Restriction of the Fourier transform to bidimensional anisotropically homogeneous hypersurfaces[‡]

E. Ferreyra, M. Urciuolo

FaMAF-Ciem, Universidad Nacional de Córdoba-CONICET. Medina Allende s/n, Ciudad Universitaria, 5000, Córdoba, Argentina e-mail: eferrey@mate.uncor.edu, urciuolo@mate.uncor.edu

July 3, 2006

Abstract

For $x = (x_1, x_2) \in \mathbb{R}^2$ and $\beta_1, \beta_2 > 1$, let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ be defined by $\varphi(x) = |x_1|^{\beta_1} + |x_2|^{\beta_2}$, let *B* be the open unit ball in \mathbb{R}^2 and let $\Sigma = \{(x, \varphi(x)) : x \in B\}$. For $f \in S(\mathbb{R}^3)$, let $\mathcal{R}f : \Sigma \to \mathbb{C}$ be defined by

$$(\mathcal{R}f)(x,\varphi(x)) = \widehat{f}(x,\varphi(x)) \qquad x \in B,$$

where \widehat{f} denotes the usual Fourier transform of f. Let σ be the Borel measure on Σ defined by $\sigma(A) = \int_B \chi_A(x, \varphi(x)) dx$ and let E be the type set for the operator \mathcal{R} , i.e, the set of the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in [0, 1] \times [0, 1]$ for which there exists c > 0 such that $\left\| \widehat{f} \right\|_{L^q(\Sigma)} \leq c \| f \|_{L^p(\mathbb{R}^3)}$ for all $f \in S(\mathbb{R}^3)$. In this paper we give necessary conditions for $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$. We also obtain new points in E.

^{*}Partially supported by Agencia Nacional de Promoción Científica y Tecnológica, Agencia Córdoba Ciencia, CONICET and Secyt-UNC.

[†]2000 Mathematics subject classification: Primary 42B10, 26D10.

[‡]Key words: Restriction theorems, Fourier transform.

1 Introduction

For $x = (x_1, x_2) \in \mathbb{R}^2$ and $1 < \beta_1 \leq \beta_2$, let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ be defined by $\varphi(x) = |x_1|^{\beta_1} + |x_2|^{\beta_2}$, let *B* be the open unit ball in \mathbb{R}^2 and let $\Sigma = \{(x, \varphi(x)) : x \in B\}$. For $f \in S(\mathbb{R}^3)$, let $\mathcal{R}f : \Sigma \to \mathbb{C}$ be defined by

$$(\mathcal{R}f)(x,\varphi(x)) = \widehat{f}(x,\varphi(x)) \qquad x \in B,$$

where \hat{f} denotes the usual Fourier transform of f defined by

$$\widehat{f}(\xi) = \int f(u) e^{-i\langle u,\xi \rangle} du$$

Let σ be the Borel measure on Σ defined by $\sigma(A) = \int_B \chi_A(x, \varphi(x)) dx$ and let E be the type set for the operator \mathcal{R} , i.e. the set of the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in$ $[0,1] \times [0,1]$ for which there exists c > 0 such that $\left\| \widehat{f} \right\|_{L^q(\Sigma)} \leq c \left\| f \right\|_{L^p(\mathbb{R}^3)}$ for all $f \in S(\mathbb{R}^3)$, where the spaces $L^p(\mathbb{R}^3)$ and $L^q(\Sigma)$ are taken with respect to the Lebesgue measure in \mathbb{R}^3 and the measure σ respectively.

