ−1

1 τ−1
6 τ1τ6 = σ−1

1 τ1.

The other relations can be obtained in an analogous way.
(iii). It is easy to see that

τ−2
2 σ5τ5 = τ−4

2 τ2τ2τ5σ5 = τ−4
1 τ2τ5τ1σ5 = τ−4

1 τ5τ1τ1σ5

= τ−4
1 τ5τ1σ4τ1 = τ−4

1 τ5σ3τ1τ1 = τ−4
1 τ1σ6τ

2
1 = τ−1

1 σ6.

(iv) follows from (iii) applying σ2 . (σ2 . ).
(v). Clearly,

σ−2
2 σ5τ5 = σ−4

2 σ2σ2σ5τ5 = σ−4
1 σ2σ5σ1τ5 = σ−4

1 σ5σ1σ1τ5 = σ−4
1 σ5σ1τ4σ1

= σ−4
1 σ5τ3σ1σ1 = σ−4

1 σ1τ6σ1σ1 = σ−1
1 τ6 = σ−2

1 τ1σ6.

(vi) follows from (v) applying σ2 . (σ2 . ). �

4.1. Applications. Let G be a finite group, O a conjugacy class of G. Let
(σi)1≤i≤6 ⊂ O be of type O. We define

g1 := σ1, g2 := σ5, g3 := σ2, g4 := σ3, g5 := σ4, g6 := σ2
2σ1;(4.6)
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then, σi = gi . σ1, 1 ≤ i ≤ 6. It is easy to see that following relations hold

σ1g1 = g1σ1, σ1g2 = g5σ1, σ1g3 = g2σ1,

σ2g1 = g3σ1, σ2g2 = g2σ1, σ2g3 = g6σ
−1
1 ,

σ3g1 = g4σ1, σ3g2 = g1σ6, σ3g3 = g3σ1,

σ4g1 = g5σ1, σ4g2 = g2σ6, σ4g3 = g1σ6,

σ5g1 = g2σ1, σ5g2 = g6σ
−2
1 σ6, σ5g3 = g3σ6,

σ6g1 = g1σ6, σ6g2 = g3σ6, σ6g3 = g4σ6,

σ1g4 = g3σ1, σ1g5 = g4σ1, σ1g6 = g6σ6,

σ2g4 = g4σ6, σ2g5 = g1σ6, σ2g6 = g5σ
3
6,

σ3g4 = g6σ
−1
6 , σ3g5 = g5σ6, σ3g6 = g2σ

3
1,

σ4g4 = g4σ1, σ4g5 = g6σ1σ
−2
6 , σ4g6 = g3σ

2
1σ6,

σ5g4 = g1σ6, σ5g5 = g5σ1, σ5g6 = g4σ1σ
2
6,

σ6g4 = g5σ6, σ6g5 = g2σ6, σ6g6 = g6σ1.

Let ρ = (ρ, V ) ∈ Ĝσ1 and v ∈ V − 0. Assume that v is an eigenvector of
ρ(σ6) with eigenvalue λ. We define W := span- {giv | 1 ≤ i ≤ 6}. Then, W
is a braided vector subspace of M(O, ρ).

Lemma 4.9. Let (σi)1≤i≤6, (gi)1≤i≤6, (ρ, V ) ∈ Ĝσ1, W , λ as above. Assume
that qσ1σ1 = λ = −1. Then W ' M(O4

4, χ−) as braided vector spaces.

Proof. Since qσ1σ1 = −1 we have that ρ(σ4
i ) = id, 1 ≤ i ≤ 6, from Lemma

(4.6) (i). Let σ̃i be as in (4.1). If we choose

g̃1 = σ̃1, g̃2 = σ̃5, g̃3 = σ̃2, g̃4 = σ̃3, g̃5 = σ̃4, g̃6 = σ̃2
2σ̃1,

then g̃i . σ̃1 = σ̃i, 1 ≤ i ≤ 6. Thus, M(O4
4, χ−) = span-{g̃iv0, | 1 ≤ i ≤ 6},

with v0 ∈ V0−0, where V0 is the vector space affording the representation χ−

of S(1 2 3 4)
4 . Now, the map W → M(O4

4, χ−) given by giv 7→ g̃iv0, 1 ≤ i ≤ 6,
is an isomorphism of braided vector spaces. �

The next lemma is needed for the main result of the section.

