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NEW TECHNIQUES FOR POINTED HOPF ALGEBRAS
NICOLAS ANDRUSKIEWITSCH AND FERNANDO FANTINO

ABSTRACT. We present techniques that allow to decide that the dimen-
sion of some pointed Hopf algebras associated with non-abelian groups
is infinite. These results are consequences of [AHS]. We illustrate each

technique with applications.

Dedicado a Isabel Dotti y Roberto Miatello en su sexagésimo cumplearnios.

INTRODUCTION

0.1. Let G be a finite group and let %gy@ be the category of Yetter-
Drinfeld modules over CG. The most delicate of the questions raised by
the Lifting Method for the classification of finite-dimensional pointed Hopf
algebras H with G(H) ~ G [AS1, AS3], is the following:

Given V € S8YD, decide when the Nichols algebra B(V) is

finite-dimensional.

Recall that a Yetter-Drinfeld module over the group algebra CG (or over
G for short) is a left CG-module and left CG-comodule M satisfying the
compatibility condition §(g.m) = ghg™! ® g.m, for all m € My, g,h € G.
The list of all objects in ggy@ is known: any such is completely reducible,
and the class of irreducible ones is parameterized by pairs (O, p), where O is
a conjugacy class in G and p is an irreducible representation of the isotropy
group G® of a fixed s € O. We denote the corresponding Yetter-Drinfeld
module by M (0, p).

In fact, our present knowledge of Nichols algebras is still preliminary.
However, an important remark is that the Nichols algebra 5(V') depends (as
algebra and coalgebra) just on the underlying braided vector space (V,¢)—
see for example [AS3]. This observation allows to go back and forth be-
tween braided vector spaces and Yetter-Drinfeld modules. Indeed, the same
braided vector space could be realized as a Yetter-Drinfeld module over dif-
ferent groups, and even in different ways over the same group, or not at
all. The braided vector spaces that do appear as Yetter-Drinfeld modules
over some finite group are those coming from racks and 2-cocycles [AG].
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2 ANDRUSKIEWITSCH AND FANTINO

Thus, a comprehensive approach to the question above would be to solve
the following:

Given a braided vector space (V,c) determined by a rack and
a 2-cocycle, decide when dimB (V) < oo.

But at the present moment and with the exception of the diagonal case
mentioned below, we know explicitly very few Nichols algebras of braided
vector spaces determined by racks and 2-cocycles; see [FK, MS, G1, AG, G2].

0.2. The braided vector spaces that appear as Yetter-Drinfeld modules over
some finite abelian group are the diagonal braided vector spaces. This leads
to the following question: Given a braided vector space (V,c) of diagonal
type, decide when the Nichols algebra B(V') is finite-dimensional. The full
answer to this problem was given in [H2], see [AS2, H1] for braided vector
spaces of Cartan type— and [AS4] for applications. These results on Nichols
algebras of braided vector spaces of diagonal type were in turn used for
more general pointed Hopf algebras. Let us fix a non-abelian finite group
G and let V € %g%}@ irreducible. If the underlying braided vector space
contains a braided vector subspace of diagonal type, whose Nichols algebra
has infinite dimension, then dim B (V) = co. In turns out that, for several
finite groups considered so far, many Nichols algebras of irreducible Yetter-
Drinfeld modules have infinite dimension; and there are short lists of those
not attainable by this method. See [G1, AZ, AF1, AF2, FGV].

0.3. An approach of a different nature, inspired by [H1], was presented in
[AHS]. Let us consider V. = Vi @ --- @ Vp € S&YD, where the V;’s are
irreducible. Then the Nichols algebra of V' is studied, under the assumption
that the B(V;) are known and finite-dimensional, 1 < i < §. Under some
circumstances, there is a Coxeter group W attached to V', so that B(V)
finite-dimensional implies W finite. Although the picture is not yet complete,
the previous result implies that, for a few G- explicitly, S3, S4, D,— the
Nichols algebras of some V' have infinite dimension. These applications rely
on the lists mentioned at the end of 0.2.

0.4. The purpose of the present paper is to apply the results in 0.3 to
discard more irreducible Yetter-Drinfeld modules. Namely, let V = V1BV, €
%FHD, where I' = S3, Sy or Dy, such that dimB(V') = oo by [AHS, Section
4]. Then there is a rack (X,>) and a cocycle g such that (V,¢) ~ (CX, ¢q).
Let G be a finite group, let O be a conjugacy class in G, s € O, p € G* and
M(0O,p) € %gy@ the irreducible Yetter-Drinfeld module corresponding to
(0, p). We give conditions on (O, p) such that M (O, p) contains a braided
vector subspace isomorphic to (CX, ¢q); thus, necessarily, dim B(0, p) = oo.
We illustrate these new techniques with several examples; see in particular
Example 3.9 for one that can not be treated via abelian subracks.
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0.5. The facts glossed in the previous points strengthen our determination
to consider families of finite groups, in order to discard those irreducible
Yetter-Drinfeld modules over them with infinite-dimensional Nichols algebra
by the ‘subrack method’. Natural candidates are the families of simple
groups, or closely related; cf. the classification of simple racks in [AG]. The
case of symmetric and alternating groups is treated in [AZ, AF1, AF2, AFZ];
Mathieu groups in [F1]; other sporadic groups in [AFGV]; some finite groups
of Lie type with rank one in [FGV, FV]. Particularly, a list of only 9 types
of pairs (O, p) for S,, whose Nichols algebras might be finite-dimensional is
given in [AFZ]; an analogous list of 7 pairs out of 1137 (for all 5 Mathieu
simple groups) is given in [F1]; the sporadic groups Ji, Jo, J3, He and Suz
are shown to admit no non-trivial pointed finite-dimensional Hopf algebra
in [AFGV]. Our new techniques are crucial for these results.

0.6. If for some finite group G there is at most one irreducible Yetter-
Drinfeld module V' with finite-dimensional Nichols algebra, then [AHS, Th.
4.2] can be applied again. If the conclusion is that dimB(V & V) = oo,
then we can build a new rack together with a 2-cocycle realizing V @&V, and
investigate when a conjugacy class in another group G’ contains this rack,
and so on.

1. NOTATIONS AND CONVENTIONS

The base field is C (the complex numbers).

1.1. Braided vector spaces. A braided vector space is a pair (V, ¢), where
V is a vector space and ¢ : V®V — V®V is a linear isomorphism such that
c satisfies the braid equation: (¢®id)(id ®c)(c®id) = (id ®c)(c®id)(id ®c).
Let V' be a vector space with a basis (v;)1<i<e, let (¢ij)1<i j<o be a matrix
of non-zero scalars and let ¢ : V@V — V ® V be given by c(v; ® v;) =
¢ijv; ® v;. Then (V,¢) is a braided vector space, called of diagonal type.

Examples of braided vector spaces come from racks. A rack is a pair
(X,>) where X is a non-empty set and > : X x X — X is a function— called
the multiplication, such that ¢; : X — X, ¢;(j) := i 7, is a bijection for all
1€ X, and

(1.1) iv(jok)=(i>j)>(ivk)  foralli, j, ke X.

For instance, a group G is a rack with 2>y = xyz—!. In this case, joi =i
whenever i>j = j and i>¢ = ¢ for all i € G. We are mainly interested in
subracks of G, e. g. in conjugacy classes in G.

Let (X,>) be a rack. A function q : X x X — C* is a 2-cocycle if
Qi jok Uk = Qivjiok Gik» for all 4, j, k € X. Then (CX, ¢,) is a braided vector
space, where CX is the vector space with basis ex, k € X, and the braiding
is given by

cq(ek ® 6[) = Q| €kl D €, for all k£,1 € X.
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A subrack T of X is abelian if k1 =1 for all k,l € T. If T is an abelian
subrack of X, then CT is a braided vector subspace of (CX, ¢,) of diagonal

type.

Definition 1.1. Let X be a rack. Let X; and X, be two disjoint copies
of X, together with bijections ¢; : X — X;, ¢ = 1,2. The square of X
is the rack with underlying set the disjoint union X; [[ X2 and with rack
multiplication

pi(z) > i(y) = (x> y),
z,y € X, 1 < 4,5 < 2. We denote the square of X by X This is a

particular case of an amalgamated sum of racks, see e. g. [AG].

