ISOMORPHISM CLASSES AND AUTOMORPHISMS OF
FINITE HOPF ALGEBRAS OF TYPE A,

NICOLAS ANDRUSKIEWITSCH AND HANS-JURGEN SCHNEIDER

1. INTRODUCTION

In [AS2] we classified a large class of finite-dimensional pointed Hopf
algebras up to isomorphism. However the following problem was left
open for Hopf algebras of of type A, D or Ej, that is whose Cartan
matrix is connected and allows a non-trivial automorphism of the cor-
responding Dynkin diagram. In this case we described the isomor-
phisms between two such Hopf algebras with the same Cartan matrix
only implicitly. The problem is whether it is possible to compute the
isomorphisms in terms of the defining families of parameters.

In the present paper we solve this problem for type A. To our surprise
there are closed formulas for these isomorphisms. They are based on
an action of the non-trivial automorphism ¢ of the Dynkin diagram on
the parameter spaces of the Hopf algebras of type A.

The Hopf algebras u(D, 1) of type A,, can be defined as follows. For
more details and references to the literature we refer to our survey
paper [AS1]. Let n > 2 and (a;j)1<;,j<n the Cartan matrix of type A,
in the form

2, if i = 7,
a; =« —1, if|i—j| =1,
0, if |1 —j|] > 1.

Let I' be a finite abelian group, g; € I" and y; characters of I' for all
1 <i <n. Define ¢;; = x;(¢9:),1 <4,j <n. Then

D = D(T', (gi)1<i<n, (Xi)1<i<n (i) 1<ij<n)
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is a datum of Cartan type if if there is a root of unity ¢ of order N > 1
in k such that

gii =qforall 1 <i<mn, and

S q_17 lf’Z_j|:17
W=, i > L

For simplicity we assume that N is odd.

Let &1 be the positive roots of the root system of type A,, and let
k®" be the set of all families p = (fij)1<icj<nt1 of scalars in k. A
family of root vector parameters for D is a family p € k®" satisfying
the following two conditions.

(Rl) Hij = 0 for all 1 S 1 <] S n+1 with (gigi—i-l c 'gj_l)N =1.
(R2) py=0forall<i<j<n+1with (x;Xit1- --Xj_l)N # 1.

In (2.12) we associate to any family 1 € k®" satisfying (R2) a family
(wij (1) )1<i<j<n+1 Of elements in the group algebra k[I']. If p satisfies
(R2) we can always normalize it such that p becomes a family of root
vector parameters without changing the elements w;;(1). This normal-
ization process is discussed in Lemma 2.2. The Hopf algebra u(D, u)
is generated as an algebra by the group I', that is, by generators of I'
satisfying the relations of the group, and x4, ..., z,, with the relations:

(Action of the group)  gxig~' = xi(g)z;, for all i, and all g € T,
(Serre relations) ad.(z;)' " (z;) = 0, for all i # j,

(Root vector relations) xf}’ =wu;;(p), forall 1 <i<j<n+1.
The coalgebra structure is given by

Alx)=9; ;i +2;01, Alg)=g®g, forall1 <i<f,gel.
The Serre relations are the deformed Serre relations where

(ade(wi)) (g, - - 2j,) = @i, - T = Qigy -+ Qi Ty~ T30, § 2 1,
is the braided adjoint action. The root vectors z;; are iterated braided
commutators. They are defined in (2.6).

The non-trivial automorphism of the Dynkin diagram of A, is the
permutation o € S, defined by o(i) =n —i+ 1 for all 1 <i <n. For
each D we have an action of ¢ on the parameter spaces by an explicitly
defined morphism of affine algebraic varieties

o KT S B e (0] (1)i<icj<nsn.

The polynomials o7 (1) of degree j —i are defined in (4.4). By Theorem
2 they define an isomorphism of affine algebraic varieties between the
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subspaces of all elements of k*" satisfying (R2) for D resp. for D°.
Here

D7 = D(P, (ga(i))1§i§n7 (Xa(i))lgigm (az‘j)lgi,jgn)-
In Corollary 4.4 we show

u(D7, 0™ (1)) = u(D, )

for all 1 € k*" satisfying (R2).

Our main result is Theorem 5.1, where we compute all Hopf algebra
isomorphisms between two Hopf algebras u(D’, ') and u(D, i) of type
A,,. The polynomials 0’5 play an important role in this theorem. The
first essential steps in the proof of Theorem 5.1 is Theorem 3.1, where
we compute the basis representation of the N-th powers of the “reverse
root vectors” in the usual PBW-basis formed by the root vectors. The
second essential step is Theorem 4.3, where we prove that the images of
the N-th powers of the reverse root vectors in u(D, i) are the elements

ug; (07 (n)-
2. FINITE HOPF ALGEBRAS OF TYPE A,

2.1. Diagrams of type A,, root vectors, and reverse root vec-
tors. Let n > 2 and (aj)1<i j<n the Cartan matrix of type A, in the
form

2, ifi=j

0, if]i—j|> L
Let Z[I] be the free abelian group with basis aq,...,a,. The Weyl
group W of (a;;) is the subgroup of Aut(Z[I]) generated by the simple

reflections sy, ..., s, defined by s;(c;) = o; — a0 for all 1 <, 5 < n.
The root system ® of (a;;) is defined by ® = Ul ;W (). It has the
basis aq,...,qa,, and the positive roots with respect to this basis are

the elements
j—1

aij:Zal,1§i<j§n—|—1.
I=i
Let wq be the longest element in W. We choose the reduced represen-
tation
Wy = 8182 - SpS182 -+ 8,-151S2° " Sp_2 - S1

of wy of length p = nntl) - The corresponding convex ordering of the

2
positive roots
Br=siy -8, (), 1 <1 <p,
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is the lexicographic ordering, that is,
g <oz < - < Qppgl <03 < orQgpgl <o < Opptl-
Let I' be a finite abelian group,
D =D(T, (gi)1<i<n: (Xi)1<i<n, (@ij)1<ij<n)

a Cartan datum and define ¢;; = x;(¢;),1 < 4,j < n. Then the Cartan
condition g;;q;; = ¢;;’,1 < i,j < n, is equivalent to the following:
There is a root of unity ¢ of order N > 1 in k such that

(2.2) gii =q forall 1 <i<mn, and
—1 . . .
gt ifli—jl=1,
2.3 iidji = e
(2:3) %is {1, if i — j| > 1.