Lemma 4.10. Let σi, τi, 1 ≤ i ≤ 6, be distinct elements in G, O a conjugacy
class of G. Assume that (σ, τ) ⊆ O is of type O(2), with g ∈ G such that
g . σ1 = τ1. Let

(4.7)

g1 := σ1, g2 := σ5, g3 := σ2, g4 := σ3,

g5 := σ4, g6 := σ2
2σ1, g7 := gσ1, g8 := τ5g,

g9 := τ2g, g10 := τ3g, g11 := τ4g, g12 := τ2
2 gσ1.
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Then, the following relations hold:

τ1g7 = g7σ1, τ1g8 = g11σ1, τ1g9 = g8σ1,

τ2g7 = g9σ1, τ2g8 = g8σ1, τ2g9 = g12σ
−1
1 ,

τ3g7 = g10σ1, τ3g8 = g7g
−1τ6g, τ3g9 = g9σ1,

τ4g7 = g11σ1, τ4g8 = g8g
−1τ6g, τ4g9 = g7g

−1τ6g,

τ5g7 = g8σ1, τ5g8 = g12σ
−2
1 g−1τ6g, τ5g9 = g9g

−1τ6g,

τ6g7 = g7g
−1τ6g, τ6g8 = g9g

−1τ6g, τ6g9 = g10g
−1τ6g,

τ1g10 = g9σ1, τ1g11 = g10σ1, τ1g12 = g12g
−1τ6g,

τ2g10 = g10g
−1τ6g, τ2g11 = g7g

−1τ6g, τ2g12 = g11(g−1τ6g)3,

τ3g10 = g12(g−1τ6g)−1, τ3g11 = g11g
−1τ6g, τ3g12 = g8σ

3
1,

τ4g10 = g10σ1, τ4g11 = g12σ1(g−1τ6g)−2, τ4g12 = g9σ
2
1g
−1τ6g,

τ5g10 = g7g
−1τ6g, τ5g11 = g11σ1, τ5g12 = g10σ1(g−1τ6g)2,

τ6g10 = g11g
−1τ6g, τ6g11 = g8g

−1τ6g, τ6g12 = g12σ1,

σ1g7 = g7g
−1σ1g, σ1g8 = g11g

−1σ1g, σ1g9 = g8g
−1σ1g,

σ2g7 = g9g
−1σ1g, σ2g8 = g8g

−1σ1g, σ2g9 = g12σ
−2
1 (g−1σ1g),

σ3g7 = g10g
−1σ1g, σ3g8 = g7g

−1σ6g, σ3g9 = g9g
−1σ1g,

σ4g7 = g11g
−1σ1g, σ4g8 = g8g

−1σ6g, σ4g9 = g7g
−1σ6g,

σ5g7 = g8g
−1σ1g, σ5g8 = g12σ

−2
1 g−1σ6g, σ5g9 = g9g

−1σ6g,

σ6g7 = g7g
−1σ6g, σ6g8 = g9g

−1σ6g, σ6g9 = g10g
−1σ6g,

σ1g10 = g9g
−1σ1g, σ1g11 = g10g

−1σ1g, σ1g12 = g12g
−1σ6g,

σ2g10 = g10g
−1σ6g, σ2g11 = g7g

−1σ6g, σ2g12 = g11γ2,12,

σ3g10 = g12γ3,10, σ3g11 = g11g
−1σ6g, σ3g12 = g8σ

2
1(g

−1σ1g),

σ4g10 = g10g
−1σ1g, σ4g11 = g12γ4,11, σ4g12 = g9σ

2
1g
−1σ6g,

σ5g10 = g7g
−1σ6g, σ5g11 = g11g

−1σ1g, σ5g12 = g10γ5,12,

σ6g10 = g11g
−1σ6g, σ6g11 = g8g

−1σ6g, σ6g12 = g12g
−1σ1g,

where γ2,12 = σ2
1(g

−1σ1g)−2(g−1σ6g)3, γ3,10 = σ−2
1 (g−1σ1g)2(g−1σ6g)−1,

γ4,11 = σ−2
1 (g−1σ1g)3(g−1σ6g)−2 and γ5,12 = σ2

1(g
−1σ1g)−1(g−1σ6g)2,
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τ1g1 = g1τ1, τ1g2 = g5τ1, τ1g3 = g2τ1,

τ2g1 = g3τ1, τ2g2 = g2τ1, τ2g3 = g6σ
−2
1 τ1,

τ3g1 = g4τ1, τ3g2 = g1τ6, τ3g3 = g3τ1,

τ4g1 = g5τ1, τ4g2 = g2τ6, τ4g3 = g1τ6,

τ5g1 = g2τ1, τ5g2 = g6σ
−2
1 τ6, τ5g3 = g3τ6,

τ6g1 = g1τ6, τ6g2 = g3τ6, τ6g3 = g4τ6,

τ1g4 = g3τ1, τ1g5 = g4τ1, τ1g6 = g6τ6,

τ2g4 = g4τ6, τ2g5 = g1τ6, τ2g6 = g5σ
3
1τ1σ6,

τ3g4 = g6σ
−1
1 τ1σ

−1
6 , τ3g5 = g5τ6, τ3g6 = g2σ

2
1τ1,

τ4g4 = g4τ1, τ4g5 = g6τ1σ
−2
6 , τ4g6 = g3σ1τ1σ6,

τ5g4 = g1τ6, τ5g5 = g5τ1, τ5g6 = g4τ1σ
2
6,

τ6g4 = g5τ6, τ6g5 = g2τ6, τ6g6 = g6τ1.