1.2. Yetter-Drinfeld modules. We shall use the notation given in [AF1].
Let G be a finite group. We denote by |g| the order of an element g € G;
and by G the set of isomorphism classes of irreducible representations of G.
We shall often denote a representant of a class in G with the same symbol
as the class itself.

Here is an explicit description of the irreducible Yetter-Drinfeld module
M(O,p). Let t1 = s, ..., tar be a numeration of O and let g; € G such that
gi>s=t; forall 1 <i < M. Then M(O,p) = ®1<i<m gi ® V, where V is
the vector space affording the representation p. Let g;v := g; ® v € M (O, p),
1<i<M,veV. IfveVand 1l <i< M, then the action of g € G
is given by g - (g;v) = g¢;(7v - v), where gg; = g7, for some 1 < j < M and
v € G, and the coaction is given by d(g;v) = t; ® g;v. Then M(O,p) is a
braided vector space with braiding c¢(g;v ® gjw) = gn(v - w) ® g;v, for any
1 <i4,5 <M, v,weV, where t;g; = gpy for unique h, 1 < h < M and
v € G®. Since s € Z(G?), the center of G*, the Schur Lemma implies that

(1.2) s acts by a scalar ¢ss on V.

Lemma 1.2. If U is a subspace of W such that ¢c(U @ U) = U @ U and
dimB(U) = oo, then dim B(W) = oo. O

Lemma 1.3. [AZ, Lemma 2.2] Assume that s is real (i. e. s~ € Q). If
dimB(0, p) < oo, then qss = —1 and s has even order. O

Let o € S;, be a product of n; disjoint cycles of length j, 1 < j < m.
Then the type of o is the symbol (1™,2"2 ... m"m). We may omit j"
when n; = 0. The conjugacy class O, of o coincides with the set of all
permutations in S,, with the same type as o; we may use the type as a
subscript of a conjugacy class as well. If some emphasis is needed, we add
a superscript m to indicate that we are taking conjugacy classes in S,,, like
O7" for the conjugacy class of j-cycles in Sp,.
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2. A TECHNIQUE FROM THE DIHEDRAL GROUP D,,, n ODD

Let n > 1 be an odd integer. Let I, be the dihedral group of order 2n,
generated by x and y with defining relations 22 = e = y™ and xyx = y~'. Let
O, be the conjugacy class of x and let sgn € D% be the sign representation

(DY = (x) ~ Zsy). The goal of this Section is to apply the next result, cf.
[AHS, Th. 4.8, or [AHS, Th. 4.5 for n = 3.

Theorem 2.1. The Nichols algebra B(M (O4,sgn) & M(O,,sgn)) has infi-

nite dimension. O

Note that M(O,,sgn) & M(O,,sgn) is isomorphic as a braided vector
space to (CX,,,q), where

e X, is the rack with 2n elements s;, t;, i, j € Z/n, and with structure
Sil>8j = 82i—j, SiDtj = tgi_j, tiDSj = 52i—j, til>tj = tgi_j, i,j S Z/n;
e ( is the constant cocycle q = —1.

If d divides n, then X, can be identified with a subrack of X,,. Hence, it
is enough to consider braided vector spaces (CX),,q), with p an odd prime.

We fix a finite group G with the rack structure given by conjugation
x>y =ayr ', x,y € G. Let O be a conjugacy class in G.

Definition 2.2. Let p > 1 be an integer. A family (p;);ez/, of distinct
elements of G is of type D), if

(2.1) Wi > g = poi—j, i,j € Z/p.

Let (ui)iez/p and (v;)iez/p be two families of type Dy, in G, such that y; # v;
for all i,j € Z/p. Then (p,v) := (pti)icz/p U (Vi)iezp is of type ‘DZ(,Q) if

(2.2) Wi>Vj = Voi—j, Vi i = floi—j, %,J € Z/p.

It is useful to denote i>j = 2i — j, for i,j € Z/p.
We state some consequences of this definition for further use.

Remark 2.3. If (11;)iez/p is of type D) then

(23) gty =g vy =l g = g,
(24)  pf o py = paij, pi > = p; s, i = b,
for all 4, j € Z/p, and for all k odd.

Remark 2.4. Assume that p is odd. If (i1, v) = (14s)icz/p U (Vi)iez/p 1s of type
91(,2), then for all ¢, j,

(25) M?ZM?a Vi2:V32’ N?Vj :Vj/‘%27 V?Nj :ijf,

i+
7 -

Indeed, M%Mj = uju%, hence u%h_j = MhM?Mﬁl = ,u]z. Take now h =
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Lemma 2.5. If (iu,v) = (ti)iez/p U (Vi)iczp 15 of type D,(JQ), then
(1) kit = Ba—k)+k He(—k)+s
(i) pevi = Mor(i—k)+k Vot(i—k)+1s
(ii) v = V(at+1) (1—k)+k H(2t4+1)(I1—k)+15
forallk, 1, t€Z/p.

Notice that we have the analogous relations interchanging p by v.
Proof. We proceed by induction on t. We will prove (i); (ii) and (iii) are
similar. The result is obvious when ¢t = 0. Since pgpu; = p; sk, then the
result holds for t = 1. Let us suppose that (i) holds for every s < t. Now,
Brfl = Bt(1—k)+k Ht(i—k)+
= Ht(l—k)+1 H(t(1—k)+Dp(t(l—k)+k) = Ht+1)(I—k)+k H(t+1)(1—k)+

by the recursive hypothesis. U
Lemma 2.6. Assume that p is odd. If (i, v) is of type Dg), then fori € Z/p,
(2.6) HiVi = oL,

(27) Vilby = VolQ-

Proof. Let i, j € Z/p, with i # j. If we write (ii) of Lemma 2.5 with k = i,
| =jand t = —1/2 we have that p;v; = po;—jv;. Thus, uil/iyf = WVVjV; =
[2i—jViViVai—j = Ji2i—jVai—jVE, and, by (2.5),

il = [2i—jV2i—j-
Now (2.6) follows taking j = 2i. Now (2.7) follows from (2.6) by (2.2). O

We now set up some notation that will be used in the rest of this section.
Let (ui)iez/p be a family of type D, in G, with p odd. Set

(2.8) 9i = Hi/2;
(2.9) Qij = gil;; i g = M;—lj/Q Hi fj/25
for all i, € Z/p. Then
Gi > Ho = [, a;; € GH, i,j € Z/p.
Let now (u, v) be of type @1(,2)
that goo > o = 1. Set

(2.10) fi= i/2 9oo,

and suppose that there exists g, € G such

(2.11) Bij = fios i fj = 9o Vi:lj/Z HiVj/2 Yoo,
(2.12) Vij = Ging Vi 9 = Hi g Vi /2,
(2.13) Sij = fos vili = 9 Vf_lj/z ViVj/2 Goo-
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Then
fivpo=vi,  Bij, vij, 6 € G, i, j € ZL[p.
We assume from now on that p is an odd prime. This is required in the

proof of the next lemma, needed for the main result of the section.

Lemma 2.7. Let (1,v) = (ti)iez/p U (Vi)iez/p be of type @1(02), and suppose

that there exists goo € G such that goo > o = vo. Let g; and f; be as in (2.8)
and (2.10), respectively. Then, for all i,j € Z/p,

(a) aij = dij = po,
(b) Bij = 95 10Goos
(¢) vij = vo-
Proof. Let k, I be in Z/p. Then, for all r € Z/p, we have

(2.14) M = Higrftr,  HEVE = PhtrVigr, eVl = Vigr Hi4r-

This follows from (2.5) and Lemma 2.6 (when k = [), and Lemma 2.5 (when

k #1). There are similar equalities interchanging p’s and v’s. Now

-1 , (2.14)
Q5 = ui,j/g Hili2 = Ho,
1 (2.14) _
0ij = goolyiflj/Q ViVij2Gso = oo V0 Goo = Ko,
1 (2.14) _
Bij = 95 Vi HiVjj2 900 = Gog 110 Goos
S 214 - _
Yij = Hi_jpVikje = Ky Hi-j/2V0 = Vo,
and the Lemma is proved. O

We can now prove one of the main results of this paper.