In the general n-dimensional case, the $L^p(\mathbb{R}^{n+1}) - L^q(\Sigma)$ boundedness properties of the restriction operator \mathcal{R} have been studied by different authors. A very interesting survey about the recent progress in this research area con be found in [9]. The $L^p(\mathbb{R}^{n+1}) - L^2(\Sigma)$ restriction theorems for the sphere was proved by Stein in 1967, for $1 \leq p < \frac{4n+4}{3n+4}$; for $1 \leq p < \frac{2n+4}{n+4}$ by [11] and then in the same year by Stein for $1 \leq p \leq \frac{4n+4}{3n+4}$. The last argument has been used in several related contexts by Strichartz in [8] and Greenleaf in [6] . This method provides a general tool to obtain, from suitable estimates for $\hat{\sigma}, L^p(\mathbb{R}^{n+1}) - L^2(\Sigma)$ estimates for \mathcal{R} . Moreover, a general theorem, due to Stein, holds for smooth enough hypersurfaces with never vanishing Gaussian curvature ([7], pp.386). There it is shown that, in this case, $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ if $\frac{n+4}{2n+4} \leq \frac{1}{p} \leq 1$ and $\frac{1}{q} \geq -\frac{n+2}{n}\frac{1}{p} + \frac{n+2}{n}$, also that this last relation is the best possible and that no restriction theorem of any kind can hold for $f \in L^p(\mathbb{R}^{n+1})$ when $\frac{1}{p} \leq \frac{n+2}{2n+2}$ ([7], pp.388). The cases $\frac{n+2}{2n+2} < \frac{1}{p} < \frac{n+4}{2n+4}$ are not completely solved. The best results for surfaces with non vanishing curvature like the paraboloid and the sphere are due to Terence Tao [10]. Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in \mathbb{R}^3 are obtained in [5].

Turning back to our problem, the type set E is studied in [1]. We prove results about E that improve those obtained by Dellanegra. In section 2 we obtain a better necessary condition, wich is a consequence of the characterization of the type set concerning the convolution operatos with σ , that is described in [4]. In section 3, using results obtained in [2] and [3], we obtain new points that belong to E.

$\mathbf{2}$ **Necessary conditions**

It is well known that for a manifold Σ as above, we have that if $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ then $\frac{1}{q} \ge -\frac{2}{p} + 2$. A standard homogeneity argument gives the following result

Proposition 1 If
$$\left(\frac{1}{p}, \frac{1}{q}\right) \in E$$
 then

$$\frac{1}{q} \ge -\frac{\beta_1 + \beta_2 + \beta_1 \beta_2}{\beta_1 + \beta_2} \frac{1}{p} + \frac{\beta_1 + \beta_2 + \beta_1 \beta_2}{\beta_1 + \beta_2}.$$
(1)

Proof. Let

$$t \cdot (x_1, x_2) = \left(t^{\beta_2} x_1, t^{\beta_1} x_2 \right),$$

$$t \circ (x_1, x_2, x_3) = \left(t^{\beta_2} x_1, t^{\beta_1} x_2, t^{\beta_1 \beta_2} x_3 \right).$$

For a fixed $l \in \mathbb{Z}$ we define

$$A_0 = \left\{ x = (x_1, x_2) \in \mathbb{R}^2 : 2^{l-1} \le ||x|| \le 2^l \right\}$$
(2)

where $||(x_1, x_2)|| = |x_1|^{\frac{1}{\beta_2}} + |x_2|^{\frac{1}{\beta_1}}$, and for $j \in \mathbb{N}$

$$A_j = 2^{-j} . A_0. (3)$$

We choose $l \in \mathbb{Z}$ such that $\left\{ x \in \mathbb{R}^2 : ||x|| \le 2^l \right\} \subset B$. We denote

$$\Sigma_{j} = \left\{ (x, \varphi(x)) \in \mathbb{R}^{3} : x \in A_{j} \right\}.$$

and, for $f \in S(\mathbb{R}^3)$ we define $\mathcal{R}^{A_j} f = \widehat{f}_{|\Sigma_j|}$ and $f_{2^j}(x) = f(2^j \circ x)$. Thus

$$\begin{aligned} \left\| \mathcal{R}^{A_{j}} f \right\|_{L^{q}(\Sigma_{j})} &= 2^{-j\frac{\beta_{1}+\beta_{2}}{q}} \left(\int_{A_{0}} \left| \widehat{f} \left(2^{-j}.x, \varphi \left(2^{-j}.x \right) \right) \right|^{q} dx \right)^{\frac{1}{q}} \\ &= 2^{-j\left(\frac{\beta_{1}+\beta_{2}}{q} - (\beta_{1}+\beta_{2}+\beta_{1}\beta_{2})\right)} \left\| \mathcal{R}^{A_{0}} f_{2^{j}} \right\|_{L^{q}(\Sigma_{0})} \end{aligned}$$