Proof. The proof follows by straightforward computations, Lemma 4.6 for
σ and τ , and Lemma 4.8. �

Here is the main result of this section.

Theorem 4.11. Let σi, τi ∈ G, 1 ≤ i ≤ 6, distinct elements in G, O a
conjugacy class of G and ρ = (ρ, V ) ∈ Ĝσ1. Let us suppose that

(H1) (σ, τ) is of type O(2),
(H2) (σ, τ) ⊆ O, with g ∈ G such that g . σ1 = τ1,
(H3) qσ1σ1 = −1,

there exists v ∈ V − 0 such that

(H4) ρ(σ6)v = −v,
(H5) ρ(τ1)v = −v,

and there exists w ∈ V − 0 such that

(H6) ρ(g−1σ1g)w = −w,
(H7) ρ(g−1σ6g)w = −w,

Then dim B(O, ρ) = ∞.

Proof. Let gj ∈ G , 1 ≤ j ≤ 12, as in (4.7). Then, gj . σ1 = σj , 1 ≤ j ≤ 6,
and gj . σ1 = τj−6, 7 ≤ j ≤ 12. By Lemma 4.10, we have that

(a) if 1 ≤ i, j ≤ 6, then g−1
i.jσigj = σr

1σ
s
6, with r + s odd,

(b) if 7 ≤ i, j ≤ 12, then g−1
i.jτi−6gj = σr

1(g
−1τ6g)s, with r + s odd,
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(c) if 1 ≤ i ≤ 6 and 7 ≤ j ≤ 12, then g−1
i.jσigj = σr

1(g
−1σ1g)s(g−1σ6g)t,

with r + s + t odd,
(d) if 1 ≤ j ≤ 6 and 7 ≤ i ≤ 12, then g−1

i.jτi−6gj = σr
1τ

s
1σt

6, with r + s + t

odd, because τ6 = σ−1
1 τ1σ6.

Let W := span-{giv, | 1 ≤ i ≤ 6} and W ′ := span-{giw, | 7 ≤ i ≤ 12},
with v, w ∈ V − 0, where v satisfies (H4)-(H5) and w satisfies (H6)-(H7).
Then, W and W ′ are braided vector subspaces of M(O, ρ). We will prove
that

W ⊕W ′ ' M(O4
4, χ−)⊕M(O4

4, χ−),

as braided vector spaces. Hence dim B(W ⊕W ′) = ∞, by Theorem 4.3, and
the result follows from Lemma 1.2.

By Remark 4.4, we only need to see that the isomorphism of linear vector
spaces W ⊕W ′ → M(O4

4, χ−)⊕M(O4
4, χ−) given by

giv 7→ g̃i and gi+6w 7→ g̃i+6 1 ≤ i ≤ 6,

respects the braiding, and this is just a matter of the cocycle. For this, we
compute explicitly the braiding in the basis {giv, gj+6w, | 1 ≤ i, j ≤ 6} of
W ⊕W ′.

By (a), (H3) and (H4), if 1 ≤ i, j ≤ 6, then

c(giv ⊗ gjv) = gi.jρ(g−1
i.jσigj)(v)⊗ giv = −gi.jv ⊗ giv.

From Lemma 4.8 (i), τ6 = σ−1
1 τ1σ6. Thus, g−1τ6g = (g−1σ1g)−1σ1(g−1σ6g).

By (b), (H3), (H6) and (H7), if 7 ≤ i, j ≤ 12, then

c(giw ⊗ gjw) = gi.jρ(g−1
i.jτi−6gj)(w)⊗ giw = −gi.jw ⊗ giw.

By (c), (H3), (H6) and (H7), if 1 ≤ i ≤ 6 and 7 ≤ j ≤ 12, then

c(giv ⊗ gjw) = gi.jρ(g−1
i.jσigj)(w)⊗ giv = −gi.jw ⊗ giv.

By (d), (H3), (H4) and (H5), if 1 ≤ j ≤ 6 and 7 ≤ i ≤ 12, then

c(giw ⊗ gjv) = gi.jρ(g−1
i.jτi−6gj)(v)⊗ giw = −gi.jv ⊗ giw.

This completes the proof. �

As an immediate consequence we have the following result.