Theorem 2.8. Let (i1,v) = (ti)icz/p U (Vi)icz/p be a family of elements in
G with po € O. Let (p, V) be an irreducible representation of the centralizer
GHo. We assume that

(H1) (u,v) is of type 9(2)
(H2) (p,v) €O, with goo € G such that goo > po = o;
<H3) Quopo = —1;
(H4) there exist v,w € V — 0 such that,
(2.15) P(God Hogoo)w = —w,
(2.16) p(vo)v = —v.

Then dim B(0, p) = oo



8 ANDRUSKIEWITSCH AND FANTINO

Proof. We keep the notation (2.10)—(2.13) above. Let v,w € V —0 as in (H4)
and let W := span-{g;v : i € Z/p} U {fiw : i € Z/p}. Let ¥ : CX, — W be
given by ¥(s;) = giv, ¥(t;) = fiw, ¢ € Z/p. Since the elements p; and v;
are all different, ¥ is a linear isomorphism. We claim that W is a braided
vector subspace of M (0, p) and that ¥ is an isomorphism of braided vector
spaces. We compute the braiding in W

(H3)
c(giv ® gjv) = gV @ giV = Gipj iV @ §iv =" —GipiV & giv,
(2.15)
c(giv @ fjw) = pifjw @ giv = fijBijw ® giv =" —fijw & g;v,
(2.16)
c(fiw ® gjv) = vigjv ® fiw = ginjVijv @ fiw =" —gin;v @ fiw,

H3
c(fiw @ fjw) =vifjw @ fiw = fijdijw @ fiw () —fisjw @ fiw,
by Lemma 2.7. The claim is proved. Hence, dimB(W) = oo by Theorem
2.1. Now the Theorem follows from Lemma 1.2. O

As a consequence of Theorem 2.8, we can state a very useful criterion.

Corollary 2.9. Let G be a finite group, p;, 0 < i < p—1, distinct elements
in G, with p an odd prime. Let us suppose that there exists k € Z, such that
pk # po and pk € O, the conjugacy class of po. Let p = (p,V) € G o,
Assume further that

(1) (wi)iezsp is of type Dy,
(i) Guopo = —1-
Then dim B(0, p) = co.

Proof. We may assume that 1 < k < |uo|. By hypothesis (ii), the order of g
is even; hence k is odd, say k = 2t+1, with ¢ > 1. Let v; := uf, 0<i<p-—1,
and pick goo € G such that goo & p1o = pf. Set (u,v) = (ti)iez/p Y (Vi)iez/p-
Clearly (u,v) C O. We claim that (u,v) is of type 291572). Indeed, using (i)
it is easy to see that (u;)icz/p U (Vi)iez/p are all distinct. Then the claim
follows by (2.4).

It remains to check the hypothesis (H4) of Theorem 2.8. As goopogs, =
,ulg, géouogo_ol = ,ulgl, for all [ > 0. In particular,

_ _ _ [goo|—1
95 110goe = 9191 pgg ot = pf

Then, since gy, = —1 and k is odd, we see that p(g5' t0goo) = —id. Hence
(2.15) holds, for any w € V — 0. Also, p(vy) = p(ub) = (—id)* = —id,
because k is odd; thus, (2.16) holds for any v € V' —0. Thus, for any v, w in
V —0, we are in the conditions of Theorem 2.8. Then dim B (0, p) = oco. O
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Example 2.10. Let m > 6. Let 0 € S,,, of type (1™,2"2 ... . m"™) O the
conjugacy class of o and p € S7,. If there exists j, 1 < j < m, such that

e 2p divides j, for some odd prime p, and

e n; >1;
then dimB(0, p) = co.

Before proving the Example, we state a more general Lemma that might
be of independent interest. Here p is no longer an odd prime.

Lemma 2.11. Let m,p € Z~y. Let 0 € Sy, of type (1™,2"2 ... . m"™) and
O the conjugacy class of o. If there exists j # 4, 1 < j < m, such that

e 2p divides j, and
® Nj 2 ]-7'

then O contains a subrack of type D1(92).

Proof. Let j = 2pk, with Kk > 1. Let o = (i1 42 --- ij) be a j-cycle that
appears in the decomposition of ¢ as product of disjoint cycles and define

I:.= (il i3 i5 s ij_l) and P .= (iz i4 i6 Z])

We claim that

a? =1P,

The first two items are clear, while (c) follows from the well-known formula
allily ... I)a™t = (a(ly) a(ls) ... a(ly)). (d). By (c), P! = al'a™!. Then
PtaP! = oI'P?; by (b), PlaP?! = aa?, as claimed.

We define
(2.17) 0; == P¥gP ", 0<i<p-—1.
Notice that o; = P*aP~" &, where ¢ := o 'o. The elements (04)icz/,

are all distinct; indeed, if o; = oy, with i, [ € Z/p, then Pi*gP~i* =
PiroP ¢, i e, PUDRgP~(-U% — 4 which implies that iy = o(iy) =
PO-DrgP=(=Dr()) = PO-DA(4,) = ig(i—1)n+2; and this means that 2(i —
)k =01in Z/j. Thus i = [, as desired.



10 ANDRUSKIEWITSCH AND FANTINO

We claim that (0;);ez/p is of type Dy. If i, 1 € Z/p, then
oi>o; = PmUP—m PZ.L:O_P—ZH Pma—1P—m
— PinaP—in Pl/{ aP—ln Piﬁa—lp—in 5
_ P(2’i7l)l€ P(l*i)n a P(l*i)li o P(i*l)n Oéil P(i*l)n P*(Qi*l)ﬂ &
— pi—Dr (20-Dr+1 , [ 2i-Dr—1 p—(2i-Dx

= PEi-br o p-Qi-hr 5 = pRi-Uk o p=Q2i=Dr — 4.

by (d), and the claim follows. Finally, the family of type D,(f) we are looking
for is (Ji)iez/pu(afl)iez/p. It remains to show that o; # o; ' for all ¢, 1 € Z,.
If oy = O'I_I, then 02(i1) = 01_2(2'1), that is i3 = ij_1, a contradiction to the
hypothesis j # 4. O

Proof of the Exzample 2.10. We may assume that ¢,, = —1, by Lemma 1.3.

By Lemma 2.11, we have a family (0;);cz/p, of type D), with o9 = 0. Now
Corollary 2.9 applies, with pg = o9, k = |og|—1. Thus dim*B(0, p) = co. O

3. A TECHNIQUE FROM THE SYMMETRIC GROUP Sj3

We study separately the case p = 3 because of the many applications
found. In this setting, D3 ~ S3 and O, = 03 = {(12), (23), (13)} is the
conjugacy class of transpositions in Sg. The rack X3 is described as a set of
6 elements X3 = {x1,x9, 23,1, Y2, y3} with the multiplication

TibTj =Tk, YiPYj =Yk, TiPY; =Yk, YiPTj= Tk,
for i, j, k, all distinct or all equal.

3.1. Families of type Ds and D:(f). We fix a finite group G and O a

conjugacy class in G. Our aim is to give criteria to detect when O contains
a subrack isomorphic to X3.

Definition 3.1. Let o1, 02, 03 € G distinct. We say that (0;)1<i<3 is of
type Dg if

(3.1) o> 0o = oy, where 7, j, k are all distinct.

The requirement (3.1) consists of 6 identities, but actually 3 are enough.

Remark 3.2. If

(32) o1b>o2 =03,
(3.3) 01> 03 = 02,
(34) o2b>03 =01,

then (Ui)lgigg is of type Ds. O
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Here is a characterization of D3 families.

Proposition 3.3. Let 01, 02 € O. Define o3 := o1 >03. Then (0;)1<i<3 is
of type D3 if and only if

(3.5) o1 € G2,
(3.6) o? € G2,
(37) 0'1:0'Ql>(0'1[>0'2).