For simplicity we assume that N is odd.
Let V EF YD with basis z; € V;ffi, 1 <7 <n. Then
R=R(D) =k(z1,...,2, | ade(z;) " (z;) =0, V1 < 4,5 < n,i # 5)
is a Hopf algebra in the braided category LYD. For z,y € R we define
the braided commutator
[z,y]c = 2y — pe(z @ y),

where ¢ denotes the braiding and p the multiplication map of R. As
in [ASI, (6-7) and (6-8)] we define root vectors z;;,1 <i < j <n+1,
in R inductively by

(2.4) Tiip1 = x; for all 1 <i <mn,

(25) Tij = [xi,i—l-l;xi—i-l,j]c forall 1 <14 <j <n-+ ].,j —1> 1.
Then
(2.6) zij =[xy, xjle forall 1 <i<l<j<n+1,

and the root vectors z;; in the lexicographic order define a PBW-basis
of R [AS1, Theorem (6.13)].

In addition we define inductively reverse root vectors z;,1 < 1 <
j<n+1,in R by

(27) Tit1i = T4 for all 1 S 7 S n,
(28) Tji = [:L‘j,j—laxj—l,i]c for all 1 <1 <] <n+ ]_,j —1> 1.

Again it follows that

(2.9) zj; = [z, xul foralll <i<l<j<n+1
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Thus for all 1 <@ < j < n+1, ;; is any bracketing of the elements
Ti, Tiy1,---,Tj—1 in this order, and xj is any bracketing of the reverse
sequence Tj—1,Tj—2,. .., ;.

2.2. Root vector parameters and normalization. For any positive
root we define elements in the group and characters of the group by

(2.10) gij = thXij: HX571§i<j§n+1.
1<I<j 1<I<j

A family of root vector parameters for D is a family = (ti;)1<i<j<nt1
of scalars p;; € k satisfying the following two conditions.

(R2) py=0foralll<i<j<n+1withy} #1.
Foralll1<i<j<n+1let
Lij=A{(in, ... i) | 72 2,0 =iy <y <--- <ip = j}.

We denote the set of all families 1 = (f4i5)1<i<j<n+1 of elements in k& by
k2T

For any p € k®" we define for all 1 <1i<j<n+1 scalars
(211) /L(il, ce ,iT) = Miyis * Wiy _qiy for all (ila .. ,ir) S Iij7

and elements in the group algebra
(2.12) uf(p) = Y (q= DN Pl i) (- gl ).

Thus
uf(p) = pis(1=g)+ D ( (g=D) (i, i) (1= gpp)-

i<p<j (i1,ir)Elip

We will write w;;(p1) = u;; (1) when D is fixed. Recall that ¢ = x(g:)
for all 1 < ¢ < n also depends on D. This definition agrees with
the formula in [AS1, Remark 6.19] when pu is a family of root vector
parameters for D. There we defined

N(N-1)

Cli=0—qg"YWxulgy) 2z i<k<l<y
ul](lu) = Z Cglig T CfL'jT.,liT/J”L'liQ o :u’ir—li'r(]‘ - gzz:[_l’ir)'
(i1,...,’ir)€1ij

Since N is odd it follows from (R2) that C,zl,ukl = (¢ — 1)V g for all
1 < k <[ < j. Thus both definitions do agree.




6 NICOLAS ANDRUSKIEWITSCH AND HANS-JURGEN SCHNEIDER

It is easy to see that the family (u;;(1))1<i<j<nt+1 Of elements in the
group algebra can inductively be defined by

(2.13) wig(p) = pi(1=g)+ Y (a= )N pipuip(p), 1 < i < j <41,
1<p<j
Lemma 2.1. Let p € k*".
(1) Suppose p satisfies (R2). Then
(R3)  wij(u) =0 for all 1 <i < j <n+1 with xjy # 1.

(2) Suppose p satisfies (R1) and (R3). Then u satisfies (R2), that
18, 1 1s a family of root vector parameters for D.

ProoOF: This follows by induction on j — i from (2.13) since for all
i < p < j the inequality ;i # 1 implies that x;jy # 1 or x,; # 1. O

By [AS1, Theorem 6.18] the families (u;;(¢t))1<i<j<nt1 are exactly
the solutions of the equations

(214)  Aluy) =uy; @1+ g} @uy+ Y (g— 1)V upg); @ uy
1<p<g
in k[I'l ® k[I'] for all 1 <i < j < n+ 1. This characterization of the

w;; (1) is used to prove the next lemma. It shows how to “normalize”
an arbitrary sequence p so that (R1) is satisfied.

Lemma 2.2. Let u € k* . Then there is exactly one family /' € k®"
satisfying (R1) such that

(2.15) wij(p) = uy; (1) forall1 <i<j<n+1.

If u satisfies (R2) then p' is a family of root vector parameters for D.

PROOF: Let u;; = u;j(p) for all 1 < i < j < n+ 1. We define the
elements p;; by induction on j —i. Let j =i + 1. Let

MI - Hii4+1, if g’%—&—l 7£ 17
iitl — .
+ 0, if gﬁﬂ =1.

