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ON ANOSOV AUTOMORPHISMS OF NILMANIFOLDS

JORGE LAURET, CYNTHIA E. WILL

1. Introduction

Anosov diffeomorphisms play an important and beautiful role in dynamics as
the notion represents the most perfect kind of global hyperbolic behavior, giving
examples of structurally stable dynamical systems. A diffeomorphism f of a com-
pact differentiable manifold M is called Anosov if the tangent bundle TM admits
a continuous invariant splitting TM = E+ ⊕ E− such that df expands E+ and
contracts E− exponentially.

Let N be a real simply connected nilpotent Lie group with Lie algebra n. Let
ϕ be a hyperbolic automorphism of N , that is, all the eigenvalues of its derivative
A = (dϕ)e : n −→ n have absolute value different from 1. If ϕ(Γ) = Γ for some
lattice Γ of N (i.e. a cocompact discrete subgroup), then ϕ defines an Anosov diffeo-
morphism on the nilmanifold M = N/Γ, which is called an Anosov automorphism.
The subspaces E+ and E− are obtained by left translation of the eigenspaces of
eigenvalues of A of absolute value greater than 1 and less than 1, respectively, and
so the splitting is differentiable. If more in general, Γ is a cocompact discrete sub-
group of KnN , where K is any compact subgroup of Aut(N), for which ϕ(Γ) = Γ
(recall that ϕ acts on Aut(N) by conjugation), then ϕ also determines an Anosov
diffeomorphism of M = N/Γ. In this case M is called an infranilmanifold and is
finitely covered by the nilmanifold N/(N ∩ Γ).

In [S], S. Smale raised the problem of classifying all compact manifolds (up
to homeomorphism) which admit an Anosov diffeomorphism. Curiously enough,
the only known examples so far are of algebraic nature, namely Anosov auto-
morphisms of infranilmanifolds described above. It is even conjectured that any
Anosov diffeomorphism is topologically conjugate to an Anosov automorphism of
an infranilmanifold (see [Mr]). All this certainly highlights the problem of classify-
ing nilmanifolds admitting Anosov automorphisms, which are easily seen to be in
correspondence with the following very special class of nilpotent Lie algebras over
Q (see [L1, D, I, De]).

A rational Lie algebra nQ (i.e. with structure constants in Q) of dimension n is
said to be Anosov if it admits a hyperbolic automorphism A (i.e. all their eigenvalues
have absolute value different from 1) which is unimodular, that is, [A]β ∈ GLn(Z)
for some basis β of nQ, where [A]β denotes the matrix of A with respect to β.
We call a real Lie algebra Anosov if it admits a rational form which is Anosov.
Unimodularity and hyperbolicity are, together, a rather strong condition to be
satisfied by an automorphism of a nilpotent Lie algebra. This is confirmed for
instance by the result in [E, 3.5] which asserts that 2-step Anosov Lie algebras
live outside of an open dense subset in the moduli space of 2-step nilpotent Lie
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algebras. All this makes of Anosov Lie algebras very distinguished objects, and
general existence results are hard to obtain.

We prove in Section 3 a generalization of the construction given in [L1] suggested
by F. Grunewald, asserting that n⊕ ...⊕n (s times, s ≥ 2) is Anosov for any graded
nilpotent Lie algebra over R having a rational form. This in particular shows that
at least an explicit classification of Anosov Lie algebras would not be feasible.

It is not true in general that if a direct sum of real Lie algebras is Anosov then
each of the direct factors is so, as the example h3 ⊕ h3 shows, where h3 is the 3-
dimensional Heisenberg algebra (see [S]). However, we shall see in Section 3 that
this actually happens when one of the direct factors is maximal abelian.

The type of a nilpotent Lie algebra n is the r-tuple (n1, ..., nr) , where ni =
dimCi−1(n)/Ci(n) and Ci(n) is the central descending series. In Section 2, by
using that any Anosov Lie algebra admits an Anosov automorphism A which is
semisimple and some elementary properties of lattices, we obtain some obstructions
for the types allowed. Also, we strongly use the fact that the eigenvalues of A are
algebraic integers (even units), and prove that the types (5, 3) and (3, 3, 2), in
principle allowed as they satisfy the obstructions, are not possible for Anosov Lie
algebras (see Section 4).