Proof. The definition of o3 is equivalent to (3.2) and (3.7) is equivalent to
(3.4). Assume that (0;)1<i<3 is of type D3. As o3 # 02, 01 & G72. Also,
0209 = 01> (01> 03) = 01> 03 = 0g. Hence o7 € G2.

Conversely, if 01 € G?2, then o1 # 03, 02 # 03. From (3.5) and (3.7), we
see that o1 # o3. It remains to check (3.3): 01> 03 = 03 b 0y = 09. O

Definition 3.4. Let 01, 03, 03, 71, T2, T3 € G be distinct elements. We say
that (U, T) = (01,02,03,’7'1,7'2,7'3) is Of type 'D:(f), if (Uz‘)lgisg and (Tj)1§j§3
are of type D3, and

(38) o> Tj = Tk, > 0j = O,

where i, j, k are either all equal, or all distinct.

The requirement (3.8) consists of 18 identities, but less are enough. We
begin by a first reduction.

Lemma 3.5. Let (0’1;)1§@'§3 and (Tj)lgjgg such that (3.2), (3.3), (3.4) hold
for o and for . If

(3.9) o1>T1 =71,
(3.10) 01> T2 = T3,
(3.11) 02> T = T3,

also hold, then o;>7m; = 7;, 1 <4 < 3, and 0;>7; = T3, for all i, j, k distinct.
Proof. We have to prove

3.12) 01> T3 = T2,

o3> T3 = T3,

09 D> To = To,

o3> Ty = Tq,

(

(3.13)

(3.14)

(3.15) o3> T = T,
(3.16)

(3.17)

o9 D> T3 =Ty,
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The identity (3.12) holds because 01> 73 = 01> (11 >T2) = 71 > 73 = T9; in
turn, (3.13) and (3.14) hold because

o3D T3 = (UQI>O'1)I>(O’2[>T1) :UQI>(0'1[>T1) =09 b T = T3,
o9> Ty = (01> 03)> (01 >73) = 01> (03> 73) = 01> T3 = To.
Also, o3> 11 = (01> 09) > (01> 71) = 01> (02> 71) = 01 > T3 = Ta, showing

(3.15). Finally, o379 = 03> (01>73) = 09> (03>T3) = 09b73 = 09> (T1>T2) =
T3 > 7o = 71, proving (3.16) and (3.17). 0

Therefore, given 6 distinct elements o1, o9, 03, T1, T2, T3 € G, if the 12
identities: (3.2), (3.3), (3.4), for o and for 7, (3.9), (3.10), (3.11), and the
analogous identities

(3.18) T1>01 =01,
(3.19) T1 > 092 = 03,
(3.20) To>0O1 =03,

hold, then (o, 7) is of type D:(’?)- But we can get rid of 3 of these 12 identities.

Proposition 3.6. Let 01, 09, 03, 71, T2, T3 € G, all distinct, such that
(3.2), (3.3), (3.4), hold for o and for T, as well as the identities (3.9), (3.11)
and (3.19). Then (o,7) is of type D:(f)-

Proof. By Lemma 3.5, it is enough to check (3.10), (3.18) and (3.20). First,
(3.18) holds because 71 = o1 > T = 017'101_1. If 71 acts on both sides of
(3.11), then 70 = 1y > 73 = (11> O2) > (11 >T1) = 03> 71; if now oy acts on the
last, then

1> T = (01 l>0'3) > (0'1 I>T1) =09D T (3é1) T3.
Thus, (3.10) holds. We can now conclude from Lemma 3.5 that o;>7; = 75,
1 <i <3, and 0;>7; =73, for all 4, j, k distinct. If now o3 acts on (3.19),
then o3 = (o3> 1) > (03> 02) = o> 07, and (3.20) holds. O

3.2. Examples of D:(f)

Corollary 2.9 for p = 3.

type. We first spell out explicitly Theorem 2.8 and

Theorem 3.7. Let 01, 09, 03, 71, T2, T3 € G distinct; denote (o,7) =
(01,02,03,71,72,73). Let p=(p,V) € Go1. We assume that

(H1) (o,7) is of type Dgf),

(H2) (o,7) C O, with g € G such that g> o1 = 71,

(H3) doyoy = —1,
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(H4) there exist v,w € V — 0 such that,

(3.21) plg~lorg)w = —w,
(3.22) p(m)v = —v,
Then dimB(0, p) = oco. O

Corollary 3.8. Let 01, 09, 03 € O distinct. Assume that there exists k,
1 <k <oy, such that o¥ # o1 and o € O. Let p= (p,V) € Go1. Assume
further that

(1) (oi)1<i<s is of type D3,

(2) Goyo, = —1.
Then dimB(0, p) = oco. O

Corollary 3.8 applies notably to a real conjugacy class of an element of
order greater than 2. We list several applications for G = S,,,.

Example 3.9. Let m > 6. Let O be the conjugacy class of S,, of type
(1M 2m2 . om™m), where

e ny, ny > 1 and

e n; > 1 for some j, 3<j < m.
Let c € O and p € S/;'\n Then dimB(0, p) = co.

Proof. By hypothesis, we can choose o = (12)3 where (3 fixes 1, 2 and 3. If
Goo # —1, then dimB(0O, p) = oo, by Lemma 1.3. Assume that ¢,, = —1.
Now set

r=(12), y=(13), 2=(23), oi=0=21h, o2=yh, o03:=20.

Clearly (o)1<i<3 is of type D3, O is real and |o1| > 2. By Corollary 3.8,
dimB(0, p) = cc. O

In particular, let O be the conjugacy class of S, of type (1,2, m—3), with
m > 6. By the preceding, dim 9B(0, p) = co. But, if g, = —1, then M (O, p)
has negative braiding; that is, it is not possible to decide if the dimension
of B(0, p) is infinite via abelian subracks. See [F2] for details.

Example 3.10. Let m > 6. Eft o € Sy, of type (1™,272 ... om"™), O the
conjugacy class of o and p € S7,. Assume that

o there exists j, 1 < j < m, such that j = 2k, with k > 2 and n; > 3.
Then dim B(0, p) = co.
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Proof. If ¢o¢ # —1, then dimB(0, p) = oo, by Lemma 1.3. Assume that
Goo = —1. Let

oy = (irig -+ dj), o= (ij418542 - - do5), a3 = (izj4109542 - i35),
be three j-cycles appearing in the decomposition of ¢ as product of disjoint

cycles and define

I = (iyizis ---d3-1),  Br= (i1 4j41)(i2 ij42) - (i 125),
P = (igigie - - - i35), By = (ij4+1 i2j+1) (1542 i2j+2) - - (i2j 135)-
Then

(a) I and P are disjoint 3k-cycles,

(b) I*P* = By By,

(c) ammasazlazta;a;! =P, (and then olo~! = P),

(d) PkoP* = 0B, By, and

(e) P roP k= ocByBj.
The first item is clear. To see (b), note that

BiBy = (i1 i1 igjy1)(ia G2 t2j42) - - (i) i25 i35)-

(c) follows as in the proof of Lemma 2.11 (c). (d). By (b) and (c), we
have that o 'P*¢P*¥ = I¥P* = B B,, as claimed. (e). By (b) and (c),
o 1P kgPF = T*P~F = By, B as claimed.

Set now o := 0, 0y := P*6P~* and o3 := P %*¢P*. As in the proof
of Example 2.10 we can see that o1, o9 and o3 are distinct. We check that
(0i)1<i<3 is of type D3 using Remark 3.2.

By (d), P*oP* € S7,, 1. e. PFoPFoP o 1P~% = ¢, or oPFoP o1 =
P~*oP*. That is, 01>09 = 03. Analogously, o1>03 = 03 is proved using (e).
To check that o903 = o1, note that oo>og = PrloPFPksPFPEs— 1Pk =
o, because P*oP 2k = PAoP*¥P 3% = ¢ B1 B, € S7,, by (a) and (d).

We now apply Corollary 3.8 and conclude that dim 98(0, p) = co. O

We shall need a few well-known results on symmetric groups.

Remark 3.11. (i) If p is a faithful representation of S,,, then p(7) ¢ Cid, for
every T € Sp,, 7 # id (since S, is centerless).