Then (2.15) for (i, + 1) holds since w;;41(1) = piir1 (1 — g7541)-

Let k > 1. Suppose we have already defined p;; whenever j—i < k—1
such that (2.15) holds if j —¢ <k —1. Let 1 <i < j <n+1and
assume that j —i = k. If g}y = 1, then we define pf; = 0. If g} # 1,
we define p;; € k to be the unique scalar satisfying

(2.16) i = (L= gi) + Y (g = D)Vl up.

1<p<J
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The existence of the scalar y;; follows from the argument in the induc-
tion step of the proof of [AS1, Theorem 6.18].

Thus we have shown the existence of the family p'. Uniqueness
follows easily by induction on j — ¢ from (2.13).

Suppose that p satisfies (R2). Then pu satisfies (R3) by Lemma 2.1
(1), and p' satisfies (R2) by Lemma 2.1 (2). O

For any u € k®" we define

(2.17) vP () = i, v5 () = i for all 1 < i < j < 41,

where y’ is the family constructed from p in Lemma 2.2. We call v ()
the normalization of w.

The elements yi;; = v;7 (1) can be computed inductively. Let 1 < <
j <n+1 and assume that gj # 1. Then we have u;; (1) = u;(1'). We
replace w;; (1) and w;;(p') by the right hand sides of (2.12) and collect

all terms with coefficient (1 — g/¥). This gives the equality

(2.18) Wij + Z Z (q - 1)N(T_2):u(i1» co s Uy fhpj

z<p<j (i1
g =1

=pli+ Y Y (= DN ),

’<p<3 (21,nyir ) ELgp
g =1

D

where p/'(i1, ... ,14,) is defined in (2.11) for p/. Thus ,uw is a function of
wand !, b—a < j—i. In particular, we see that 17 is a polynormal in
the variables (11;;) with coefficients in Z[g|. The polynomlal 5 depends
on D, more precisely on g = x;(g;) and on the numbers

1 if g #£1
dyp = { ?g%# " b—a<j—i
0, ifgy, =1

For example assume that gf\i 49 # 1. Then

,Uz 1+25 lf gfv 7é 1,
Mz 'L+2 .. . . N _
[LZ77,+2~|>,[L(Z,Z+]_,@+2), lf gz = 1.
2.3. The Hopf algebras u(D, ;) and isomorphisms. As in [ASI,

AS2] we define for any family of root vector parameters p for D a
finite-dimensional Hopf algebras by

(219) (D, ) = RDW#KI]/ (e —uy(w) | 1< i< j <n+1).

We can extend this definition to all u € k®" satisfying (R2) since
by Lemma 2.2 then vP(u) is a family of root vector parameters, and
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wij (1) = wij(vP(p)) for all 1 <i < j < n+1. By [AS1, Theorem 6.25]
a finite-dimensional pointed Hopf algebra A is of the form A = u(D, u)
if and only if gr(A) = u(D, 0)#k[I'], where gr(A) is the graded Hopf
algebra associated to the coradical filtration of A.
Let p € S, be a diagram automorphism of (a;;), that is,
aij = p@)p() for all 1 <, 7 < n.
Then p =id or p = o, where
(2.20) o(i)=n—i+1lforalll <i<n,.
As in [AS2, Theorem 7.5] let

D? =D(T, (¢ )1<izn, (X7 )1<i<n, (@ij)1<ij<n)
be the Cartan datum with ¢/ = g,4), X! = X for all 1 < i < n.
Let V? € LYD with basis af € (V)" for all 1 < i < n. By [AS2,
Theorem 7.5]
FP: R(D") = R(D),xf — x,q) forall 1 <i < n,
defines an isomorphism of braided Hopf algebras in EJ)D. For all 1 <
i < j <n+1, we denote the root vector of ay; in R(D?) by 7).

Let D = D(F,, (g;)lgign; (X;)lgign, (aij>1§i’j§n> be another Cartan
datum with finite abelian group I and the same Cartan matrix of
type A, as D. Let ¢ : I — I be a group isomorphism, p € S, a
diagram automorphism of (a;;) and s = (s;)1<i<, a family of non-zero
elements in k. Let
(2.21) sij:Hslfora111§i<j§n+1.

i<i<j
Let 7 : R(D)#k[l'| — u(D, ) be the canonical projection.

The triple (i, p, (s;)) is called an isomorphism from (D', 1') to (D, )
if the following conditions are satisfied:
(2.22) P(95) = 9o)> Xi = Xptp for all 1 < i < .
(2.23) gp(ugl(u')) = shm(FP(af)N) forall 1 <i<j<n+1.
Let Isom(D', i), (D, i) be the set of all isomorphisms from (D', i) to

(D, it). For Hopf algebras A’, A we denote by Isom(A’, A) the set of all
Hopf algebra isomorphisms from A’ to A. Then

Theorem 2.3. [AS2, Theorem 7.2] The map
Isom((D', i), (D, u)) — Isom(u(D', i), u(D, u))

gien by (¢, p, (i) — F, where F(z}) = s;x,q) and F(g') = ¢(g') for
all1 <1 <60 and g € 1V, is bijective.
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The main result in this paper is the explicit computation of the
set Isom((D', 1), (D, i)). In Section 3 we first compute the elements
Fe (xfj)N . The next lemma shows that these elements are reverse root
vectors. This lemma also allows to derive (2.9) from (2.6).

Lemma 2.4. Forall1 <i<j<n+1,

Fg(xf]) = Tpn—i+2,n—j+2-

Proor: This follows by induction on j — . Suppose that j = + 1.
Then z;; = x; and F7(27;) = Toi) = Tn-it1 = Tnit2,n—jt2-
If j —i > 2, then

Fo(afy) = FO([a7, w710 jleo)
= [xa(ibFJ(x;‘:-l,j)]c
= [Q:n—z’—&—la xn—i+1,n—j+2]c (by induction)

= Tn—it2,n—j+2 (by (2.8)).