2. Some obstructions

We give in this section some necessary conditions a real Lie algebra has to satisfy
in order to be Anosov (see [M1]).

Proposition 2.1. Let n be a real nilpotent Lie algebra which is Anosov. Then there
exist a decomposition n = n1⊕ ...⊕nr satisfying Ci(n) = ni+1⊕ ...⊕nr, i = 0, ..., r,
and a hyperbolic A ∈ Aut(n) such that

(i) Ani = ni for all i = 1, ..., r.
(ii) A is semisimple (in particular A is diagonalizable over C).

(iii) For each i, there exists a basis βi of ni such that [Ai]βi ∈ SLni(Z), where
ni = dim ni and Ai = A|ni .

Proof. Let β be a Z-basis of n for which there is a hyperbolic A ∈ Aut(n) satisfying
[A]β ∈ GLn(Z). By using that Aut(n) is a linear algebraic group, it is proved in
[AS, Section 2] that we can assume that A is semisimple. Thus the existence of
the decomposition satisfying (i) follows from the fact that the subspaces Ci(n) are
A-invariant.

If β = {X1, ..., Xn} then the discrete (additive) subgroup

nZ =

{
n∑

i=1

aiXi : ai ∈ Z
}

of n is closed under the Lie bracket of n and A-invariant, and Ci(nZ) is a discrete
subgroup of Ci(n) of maximal rank. Since ACi(nZ) = Ci(nZ) for any i we have
that A induces an invertible map

Ci−1(nZ)/Ci(nZ) 7→ Ci−1(nZ)/Ci(nZ),

and it follows from Ci(nZ) ⊗ R = Ci(n) that Ci−1(nZ)/Ci(nZ) ' Zni is a discrete
subgroup of Ci−1(n)/Ci(n) ' ni which is leaved invariant by A, proving the exis-
tence of the basis βi of ni in (iii). Recall that by considering A2 rather than A if
necessary, we can assume that detAi = 1 for all i. �
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Let n be a nilpotent Lie algebra over K, where K is R, Q or C.

Definition 2.2. Consider the central descendent series of n defined by C0(n) = n,
Ci(n) = [n, Ci−1(n)]. When Cr(n) = 0 and Cr−1(n) 6= 0, n is said to be r-step
nilpotent, and we denote by (n1, ..., nr) the type of n, where

ni = dimCi−1(n)/Ci(n).

We also take a decomposition n = n1 ⊕ ...⊕ nr, a direct sum of vector spaces, such
that Ci(n) = ni+1 ⊕ ...⊕ nr for all i.

Proposition 2.3. Let n be a real r-step nilpotent Lie algebra of type (n1, ..., nr).
If n is Anosov then at least one of the following is true:

(i) n1 ≥ 4 and ni ≥ 2 for all i = 2, ..., r.
(ii) n1 = n2 = 3 and ni ≥ 2 for all i = 3, ..., r.

In particular, dim n ≥ 2r + 2.

Proof. We know from Proposition 2.1 that Ai ∈ SLni(Z) is hyperbolic, which im-
plies that ni ≥ 2 for any i. Assuming (i) does not hold means then that n1 = 3.
If n2 = 2 and {λ1, λ2, λ3} are the eigenvalues of A1 then the eigenvalues of A2 are
of the form λiλj , say {λ1λ2, λ1λ3}, and hence λ1 = λ2

1λ2λ3 = 1, which contradicts
the fact that A1 is hyperbolic. This implies that n2 = 3. �

In [L1, Question (ii)] there are examples of real Anosov Lie algebras of type
(4, 2, ..., 2) for any r ≥ 2. We shall prove in Section 4 that in part (ii) of the above
proposition one actually needs n3 ≥ 3. Also, we do not know of any example of
type of the form (3, 3, ...).