(ii)) If p = (p, W) € Sy, with p # sgn, then for any involution 7 € S,
(i. e., 72 = id), there exists w € W — 0 such that p(7)w = w (otherwise
p(1) = —id).

Example 3.12. Let m > 6. Let 0 € Sy, of type (1™,2™2 ... . m"™) O the

conjugacy class of o and p € S7,. Assume that
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e ng >3 and
o there exists j, with j > 3, such that nj > 1.

Then dim B(0, p) = co.

Proof. By Lemma 1.3, we may suppose that ¢, = —1. Assume that (i; i2),
(i314) and (i5 ig) are three transpositions appearing in the decomposition of
o as a product of disjoint cycles. We define

x = (i142)(igi4)(i5i6), y:= (i144)(ig76)(i215), =z := (i116)(i243)(ia75)

and «a := xzo. It is easy to see, using for instance Proposition 3.3, that

o1 =0, o9 = Yo, 03 1= zaQ,
is of type D3. Then dimB(0, p) = oo, by Corollary 3.8. Indeed, o~ € O,
but o # o~! because o has order > 2. O

In the proof of the next Example, we need some notation for the induced
representation. Let H be a subgroup of a finite group G of index k, ¢1, . .., ¢
the left cosets of H in G, with representatives g4, , ..., gq,. Let § = (0,W) €

ﬁ, and wy, ... w, a basis of W. Set V :=span-{gg,w; |1 <i <k,1<j<r}
For i, j, with 1 <i <k, 1 <j <r we define p: G — Aut(V) by
(3.23)  p(9)(gp,w;5) = g4,0(h)w;, where gg¢, = g, h, With h € H.

Thus p = (p, V) is a representation of G and deg p = [G : H| deg¥.

Example 3.13. Let m > 12. Let 0 € S,, of type (1™ ,2™2 ... m"™), O the
conjugacy class of o and p € Sg,. If ng > 6, then dimB(0, p) = co.

Proof. By Lemma 1.3, we may suppose that ¢, = —1. We denote the ns
transpositions appearing in the decomposition of ¢ as product of disjoint
cycles by A1,...,Ap, 2 and we define Ay = Ay5--- Ay, 2. Let us suppose
that Ay 2 = (i142), A22 = (i314), A3 2 = (i516), Aa2 = (i), As2 = (igi10)
and Ago = (i11412). We define = := (i1 42)(i344) (45 16) (47 i) (49 910) (111 t12)
and o := zo.

If there exists j, with 7 > 3, such that n; > 1, then the result follows
from Example 3.12. Assume that n; = 0, for every j > 3, i. e. the type of o
is (1™1,2"2). The centralizer of o in S, is S9, = T} x Ty, with T} ~ S,,, and
To =T x A, with

I'.= <A1,2, ey An272>, A= <B172, . ,Bn2_172>.

Here Bjo := (1911 i21+1)(i21 ’iQZJrQ), for 1 <1 < no — 1. Note that I' ~
(Z/2)"2 and A ~ S,,. Now, p = p1 ® p2, with p1 = (p1,V1) € T} and
p2 = (p2, Vo) € Tb.
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For every ¢, 1 <t < ng, we define x; € T, by x¢(Ar2) = (—1)%, 1 <1<
no. Then, the irreducible representations of I' are

Xti,oty = Xty -+ Xt 0<J<ngy, 1<t<---<ty<no.

The case J = 0 corresponds to the trivial representation of I'.
For every J, with 0 < J < ng, we denote x(j) := x1,..,s. The action of A
on I induces a natural action of A on I', namely (A X)(Ar2) == x(AT1 A4 20,

~

1 <1< mng, A € A. The orbit and the isotropy subgroup of x(;) € I' are

(324) OX(J) = {Xk1,...,kJ 1<k <o <ky < TLQ},
(3.25)  AX) = (AX(D)] x (AX(D)y

= (B12,...,By-12) X (Bjt12,--+,Bna—12) ~S; X Spy—y.

Thus, the characters x(s), 0 < J < n, form a complete set of representatives
of the orbits in T' under the action of A.

Since ps € I' x A, we have that ps = Ind?jﬁxw X(7) ® p, with x (s as
above and p = (u, W) € AX() —see [S, Section 8.2]. By (3.25), u = u1 ® pe,
with p; = (,ul,W'l) € (AX("))l, [l =1, 2 Let {(]51 = AX(J),...,(bk} the left
cosets of AX() in A, where k = [A : AX()] = J,(#QLJ),

Note that

By g = (i i3)(i2 i4), Bs2 = (i5 ir)(i¢ is) and  Bsa = (ig i11) (410 i12)-

We define B := Bj 283285 2. Notice that the order of B is 2.

Since ¢,, = —1, then J is odd. We will consider two cases.

CASE (1): assume that J < 5. Then, B ¢ AX(/). This implies that
the left coset ¢ of AX() in A containing B is not the trivial coset ¢1. We
choose as representatives of the cosets ¢1 and ¢ to g4, = id and g4 = B,
respectively. We define vo := g4, w + gow, with w € W — 0. Notice that
Bgs, = g¢id and Bgy = gy, id. Using (3.23), we have that

pa(B)vz = p2(B)(ggyw) + pa(B)(gsw)

(3.26) ) )
= gep(id)w + gg, pid)w = gpw + gy, w = va.
Let v := v1 ® v9, with v1 € V; — 0. Then,

(3.27)
p(B)v = (p1 ® p2)(id, B)(v1 ® v2) = p1(id)v1 ® pa(B)vz = v1 ® v2 = v,
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by (3.26). We define 01 := o,

i1 i6) (43 i8)(i5 i10) (17 112) (9 2)(i11 ia)c,

—~~

i1 110) (23 12) (45 92)(i7 i4)(d9 i6)(i11 i3)c,

)
i1 18) (i3 i6)(i5 912)(i7 10) (19 74

= (i1 i6) (i ) )
= (i1 10) ) )
1 1= (i1 i4)(i3 12) (75 is)(i7 i6)(i9 i12)(i11 710),
= (11 ig)(i )(i11 i2)ax,
73 1= (i1 i12)(43 110) (5 1a)(i7 i2)(i9 i3)(i11 i6)v.
We can check by straightforward computations that (o,7) is of type D:(f).
Let g := (i2 i4)(i6 i8)(i10 ¢12); thus, g0 = 171. Moreover, 71 = 0B = gog

and o919 = B = goomeg. Then,
p(ri)v = —v = p(go1g)v,

by (3.27). Therefore, dim B(0, p) = oo, by Theorem 3.7.

CASE (2): assume that J > 7. Then, B € AX()); moreover, B €
(AX()1. Also, Bgg, = g4, B.

Let vo = g4, w, with w € W — 0. Since W = W7 ® Ws, we may assume
that w = wy ® wy, with w; € W1 — 0 and wg € W5 — 0. Then, using (3.23),

p2(B)s = p2(B)(95,0) = o, p(B)w = g, (11 © pi2)(B,id) (w1 @ ws)
= g6, (1 (B)(w1) @ pr2(id) () ) = g, (1 (B (1) @ w5 ).

Notice that u; € (ml Since (AX(\)); ~ Sy, if pu1 # sgn, with sgn
the sign representation of Sj;, then there exists w; € Wi — 0 such that
w1 (B)(wy) = wy, by Remark 3.11 (ii). In this case, we have

(828)  pa(B)vz = g, (11(B)(w1) © wn) = goy (w1 @ ws) = g = vp

Taking v := v; ® vo, with v; € V] — 0, we have
p(B)v = (p1 ® p2)(id, B)(v1 ® v2) = p1(id)v1 @ pa(B)vz = v1 @ vz = v,

by (3.28). Considering o5, 7, 1 < ¢ < 3, as in the previous case, the
hypothesis of Corollary 3.8 hold. Therefore, dim B(0, p) =

On the other hand, let us suppose that u; = sgn. Let w € W, with
w = w ®wy, wy € Wi —0 and wy € Wo —0. Let va = gy, w; since
w1 (B)(w1) = —wy, we have pa(B)vy = —vg. Choosing v := v; ® vg, with
v1 € V1 — 0, we have that

(3.29)
p(B)v = (p1 @ p2)(id, B)(v1 ® v2) = p1(id)vy @ p2(B)vz = —v1 @ v2 = —v.
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We define 77 := 0o,

i1 i6) (44 i7)(i5 i10) (28 111) (32 99)(i3 12)c,

—~~

i1 110) (24 11) (42 15)(i3 ig) (46 19)(i7 i12)c,

)
i1 47) (2 112) (43 19) (14 i6)(i5 i11

(41 i6)(d ) )
= (i1 410) ) )
71 := (i1 13)(d2 44)(i5 i7)(i6 i3) (79 711)(i10 P12)c,
= (i1 47)(i )(is i10)c,
= (i1 i11)(i2 78)(i3 i5) (i i10)(i6 i12)(i7 i9)ar.