From this, it follows that

$$\left\| \mathcal{R}^{A_{j}} \right\|_{p,q} = 2^{-j \left(\frac{\beta_{1}+\beta_{2}}{q} - (\beta_{1}+\beta_{2}+\beta_{1}\beta_{2}) + \frac{\beta_{1}+\beta_{2}+\beta_{1}\beta_{2}}{p} \right)} \left\| \mathcal{R}^{A_{0}} \right\|_{p,q}$$
(4)

Now, since $\|\mathcal{R}^{A_j}\|_{p,q} \leq \|\mathcal{R}\|_{p,q}$ the proposition follows. Let T be the given by $Tf = \sigma * f, f \in S(\mathbb{R}^3)$ and let E_{σ} be the associated type set, i.e. the set of the pairs $\left(\frac{1}{p}, \frac{1}{q}\right) \in [0, 1] \times [0, 1]$ for which there exists c > 0 such that $||Tf||_{L^q(\mathbb{R}^3)} \leq c ||f||_{L^p(\mathbb{R}^3)}$ for all $f \in S(\mathbb{R}^3)$. In [3] we give neccesary conditions for $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\sigma}$. The next proposition relates the type sets E and E_{σ} .

Proposition 2 If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ for some $1 \leq p \leq 2$ and $1 \leq q \leq \infty$, then $\left(\frac{3p-2}{2p},\frac{1}{2}\right) \in E_{\sigma}.$

Proof. If for some $1 \leq p \leq 2$ and $1 \leq q \leq \infty$ we have $\|\mathcal{R}f\|_{L^q(\Sigma)} \leq$ $c_p \|f\|_{L^p(\mathbb{R}^3)}$ then $\widehat{\sigma} \in L^{p'}(\mathbb{R}^3)$. So

$$\begin{split} \|\sigma * f\|_{2} &= \left\|\widehat{\sigma * f}\right\|_{2} = \left\|\widehat{\sigma f}\right\|_{2} = \left(\int_{\mathbb{R}^{3}} |\widehat{\sigma} (x)|^{2} \left|\widehat{f(x)}\right|^{2} dx\right)^{\frac{1}{2}} \\ &\leq \left(\int_{\mathbb{R}^{3}} |\widehat{\sigma} (x)|^{p'} dx\right)^{\frac{1}{p'}} \left(\int_{\mathbb{R}^{3}} \left|\widehat{f(x)}\right|^{2\left(\frac{p'}{2}\right)'} dx\right)^{\frac{1}{2\left(\frac{p'}{2}\right)'}} \\ &\leq c \left(\int_{\mathbb{R}^{3}} \left|\widehat{f(x)}\right|^{2\left(\frac{p'}{2}\right)'} dx\right)^{\frac{1}{2\left(\frac{p'}{2}\right)'}} \\ &= c \left\|\widehat{f}\right\|_{\frac{2p}{2-p}} \leq c \left\|f\right\|_{\frac{2p}{3p-2}}, \end{split}$$

and the proposition follows.

The following lemma is contained in Lemma 1 in [2].

Lemma 3 If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E_{\sigma}$ then $\frac{1}{q} \geq \frac{2\beta_2 + 1}{\beta_2 + 1} \frac{1}{p} - 1$.

From Proposition 2 and this lemma we obtain the following necessary condition.

Corollary 4 If $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ for some $1 \leq p \leq 2$ and $1 \leq q \leq \infty$, then $\frac{1}{p} \geq \frac{3\beta_2}{4\beta_2+2}$.