3. THE REVERSE ROOT VECTORS

In the next theorem we compute the basis representation of the N-th
powers of the reverse root vectors in the standard PBW-basis.

As in the last section we fix a diagram D of Cartan type A,, and let
R=R(D). Forall 1 <i < j<n+1 we define

i<k<l<j
(32) T(il, .. 7ir) = Tivio """ Tip_1ir> for all (il, . ,ir) € ]U
Note that 7;; = [[,,.; xii (¢1). We write 77 instead of 7;; if we want
to emphasize the datum D.

Theorem 3.1. Assume that1 <i < j <n+1. Forall (iy,...,4,) € I;;
define

t(in,. .. 0p) = (=177 g = )Ny i) T T
Then

(3.3) N = t(iy, . .. ,ir):rﬁhxg% .. .g;ﬁflir.
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To compute the coefficients ¢(i1, ..., ,.) we first change the notation
using characteristic functions. We can assume that j — 2 > 4 since
Tit1,; = 2;. For natural numbers k < [ let [k,{] ={k,k+1,...,l}. Let
E;; be the set of all functions e : [i,j — 2] — N with values in {0, 1}.
We consider the bijection

E ]z'j — Eij
given for all (iy,...,4,) € I;; and l € [i,7 — 2] by

L, ifle{in—1,... 4,1 —1},
0, otherwise.

Qir, ..oy i0) (1) —{

For any e € E;; define
le| =#{l]|i<1<j—2,¢el) =0}
If e=Q(iy,...,4) then
(3.4) lel=7—i—r+1.
The constant function in Fj;; with value 1 resp. 0 will be denoted by
(1) resp. (0). Thus (1) = Q(i,i+1,...,7) and (0) = Q(4, 7).
Lemma 3.2. Let 1 <i<j<n+1,j—i>2, and f € E;;,(1) # f.
Then

(35) > (-pk=o,

eEEij,eSf

(3.6) | > (= =o.

PROOF: Since f # (1) we can choose an index | with f(I) = 0. Then
{e € E;j | e < f} is the disjoint union of elements e with e(l) = 0 and
with e(l) = 1, and (3.5) is obvious. To prove (3.6) we consider the case
of (3.5) with f = (0). Then ) (=1)lel = 0, and (3.6) follows from
the bijection Q and (3.4). O

For all e = Q(iy,...,1i,) € Ej; let

EGEZ']'

N—-1

Te = (q - 1)N|e|(7_i1i27_i2i3 o .Tirflir) z,

el —1 N(G—i-1), "5

_ € - J—1— 2

te=(-1)7"(¢—1) Tij
N_ N _N N

Te = T5155%i055 " Lip_qipe
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Note that t. = t(i1,...,4,) if e = Q(i1,...,4,). This follows from the
definitions using (3.4). Hence (3.3) in Theorem 3.1 can be restated as

(3.7) xﬁ = Z tex.
eEEij

The idea of the proof of Theorem 3.1 is to project R onto skew-
polynomial rings R., one for each e € E;;. Before we begin the proof
we establish some technical results on these projections.

Definition 3.3. For any e € E;; let R, be the algebra generated by
Ti, Tiy1, - - -, Tj—1 with relations

(3.8) T — Qi =0, ife(l) =1,i <1 < j -2,

(39) L4121 — 41,1 01T 141 = 0, if e(l) = O,i S ) S ] — 2,

(310) xkxl—qklxlxkzo, lf’LSI{Z,lSJ—l,V{Z—” 22

Lemma 3.4. For any f € E;j, the natural projection

: 1 <1i<n,
0, otherwise ,

7TfIR—>Rf,7Tf(Il):{

is a well-defined algebra map, and for alli <u <v < j,v—u> 2,

(3.11) T (2y) =0, if f(I) =1 for someu <1l <l+2<w,
(3.12) () =0, if f(I) =0 for someu <l <l+2<w.

PRrROOF: The Serre relations can be reformulated according to the fol-
lowing identities

(313)  —qsade(z)}(zi) = Tz, 2e — Qi [T, 1o,
(3.14)  —quurade(@1)*(z1) = 2 [, i )e — o, T e,

in the free algebra k(xy,...,z,) for all 1 <1 <n—1. Hence both Serre
relations ad.(z;)?(z;41) = 0 and ad.(z;41)*(z;) = 0 hold in Ry for all
i <1< j—1,since [z, z141]. = 0 by (3.8) if f(I) =1, and [x;11, 2] = 0
by (3.9) if f(I) = 0. Thus 7; is well-defined.

To prove (3.11) note that by (2.6)

- [T, Tiso]e, ifu<l<l+2=w,
" [T, [Ti42, Tioplele, Hu<li<l+2<w,

and that 7;(z;42) = 0 by definition of 7;. In the same way (3.12)
follows from (2.9). O
We note the following obvious rule in skew polynomial rings.
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Lemma 3.5. Let zq,...,x,, be elements in an algebra such that
11T = pxrr; for all k <1,

where py € k for all k < . Then for any natural number N,

N(N-1)
(21 - xp)Y = leik TNl
k<l
O
Lemma 3.6. Let f € Ejj and i < k <l < j with k <1 —2. Suppose
that f(k) = f(k+1)=---= f(l—2)=0. Then

N-1
7Tf(flfiz\g) =(q— 1)N(l_k_l)7k12 x]kv'x;cvﬂ e '$f\£1~

PrOOF: We first prove by induction on [ — k that
(3.15) mr(rw) = (1 — ¢ O ™" apap -2
Suppose that [ = k + 2. Then
7Tf<xk,k+2) = TkZTr+1 — Qe k+1TE+1Tk
= TpTr1 — Qep+1qe+16TkTke1 (DY (3.9) and f(k) = 0)
= (1 — ¢ Y Hrprrs (by (2.3))

This proves (3.15) for [ — k = 2.
For the induction step let [ — k£ > 2. We obtain by induction

7Tf(ﬂckl) = [il‘k,a?kﬂ,z]c
= [k, (1= ¢ )" Papampsn - mae
=(1—q¢ ") " 2 (xpaps1 - 312
— Gk k+19k,k+2 " " Q11041 T k42 '931—13%)-

Since Tpy1Tpyo T 1Tg = Q-1,kq1—-2k " " Qk+1,kLTELE41 -0 - Lj—1 1 Rf by

f(k) =0, (3.9) and (3.10), and

Qkk+19k k+2 * * * Ak 1-191—-1,k91—2,k * * " Qk+1,k = qfl
by (2.3), equation (3.15) for &, follows.

