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Abstract

For x = (x1,22) € R? and 1,85 > 1, let ¢ : R?2 — R be defined
by ¢ () = |z1|" + |22|%2, let B be the open unit ball in R? and let
Y ={(z,¢(x)):xz € B}.For feS(R?,let Rf : ¥ — C be defined
by

(Rf) (z, ¢ (2) = [ (z,90(z))  xe€B,
where fdenotes the usual Fourier transform of f. Let o be the Borel
measure on ¥ defined by o (A) = [5x4 (¢, ¢ (z)) dz and let E be the
type set for the operator R, i.e, the set of the pairs (%, %) € 10,1] x
[0,1] for which there exists ¢ > 0 such that Hﬂ‘L - < cllfllzr(ms)
q
for all f € S (R3). In this paper we give necessary conditions for

(%, é) € E. We also obtain new points in F.
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1 Introduction

For x = (71,22) € R and 1 < 3; < f3,, let ¢ : R? — R be defined by
¢ (x) = |21/ + |22]™, let B be the open unit ball in R? and let ¥ =
{( ¢(z)):x € B}.For f € S(R?), let Rf : ¥ — C be defined by

(Rf) (z,0(z)) = f(x,¢(x))  x€B,

where f denotes the usual Fourier transform of f defined by

:/f(u) e M8 dy

Let o be the Borel measure on ¥ defined by o (A) = [, x4 (z,¢ (z)) dz and

let E be the type set for the operator R, i.e. the set of the pairs (%, %) €

[0,1] x [0, 1] for which there exists ¢ > 0 such that ’ ]?H - < c|[fll Lo (e for
La(s

all f € S(R3), where the spaces L” (R?) and L7 (X) are taken with respect
to the Lebesgue measure in R? and the measure o respectively.

In the general n-dimensional case, the L? (R"*!) — L7 (X) boundedness
properties of the restriction operator R have been studied by different au-
thors. A very interesting survey about the recent progress in this research
area con be found in [9]. The L? (R"™') — L? (¥) restriction theorems for the

sphere was proved by Stein in 1967, for 1 < p < g;ﬁi; forl <p< 2"+4 by [11]

. . 4dn+4
and then in the same year by Stein for 1 < p < e The last argument has

been used in several related contexts by Strichartz in [8] and Greenleaf in [6]
. This method provides a general tool to obtain, from suitable estimates for
o, LP (R™™) — L2 () estimates for R. Moreover, a general theorem, due to
Stein, holds for smooth enough hypersurfaces with never vanishing Gaussian

curvature ([7], pp.386). There it is shown that, in this case, (%, %) € Eif

ntd < <1 and > ”—*2]%—1- nt2 ' also that this last relation is the best pos-

2n+4 — n
sible and that no restrlction theorem of any kll’ld can hold for f € L? (R™*1)
when % < 322 ([7], pp-388). The cases 25 < 1 < 22 are not completely
solved. The best results for surfaces with non Vamshlng curvature like the
paraboloid and the sphere are due to Terence Tao [10]. Restriction theo-
rems for the Fourier transform to homogeneous polynomial surfaces in R3
are obtained in [5].

Turning back to our problem, the type set E is studied in [1]. We prove

results about E that improve those obtained by Dellanegra. In section 2 we
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obtain a better necessary condition, wich is a consequence of the character-
ization of the type set concerning the convolution operatos with o, that is
described in [4]. In section 3, using results obtained in [2] and [3], we obtain
new points that belong to E.

2 Necessary conditions

It is well known that for a manifold ¥ as above, we have that if <113, %) ekl
then L > —2 4 2.

A standard homogeneity argument gives the following result

Proposition 1 If< ,é) € E then

1
p

1 _ﬁ1+52+51521+51+52+5152
q ﬁl+ﬁ2 D 51+62 '

v

Proof. Let
t. (ZL’l,ZEQ) = (t/BQI‘l,tBlIQ) s

to(xy,x9,x3) = (t52$1,tﬁ1$2,t51’82$3) )
For a fixed | € Z we define

Ag={z = (z1,22) e R*: 27" < |z £ 2'} (2)
where ||(z1,22)]| = |x1|% + |m2|ﬁ, and for j € N
Aj =277 Ap. (3)

We choose | € Z such that {z € R?: ||z|| < 2'} € B. We denote
Y ={(z,0(x) eR*:z € A;}.

and, for f € S(R?) we define RY f = ﬁgj and fy () = f (27 oz). Thus

A . _iP1tB2
IR s, =5 (

_ 9 i( P52 (1485 15152)) R £,

1
q

f(Z’j.x, © (2’?95)) ‘q d:c)

lzocsy
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From this, it follows that

) ] (@)

Now, since HRAJ' Hpq <|[R],, the proposition follows. m

Let T be the given by T'f = o f, f € S (R3) and let E, be the associated

type set, i.e. the set of the pairs (217, %) € [0, 1] x [0, 1] for which there exists

¢ > 0 such that |Tf[| emsy < ¢l fllpos for all f € S(R?). In [3] we give

neccesary conditions for (1

sets I/ and F,.