3. Abelian factors and a general construction

An abelian factor of a Lie algebra n is an abelian ideal a for which there exists
an ideal ñ of n such that n = ñ⊕ a (i.e. [ñ, a] = 0). Let m(n) denote the maximum
dimension over all abelian factors of n. If z is the center of n then the maximal
abelian factors are precisely the linear direct complements of z ∩ [n, n] in z, that is,
those subspaces a ⊂ z such that z = z ∩ [n, n]⊕ a. Therefore

m(n) = dim z− dim z ∩ [n, n].

Theorem 3.1. Let n be a rational Lie algebra with m(n) = r and let n = ñ ⊕ Qr
be any decomposition in ideals, that is, Qr is a maximal abelian factor of n. Then
n is Anosov if and only if ñ is Anosov and r ≥ 2.

Proof. If ñ is Anosov and r ≥ 2 then we consider the automorphism A of n defined
on ñ as an Anosov automorphism of ñ and on Qr as any hyperbolic matrix in
GLr(Z). Thus A is an Anosov automorphism of n.

Conversely, let A be an Anosov automorphism of n. As in the proof of Proposi-
tion 2.1 we may assume that A is semisimple and consider the discrete (additive)
subgroup

nZ =

{
n∑

i=1

aiXi, ai ∈ Z
}

which is A-invariant. Since the center z of n and z1 = z ∩ [n, n] are both leaved
invariant by A, there exist A-invariant subspaces V and a ⊂ z such that

n = V ⊕ z = V ⊕ z1 ⊕ a.
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Thus a is a maximal abelian factor, dim a = r and A has the form

A =
[
A1

A2
A3

]
, A1 = A|V , A2 = A|z1 , A3 = A|a.

The subgroup z(nZ) = {X ∈ nZ : [X,Y ] = 0 ∀ Y ∈ nZ} is also A-invariant and it is a
lattice of z (i.e. a discrete subgroup of maximal rank) since for any Z ∈ z there exist
k ∈ Z such that kZ ∈ z(nZ) and Z = 1

k (kZ), that is, z(nZ)⊗Q = z. Since nZ/z(nZ)
is A-invariant and (nZ/z(nZ))⊗Q ' V we get that A1 is unimodular. Analogously,
A2 and A3 are unimodular since z1(Z) = z(nZ) ∩ [nZ, nZ] and z(nZ)/z1(Z) are also
discrete subgroups of maximal rank of z1 and z/z1 ' a, respectively.

The hyperbolicity of A guaranties the one of A1, A2 and A3 and so ñ ' V ⊕ z1

is Anosov and dim a ≥ 2, as we wanted to show. �

We have recently became aware that there is another proof for Theorem 3.1 in
[G, Proposition 7].

We now give a simple procedure to construct explicit examples of Anosov Lie
algebras. This result is a generalization of [L1, Theorem 3.1] suggested by F.
Grunewald.

A Lie algebra n is said to be graded (over N) if there exist subspaces ni of n such
that

n = n1 ⊕ n2 ⊕ ...⊕ nk and [ni, nj ] ⊂ ni+j .

Equivalently, n is graded when there are nonzero subspaces nd1 , ..., ndr , d1 < ... <
dr, such that n = nd1 ⊕ ... ⊕ ndr and if 0 6= [ndi , ndj ] then di + dj = dk for some k
and [ndi , ndj ] ⊂ ndk . Recall that any graded Lie algebra is necessarily nilpotent.

Theorem 3.2. Let nQ be a graded rational Lie algebra, and consider the direct
sum ñQ = nQ ⊕ ... ⊕ nQ (s times, s ≥ 2). Then the real Lie algebra ñ = ñQ ⊗ R is
Anosov. In other words, if n is a graded real Lie algebra admitting a rational form,
then ñ = n⊕ ...⊕ n (s-times, s ≥ 2) is Anosov.

Remark 3.3. We note that the existing Anosov rational form of ñ is not necessarily
nQ ⊕ ...⊕ nQ, as the case h3 ⊕ h3 shows.