Proof. From Proposition 2 we know that if $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$ for some $1 \leq p \leq 2$ and $1 \leq q \leq \infty$, then $\left(\frac{3p-2}{2p}, \frac{1}{2}\right) \in E_{\sigma}$ but then by Lemma 3, $\frac{1}{2} \geq \frac{2\beta_2+1}{\beta_2+1}\frac{3p-2}{2p} - 1$ and then $\frac{1}{p} \geq \frac{3\beta_2}{4\beta_2+2}$.

Remark 5 In the article [3] we also obtain two additional necessary conditions, contained in Lemmas 2.1 and 2.2. Using these conditions, Proposition 2 and proceeding as in the Corollary 4, we get $\frac{1}{p} \geq \frac{2}{3}$ and $\frac{1}{p} \geq \frac{\beta_1\beta_2}{\beta_1\beta_2+\beta_1+\beta_2}$ respectively. The first inequality is a known result as we mentioned in the Introduction and the last inequality can also be obtained from Proposition 1, taking q = 1. The corollary adds, in some cases, necessary conditions not contained in the before mentioned results. For example, if we take $\beta_1 = 2$ and $\beta_2 = 5$ the corollary says $\frac{1}{p} \geq \frac{15}{22}$ and proposition 1, with q = 1 implies $\frac{1}{p} \geq \frac{10}{17}$. We note that $\frac{10}{17} < \frac{2}{3} < \frac{15}{22} < \frac{3}{4}$.

3 Sufficient Conditions

If V is a measurable set in \mathbb{R}^3 we denote $\Sigma^V = \{(x, \varphi(x)) : x \in V\}$ and σ^V the associated surface measure. Also, for $f \in S(\mathbb{R}^3)$, we define $\mathcal{R}^V f : \Sigma^V \to \mathbb{C}$ by

$$\left(\mathcal{R}^{V}f\right)\left(x,\varphi\left(x\right)\right) = \widehat{f}\left(x,\varphi\left(x\right)\right) \qquad x \in V,$$

we note that $\mathcal{R}^B = \mathcal{R}$ and $\Sigma^B = \Sigma$.

Remark 6 We take $l \in \mathbb{Z}$ such that $B \subset \{x \in \mathbb{R}^2 : ||x|| \le 2^l\}$. We define A_0 and A_j , $j \in \mathbb{N}$ by (2) and (3) respectively. If

$$\frac{1}{q} > -\frac{\beta_1+\beta_2+\beta_1\beta_2}{\beta_1+\beta_2}\frac{1}{p} + \frac{\beta_1+\beta_2+\beta_1\beta_2}{\beta_1+\beta_2}$$

and

$$\left\| \mathcal{R}^{A_0} f \right\|_{L^q\left(\Sigma^{A_0}\right)} \le c_p \left\| f \right\|_{L^p(R^3)},$$

for all $f \in S(\mathbb{R}^3)$, then, from (4), by summing over $j \in \mathbb{N} \cup \{0\}$, we obtain that $\left(\frac{1}{p}, \frac{1}{q}\right) \in E$.

Remark 7 In [5], following a Strichartz's theorem (see [8]), we prove that if

$$\left| \left(\sigma^V \right)^{\wedge} \left(\xi \right) \right| \le A \left(1 + |\xi_3| \right)^{-1}$$

for some $\tau > 0$ and for all $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3$, then

$$\left\|\mathcal{R}^{V}\right\|_{L^{p}(\mathbb{R}^{3}), L^{2}(\Sigma^{V})} \leq c_{\tau} A^{\frac{1}{2(1+\tau)}}$$

for $p = \frac{2+2\tau}{2+\tau}$ and c_{τ} a positive constant depending only on τ .