Corollary 4.12. Let σi, τi ∈ G, 1 ≤ i ≤ 6 all distinct, O a conjugacy class
of G and ρ = (ρ, V ) ∈ Ĝσ1 with qσ1σ1 = −1. Assume that (σ, τ) ⊆ O is of
type O(2). If σ6 = σd

1 and τ1 = σe
1 for some d, e ∈ Z, then dim B(O, ρ) = ∞.
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Proof. Note that d and e are odd, since they are relatively prime with |σ1|.
Hence the hypothesis (H4) and (H5) hold. Now g−1σ1g = σe|g|−1

1 . Then
ρ(g−1σ1g) = − id and (H6) holds. The proof of (H7) is similar. �

Example 4.13. Let m ≥ 8. Let σ ∈ Sm of type (1n1 , 2n2 , 8n8), with n8 ≥ 1,
O the conjugacy class of σ and ρ ∈ Ŝσ

m. Then dim B(O, ρ) = ∞.

Proof. By Lemma 1.3, we may suppose that qσσ = −1. If n8 ≥ 3, then
dim B(O, ρ) = ∞, from Corollary 3.10. We consider two cases.

CASE (I): n8 = 1. Let A8 = (i1 i2 i3 i4 i5 i6 i7 i8) the 8-cycle appearing
in the decomposition of σ as product of disjoint cycles. We set α := σ A−1

8

and define σ1 := σ, σ6 := σ3
1, τ1 := σ5

1, τ6 := σ−1
1 ,

σ2 := (i1 i3 i8 i6 i5 i7 i4 i2) α, σ3 := (i1 i8 i2 i7 i5 i4 i6 i3) α,

σ4 := (i1 i6 i4 i3 i5 i2 i8 i7) α, σ5 := (i1 i7 i6 i8 i5 i3 i2 i4) α,

τ2 := (i1 i7 i8 i2 i5 i3 i4 i6) α, τ3 := (i1 i4 i2 i3 i5 i8 i6 i7) α,

τ4 := (i1 i2 i4 i7 i5 i6 i8 i3) α, τ5 := (i1 i3 i6 i4 i5 i7 i2 i8) α.

CASE (II): n8 = 2. Let

A1,8 = (i1 i2 i3 i4 i5 i6 i7 i8) and A2,8 = (i9 i10 i11 i12 i13 i14 i15 i16)

the two 8-cycles appearing in the decomposition of σ as product of disjoint
cycles. We call A8 = A1,8A2,8, α := σ A−1

8 and define σ1 := σ, σ6 := σ3
1,

τ1 := σ5
1, τ6 := σ−1

1 ,

σ2 := (i1 i3 i8 i6 i5 i7 i4 i2)(i9 i11 i16 i14 i13 i15 i12 i10) α,

σ3 := (i1 i8 i2 i7 i5 i4 i6 i3)(i9 i16 i10 i15 i13 i12 i14 i11) α,

σ4 := (i1 i6 i4 i3 i5 i2 i8 i7)(i9 i14 i12 i11 i13 i10 i16 i15) α,

σ5 := (i1 i7 i6 i8 i5 i3 i2 i4)(i9 i15 i14 i16 i13 i11 i10 i12) α,

τ2 := (i1 i7 i8 i2 i5 i3 i4 i6)(i9 i15 i16 i10 i13 i11 i12 i14) α,

τ3 := (i1 i4 i2 i3 i5 i8 i6 i7)(i9 i12 i10 i11 i13 i16 i14 i15) α,

τ4 := (i1 i2 i4 i7 i5 i6 i8 i3)(i9 i10 i12 i15 i13 i14 i16 i11) α,

τ5 := (i1 i3 i6 i4 i5 i7 i2 i8)(i9 i11 i14 i12 i13 i15 i10 i16) α.

In both cases, σ6 = σ3
1 and τ1 = σ5

1 and (σ, τ) ⊆ O is of type O(2). Then
the result follows from Corollary 4.12. �

Remarks 4.14. (i). The discussion in the preceding example can be adapted
to σ ∈ Sm of type (1n1 , 2n2 , . . . ,mnm) provided that n8 ≥ 1; but then some
requirements on the representation ρ have to be imposed.
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(ii). Let N = 2n with n ≥ 4. It can be shown that the orbit of the
N -cycle in SN contains no family of type O using Lemma 4.6.

(iii). The orbit with label j = 4 of the Mathieu group M22 contains a
family of type O(2), and therefore this group admits no finite-dimensional
pointed Hopf algebra except the group algebra itself [F1].

Acknowledgement. The authors are grateful to the referee for carefully
reading the paper and for his/her comments.
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Córdoba. CIEM – CONICET.

Medina Allende s/n (5000) Ciudad Universitaria, Córdoba, Argentina
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