Proof. Let {X1, ..., Xn} be a Z-basis of nQ compatible with the gradation nQ =
nQd1
⊕ ...⊕ nQdr , that is, a basis with integer structure constants and such that each

Xi ∈ nQdj for some j. We will denote this basis by {Xl1, ..., Xln} when we need to
make clear that it is a basis of the l-th copy of nQ in ñQ, so the Lie bracket of ñQ

is given by [Xli, Xl′j ] = 0 for all l 6= l′, and for any l = 1, ..., s

(1) [Xli, Xlj ] =
n∑

k=1

mk
ijXlk, mk

ij ∈ Z.

Every nonzero λ ∈ R defines an automorphism Aλ of nQ ⊗ R by

Aλ|nQdi⊗R = λdiI.

Let B be a matrix in GLs(Z) with eigenvalues λ1, ..., λs and assume that all of them
are real numbers different from ±1 (we are using here that s ≥ 2). This determines
an automorphism A of ñ in the following way: A leaves the decomposition ñQ =
(nQ ⊗ R) ⊕ ... ⊕ (nQ ⊗ R) invariant and on the l-th copy of nQ ⊗ R coincides with
Aλl .
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Consider the new basis of ñ defined by

β = {X11 +X21 + ...+Xs1, λ1X11 + λ2X21 + ...+ λsXs1, ...,

λs−1
1 X11 + λs−1

2 X21 + ...+ λs−1
s Xs1, ..., ..., X1n +X2n + ...+Xsn,

λ1X1n + λ2X2n + ...+ λsXsn, ..., λ
s−1
1 X1n + λs−1

2 X2n + ...+ λs−1
s Xsn}.

In order to prove that β is also a Z-basis we take two generic elements of it, say
X = λt1X1i + λt2X2i + ... + λtsXsi and Y = λu1X1j + λu2X2j + ... + λusXsj for
some 0 ≤ t, u ≤ s − 1 and 1 ≤ i, j ≤ n. Since the λl’s are all roots of the
characteristic polynomial f(x) = a0 + a1x+ ...+ as−1x

s−1 + xs of B (with ai ∈ Z
and a0 = ±1), there exist b0, ..., bs−1 ∈ Z (independent from l) such that λt+ul =
b0 + b1λl + ...+ bs−1λ

s−1
l for any l = 1, ..., s. Now, by using (1) we obtain that

[X,Y ] = λt+u1 [X1i, X1j ] + ...+ λt+us [Xsi, Xsj ]

=
n∑

k=1

mk
ijλ

t+u
1 X1k + ...+

n∑

k=1

mk
ijλ

t+u
s Xsk

=
n∑

k=1

mk
ijb0(X1k + ...+Xsk) +

n∑

k=1

mk
ijb1(λ1X1k + ...+ λsXsk)

+...+
n∑

k=1

mk
ijbs−1(λs−1

1 X1k + ...+ λs−1
s Xsk),

showing that β is also a Z-basis of ñ. Thus the linear combinations over Q of
β determine a rational form of ñ, denoted by nQβ , which will be now showed to
be Anosov. Indeed, it is easy to see that, written in terms of β, the hyperbolic
automorphism A of ñ has the form

[A]β =



B′

. . .
B′


 ∈ GLns(Z),

where

B′ =




0 0 −a0

1 0 −a1

0 1
. . .

0 0 1 −as−1



∈ GLs(Z)

is the rational form of the matrix B, concluding the proof of the theorem. �

Remark 3.4. Different choices of matrices B in the above proof can eventually give
non-isomorphic Anosov rational forms of ñ, as in the case ñ = h3⊕h3 and ñ = l4⊕l4
(see [L2]).

