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Abstract

For x = (x1; x2) 2 R2 and �1; �2 > 1; let ' : R2 ! R be de�ned
by ' (x) = jx1j�1 + jx2j�2 , let B be the open unit ball in R2 and let
� = f(x; ' (x)) : x 2 Bg : For f 2 S

�
R3
�
; let Rf : �! C be de�ned

by
(Rf) (x; ' (x)) = bf (x; ' (x)) x 2 B;

where bf denotes the usual Fourier transform of f: Let � be the Borel
measure on � de�ned by � (A) =

R
B �A (x; ' (x)) dx and let E be the

type set for the operator R; i.e, the set of the pairs
�
1
p ;
1
q

�
2 [0; 1] �

[0; 1] for which there exists c > 0 such that



 bf




Lq(�)
� c kfkLp(R3)

for all f 2 S
�
R3
�
: In this paper we give necessary conditions for�

1
p ;
1
q

�
2 E: We also obtain new points in E:
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1 Introduction

For x = (x1; x2) 2 R2 and 1 < �1 � �2; let ' : R2 ! R be de�ned by
' (x) = jx1j�1 + jx2j�2 , let B be the open unit ball in R2 and let � =
f(x; ' (x)) : x 2 Bg : For f 2 S (R3) ; let Rf : �! C be de�ned by

(Rf) (x; ' (x)) = bf (x; ' (x)) x 2 B;

where bf denotes the usual Fourier transform of f de�ned by

bf (�) = Z f (u) e�ihu;�idu:

Let � be the Borel measure on � de�ned by � (A) =
R
B
�A (x; ' (x)) dx and

let E be the type set for the operator R; i.e. the set of the pairs
�
1
p
; 1
q

�
2

[0; 1]� [0; 1] for which there exists c > 0 such that



 bf




Lq(�)
� c kfkLp(R3) for

all f 2 S (R3) ; where the spaces Lp (R3) and Lq (�) are taken with respect
to the Lebesgue measure in R3 and the measure � respectively.
In the general n-dimensional case, the Lp (Rn+1) � Lq (�) boundedness

properties of the restriction operator R have been studied by di¤erent au-
thors. A very interesting survey about the recent progress in this research
area con be found in [9]. The Lp (Rn+1)�L2 (�) restriction theorems for the
sphere was proved by Stein in 1967, for 1 � p < 4n+4

3n+4
; for 1 � p < 2n+4

n+4
by [11]

and then in the same year by Stein for 1 � p � 4n+4
3n+4

: The last argument has
been used in several related contexts by Strichartz in [8] and Greenleaf in [6]
. This method provides a general tool to obtain, from suitable estimates forb�; Lp (Rn+1)� L2 (�) estimates for R. Moreover, a general theorem, due to
Stein, holds for smooth enough hypersurfaces with never vanishing Gaussian
curvature ([7], pp.386). There it is shown that, in this case,

�
1
p
; 1
q

�
2 E if

n+4
2n+4

� 1
p
� 1 and 1

q
� �n+2

n
1
p
+ n+2

n
; also that this last relation is the best pos-

sible and that no restriction theorem of any kind can hold for f 2 Lp (Rn+1)
when 1

p
� n+2

2n+2
([7], pp.388). The cases n+2

2n+2
< 1

p
< n+4

2n+4
are not completely

solved. The best results for surfaces with non vanishing curvature like the
paraboloid and the sphere are due to Terence Tao [10]. Restriction theo-
rems for the Fourier transform to homogeneous polynomial surfaces in R3
are obtained in [5].
Turning back to our problem, the type set E is studied in [1]. We prove

results about E that improve those obtained by Dellanegra. In section 2 we
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obtain a better necessary condition, wich is a consequence of the character-
ization of the type set concerning the convolution operatos with �; that is
described in [4]. In section 3, using results obtained in [2] and [3], we obtain
new points that belong to E:

2 Necessary conditions

It is well known that for a manifold � as above, we have that if
�
1
p
; 1
q

�
2 E

then 1
q
� �2

p
+ 2.