 $\begin{array}{l} \textbf{Theorem 8 Let } E \ be \ the \ type \ set \ defined \ in \ the \ Introduction \ and \ suppose \\ 2 \leq \beta_1 \leq \beta_2. \\ a) \ If \ \frac{(\beta_2+2)(\beta_1+\beta_2+\beta_2\beta_1)}{(\beta_1+\beta_2)(6\beta_2+4)} < \frac{1}{q} \leq 1 \ then \ \left(\frac{5\beta_2+2}{6\beta_2+4}, \frac{1}{q}\right) \in E. \\ b) \ If \ \beta_2 \geq 6 \ and \ \frac{\beta_2}{\beta_2+2} < \frac{1}{p} \leq 1 \ then \ \left(\frac{1}{p}, 1\right) \in E. \\ c) \ If \ \beta_2 \geq 6 \ and \ \frac{1}{p} > \frac{\beta_2}{\beta_2+2} \ then \ the \ open \ segment \ with \ vertices \ \left(\frac{1}{p}, 1\right) \ and \ \left(\frac{3\beta_2^2+\beta_1\beta_2^2-5\beta_1\beta_2+2\beta_2-2\beta_1}{4\beta_2^2+\beta_1\beta_2^2-4\beta_1\beta_2^2-4\beta_1\beta_2^2-4\beta_1\beta_2^2-4\beta_1}, \frac{(\beta_2-2)(\beta_1+\beta_2+\beta_2\beta_1)}{4\beta_2^2+\beta_1\beta_2^2-4\beta_1\beta_2^2-4\beta_1} \right) \ is \ contained \ in \ E. \\ d) \ If \ \beta_2 < 6 \ and \ \frac{\beta_2+2}{8} < \frac{1}{q} \leq 1 \ then \ \left(\frac{3}{4}, \frac{1}{q}\right) \in E. \\ e) \ If \ \beta_2 < 6 \ and \ \frac{\beta_2+2}{8} < \frac{1}{q} \leq 1 \ then \ the \ open \ segment \ with \ vertices \ \left(\frac{3}{4}, \frac{1}{q}\right) \\ and \ \left(\frac{5\beta_2+\beta_1}{6\beta_2+2\beta_1}, \frac{\beta_2+\beta_2\beta_1+\beta_1}{6\beta_2+2\beta_1}\right) \in E. \\ f) \ \left(\frac{\beta_1+\beta_2+2\beta_1\beta_2}{2\beta_1+2\beta_2+2\beta_1\beta_2}, \frac{1}{2}\right) \in E. \end{array}$

Proof. We take $l \in \mathbb{Z}$ such that $B \subset \{x \in \mathbb{R}^2 : ||x|| \leq 2^l\}$. Without loss of generality, we suppose that x belongs to the first quadrant, $\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$. For $j, k \in \mathbb{N}$ we define $Q_{j,k} = [2^{-j+l-1}, 2^{-j+l}] \times [2^{-k+l-1}, 2^{-k+l}]$ and $Q_j = [2^{-j+l-1}, 2^{-j+l}] \times [0, 2^l]$. From (3.2) in [2] we have, for $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3$,

$$\left|\widehat{\sigma^{Q_{j,k}}}\left(\xi\right)\right| \le c \frac{2^{j\left(\frac{\beta_1-2}{2}\right)+k\left(\frac{\beta_2-2}{2}\right)}}{1+\left|\xi_3\right|}$$

and

$$\left|\widehat{\sigma^{Q_j}}\left(\xi\right)\right| \le c \frac{2^{j\left(\frac{\beta_1-2}{2}\right)}}{\left(1+\left|\xi_3\right|\right)^{\frac{1}{2}+\frac{1}{\beta_2}}}$$

so, from Remark 7 it follows that

$$\left\| \mathcal{R}^{Q_{j,k}} \right\|_{L^{\frac{4}{3}}(\mathbb{R}^{3}), L^{2}(\Sigma^{Q_{j,k}})} \le c 2^{j\left(\frac{\beta_{1}-2}{8}\right)+k\left(\frac{\beta_{2}-2}{8}\right)}$$
(5)