Since f(k) = f(k+1)=---= f(l—2) =0, (3.9) and (3.10) imply
by Lemma 3.5 that
N(N-1)
(TpTpgr - - 'xl—1)N = H Qup® xl]cvx{evﬂ - '95{\11-
kE<p<v<l

Hence Lemma 3.6 follows from (3.15) by taking N-th powers. Note

that (1 — ¢ 1) = (¢ — 1)V since ¢ =
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Fore, f € E;; we write e < fif for all i <1 < j—2,e(l) =0 implies
£) =0,
Lemma 3.7. Lete, f € E;;. Then

N_.N N -
TeXi Tig1 " Tj_q; if e < f,

e)= {O, otherwise.

PROOF: Let e = Q(i1,...,4,). Suppose that e # f, thatis f(I) =1 and
e(l) =0forsomei <1< j—2. Thenl+1 ¢ {iy,... i}, since e(l) = 0.
Hence there is an index s with iy <1 <142 <izq. Since f(I) =1, it
follows by (3.11) that m¢(z;,,,,,) =0, and thus 7 (z)) = 0.

Now assume e < f. Since 7y is an algebra map, it is enough to show
for all 1 < s < r that

(316) Wf(xg,i5+1) —= (q — 1)N(is+1—Z‘s—l)Tis7iS+1x£xg+1 P Ig+1—1'

Note that by (3.4) S0 (igs1 —ds — 1) =j —i—r+1=le|.

If is +1 =i54q, then z;_, ., = x;, and (3.16) is obvious.

If iy <isy1 — 2, then e(l) = 0 for all i; <[ < iz — 2 by definition
of the function Q. Hence f(I) =0 for all i3 <1 < iz — 2 since e < f,
and (3.16) follows from Lemma 3.6. OJ

Lemma 3.8.

PrROOF: We first prove by induction on j — ¢ that

(3.17) my (i) = (=1 I awwiin -z,

i<k<lI<j
Suppose that j =i+ 2. Then

(318) Tip1X; = q;iﬂrlxixiﬂ in R(l)

Hence

7T(1)(xi+2,z‘) = Ti4+1Ti — Git1,iTiTit1
-1
= (Qi,i—i-l — Git1,i)TiTig1

= (¢ — D)qiy1,7i%i01 (since ¢;i11Giv1: = q ' by (2.3)).
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For the induction step let 7 — i > 2. Then by induction
T (w5i) = [2j-1, 7j-14]e

= [z, (g =1y H QETiTit1 " Tj-2]e

i<k<i<j—1
j—i—2
=(¢—1) H Quie(Tj 12Ty -+ Tjo

i<k<i<j—1

— Q11+l 5 i1 —2TiTip1  TjaTj1).
Since in R
(3.19) Ti1Tj_o = ;L | Tj_om;

. j—1%j—2 = Gj_g j1Lj—2Lj—1

= {qj-1,j—29Tj—2Tj—1,

and hence

Lj-1TiZit1 " Lj—2 = §j—1,i45-1,i+1 " ** §j—-1,j—2qTiTi+1 " " Tj—1,

it follows that
j—2

Ty (xji) = (g — 1)y 2 H ik H ¢j—16(q — Dxjzipr - x5

i<k<l<j—1 k=i
j—i—1
= (q - 1)J H QuieTiTiq1 - Tj—1-
i<k<l<j

This finishes the proof of (3.17).
By (3.8), (3.10) and Lemma 3.5

N(N
N _ NI (i) N, N N
(@i@it1 - xj-1)" =¢q H Qi ‘Ti Lipr  Ljq

i<k<l<j

Hence Lemma 3.8 follows from (3.17) by taking N-th powers. Note

that qN(g_l) = 1 since N is odd by assumption. [J
We now prove Theorem 3.1.

PROOF: Since the root vectors x;; in the lexicographic order define a
PBW-basis of R, there are uniquely determined coefficients t, € k, e €
E;;, with

i
(3.20) why =Ytk
EEEij
By (3.7) we have to show that t.=t,forallec E;;.
To prove that 1y = t(1), we apply 7y to both sides of (3.20). For
all (1) # e € Ej;; we see from Lemma 3.7 that m)(z)) = 0, since
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e 2 (1). Hence () (X e, terl) = taNally -~ o)y, and ) = tq)
by Lemma 3.8.

Let (1) # f € E;;. Then f(I) = 0 for some ¢ < [ < j —2 and
mr(xj;) = 0 by (3.12). Hence applying 7y to both sides of (3.20) and
using Lemma 3.7 we obtain 0 =3___, %;Tea:fvxﬁl -2l | hence

j—1s
(3.21) > tere=0.
e<f
Note that by definition
ty = (—1)‘f|7f_1t(1) for all f € Ej;.
To finish the proof of the theorem we therefore show by induction on

| f| that
(3.22) terr = (=)t for all f € Eyj.

Suppose that |f| = 0. Then f = (1). Since tp) = tn) and 7q) = 1,
(3.22) follows for f = (1).