A standard homogeneity argument gives the following result

Proposition 1 If
�
1
p
; 1
q

�
2 E then

1

q
� ��1 + �2 + �1�2

�1 + �2

1

p
+
�1 + �2 + �1�2

�1 + �2
: (1)

Proof. Let
t: (x1; x2) =

�
t�2x1; t

�1x2
�
;

t � (x1; x2; x3) =
�
t�2x1; t

�1x2; t
�1�2x3

�
:

For a �xed l 2 Z we de�ne

A0 =
�
x = (x1; x2) 2 R2 : 2l�1 � kxk � 2l

	
(2)

where k(x1; x2)k = jx1j
1
�2 + jx2j

1
�1 , and for j 2 N

Aj = 2
�j:A0: (3)

We choose l 2 Z such that
�
x 2 R2 : kxk � 2l

	
� B: We denote

�j =
�
(x; ' (x)) 2 R3 : x 2 Aj

	
:

and, for f 2 S(R3) we de�ne RAjf = bfj�j and f2j (x) = f (2j � x) : Thus


RAjf




Lq(�j)

= 2�j
�1+�2

q

�Z
A0

��� bf �2�j:x; ' �2�j:x�����q dx� 1
q

= 2�j(
�1+�2

q
�(�1+�2+�1�2))



RA0f2j



Lq(�0)
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From this, it follows that

RAj



p;q
= 2�j(

�1+�2
q

�(�1+�2+�1�2)+
�1+�2+�1�2

p ) 

RA0



p;q

(4)

Now, since


RAj




p;q
� kRkp;q the proposition follows.

Let T be the given by Tf = ��f; f 2 S (R3) and let E� be the associated
type set, i.e. the set of the pairs

�
1
p
; 1
q

�
2 [0; 1]� [0; 1] for which there exists

c > 0 such that kTfkLq(R3) � c kfkLp(R3) for all f 2 S (R3) : In [3] we give
neccesary conditions for

�
1
p
; 1
q

�
2 E�: The next proposition relates the type

sets E and E�:

Proposition 2 If
�
1
p
; 1
q

�
2 E for some 1 � p � 2 and 1 � q � 1; then�

3p�2
2p
; 1
2

�
2 E�:

Proof. If for some 1 � p � 2 and 1 � q � 1 we have kRfkLq(�) �
cp kfkLp(R3) then b� 2 Lp0 (R3) : So

k� � fk2 =



[� � f




2
=



b� bf




2
=

�Z
R3
jb� (x)j2 ���[f (x)���2 dx� 1

2

�
�Z

R3
jb� (x)jp0 dx� 1

p0
 Z

R3

���[f (x)���2� p02 �0 dx! 1

2( p
0
2 )

0

� c
 Z

R3

���[f (x)���2� p02 �0 dx! 1

2( p
0
2 )

0

= c



 bf




2p
2�p

� c kfk 2p
3p�2

;

and the proposition follows.
The following lemma is contained in Lemma 1 in [2].

Lemma 3 If
�
1
p
; 1
q

�
2 E� then 1

q
� 2�2+1

�2+1
1
p
� 1:

From Proposition 2 and this lemma we obtain the following necessary
condition.
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Corollary 4 If
�
1
p
; 1
q

�
2 E for some 1 � p � 2 and 1 � q � 1; then

1
p
� 3�2

4�2+2
:

Proof. From Proposition 2 we know that if
�
1
p
; 1
q

�
2 E for some 1 �

p � 2 and 1 � q � 1; then
�
3p�2
2p
; 1
2

�
2 E� but then by Lemma 3, 12 �

2�2+1
�2+1

3p�2
2p
� 1 and then 1

p
� 3�2

4�2+2
:

Remark 5 In the article [3] we also obtain two additional necessary condi-
tions, contained in Lemmas 2.1 and 2.2. Using these conditions, Proposition
2 and proceeding as in the Corollary 4, we get 1

p
� 2

3
and 1

p
� �1�2

�1�2+�1+�2
respectively. The �rst inequality is a known result as we mentioned in the
Introduction and the last inequality can also be obtained from Proposition 1,
taking q = 1. The corollary adds, in some cases, necessary conditions not
contained in the before mentioned results. For example, if we take �1 = 2
and �2 = 5 the corollary says

1
p
� 15

22
and proposition 1, with q = 1 implies

1
p
� 10

17
: We note that 10

17
< 2

3
< 15

22
< 3

4
:

3 Su¢ cient Conditions

If V is a measurable set in R3 we denote �V = f(x; ' (x)) : x 2 V g and �V the
associated surface measure. Also, for f 2 S (R3) ; we de�ne RV f : �V ! C
by �

RV f
�
(x; ' (x)) = bf (x; ' (x)) x 2 V;

we note that RB = R and �B = �:

Remark 6 We take l 2 Z such that B �
�
x 2 R2 : kxk � 2l

	
: We de�ne

A0 and Aj; j 2 N by (2) and (3) respectively. If

1

q
> ��1 + �2 + �1�2

�1 + �2

1

p
+
�1 + �2 + �1�2

�1 + �2

and 

RA0f



Lq(�A0) � cp kfkLp(R3) ;

for all f 2 S (R3) ; then, from (4), by summing over j 2 N[f0g ; we obtain
that

�
1
p
; 1
q

�
2 E:
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Remark 7 In [5], following a Strichartz�s theorem (see [8]), we prove that
if �����V �^ (�)��� � A (1 + j�3j)��
for some � > 0 and for all � = (�1; �2; �3) 2 R3; then

RV




Lp(R3);L2(�V ) � c�A

1
2(1+�)

for p = 2+2�
2+�

and c� a positive constant depending only on � :

Theorem 8 Let E be the type set de�ned in the Introduction and suppose
2 � �1 � �2:
a) If (�2+2)(�1+�2+�2�1)

(�1+�2)(6�2+4)
< 1

q
� 1 then

�
5�2+2
6�2+4

; 1
q

�
2 E:

b) If �2 � 6 and
�2
�2+2

< 1
p
� 1 then

�
1
p
; 1
�
2 E:

c) If �2 � 6 and 1
p
> �2

�2+2
then the open segment with vertices

�
1
p
; 1
�
and�

3�22+�1�
2
2�5�1�2+2�2�2�1

4�22+�1�
2
2�4�1�2�4�1

; (�2�2)(�1+�2+�2�1)
4�22+�1�

2
2�4�1�2�4�1

�
is contained in E:

d) If �2 < 6 and
�2+2
8
< 1

q
� 1 then

�
3
4
; 1
q

�
2 E:

e) If �2 < 6 and
�2+2
8
< 1

q
� 1 then the open segment with vertices

�
3
4
; 1
q

�
and

�
5�2+�1
6�2+2�1

; �2+�2�1+�1
6�2+2�1

�
2 E:

f)
�

�1+�2+2�1�2
2�1+2�2+2�1�2

; 1
2

�
2 E:

Proof. We take l 2 Z such that B �
�
x 2 R2 : kxk � 2l

	
: Without loss

of generality, we suppose that x belongs to the �rst quadrant, R�0 � R�0:
For j; k 2 N we de�ne Qj;k =

�
2�j+l�1; 2�j+l

�
�
�
2�k+l�1; 2�k+l

�
and Qj =�

2�j+l�1; 2�j+l
�
�
�
0; 2l

�
: From (3:2) in [2] we have, for � = (�1; �2; �3) 2 R3;���[�Qj;k (�)��� � c2j(�1�22 )+k(

�2�2
2 )

1 + j�3j

and ���d�Qj (�)��� � c 2j(
�1�2
2 )

(1 + j�3j)
1
2
+ 1
�2

6



so, from Remark 7 it follows that

RQj;k



L
4
3 (R3);L2(�Qj;k)

� c2j(
�1�2
8 )+k(

�2�2
8 ) (5)

and 

RQj



Lp1 (R3);L2(�Qj) � c2

j
(�1�2)�2
6�2+4 (6)

for p1 =
6�2+4
5�2+2

: Also, if we de�ne Q0k =
�
0; 2l

�
�
�
2�k+l�1; 2�k+l

�
; in a similar

way we obtain ���d�Q0k (�)��� � c 2k(
�2�2
2 )

(1 + j�3j)
1
2
+ 1
�1

� c 2k(
�2�2
2 )

(1 + j�3j)
1
2
+ 1
�2

;

since A0 is contained in a �nite union of Qj�s and Q0k�s, again from Remark
7, it follows that 

RA0




Lp1 (R3);L2(�Qj) � c:

From the Hölder�s inequality, we also get

RA0



Lp1 (R3);Lq(�Qj) � c; (7)

for 1 � q � 2: Since
�
1
p1
; (�2+2)(�1+�2+�2�1)

(�1+�2)(6�2+4)

�
satis�es (1), from (7) and Remark

6, a) follows.
Now, from (5) and the Hölder�s inequality, we obtain, for 1 � q � 2;

RQj;k




L
4
3 (R3);Lq(�Qj;k)

� c2j(
�1�2
8

+ q�2
2q )+k(

�2�2
8

+ q�2
2q ): (8)

It is also easy to check that

RQj;k



L1(R3);L1(�Qj;k) � c2

�j�k: (9)

We use (8) with q = 1 and (9), to obtain, from the Riesz Thorin theorem,
that for 0 � t � 1 and 1

p
= t3

4
+ (1� t) ;

RQj;k




Lp(R3);L1(�Qj;k) � c2

j(t�1+28
�1)2k(t

�2+2
8

�1): (10)

Now if 1
p
> �2

�2+2
; t�2+2

8
� 1 < 0 and then we can sum in (10) over j and k

and b) follows, since B � [j;kQj;k:
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To obtain c); we sum over k in (10) for �2
2+�2

< 1
p
� 1 and we apply

the Riesz Thorin theorem, interpolating between
�
1
p
; 1
�
; �2
2+�2

< 1
p
� 1; and�

1
p1
; 1
2

�
with the estimation just obtained and (6). Then we sum over j.