and

$$\left\|\mathcal{R}^{Q_j}\right\|_{L^{p_1}(\mathbb{R}^3), L^2\left(\Sigma^{Q_j}\right)} \le c2^{j\frac{(\beta_1-2)\beta_2}{6\beta_2+4}} \tag{6}$$

for $p_1 = \frac{6\beta_2+4}{5\beta_2+2}$. Also, if we define $Q'_k = [0, 2^l] \times [2^{-k+l-1}, 2^{-k+l}]$, in a similar way we obtain

$$\left|\widehat{\sigma^{Q'_{k}}}\left(\xi\right)\right| \le c \frac{2^{k\left(\frac{\beta_{2}-2}{2}\right)}}{\left(1+|\xi_{3}|\right)^{\frac{1}{2}+\frac{1}{\beta_{1}}}} \le c \frac{2^{k\left(\frac{\beta_{2}-2}{2}\right)}}{\left(1+|\xi_{3}|\right)^{\frac{1}{2}+\frac{1}{\beta_{2}}}},$$

since A_0 is contained in a finite union of Q_j 's and Q'_k 's, again from Remark 7, it follows that

$$\left\|\mathcal{R}^{A_0}\right\|_{L^{p_1}(\mathbb{R}^3), L^2\left(\Sigma^{Q_j}\right)} \le c.$$

From the Hölder's inequality, we also get

$$\left\| \mathcal{R}^{A_0} \right\|_{L^{p_1}(\mathbb{R}^3), L^q(\Sigma^{Q_j})} \le c, \tag{7}$$

for $1 \leq q \leq 2$. Since $\left(\frac{1}{p_1}, \frac{(\beta_2+2)(\beta_1+\beta_2+\beta_2\beta_1)}{(\beta_1+\beta_2)(6\beta_2+4)}\right)$ satisfies (1), from (7) and Remark 6, *a*) follows.

Now, from (5) and the Hölder's inequality, we obtain, for $1 \le q \le 2$,

$$\left\| \mathcal{R}^{Q_{j,k}} \right\|_{L^{\frac{4}{3}}(\mathbb{R}^{3}), L^{q}(\Sigma^{Q_{j,k}})} \leq c 2^{j\left(\frac{\beta_{1}-2}{8} + \frac{q-2}{2q}\right) + k\left(\frac{\beta_{2}-2}{8} + \frac{q-2}{2q}\right)}.$$
(8)

It is also easy to check that

$$\|\mathcal{R}^{Q_{j,k}}\|_{L^1(\mathbb{R}^3), L^1(\Sigma^{Q_{j,k}})} \le c2^{-j-k}.$$
 (9)

We use (8) with q = 1 and (9), to obtain, from the Riesz Thorin theorem, that for $0 \le t \le 1$ and $\frac{1}{p} = t\frac{3}{4} + (1-t)$,

$$\left\| \mathcal{R}^{Q_{j,k}} \right\|_{L^{p}(\mathbb{R}^{3}), L^{1}(\Sigma^{Q_{j,k}})} \leq c 2^{j\left(t\frac{\beta_{1}+2}{8}-1\right)} 2^{k\left(t\frac{\beta_{2}+2}{8}-1\right)}.$$
 (10)

Now if $\frac{1}{p} > \frac{\beta_2}{\beta_2+2}$, $t\frac{\beta_2+2}{8} - 1 < 0$ and then we can sum in (10) over j and k and b) follows, since $B \subset \bigcup_{j,k} Q_{j,k}$.

To obtain c), we sum over k in (10) for $\frac{\beta_2}{2+\beta_2} < \frac{1}{p} \leq 1$ and we apply the Riesz Thorin theorem, interpolating between $\left(\frac{1}{p}, 1\right)$, $\frac{\beta_2}{2+\beta_2} < \frac{1}{p} \leq 1$, and $\left(\frac{1}{p_1}, \frac{1}{2}\right)$ with the estimation just obtained and (6). Then we sum over j.

If $\beta_2 < 6$ in the estimation (8) we can sum over j and k for $\frac{\beta_2+2}{8} < \frac{1}{q} \le 1$, so d) follows.