For the induction step we note that |e| < |f| for all e < f e # f.
Hence we get by induction from (3.21) for all f # (1)

(3.23) frp== D == > (-1)"ta
e<f.e#f e<f.e#f

By (3.5) Yoo ;(=1)ll = 0 for f # (1), and (3.22) follows from (3.23).
- <

By the same proof and (3.15), (3.17) but without taking N-th powers
we get the basis representation of zj;.

Theorem 3.9. Assume that 1 <i < j<n+1. Then
zji = (—q)’ ™! H Qk Z (¢ = 1) miiy - Ty,
i<k<l<j (i15esir ) ELG5

g

4. THE ACTION OF THE DIAGRAM AUTOMORPHISM ON ROOT
VECTOR PARAMETERS

As in Section 2 let
D = D(I, (gi)1<i<n, (Xi)1<i<n, (@i5)1<i,j<n)

be a datum with finite abelian group I' and Cartan matrix (2.1) of
Type A,,. Recall that o denotes the non-trivial diagram automorphism
of (a;;) given by (2.20). In this section we will construct for each
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po€ k® satisfying (R2) a family o®(u) € k®' satisfying (R2) such
that the isomorphism

Fo4id : R(D°)#k[[] — R(D)#k[I]

induces an isomorphism w(D?,0P(u)) — u(D,p). We begin with a
technical lemma to simplify the constants 7 (i1, ..., 4,) in Theorem 3.1
when they appear as factors of certain root vector parameters.

Lemma 4.1. Let 1 <1< ] <n+ 1,([1,...,lm) c Iija(kla--wkr) S
Iiy,. Let p be a family of root vector parameters for D. Then

M(ll, ceey lm>Tij = /,L(ll, ey lm)T(lkl,le, ey lkT)

PROOF: The lemma is trivial if one of the factors ju,;, ,, of u(ly, ..., ly)
is zero. Assume that ju,,,,, # 0 for all 1 <k <m. Then (x,,,,)" =1
for all 1 < k < m. In particular (Xlkllks)N =1forall 2 <s <r.
Therefore

Tij = H (xa)™ (a1)

1<l<j

= II Gwo™@ II Gan)@ - ] Gag))
lkl <l<lk2 lk2§l<lk3 lkT71§l<lkT

= Tlhlkz . 'lerqlkr = T(lkl,le, Ce 7lkT)>

since (x1,,1)" = (,1,)" )™ = Oay)™ for all 2 < s < 7 and
le, <1. 0O
We also need the following identity in group algebras.

Lemma 4.2. Let G be a group, m > 2 and hg elements in G for all
1<s<t<m. Assume

hyshssi1 = hyrsp1 foralll <r <21 <s<m.

Then
Z (_]‘)r(]‘ - hkr—lkr)
(kl ,,,,, kr)ehm
= > (=)= b)) (L= Py 1)
(k‘l ..... k‘r)ellm
PROOF: Let
Sm = Z (_1)r<1 - hk1,k1+1) e (1 - hkr—l,kr—1+1)'

(kl ~~~~~ kr) €lim
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The Lemma is true for m = 2. We show by induction on m > 2 that
(4.1) Sm = hom — hyy if m > 2.
This holds for m = 3 since

S3 = —(1 = hi2)(1 — hoz) + 1 — hip = (1 — h1z)hog = hoz — hy3.

The induction step follows from

Serl = Z (_1)T(1 - hk1,k1+1) T (1 - hkr—17kr—1+1)

+ > (=)= b)) (L= k1)

(k1yeeker) €1 a1
kr_1<m

- _Sm<1 - hm,m+1) + Sm
= Smhm,m+1-
On the other hand if m > 2 then

> (=)= hy i)
=1 hlm + Z Z (_1)T(1 - hkr—lkT)

1<p<m (kl ----- kr )Eflm

=1=him+ Y, Z (—1)" (1 — hym)

1<p<m (ky,....kr)€l1p
= h2m - hlm'

O
We introduce the notation

7:n—i+2f0ralllgi§n+1
for the non-trivial diagram automorphism of A, ;. Note that the map
(4.2) I < L, (i1, ydy) = (i),

is bijective for all 1 <i < j <n+ 1.
Recall that

D7 =D(I, (97 )1<i<n; (X7 )1<i<n, (i) 1<ij<n),
where g7 = g,(i), X{ = Xo() for all 1 <4 < n. Then

(4.3) gfj:Hgf:gﬁ,foralllgi<j§n+1,
i<l<j
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since
o _ o, 0 o _ — ~
9i5 = 9 9i+1° " 9j—1 = In—i+19n—i " " Gn—j+2 = G573

For alluel’f‘I>+ and all 1 <i < j <n+ 1 we define
<44) JE(#) - T}F{(_l)j_H& Z (q - 1)N(T_2)M(i~T7 e 7%)7

(11, 0y8r ) €5

UD(M) = (05(M>)1§z’<j§n+1-

Here 757 = 7'% and g depend on D, or more precisely on the braiding
matrix (g;;) of D. Note that ¢ = x;(g:;) = xJ(g7) for all 1 <i <mn.

We will see in the next theorem that o defines an isomorphism of
affine algebraic varieties between the subspaces of all elements of k®"
satisfying (R2) for D resp. for D°.

By abuse of notation we will denote the images of the reverse root
vectors in the quotient Hopf algebras u(D, p) again by z;;.

Theorem 4.3. Let 1 € k*" satisfying (R2) for D. Then
D (D — (h N L
(1) w; (07(n)) = (275)" foralll <i<j<mn+l.

(2) The family oP (1) satisfies (R2) for D° and o (6P (1)) = p.

PrOOF: (1) Let 1 <i < j <n+ 1. We denote

W =0o"().
We first compute uj (1),
By (2.12) and (4.3)
ug (W)=Y (a=D)N i) (= (g )Y,

(il,...,ir)EIij

By (4.4) we can write for all 1 <i <14, 1 <4, <}

Moy = (1) e Y (= )N ).