% € FE,. The next proposition relates the type

Proposition 2 If G?,i) € FE forsomel < p<2andl < g < oo, then
3
( gp ,2) € E,.

Proof. If for some 1 < p < 2 and 1 < ¢ < 0o we have HRfHLq(E) <
Cp ||f||Lp(R3) then o € Lpl (RS) Qo

o0 o= 57, = o, = (o7 o)

1

S(RJ" m) (/ ‘f 2(%) )2(%),
Sc(/ 2<p;>dx>2(;2/)/

|| ] ., ez,
2—p

—

/()

and the proposition follows. m
The following lemma is contained in Lemma 1 in [2].

Lemma 3 If <%, %) € E, then % > 2522;“11% _

From Proposition 2 and this lemma we obtain the following necessary
condition.



Corollary 4 If (l %) € F for somel < p < 2andl < q < oo, then

1 36,
p 2 152

Proof. From Proposition 2 we know that if <l %) € FE for some 1 <

p<2and1l < g < oo, then <%,%) € E, but then by Lemma 3, % >

28,41 3p—2 1 38,
5rT op 1 and then 1 2 i, ™

Remark 5 In the article [3] we also obtain two additional necessary condi-
tions, contained in Lemmas 2.1 and 2.2. Using these conditions, Proposition
2 and pmceedmg as in the Corollary 4, we get 3 1> 3 and ]13 2 53 Bigfwz
respectively. The first inequality is a known result as we mentioned in the
Introduction and the last inequality can also be obtained from Proposition 1,
taking ¢ = 1. The corollary adds, in some cases, necessary conditions not
contained in the before mentioned results. For example, if we take 3, = 2
and B4 = 5 the corollary says 1> % and proposition 1, with ¢ = 1 implies

;2}(7) Wenotethatm< <—<—

3 Sufficient Conditions

If V is a measurable set in R? we denote ¥V = {(z, ¢ (z)) : x € V} and ¢" the
associated surface measure. Also, for f € S (R3), we define RV f : ¥V — C
by

(RVf) (w0 (2)) = f(z.0(x) z€V,

we note that R? = R and ©F = X..

Remark 6 We take | € Z such that B C {z € R*: ||z| < 2'}. We define
Ay and A;, j € N by (2) and (3) respectively. If

1> _61+62+51521+51+52+5152
q 61+62 p ﬁ1+ﬁ2

and
||RAOf||Lq<§;Ao) <6 ||f||Lp(RB) )

for all f € S(R3), then, from (4), by summing over j € NU{0}, we obtain
that (}3%) €F.



Remark 7 In [5], following a Strichartz’s theorem (see [8]), we prove that
if

(") @] <A +1&)
for some T > 0 and for all £ = (&1,&,,&5) € R3, then

||RV HLP(RS%LQ(EV) S C.,.Aﬁ

forp= % and c, a positive constant depending only on 7.

Theorem 8 Let E be the type set defined in the Introduction and suppose
2< 61 <5,

(B2142)(B1+82+8281) 58,42 1
o) If B < S 1 then <6BQ+4’ q> €L

b) If B> > 6 and 5% @J)eg.

¢) If B, > s

<3ﬁ§+61ﬁ375f3162+2ﬁr251 (Ba—2)(B1+By+B281)
4B3+B,B3—4B1 8,481 ' 4B3+B1B3—4B18,—4p;

(%,1) and

> 1s contained in E.
d) If B, < 6 and 62“ <y L <1 then (—,—) € FE.

e) If By < 6 and % < % < 1 then the open segment with vertices <§1, %)

589+81  Ba+B2B1+81
and (652+261’ 68,-+28, ) €L

B1+B2+28182
f) <251+2,62+251/32’ 2) €E.

Proof. We take | € Z such that B C {z € R?: ||z|| < 2'}. Without loss
of generality, we suppose that x belongs to the first quadrant, R>q x R>.
For j, k € N we define Q;), = [279H71, 279 x [27+F71 27FH] and Q; =
[279+71 279+ % [0,2] . From (3.2) in [2] we have, for & = (£, &,,&3) € R?,

/.\ 2j(612_2>+k(ﬂ22_2)
Q)] < ey €]
and
_ i(757)
‘JQj (£>‘ < Cﬁ
(14 ]&5))2 7
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so, from Remark 7 it follows that

. i(P1=2) g (P22
IR s osney < 25 1) )
and o
. (8128
HRQ]HLm (RB)’L2<EQJ-) < ) 6Byt (6)

for p; = ggiig Also, if we define Q) = [0,2'] x [27FF171 27FH] "in a similar

way we obtain

2“52272) < 2’“(%)
.1 >C
(T+[&)2 " (1+]&)

since A is contained in a finite union of @);’s and @}’s, again from Remark
7, it follows that

‘;@(5)‘ <c

Y

N

1
5

HT\’,AO <ec.