Recall that two-step nilpotent Lie algebras are graded, so Theorem 3.2 shows
that an explicit classification of Anosov Lie algebras up to isomorphism is a wild
problem, not only in the rational case but even in the real case (see [L1] for further
information).
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Remark 3.5. The explicit examples of real Anosov Lie algebras in the literature so
far which are not covered by Theorem 3.2 are the following: the free k-step nilpotent
Lie algebras on n generators with k < n (see [D], and also [DeM, De] for a different
approach); certain k-step nilpotent Lie algebras of dimension d+

(
d
2

)
+ ...+

(
d
k

)
with

d ≥ k2 (see [F]); the 2-step nilpotent Lie algebra of type (d,
(
d
2

)− 1) with center of
codimension d for d ≥ 5 (see [DeD]); certain 2-step algebras associated with graphs
(see [DM]), where h is attained; and the Lie algebra in [L1, Example 3.3]). For the
known examples of infranilmanifolds which are not nilmanifolds and admit Anosov
automorphisms we refer to [M2] and the references therein.

The signature of an Anosov diffeomorphism is the pair of natural numbers
{p, q} = {dimE+,dimE−}. It is known that signature {1, n − 1} is only possi-
ble for torus and their finitely covered spaces: compact flat manifolds (see [Fr]).

If dim nQ = n then the signature of the Anosov automorphism of ñQ ⊗ R (ñQ =
nQ ⊕ ...⊕ nQ, s times) in the proof of Theorem 3.2 is {np′, nq′}, p′ + q′ = s, where
p′, q′ are the number of eigenvalues of B ∈ GLs(Z) having module greater and
smaller than 1, respectively. In the nonabelian case n is necessarily ≥ 3 and so the
signature {2, q} is not allowed for this construction. We do not actually know of
any nonabelian example of signature {2, q}. We may choose {p′, q′} = {1, s − 1}
and nQ ⊗ R = h3 in order to obtain signature {3, 3(s− 1)} for any s ≥ 2.

4. Two nonexistence results

In this section, we give two examples on how one can use algebraic number
theory to prove that certain types are not allowed for Anosov Lie algebras. Recall
that eigenvalues of an Anosov automorphism are algebraic integers. An overview
on several basic properties of algebraic numbers is given in the Appendix.

Let n be a real nilpotent Lie algebra which is Anosov, and let A and n = n1⊕n2⊕
· · · ⊕ nr be as in Proposition 2.1. If Ai = A|ni then the corresponding eigenvalues
λ1, . . . , λni , are algebraic units such that 1 < dgrλi ≤ ni and λ1...λni = 1. This
follows from the fact that [Ai]βi ∈ SLni(Z) and so its characteristic polynomial
pAi(x) ∈ Z[x] is a monic polynomial with constant coefficient a0 = (−1)n detAi =
±1, satisfying pAi(λj) = 0 for all j = 1, . . . , ni.
Case (5, 3). We shall prove that there are no Lie algebras of this type with no
abelian factor admitting a hyperbolic automorphism.

Suppose that A is as in Proposition 2.1. Hence as we have already pointed out,
the eigenvalues of A1, λ1, . . . , λ5 are algebraic integers with 2 ≤ dgrλj ≤ 5 for all
1 ≤ j ≤ 5. If two of them coincide then, after reordering, we can assume that
λ1 = λ2. This implies that 2 ≤ 2 dgrλ1 ≤ 5 and therefore dgrλ1 = dgrλ2 = 2.
From this it is easy to see that there exist i ∈ {3, 4, 5} such that dgrλi = 1,
contradicting the hyperbolicity of A1. Therefore, we obtain that λi 6= λj , for all
i 6= j. In this situation it is easy to see that

(2) if ] ({Xi, Xj} ∩ {Xk, Xl}) = 1 then [Xi, Xj ] /∈ C[Xk, Xl].

Moreover, since 2 ≤ dgrµk ≤ 3 we have that µk 6= µl for all 1 ≤ k 6= l ≤ 3 and
then for all i, j there exist k such that [Xi, Xj ] ∈ CZk.
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On the other hand, it is clear that we can split the set of Lie algebras of this
type according to the following condition:

(3) There are two disjoint pairs of {Xi} such that the corresponding
Lie brackets are linearly independent.

Note that if n does not satisfy this condition, we will have that

(4) {Xi, Xj} ∩ {Xl, Xk} = ∅ ⇒ [Xi, Xj ] ∈ C[Xl, Xk].