(li""’lét)elit—l’it
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Hence we obtain

)= Y (g DY) )

(115eensir ) EX5

(45)  x (q— DNC=2p(2, . )

( 10 7l52)61i1’i2

x > (e DN, )

(li‘v 7lsT)EIi7«_1ir

x (1= (97 2)").
On the other hand by Theorem 3.1
(ZL‘;E)N = Z t(ir,.‘.,il)ui: i:1 ’LL;2 Z~1
(1100t ) €D
By (2.12) and (4.2) we have for all 1 <i <4,y <i; <
wim = Y (- DN (g )Y).
(liv"'vlgt)elitfbit
Again we get a large sum of products as before:

()" = > i)

(il ,...,iT)EL;j

(4.6)  x (q— )NE=Dpu2, B

( 10 7l52)61i1i2

o D DRI L G

(7515, )€y iy

N N
x (1—(9gl~;) )"'(1—(9@?) )
The point of the proof is to change the order of the summation
indices. We have to sum over all sequences

(B, 2, ) e T

7789
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with 1§ =iy,12, =iy =13,...,1; =i,, where each sequence has
m=Sg+---8 —7r+2
elements. Equivalently we can start with an arbitrary sequence
(L, ..., ) € Lij,

then take all subsequences (li,, ..., ), (ki,...,k.) € I m, of
(L, ... ly) and define (i1, ...,i,) € I;; by i, = Iy, for all p,
1 < p <r. Thus the right hand side of (4.5) becomes

(4.7)

OIS DRGSR

(I15eeslm)€Lij (k1yekr)E1m

' M(l;m <o J;)T(lkra lkr_m <o 7lk1)<1 - (gl’,; lkzl)N)a
and the right hand side of (4.6) becomes

(4.8)
Z Z (q - 1)N(mir),u(lm> SR ll)t<lkr’ lkr—l? s >lk1)

.(1 — (glk/\-/ N )N)(l — <glz:1:.1lk~l)N)'

r—1+1 lkr—l

Both expressions (4.7) and (4.8) can be simplified. By Lemma 4.1 we
can write in (4.7)

il BT Ty D) = il DT

Similarly by Lemma 4.1 and since N is odd we have in (4.8)

(SIS YT (N PR P

~ ~ o ~ —~ _1 N+1

= M(lm, st 7l1)(_1)]_z_T+1(q - 1)N(T_2)T(lkm lkrﬂa s 7lk1)_NTT§?2
~ ~ . _N-1 Nt1

= (s, L) (=17 (g = NI 2

= T, D) (— 1T (g = )N

After this simplification we finally obtain

(49)  ul (W)= (=1""r: > (= D)N" (L, )

(k1,e-sker)Elm
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and

(4.10) (2N = (=1 >0 (a= DN P, )

Z <_1)r(1 - (glk:;1 lkrm_l)N> T (1 - (gl/qAL [,:I)N>7

(kl ..... kr)ellm
and (1) follows from Lemma 4.2 with
hst:(gl:fs)N foralll1 <s<t<m
and for each sequence (Iy,...,1n).

(2) To prove that ' satisfies (R2) for D7 let xj; # 1. Then x;7 # 1.
Hence for all (iy,...,4,) € I;; we have X; =, # 1 for some 1 <s <.
Thus (i, ...,7) =0, and pi; = 0 by (4.4).

The proof of the equality 0P’ (6P (1)) = p is similar to the proof of
(1). Let 1 <7 < j <n+ 1. By definition

oD(oP (1) = 7 (—1 ST (= N D),
(il ..... Z'r)GIij
Forall1 < <141 <14 <j we have
D S R L o WIS}
(G lgt)eht—lxit

As before for u} (1) we now obtain

o) =r Y (=D Puly, ) D> (-1

(l1 ,,,,, lm)EIi]' (kl ,,,,, kr)Ellm
= T%JTZ']‘,U”‘ (by (36))

This proves the claim since

7-%0: H OE ()Y = H (xi-1(gr-1)™ = H Xi (9),

F<ici<i i<k<I<j i<k<l<j
hence
o N N(\ _ Nam _
T Tij = II x@xd@ =TI xelg)¥ =1
i<k<l<j i<k<l<j
O

Corollary 4.4. Let p € k*" satisfying (R2). Then the map
w(D?, 0" (1)) — w(D, 1)



22 NICOLAS ANDRUSKIEWITSCH AND HANS-JURGEN SCHNEIDER

given by x{ — Tyi),9 — g,1 < i < n,g €I, is an isomorphism of
Hopf algebras.

PROOF: Let s; =1 for all 1 <i < n. Then the triple (idr, o, (s;)) is an
isomorphism from (D7, 0P (u)) to (D, i) by Theorem 4.3 and Lemma
2.4. Hence the claim follows from Theorem 2.3. [J

5. HOPF ALGEBRA ISOMORPHISMS
In this section let

D= D(F, (gz‘)lgigm (Xi)1§i§n7 (aij)lgi,jgn)a
D' =D, (9))1<i<n: (Xi)1<i<n; (aij)1<ij<n)

be data with finite abelian groups I' and I'" and the same Cartan ma-
trix (2.1) of Type A,. As before o denotes the non-trivial diagram
automorphism of (a;;) given by (2.20).

For s = (8;)1<i<n € k™ and p € k®" we define

s = (va)lgz'gn

5+ = (Sijlij)1<i<j<n+1-

Recall that
Sij = H spforall 1 <i<j<n+1.

i<l<j
Then
(5.1) wij(s - p) = sjjug;(p) forall 1 <i<j<n+1
since Sij = Siyiy *** Sin_y4, for all (in,...,4,) € L.

An isomorphism of data of Cartan type from D’ to D is a group
isomorphism ¢ : IV — T satisfying

(5.2) ©(9:) = 90, X; = xp for all 1 <i <n.