It can be shown that (7, 7) is of type 92(32)- Let now g = (42 i3) (46 i7) (410 11);
then, g o = 7. Furthermore, 7{ = B = gog and 0275 = 0B = go272 3.
Then

p(f)v=—v=p(gogy  and  p(@2T2)v =v = p(go2729)V,
by (3.29). Therefore, dim B(0, p) = oo, by Theorem 3.7. O

A way to obtain a family of type D3 is to start from a monomorphism
p : Sz — G and to consider the image by p of the transpositions. Another
way is as follows.

Remarks 3.14. Let G be a finite group and z € Z(G).
(i). Let (07)icz/3 be of type D3. Then (20;);cz/3 is also of type Ds.
(ii). Let (0,7) = (0i)iez/3 U (Ti)icz/3 be a family of type Dgf). Then

(20,27) = (204)icz/3 U (2Ti)icz/3 is also a family of type ng?).

Here is a combination of these two ways.

Example 3.15. Let p be a prime number and ¢ = p™, m € N, such that 3
divides ¢ — 1. Let w € Fy be a primitive third root of 1.
i

(i). If c € By, then (p1i)icz/3, where p; = wgic ua , is a family of type
D3 in GL(2,F,). If c = —1, then this is a family of type D3 in SL(2,F,).
The orbit of ju; is the set of matrices with minimal polynomial T? — c.

(ii). Let N > 3 be an integer and let T be the subgroup of diagonal
matrices in GL(N,F,). Let A\ = diag(Ai,A2,...,An) € T. Let O be the
conjugacy class of \. Assume that \y = —X\g and let ¢ = \3. Assume also
that there exist i,j, with 3 < i,5 < N such that A\; # \j; say i = 3, j = 4,
for simplicity of the exposition. Then (0)icz/3 U (Ti)icz/3, where

i 0 L 0
g; = 9 T = . )
0 diag(\3, Ay .-, AN) 0 diag(\s, A, -+ -, AN)

is a family of type Dg) in the orbit O C GL(N,F,).
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Let W =Sy act on T in the natural way. Let x : GL(N,F,) — C* be a
character; it restricts to an irreducible representation (x, C) of the centralizer
GL(N,F,)%. Fix a group isomorphism ¢ : F* — G4—1 C C*, where G4—1
is the group of (¢ — 1)-th roots of 1 in C. Recall that x = ¢(det") for some
integer h. Thus the restriction of x to T is W-invariant.

Proposition 3.16. Keep the notation above. Assume that x(A) = —1.
Then the dimension of the Nichols algebra B(0, x) is infinite.

Proof. The result follows from Theorem 3.7. Indeed, hypothesis (H1) and

ido 0 O 0
(H2) clearly hold. The matrix g = 8 (1) (1) 8 is an involution
0 0 0 idy—4
that satisfies g > 0¢ = 79. Because of the explicit form of y, x(op) = —1 =
X(70), hence (H3) and (H4) hold. O

This example can be adapted to the setting of semisimple orbits in finite
groups of Lie type.

4. A TECHNIQUE FROM THE SYMMETRIC GROUP Sy

The classification of the finite-dimensional Nichols algebras over Sy, given
in [AHS], relies on the fact (proved in loc. cit.) that some Nichols algebras
B(V; @ V) have infinite dimension. According to the general strategy pro-
posed in the present paper, each of these pairs (V;, V;) gives rise to a rack
and a cocycle, and to a technique to discard Nichols algebras over other
groups. Here we study one of these possibilities, and leave the others for a
future publication.

The octahedral rack is the rack X = {1,2,3,4,5,6} given by the vertices
of the octahedron with the operation of rack given by the “right-hand rule”,
i. e. if T; is the orthogonal linear map that fixes ¢ and rotates the orthogonal
plane by an angle of 7/2 with the right-hand rule (pointing the thumb to
i), then we define >: X x X — X by i>j := T;(j) — see Figure 1.

Explicitly,

1>1=1, 2»1=3, 3»1=4, 4>p1=5 5H>r1=2, 6>1=1,

1>2=5 2»2=2 3»2=1, 4p2=2, 5>2=06, 6>2=3,

1>3=2, 2p3=6, 3pr3=3, 4r3=1, 5r3=3, 6>3=4,
1>4=3, 2pd4=4, 3p4d4=6, 4pd=4, 5pd=1 6p4=25,
1>5=4, 2p5=1, 3pb=5 4p5=6, 5>5=56>5=2
16=6, 2p6=5 3r6=2 406=3, 5p6=4, 6>6=06.

Let G be a finite group, o1, 09, 03, 04, 035, 0 € G distinct elements and

O the conjugacy class of o1 in G.
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1

FI1GURE 1. Octahedral rack.

Definition 4.1. We will say that (0;)1<i<e is of type O if the following holds
0;>0j = Oipj, 1<4,5 <6.

Here and in the rest of this section, > in the subindex is the operation of
rack in the octahedral rack. In other words, (0;)1<i<¢ is of type O if and

only if {o; |1 < i <6} is isomorphic to the octahedral rack via i — o;.

Example 4.2. Let m > 4. Let us consider in Sy, the following 4-cycles
51 =(1234), &y =(1243), 53 = (1324),

4.1

*1) Gi1=(1342), &5 =(1423), 56 = (1432).

It is easy to see that (0;)1<i<e satisfy the relations given in the previous
definition. Thus, (0;)1<i<e s of type O.

Let x_ € Sgl be given by x_(1234) = —1. The goal of this Section is to
apply the next result, cf. [AHS, Theor. 4.7].

Theorem 4.3. The Nichols algebra B (M(Oﬁ,xf) <) M(Oﬁ,x,)) has infi-

nite dimension. O

Remark 4.4. We note that M (0%, x_) ® M(04,x-) =~ (CY,q) as braided
vector spaces, where

o Y = {z;y; |1<i,j <6}~ X see Definition 1.1;
e ( is the constant cocycle q = —1.

Proof. We define
51 = (1234) = ?1, &2 = (1243) == 5:2, 53 = (1324) 22;3,
54 = (1342) = ’F4, 55 = (1423) = ?5, (1432) ::;6-

N

6 -



POINTED HOPF ALGEBRAS 21

We will denote by (7)1<j<6 (resp. (7j)1<j<e6) the first copy (resp. the second

copy) of Oi, with system of left cosets representatives of 84(3234)

given by

g1 =97 =01, g2 = gs = 05, §3 = J9 = 02, §a = g10 = 03, g5 = J11 = 04,

g6 = g12 = 0551. The map M(0f, x—) ® M (03, x-) — (CY, q) given by
gi—xi and  Gite — i, 1<i<6,

is an isomorphism of braided vector spaces. O

Proposition 4.5. A family (0;)1<i<e of distinct elements in G is of type O
if and only if the following identities hold:

(4.2)

o1>o9g =05, 01>03 =092, 01>04 =03, 01D>05=04, 01D>0g=0g,

(4.3)

o9 D>o01 =03, 09b>03 =0, 02D04 =04, 0O9D>05 =01, 02D>0g=05.