If (4) holds, we can assume without any lost of generality that

(5) [X1, X2] = Z1 [X1, X3] = Z2,

and for Z3 we have two possibilities

a) [X1, X4] = Z3, b) [X2, X3] = Z3.

We will now show that any of this assumptions leads to a contradiction.
Concerning a), we have that [X5, Xk] 6= 0 for some 1 ≤ k ≤ 4, but since λi 6= λj ,

when i 6= j it is clear that k 6= 1. We can assume then that k = 2, since every
other choice (i.e. k = 3, 4) is entirely analogous. Now, since {5, 2} ∩ {1, 3} = ∅,
by (4) we have that [X5, X2] ∈ CZ2, and analogously, {5, 2} ∩ {1, 4} = ∅ and then
[X5, X2] ∈ CZ3, giving the contradiction [X5, X2] = 0.

In case b) λ1λ2λ3 = 1, and therefore λ4λ5 = 1. Thus [X5, X4] = 0, and we may
assume that 0 6= [X4, X1] ∈ CZ3 and 0 6= [X5, X2] ∈ CZ2. Therefore, λ5λ2 = λ1λ3

and λ4λ1 = λ2λ3, and since λ4λ5 = 1, we get to the contradiction λ3 = 1.
We can assume then that n satisfies condition (3) and thus without any lost of

generality we can suppose that

(6) [X1, X2] = Z1 [X3, X4] = Z2.

Note that we can not have [X5, Xj ] = Z3 because this would imply λj = 1 by
using that λ1 . . . λ5 = 1. Let us say then that [X5, Xj ] = aZ1, a 6= 0. From (2) we
have that j 6= 1, 2, and since both cases j = 3 and j = 4 are completely analogous,
we will just analyze the case j = 3. This is

[X1, X2] = Z1, [X3, X4] = Z2, [X5, X3] = aZ1.

Also, since Z3 ∈ [n, n] there is 1 ≤ k, k′ ≤ 4 such that [Xk, Xk′ ] = Z3, and by the
above observations, it is easy to see that

{k, k′} =




{1, 3} or (equivalently) {2, 3}

{1, 4} or (equivalently) {2, 4}
To finish the proof, we will see that both cases leads to a contradiction. The

idea is to show that one of the λi is equal to one of the µj , and since the conjugated
numbers are uniquely determined, this implies that every µj appears as a λk. From
here it is easy to check in both cases that this is not possible.

Indeed, if [X1, X3] = Z3, since 1 = λ5λ3λ3λ4λ1λ3, we have that λ2
3 = λ2.

Therefore, λ5λ3 = λ1λ2 = λ1λ
2
3 and so λ5 = λ1λ3 = µ3. Hence, there exists i

such that µ1 = λ1λ
2
3 = λi. It is clear that i 6= 1, 2, 3, 5 and if λ1λ

2
3 = λ4, since

1 = λ1λ2λ3λ4λ1λ3 = λ2
1λ

4
3λ4, then 1 = λ3

1λ
6
3 = µ3

1 contradicting the fact that A2 is
hyperbolic.

Now, if [X1, X4] = Z3, then
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(i) 1 = λ5λ3λ3λ4λ1λ4, and from there λ2 = λ3λ4 = µ2, and
(ii) 1 = λ1λ2λ3λ4λ1λ4, hence λ5 = λ1λ4 = µ3.

Therefore, as we have observed before, there is k such that µ1 = λk. This implies
that λ1λ2 = λ5λ3 = λk for some 1 ≤ k ≤ 5. Again, it is clear that k 6= 1, 2, 3, 5, and
if λ1λ2 = λ5λ3 = λ4, then by (ii) λ1λ4λ3 = λ5λ3 = λ4 and hence λ1λ3 = 1. From
this, using that 1 = detA2 = λ4λ2λ5, we obtain that λ1λ2 = λ5λ3 = 1

λ2λ4
. 1
λ1
, or

equivalently λ2
4 = (λ1λ2)2 = 1

λ4
and then λ4 = 1 contradicting the fact that A1 is

hyperbolic, and concluding the proof of case (5, 3).
Case (3, 3, 2). We will show in this case that there is no Anosov Lie algebra. We
will begin by noting that since n2 has dimension three, we may assume that

[X1, X2] = Y3, [X1, X3] = Y2, [X2, X3] = Y1,

where {X1, X2, X3} and {Y1, Y2, Y3} are basis of (n1)C and (n2)C of eigenvectors of
A1 and A2, respectively.