We write ¢ : D' = D if ¢ is an isomorphism from D’ to D.
Note that (5.2) implies for all 1 <i,j <n+ 1 that

Xj(gi) = x;(gi), forall 1 <i,j <n+1,
©(gi;) = gij forall 1 <i < j<n41.
Hence for all 1/ € k®*

(5.3) @(ugl(/ﬂ)) =up () foralll <i<j<n+1.

Let £ =k \ {0} denote the multiplicative group of k.
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Theorem 5.1. Let p and (' be families of root vector parameters for
D and D'. Then the Hopf algebra isomorphisms u(D', 1) — w(D, )
are given by

(D) @i = siwi, g — ¢(g),1 <i<n,g €, where
(a) ¢: D' = D, and
(b) s = (si) € ()" such that ' = s~ - pu,

(IT) @ = sizo(i), g = ¢(g), 1 <i <n,g € I", where
(a) ¢ : D = D, and
(b) s = (s;) € ()" such that ' = s - vP" (aP(p)).

PrROOF: By Theorem 2.3 the isomorphisms u(D’, ') — u(D, u) are
given by x; — 8;2,3),9 — ¢©(g9),1 <i <n,g € I', where p : " — I' is
an isomorphism of groups, p =id or p = o, and s = (s;) € (k™)™ such
that

(5.4) ©(g;) = gp(i),X; = Xp)p for all 1 <i < n.
(5.5) @(ug(ul)) = SZ]-}[W(FP(xfj)N) foralll<i<j<n-+1.

We have to show that (5.4) and (5.5) are equivalent to (I)(a) and (b)
if p =1id, and to (II)(a) and (b) if p = 0.

By definition (5.4) coincides with (I)(a) if p = id and with (II)(a) if
p=o.

Let p = id and assume (I)(a). Then the left hand side of (5.5) is
o(ul (1) = ul (1) by (5.3). For the right hand side of (5.5) we obtain

ij

sy m(FP(af)™) = sijui ()

u; (s - ) (by (5.1)).

Hence (I)(b) and (5.5) are equivalent by the uniqueness in Lemma 2.2.

Let p = o and assume (II)(a). Let 1 < i < j < n+ 1. Again it
follows from (5.3) applied to D’ = D° that go(ug (1)) = u (1'). We
have shown in Lemma 2.4 and Theorem 4.3 that

T(F7(af)™) = ui; (07 ().
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Hence
shm(F7(z])™) = sjup (0P ()

= VP (7 (0P (1)

= u; (s v (e (n)) (by (5.1)).

Again it follows that (II)(b) and (5.5) are equivalent. [J

We know from Theorem 4.3 that vP(u) satisfies (R2) for D7. If
we assume (IT)(a), then vP(u) also satisfies (R2) for D’. Hence the
normalization vP7 (6P (1)) is a family of root vector parameters for D°
and D'. In general oP(u) is not a family of root vector parameters for
D since (R1) is not necessarily satisfied, and we have to pass to the
normalization.

For example

O-l%(u) - _T"*L”*l(lu’”*LnJrl + (q - 1)Mn*1,nﬂn,n+1)7

and if <g013)N = grjzvfl,n+l = 17 then Hn—1n+1 = 07 but Hn—1,nMnnt1
can be non-zero if g ; # 1,gY¥ # 1l and x)', = 1,xY¥ = 1. Asa
realization of this situation take n = 2 and let ' = Z/(N?) x Z/(N)
with generators ¢ of order N? and h of order N. Let ( € k be a root
of 1 of order N and ¢ = (2. Define g1, g» and characters x1, x2 by

g1=gh.g2 =g 'h,x1(9) = (, x1(h) = {, x2(9) = (2, x2(h) = 1.
Then x1(91) = ¢ = Xa(g2), x1(g2)x2(91) = ¢~ and

=" # L =g N AL =xg =1, and gy = g7 g = 1.
Note that (R1) is trivially satisfied if gy # 1 forall 1 <i < j <n+1.

The next corollary follows immediately from Theorem 5.1.

Corollary 5.2. Let p, p/ be families of root vector parameters for D.
Then the following are equivalent:

(1) w(D, ') = u(D, p).

(2) There is a family s € (k*)" such that
B sNop, if D 2D,
sy wor sV -vP(aP(n)), if D=De.
OJ

Corollary 5.3. Suppose there are 1 <i < j<n+1,j—1i> 2, such
that gf}f #1 and g" #1,xN =1 for alli <1< j. Then the number of
isomorphism classes of Hopf algebras of the form u(D, u) is infinite.

PrROOF: By our assumption on D we can consider families of root
vector parameters i, i with py 41 =y, = 1 for all t <1 < j, and
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with arbitrary elements ju;;, i, € k. If u(D', ') = u(D, p), then by
Corollary 5.2 for all + <[ < j we have

i _ va,ul,z+1, if D% De,
bt S i1 OF S ftoy oy+1, i D =D,

hence s = 1. Thus sf-}f = 1, and again by Corollary 5.2 it follows that

I Hij, if D % DU,
9T Ly or v (0P (), DD,
Hence we obtain infinitely many isomorphism classes of Hopf algebras
u(D,p). O
Theorem 5.1 gives the following description of the group of all Hopf
algebra automorphisms of u(D, ).
Corollary 5.4. Let p be a family of root vector parameters for D.
Then Hopfaut(u(D, u)) is isomorphic to the subgroup of Aut(I') x (k*)™
consisting of all pairs (p,s),p € Aut(l'), s € (k*)", where

@:DiD,u:sN-,u, or
p:D =D u=s"-1v" (" (n)),
O
We note the following special case.

Corollary 5.5. Let p be a family of root vector parameters for D.
Then the group of all Hopf algebra automorphisms of u(D, ) is finite
if iiv1 #0 foralll <i<n. O
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