HLm (R3),L2(2%5) =

From the Holder’s inequality, we also get

| R <c, (7)

HLm (R3),L9(x9%)

. 2 .
for 1 < ¢ < 2. Since (pil, (’82(;1355;;2655:&)&)) satisfies (1), from (7) and Remark

6, a) follows.
Now, from (5) and the Holder’s inequality, we obtain, for 1 < ¢ < 2,

HRQM” < CQj(ﬁl{zJF%)M(%ﬂ%‘f)- (8)

L3 (&3),Le(2%k)
It is also easy to check that
HRQ]‘

ik
’k”Ll(R3)7L1(ZQj,k) <2707 (9)

We use (8) with ¢ = 1 and (9), to obtain, from the Riesz Thorin theorem,
thatfor0§t§1and%:t%—l—(l—t),

[ R ) < @IS, (10)

HLP(R3),L1 (5

Now if i > 62512’ t528+2 — 1 < 0 and then we can sum in (10) over j and k

and b) follows, since B C U, 1@, k-



B 1
2+252 <3 < 1 and we apply
B2

the Riesz Thorin theorem, interpolating between <Ilj, 1) ) 3y

To obtain ¢), we sum over k in (10) for

p1’ 2
If 5, < 6 in the estimation (8) we can sum over j and k for % < % <1,
so d) follows.
Since B C U,Q);, to obtain e), for ’BQH <5 L' <1 we sum over k in (8), and

<i l) with the estimation just obtained and (6). Then we sum over j.

47 q
with the estimation just obtained and (6). Then we sum over j.
The statement f) follows straighforward from Remark 7 and the inequal-
ity

we proceed as in the proof of c), 1nterpolat1ng between (3 l) and <p1, 2)

C

7 (&) <
(1+ &)t

(See Lemma 2.5 in [3]). =

Theorem 9 Let E be the type set defined in the Introduction.
a) If 1 < B, < By < 2, then (4,2) S

b) If1 < B, <2< By, then (55212 1) cE.

c)[f1<51§2§ﬂ2<6,then(?l l)eEfor%<%§1.

d) If 8, <2 and By > 6, then (%,1) EEforﬁfj2 <%§1.

Proof. a) follows straighforward from Remark 6 and the inequality
c

(T+1&50)

(See Lemma 3 in [2]). Similarily, if 1 < 8; < 2 < f3,, from the same lemma
we get the estimate

7 (&) <

F(6)) < —————,
(1+|&])2 "7

so, again from Remark 6, we obtain b). Statements ¢) and d) follows as d)
and b) in Theorem 8, respectively. m



Comments. By the Riesz Thorin interpolation theorem, the Holder’s
inequality and Theorem 8 we obtain that in the case 5, > 2, 8, > 6,

and 5152 < 30p42 (the point <% 1) satisfies the equality in

B1Ba+B1+8 685+4 B1Ba+B1+p2’
(1)) the polygonal region given as the open convex hull of the points (1,1),

(1 0) _B1HBa+2818 1 58542 (B2+2)(B1+B82+8281) 5845+2 1 B 1
19\ 28,428,428, 857 2 ) > \ 6814’ (B,+B4)(6B,+4) v \8Borar 1) \ Boga

2 2_ _ _ . . .
and (3524‘/3152 58189+282—281 (B 2)(514‘524‘5261)) is contained in E. We ob-

4B3+B1B5—4B1B,—4B1 7 4B3+B1B%—4B18y—4PB,

serve that in some cases, the point (2?;12, 1) is located at the left of the

point ( 52’6 Y 1) , and that in other cases we have the oposite situation. In-

deed, ggzii < ﬁfiz if and only if B, > 4 + 2v/5.

58542 B182
In the case 5, > 2, 8, > 6, and 6511 < 5 A5 Ve completely charac-

terize E° as the open triangle with vertices (1,1), (1,0) and (%, 1) :

These cases correspond to the relation 3,335 — 33,8, — 583 — 23, — 283, > 0,
for example, 8, = 6 and 3, > 10 + 4/7.

When 2 < 3, < 3, < 6, the corresponding polygonal region is the open
convex hull of the points (1,1), (1,0), <M l) , <§ M) , (3 1)

2814285428182 2 47 8 4
and (552+51 62+6261+51> _

68242617  682+25;
We observe that some pieces of the border of these polygonal regions are

also contained in F.
In a similar way, for the cases 3; < 2 from Theorem 9 we obtain some
polygonal regions contained in E.
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