If �2 < 6 in the estimation (8) we can sum over j and k for
�2+2
8
< 1

q
� 1;

so d) follows.
Since B � [jQj, to obtain e), for �2+28 < 1

q
� 1 we sum over k in (8), and

we proceed as in the proof of c), interpolating between
�
3
4
; 1
q

�
and

�
1
p1
; 1
2

�
with the estimation just obtained and (6). Then we sum over j.
The statement f) follows straighforward from Remark 7 and the inequal-

ity
jb� (�)j � c

(1 + j�3j)
1
�1
+ 1
�2

:

(See Lemma 2.5 in [3]).

Theorem 9 Let E be the type set de�ned in the Introduction.
a) If 1 < �1 � �2 � 2; then

�
3
4
; 1
2

�
2 E:

b) If 1 < �1 � 2 � �2; then
�
5�2+2
6�2+4

; 1
2

�
2 E:

c) If 1 < �1 � 2 � �2 < 6; then
�
3
4
; 1
q

�
2 E for �2+2

8
< 1

q
� 1:

d) If �1 � 2 and �2 � 6; then
�
1
p
; 1
�
2 E for �2

�2+2
< 1

p
� 1:

Proof. a) follows straighforward from Remark 6 and the inequality

jb� (�)j � c

(1 + j�3j)
:

(See Lemma 3 in [2]). Similarily, if 1 < �1 � 2 � �2; from the same lemma
we get the estimate

jb� (�)j � c

(1 + j�3j)
1
2
+ 1
�2

;

so, again from Remark 6, we obtain b): Statements c) and d) follows as d)
and b) in Theorem 8, respectively.
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Comments. By the Riesz Thorin interpolation theorem, the Hölder�s
inequality and Theorem 8 we obtain that in the case �1 � 2, �2 � 6;

and �1�2
�1�2+�1+�2

< 5�2+2
6�2+4

(the point
�

�1�2
�1�2+�1+�2

; 1
�
satis�es the equality in

(1)) the polygonal region given as the open convex hull of the points (1; 1) ;

(1; 0) ;
�

�1+�2+2�1�2
2�1+2�2+2�1�2

; 1
2

�
;
�
5�2+2
6�2+4

; (�2+2)(�1+�2+�2�1)
(�1+�2)(6�2+4)

�
;
�
5�2+2
6�2+4

; 1
�
;
�

�2
�2+2

; 1
�

and
�
3�22+�1�

2
2�5�1�2+2�2�2�1

4�22+�1�
2
2�4�1�2�4�1

; (�2�2)(�1+�2+�2�1)
4�22+�1�

2
2�4�1�2�4�1

�
is contained in E: We ob-

serve that in some cases, the point
�
5�2+2
6�2+4

; 1
�
is located at the left of the

point
�

�2
�2+2

; 1
�
; and that in other cases we have the oposite situation. In-

deed, 5�2+2
6�2+4

< �2
�2+2

if and only if �2 > 4 + 2
p
5:

In the case �1 � 2 , �2 � 6; and
5�2+2
6�2+4

� �1�2
�1�2+�1+�2

we completely charac-

terize E� as the open triangle with vertices (1; 1) ; (1; 0) and
�

�1�2
�1�2+�1+�2

; 1
�
:

These cases correspond to the relation �1�
2
2 � 3�1�2 � 5�22 � 2�1 � 2�2 > 0;

for example, �1 = 6 and �2 > 10 + 4
p
7:

When 2 � �1 � �2 < 6; the corresponding polygonal region is the open
convex hull of the points (1; 1) ; (1; 0) ;

�
�1+�2+2�1�2
2�1+2�2+2�1�2

; 1
2

�
;
�
3
4
; �2+2

8

�
;
�
3
4
; 1
�

and
�
5�2+�1
6�2+2�1

; �2+�2�1+�1
6�2+2�1

�
:

We observe that some pieces of the border of these polygonal regions are
also contained in E:
In a similar way, for the cases �1 < 2 from Theorem 9 we obtain some

polygonal regions contained in E:
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