Since $B \subset \bigcup_j Q_j$, to obtain e), for $\frac{\beta_2+2}{8} < \frac{1}{q} \leq 1$ we sum over k in (8), and we proceed as in the proof of c), interpolating between $\left(\frac{3}{4}, \frac{1}{q}\right)$ and $\left(\frac{1}{p_1}, \frac{1}{2}\right)$ with the estimation just obtained and (6). Then we sum over j.

The statement f) follows straightforward from Remark 7 and the inequality

$$|\widehat{\sigma}(\xi)| \le \frac{c}{(1+|\xi_3|)^{\frac{1}{\beta_1}+\frac{1}{\beta_2}}}.$$

(See Lemma 2.5 in [3]). ■

Theorem 9 Let *E* be the type set defined in the Introduction. a) If $1 < \beta_1 \leq \beta_2 \leq 2$, then $\left(\frac{3}{4}, \frac{1}{2}\right) \in E$.

b) If
$$1 < \beta_1 \le 2 \le \beta_2$$
, then $\left(\frac{5\beta_2+2}{6\beta_2+4}, \frac{1}{2}\right) \in E$.
c) If $1 < \beta_1 \le 2 \le \beta_2 < 6$, then $\left(\frac{3}{4}, \frac{1}{q}\right) \in E$ for $\frac{\beta_2+2}{8} < \frac{1}{q} \le 1$.
d) If $\beta_1 \le 2$ and $\beta_2 \ge 6$, then $\left(\frac{1}{p}, 1\right) \in E$ for $\frac{\beta_2}{\beta_2+2} < \frac{1}{p} \le 1$.

Proof. a) follows straighforward from Remark 6 and the inequality

$$\left|\widehat{\sigma}\left(\xi\right)\right| \le \frac{c}{\left(1+\left|\xi_{3}\right|\right)}.$$

(See Lemma 3 in [2]). Similarly, if $1 < \beta_1 \le 2 \le \beta_2$, from the same lemma we get the estimate

$$|\widehat{\sigma}(\xi)| \le \frac{c}{(1+|\xi_3|)^{\frac{1}{2}+\frac{1}{\beta_2}}},$$

so, again from Remark 6, we obtain b). Statements c) and d) follows as d) and b) in Theorem 8, respectively.

Comments. By the Riesz Thorin interpolation theorem, the Hölder's inequality and Theorem 8 we obtain that in the case $\beta_1 \geq 2$, $\beta_2 \geq 6$, and $\frac{\beta_1\beta_2}{\beta_1\beta_2+\beta_1+\beta_2} < \frac{5\beta_2+2}{6\beta_2+4}$ (the point $\left(\frac{\beta_1\beta_2}{\beta_1\beta_2+\beta_1+\beta_2}, 1\right)$ satisfies the equality in (1)) the polygonal region given as the open convex hull of the points (1,1), (1,0), $\left(\frac{\beta_1+\beta_2+2\beta_1\beta_2}{2\beta_1+2\beta_2+2\beta_1\beta_2}, \frac{1}{2}\right)$, $\left(\frac{5\beta_2+2}{6\beta_2+4}, \frac{(\beta_2+2)(\beta_1+\beta_2+\beta_2\beta_1)}{(\beta_1+\beta_2)(6\beta_2+4)}\right)$, $\left(\frac{5\beta_2+2}{6\beta_2+4}, 1\right)$, $\left(\frac{\beta_2}{\beta_2+2}, 1\right)$ and $\left(\frac{3\beta_2^2+\beta_1\beta_2^2-5\beta_1\beta_2+2\beta_2-2\beta_1}{4\beta_2^2+\beta_1\beta_2^2-4\beta_1\beta_2-4\beta_1}, \frac{(\beta_2-2)(\beta_1+\beta_2+\beta_2\beta_1)}{(\beta_2^2+\beta_1\beta_2^2-4\beta_1\beta_2-4\beta_1)}\right)$ is contained in *E*. We observe that in some cases, the point $\left(\frac{5\beta_2+2}{6\beta_2+4}, 1\right)$ is located at the left of the point $\left(\frac{\beta_2}{\beta_2+2}, 1\right)$, and that in other cases we have the oposite situation. Indeed, $\frac{5\beta_2+2}{6\beta_2+4} < \frac{\beta_2}{\beta_2+2}$ if and only if $\beta_2 > 4 + 2\sqrt{5}$. In the case $\beta_1 \geq 2$, $\beta_2 \geq 6$, and $\frac{5\beta_2+2}{6\beta_2+4} \leq \frac{\beta_1\beta_2}{\beta_1\beta_2+\beta_1\beta_2+\beta_1+\beta_2}$ we completely charac-