It follows that

(7) [X1, Y1] = 0, [X2, Y2] = 0, [X3, Y3] = 0,

since any of them would be an eigenvector of A of eigenvalue λ1λ2λ3 = 1 and then
A3 would not be hyperbolic.

On the other hand, since Z1, Z2 ∈ n3 we have that for some i, j, k, l

[Xi, Yj ] = Z1, [Xk, Yl] = Z2,

and thus i 6= k. Indeed, if i = k then j 6= l and by (7) j, l 6= i. This would imply
that λi.λiλj .λi.λiλl = 1 and so λ3

i = 1, a contradiction.
Hence we can assume that

[X1, Yj ] = Z1 [X2, Yl] = Z2.

For the pairs (j, l) we have four possibilities as follows: (2, 1), (2, 3), (3, 1) and (3, 3).
In order to discard some of them, we recall that since dim n1 = 3, λi 6= λj for
all 1 ≤ i, j ≤ 3 and from this, it follows that (j, l) 6= (3, 1) or (2, 3). Indeed, if
(j, l) = (3, 1) (or (2, 3)) we have that λ1λ1λ2λ2λ2λ3 = 1 (or λ1λ1λ3λ2λ1λ2 = 1).
Hence λ1λ

2
2 = 1 (or λ2

1λ2 = 1) and we get to the contradiction λ2 = λ3 (or λ1 = λ3).
It is also easy to see that (j, l) 6= (3, 3) since this implies λ1λ1λ2λ2λ1λ2 and

so λ1λ2 = 1, contradicting the fact that A2 is hyperbolic. Finally, assume that
(j, l) = (2, 1), that is, in nC we have at least the following non trivial brackets:

(8)
[X1, X2] = Y3, [X1, X3] = Y2, [X2, X3] = Y1,

[X1, Y2] = Z1, [X2, Y1] = Z2.

Let λ1 = λ and λ2 = ν, then the matrix of A is given by

[A] =

[
B
B−1

λ
ν

ν
λ

]
, where B =

[
λ
ν

1
λν

]
,

and B is conjugated to an element of SL3(Z). Thus λ
ν is an algebraic unit with

|λν | 6= 1 and dgr λν = 2. It is easy to see that under such conditions λ
ν is necessarily

a real number. Since the possibilities for ν are either ν = λ or 1
|λ|2 , we obtain that

λ, ν ∈ R, which is a contradiction by the following lemma applied to λ2, ν2. This
concludes the proof of this case.
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Lemma 4.1. Let λ1, λ2 be two positive totally real algebraic integers of degree 3.
If λ1 and λ2 are conjugated and units then λ1

λ2
can never have degree two.

Proof. Let λ1 and λ2 be as in the lemma, then the minimal polynomial of λi is
given by mλi(x) = (x − λ1)(x − λ2)(x − λ3), where λ1λ2λ3 = ±1. Since mλi has
its coefficients in Z, we have that

λ1 + λ2 + λ3 ∈ Z, 1
λ1

+
1
λ2

+
1
λ3
∈ Z,

and hence

(9) λ2
1 + λ2

2 + λ2
3 = d ∈ Z.

On the other hand, if we assume that λ1/λ2 has degree two then λ1
λ2

+ λ2
λ1

= a ∈ Z,
and thus

λ1

λ2
=
a

2
+

√
a2

4
− 1 and

λ2

λ1
=
a

4
−
√
a2

2
− 1.