Proof. If we apply o1 > __ to the relations in (4.3), then we obtain the
relations o5 > 0; = 05,5, 1 < j < 6, because 01 > 02 = 05. Analogously, we
obtain the relations o; >0 = 045, 1 < j < 6, for ¢ = 3, 4; and the relations

06> 0 = 065, 1 < j < 6, follow by applying o5>_ to the ones in (4.3). O

Lemma 4.6. If (0;)1<i<¢ is of type O, then

(i) ot = 03 = 03 = 0} = 05 = 0,

(ii) o106 = 0904 = 0303,
(iil) o302 = o306 = 0303,
(iv) o203 = o108 = 0303,
Proof. (i). Since o;> (03> (0i(>(0;>04)))) = 0}, then 0;1 €eG,1<1,j<6.

4 1

Hence of = (030205 ')* = 0304051 = 05, and the rest is similar. (ii). By

Definition 4.1, we see that
_ -1 _ -1 -1 _ -1 _
0305 = 0301020] = 03020504 0201 = 02010501 = 0204,
0305 = 03020602_1 = 03060506_10602_1 = 06020502_1 = 0g01.
Then, o106 = 0904 = 03035, as claimed.
(iii). By (ii), we have that
2 2 _ _ _ _ 2 _ 2 _ 3
0905 = 02050105 = 05010105 = 05010401 = 050301 = 010601 = 0106.

Then, a%a% = 0306. We apply 015> (01>(01>__)) to the last expression and
we have 0303 = o30.

(iv) follows from (iii) applying oo > (o2 > __). O
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Definition 4.7. Let 04, 7; € G, 1 < i < 6, all distinct. We say that (o, 7)
is of type OP) if (0i)1<i<e and (7;)1<j<e are both of type O, and

(44) o> Tj = Tipj, i > 0§ = Opsj,s 1 SZ,] < 6.

Lemma 4.8. If (0,7) is of type O?), then

(i) 0176 = 06T1 = 09Ty = O4To = 0375 = O5T3,
o -1

Uj? 1

7'2 0'57'5:7'1 06,

Tj=o0;'m,2<j<6,

)
)

iv) 75 2o3T3 = o175
) 02_2(757'5 = 01_27'106;
)

0520373 = Tlo'gl.

Proof. (i). First,
(4.5)

0176 = 01 027'302_1 = 7'30273_1 7'30673_1 7'3(72_1 = T3 020602_1 = T305 = O5T3.

Applying now oo >__ to (4.5) we get o375 = T¢01. Applying o2 >__ to this
last identity, we have o = 1503. The rest is similar.
(ii). By (i) and Lemma 4.6 (ii) for (7;)1<i<s, we have that

-1 -1_-1 -1_-1 -1
Oy Tp =0y T, TaTog =0, Tg TiTg = 0y T1.

The other relations can be obtained in an analogous way.
(iii). It is easy to see that

7'2_2057'5 = 7'2_47'27'27'505 = 71_47'2757'105 = 7'1_47'57'17'10'5

= Tf475710471 = Tf475037'17'1 = Tf47'1067'12 = Tflaf;.

(iv) follows from (iii) applying oo > (oo > _ ).
(v). Clearly,

02_20575 = 02_402020575 = 01_402050175 = 01_40501017'5 = 01_405017'401

= 01_405730101 = 01_401760101 = 01_176 = 01_271(76-

(vi) follows from (v) applying o2 > (o2 > __). O

4.1. Applications. Let G be a finite group, O a conjugacy class of G. Let
(0i)1<i<e C O be of type ©. We define

(4.6) g1:=01, go:=05, g3:=02, §i:=03, g5:=04, G6:=0301;
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then, o, = g;> 01, 1 <7 < 6. It is easy to see that following relations hold

0191 = 9101, 0192 = 9501, 0193 = g201,
0291 = g301, 0292 = §201, 0293 = g6oy
0391 = 9401, 0392 = J106, 0393 = g301,
0491 = g501, 0492 = g206, 0493 = g106,
0591 = 201, 0592 = G607 206, 0593 = g306,
06941 = g106, 0692 = g306, 0693 = g406,
0194 = g301, 0195 = g401, 0196 = 9606,
0294 = g40¢, 0295 = g106, 0296 :9505,
0394 = 960G 0395 = G506, 0396 = 9207,
0494 = 9401, 0495 = 96010, 04gs = 9307106,
0594 = J106, 0505 = G501, 0596294010(257
0694 = G506, 0695 = g206, 06946 = g601-

Let p=(p,V) € G and v € V — 0. Assume that v is an eigenvector of
p(og) with eigenvalue A\. We define W := span- {g;v|1 <i < 6}. Then, W
is a braided vector subspace of M (O, p).

Lemma 4.9. Let (0;)1<i<s, (9i)1<i<s, (p, V) € 5‘7\1, W, X as above. Assume
that ¢oyo, = A = —1. Then W =~ M (0%, x—) as braided vector spaces.

Proof. Since ¢y,0, = —1 we have that p(c) =id, 1 < i < 6, from Lemma
(4.6) (i). Let o; be as in (4.1). If we choose

J1=01, §2=05 g3=02, §a=03, §5=04, J6=0501,
then g; > 01 = 05, 1 <14 < 6. Thus, M(0%,x_) = span-{g;vo, |1 < i < 6},
with vy € Vy—0, where V) is the vector space affording the representation x_—
of 84(11234). Now, the map W — M (0%, x_) given by g;v — Givg, 1 < i <6,
is an isomorphism of braided vector spaces. ([

The next lemma is needed for the main result of the section.

Lemma 4.10. Let oy, 7, 1 < i <6, be distinct elements in G, O a conjugacy
class of G. Assume that (o,7) C O is of type O, with g € G such that
gboyp =1T1. Let

g1 =01, g2 ‘= 05, gs ‘= 02, g4 = 03,
(4.7) gs := 04, g6 := 0501, g7 = go, g8 ‘= T59,

g9 = T2g, g10 = 739, g11 = 7449, gi2 = 72290'1-



Then, the following relations hold:

T197 = 9701,
T297 = 9901,
7397 = 91001,
T497 = 91101,
T597 = 9801,

T6g7 = g79 " ' T69,

7198 = 41101,
T298 = ggoi,
398 = 979" 769,

498 = 989 69,

-2 -1
T598 = g1201 g T64,

Tegs = 999 769,

ANDRUSKIEWITSCH AND FANTINO

199 = gso1,
T2g9 = 1207 '
T3g9 = 49901,
Tag9 = 979~ 769,
599 = 999~ ' 769,

T6g9 = 9109 76,

-1
71910 = 9901, T1911 = §1001, T1912 = 9129 769,

2910 = 9109 76, Tog11 = g79 ‘769, Tag12 = g11(9 ' 169)?,

3910 = g12(9 7' 769) ", T3g11 = 119 ‘769, 3012 = g0,
2

74910 = 91001, Tagn = 91201(9 ' 769) %, Tagr2 = gooig ' Teg,

Tsg10 = 979 ‘769, T5911 = g1101, T5912 = 91001(9_1769)2,

T6g10 = 9119 76, T6g11 = 939 ' Te, Teg12 = 91201,

o197 = g7 ‘019, 0198 = 9119 019, o199 = gsg~ ‘019,
o299 = 1207 2(g L o19),

0399 = gog 019,

0297 = 999_101% 0298 = 989_1019,
0397 = gi0g” ‘019, 0398 = 79" 069,

o497 = g11g 019, 04gs = gsg 069, 0499 = 979" ‘069,

0597 = gsg 019, 0598 = 91207 29 '06g, T599 = gog ‘069,

0697 = 979 1069,  06gs = Gog 067, 0699 = G109~ 069,

01910 = 999 1019, 01911 = 9109 ‘019, 01912 = G129 ‘069,

02910 = 9109 ‘069, 02911 = g7g” ‘069, 02912 = 91172,12,

03910 = 91273,105 o3911 = G119 069, 03912 = gsoi (g to1g),

-1 2 —1
044910 = g109 019, 04411 = g1274,11, 04912 = §9019 063,

05910 = 979" 069, 05911 = 9119 "01g, 05912 = g1075,12,

06910 = G119 1069, 06911 = gsg 067, 06912 = 9129 1019,

1 1 1 1

019)2(97 069)°, Y310 = o7 2(g7 o19)% (g o6g) 7Y,

V4,11 = Uf2(9_1019)3(9_1069)_2 and v5,12 = 0%(9_1019)_1(9_1069)2}

where Yo,12 = 03(g”
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7191 = 9171, T192 = 9571, T193 = 9271,

Togl = 9371, T2g2 = 9271, 729329601_271,

T391 = 9471, 7392 = g176, 7393 = 9371,

T491 = 9571, T492 = 9276, T493 = 9176,

Tsg1 = 9271, T5g2 = 9601_27’6, T593 = 9376

Ted1 = 9176, T6g2 = 9376, T693 = 9476,
T194 = 9371, T195 = 9471, 7196 = 9676,
T294 = J4T6, T295 = 9176, T296 = 950'?7'10'67
T34 = geoy T10G ', 7395 = 9576, 396 = G201 71,

—2
T494 = 9471, 7495 = 96T10¢g T496 = 93017106,
2
T594 = 9176, T595 = 9571, T596 = 947104,
T694 = 9576, T6egds = 9276, T6ge = g6T1-

25

Proof. The proof follows by straightforward computations, Lemma 4.6 for
o and 7, and Lemma 4.8. O

Here is the main result of this section.