In the case $\beta_1 \ge 2$, $\beta_2 \ge 6$, and $\frac{1}{6\beta_2+4} \le \frac{1}{\beta_1\beta_2+\beta_1+\beta_2}$ we completely characterize E° as the open triangle with vertices (1, 1), (1, 0) and $\left(\frac{\beta_1\beta_2}{\beta_1\beta_2+\beta_1+\beta_2}, 1\right)$. These cases correspond to the relation $\beta_1\beta_2^2 - 3\beta_1\beta_2 - 5\beta_2^2 - 2\beta_1 - 2\beta_2 > 0$, for example, $\beta_1 = 6$ and $\beta_2 > 10 + 4\sqrt{7}$.

When $2 \leq \beta_1 \leq \beta_2 < 6$, the corresponding polygonal region is the open convex hull of the points (1,1), (1,0), $\left(\frac{\beta_1+\beta_2+2\beta_1\beta_2}{2\beta_1+2\beta_2+2\beta_1\beta_2}, \frac{1}{2}\right)$, $\left(\frac{3}{4}, \frac{\beta_2+2}{8}\right)$, $\left(\frac{3}{4}, 1\right)$ and $\left(\frac{5\beta_2+\beta_1}{6\beta_2+2\beta_1}, \frac{\beta_2+\beta_2\beta_1+\beta_1}{6\beta_2+2\beta_1}\right)$.

We observe that some pieces of the border of these polygonal regions are also contained in E.

In a similar way, for the cases $\beta_1 < 2$ from Theorem 9 we obtain some polygonal regions contained in E.

References

- [1] M. Dellanegra, Problemi di restrizione della trasformata di Fourier ad alcune ipersuperfici di \mathbb{R}^n , Ph. D. Thesis, Politecnico di Torino.(1998).
- [2] E. Ferreyra, T. Godoy, M. Urciuolo, $L^p L^q$ estimates for convolution operators with n-dimensional singular measures. The Journal of Fourier Analysis and Applications, 3-4 (1997), 475-484.
- [3] E. Ferreyra, T. Godoy, M. Urciuolo, Boundedness properties of some convolution operators with singular measures. Math. Z. 225 (1997), 611-624.

- [4] E. Ferreyra, T. Godoy, M. Urciuolo, Endpoint bounds for convolution operators with singular measure. Coll. Math. 76, 1, (1998), 35-47.
- [5] E. Ferreyra, T. Godoy, M. Urciuolo, Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in ℝ³. Studia Math. 160 (3), (2004), 249-265.
- [6] A. Greenleaf, Principal curvature in harmonic analysis. Indiana U. Math. J. 30, (1981), 519-537.
- [7] E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton New Jersey, 1993.
- [8] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-713.
- [9] T. Tao, Some recent progress on the restriction conjecture, Fourier analysis and convexity, Appl. Numer. Harmon. Anal., Birkhaüser Boston, Boston MA, (2004), 217-243.
- [10] T. Tao, A sharp bilinear restriction estimate on paraboloids. GAFA, Geom. and Funct. Anal. 13, (2003), 1539-1384.
- [11] P. Tomas, A restriction theorem for the Fourier Transform. Bull. Amer. Math. Soc. 81, (1975), 477-478.