Recall that a ≥ 2. We also note that λ1
λ2

= ±λ2
1λ3 and λ2

λ1
= ±λ2

2λ3, and hence

λ2
1 = ± 1

λ3

(
a
2 +

√
a2

4 − 1
)

and λ2
2 = ± 1

λ3

(
a
2 −

√
a2

4 − 1
)

. By replacing this in

(9) we obtain ± 1
λ3
a+ λ2

3 = d, or equivalently,

λ3
3 − λ3d± a = 0.

This means that p(x) = x3−dx±a is a monic polynomial of degree 3 with coefficient
in Z which is annihilated by λ3. Hence it is equal to the minimal polynomial of
λ3 and then a = ±1, which is a contradiction since as we have observed above,
a ≥ 2. �

We would like to point out that in this lemma, we are strongly using the fact
that λ1 and λ2 are totally real algebraic numbers and units. Indeed, if we consider
p(x) = x3 − 2, the roots of p are

{
λ1 = 21/3, λ2 = ω21/3, λ3 = ω221/3

}
, where

ω2 +ω+ 1 = 0. Since x3− 2 is indecomposable over Q, we have that dgrλi = 3 for
all i = 1, 2, 3, and however λ2.

1
λ1

= ω has degree two.

5. Appendix: Algebraic numbers

We give in this section a short summary of some results about algebraic numbers
over Q that are used in Section 4. We are mainly following [La, Chapter V]. Note
that we will omit information on numberfields since we are not going to need it.

An element λ ∈ C is called algebraic over Q if there exist a polynomial p(x) ∈
Q[x] such that p(λ) = 0. It is easy to see that the set D of all such polynomials
form an ideal in Q[x] and since this is a principal ideal domain, D is generated
by a single polynomial. This polynomial can be chosen to be monic, and in that
case it is uniquely determined by λ and will be called the minimal polynomial of λ,
denoted by mλ(x). Therefore, if we have an algebraic number λ then we can define
the degree of λ as the degree of mλ(x). It will be denoted by dgrλ. The minimal
polynomial mλ(x) is irreducible over Q and λ is not a double root of mλ(x).

If λ 6= µ are two algebraic numbers, we say that they are conjugated if mλ(µ) = 0.
Note that the numbers which are conjugated to λ are uniquely determined by λ
and have the same degree.

An algebraic number λ is said to be an algebraic integer if there exists a monic
polynomial p(x) ∈ Z[x] such that p(λ) = 0. It can be seen that in this case,
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mλ(x) ∈ Z[x], and moreover, these conditions are actually equivalent. An algebraic

number is called totally real if mλ(x) has only real roots, that is, mλ(x) =
r∏

i=1

(x−λi)
with λi ∈ R, λ1 = λ. If λ is a totally real algebraic number with dgrλ = r, set

Aλ =

[
λ1

. . .
λr

]
. The characteristic polynomial of Aλ is mλ(x) and then the

rational form of Aλ is given by



0 0 ... 0 −a0
1 0 ... 0 −a1
0 1 0 −a2

...
. . .

...
0 1 −ar−1


 ,

where mλ(x) = xr + ar−1x
r−1 + · · · + a1x + a0. If λ is an algebraic integer then

ai ∈ Z for all i = 0, . . . , r − 1 and then this shows that Aλ is conjugated to an
element in GLr(Z).

Conversely, if A =

[
λ1

. . .
λr

]
is conjugated to an element of GLr(Z), then if

pA(x) is the characteristic polynomial of A, pA(x) ∈ Z[x], and therefore λi is an
algebraic integer for all i = 1, . . . , r. Concerning the degree of the λi’s as algebraic
numbers in such a case, we can only say that 1 ≤ dgrλi ≤ r. Moreover, if λi = λj
for some i 6= j, and since λ is not a double root of mλ(x), we will have that
m2
λi

(x)|pA(x) and hence 1 ≤ 2 dgrλi ≤ r.
If λ is an algebraic integer, we say that λ is a unit if 1/λ is an algebraic integer as

well. If it is so, then the constant coefficient a0 of mλ(x) is (−1)n, where n = dgrλ.
Conversely, if a0 = ±1 then λ is a unit.
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