Theorem 4.11. Let 0;, 7, € G, 1 < i < 6, distinct elements in G, O a
conjugacy class of G and p = (p,V) € Go1. Let us suppose that
(H1) (0,7) is of type O3,
(H2) (o,7) € O, with g € G such that g> o1 = 11,
(H3) ¢oy0, = —1,
there exists v € V. — 0 such that
(H4) p(og)v = —v,
(H5) p(11)v = —v,
and there exists w € V — 0 such that
(H6) p(g'o1g)w = ~w,
(H7) p(g~tosg)w = —w,
Then dim B(0, p) = co.

Proof. Let g; € G, 1 < j <12, as in (4.7). Then, g;>01 =05, 1 < j <6,
and gj > o1 =T7j_¢, 7 < j < 12. By Lemma 4.10, we have that

(a) if 1 <4,j <6, then g, joig; = o}og, with r + s odd,

(b) if 7 <14,5 <12, then gi;;n_ﬁgj =07 (g tr6g)%, with 7 + s odd,
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(c)if1<i<6and7<j <12, then gi;}aigj = ol(g7to19)% (9 tos9)?,
with » + s+ ¢ odd,

(d) if 1 <j < 6and 7 <i <12, then g (7695 = 0} 7{0f, With r+s+1
odd, because 1 = 01_17106.

Let W := span-{g;v, |1 < i < 6} and W' := span-{g;w, |7 < i < 12},
with v, w € V — 0, where v satisfies (H4)-(H5) and w satisfies (H6)-(H7).
Then, W and W’ are braided vector subspaces of M (O, p). We will prove
that

W W’ = M(O%x_) & M(0% x-).

as braided vector spaces. Hence dim B(W ¢ W') = co, by Theorem 4.3, and
the result follows from Lemma 1.2.

By Remark 4.4, we only need to see that the isomorphism of linear vector
spaces W @ W' — M (0%, x_) ® M(0%,x_) given by

giv— g; and  giyew — Jite 1<i<6,
respects the braiding, and this is just a matter of the cocycle. For this, we
compute explicitly the braiding in the basis {g;v, gj4ew, |1 < 4,5 < 6} of
W e W'
By (a), (H3) and (H4), if 1 <14,j <6, then
c(giv ® gjv) = gwjp(gi;}cfigj)(v) @ giv = —gipjV & Giv.
From Lemma 4.8 (i), 76 = aflﬁag. Thus, g 769 = (g7 o19) to1(9  o6g).
By (b), (H3), (H6) and (H7), if 7 <i,5 < 12, then
c(giw @ gjw) = Givjp(9;Ti-695) (W) ® giw = —gipjw @ giw.
By (c), (H3), (H6) and (H7),if 1 <i <6 and 7 < j < 12, then
_ -1 _
c(giv ® gjw) = gijp(9ip;0ig;) (W) @ giv = —gijw @ giv.
By (d), (H3), (H4) and (H5), if 1 <j <6 and 7 <i < 12, then
— -1 —
c(giw @ gjv) = ginjP(955;Ti-695) (V) ® giw = —ginjv @ giw.
This completes the proof. ([l
As an immediate consequence we have the following result.
Corollary 4.12. Let 0y, 7, € G, 1 < i <6 all distinct, O a conjugacy class

of G and p = (p,V) € G with Jor0y = —1. Assume that (o,7) C O is of
type OP) . If o = ol and 7 = 0§ for some d, e € Z, then dim B(0, p) = oo.
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Proof. Note that d and e are odd, since they are relatively prime with |o|.
Hence the hypothesis (H4) and (H5) hold. Now g~ lo1g = UTIQH. Then
p(gto1g) = —id and (H6) holds. The proof of (H7) is similar. O

Example 4.13. Let m > 8. Let o € Sy, of type (1™,272 8™8) with ng > 1,
O the conjugacy class of o and p € SZ,. Then dimB(0, p) = co.

Proof. By Lemma 1.3, we may suppose that ¢, = —1. If ng > 3, then
dimB(0, p) = oo, from Corollary 3.10. We consider two cases.

CASE (I): ng = 1. Let Ag = (i1 12 i3 i4 i5 i¢ i7 ig) the 8-cycle appearing
in the decomposition of o as product of disjoint cycles. We set o := 0 Ag !

and define o1 := 0, 06 := 03, 71 == 0}, T6 1= 01_1,

o9 1= (i1 i3 g 16 U5 i7 14 i2) @, o3 1= (i1 is io i7 15 14 16 i3) ,
04 = (il 16 14 13 15 12 18 i7) «, 05 = (il i7 g 18 15 13 12 i4) «,
Ty 1= (7;1 17 18 19 15 13 14 ’i6) a, T3 ‘= (il 14 12 13 15 18 U i7) «,
T4 ‘= (il i2 i4 ’i7 i5 ’i6 ig ’i3) a, T5 1= (’il ig i6 i4 i5 i7 i2 ig) Q.

CASE (II): ng = 2. Let
Aq g = (iq 2 13 i4 15 i i7 i8) and Aag = (ig 410 411 12 913 14 915 i16)

the two 8-cycles appearing in the decomposition of ¢ as product of disjoint

cycles. We call Ag = AjgAsg, a := aAgl and define oy := o, 06 := 03},

P —
T :=01,T6 := 01 ,

g9 1= (il ig ig i6 i5 i? i4 i2)(i9 ill i16 Z'14 i13 i15 'L'12 ilO) «,
o3 1= (il 18 92 17 15 14 i i3)(i9 116 110 15 913 112 114 Z'11) Q,
o4 = (i1 i 14 13 i5 12 ig 17)(dg 114 12 911 913 P10 P16 015) @,
o5 1= (i1 17 i6 18 U5 i3 12 i4)(ig 115 G114 16 113 P11 %10 112) 0,
Ty = (i1 @7 1 12 i5 13 14 i6)(i9 115 P16 10 413 P11 P12 14) @,
73 = (i1 @4 12 13 i5 18 1 i7)(ig 112 P10 111 413 G116 14 915) @,
T4 := (i1 12 4 U7 15 i6 18 13)(i9 10 112 915 113 714 916 111) @,
75 = (i1 13 16 14 5 i7 G2 ig)(ig 111 P14 112 113 915 P10 T16) Q-

In both cases, 06 = 0 and 7 = ¢ and (0, 7) C O is of type O?). Then
the result follows from Corollary 4.12. (]

Remarks 4.14. (i). The discussion in the preceding example can be adapted
to o € Sy, of type (11,272 ... m'm) provided that ng > 1; but then some
requirements on the representation p have to be imposed.
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(ii).
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Let N = 2™ with n > 4. It can be shown that the orbit of the

N-cycle in Sy contains no family of type 9 using Lemma 4.6.

(ii).

The orbit with label j = 4 of the Mathieu group M3, contains a

family of type 9@, and therefore this group admits no finite-dimensional

pointed Hopf algebra except the group algebra itself [F1].
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