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Abstract

We obtain a presentation by generators and relations of any Nichols algebra of
diagonal type with finite root system. We prove that the defining ideal is finitely gen-
erated. The proof is based in Kharchenko’s theory of PBW basis of Lyndon words.
We prove that the lexicographic order on Lyndon words is convex for such PBW
generators and so the PBW basis is orthogonal with respect to the canonical non-
degenerate form associated to the Nichols algebra.
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1 Introduction

The consideration of pointed Hopf algebras has grown since the appearance of quantized
enveloping algebras [Dr, Ji]. The finite-dimensional analogues, the so-called small quan-
tum groups, were introduced and described by Lusztig [L1, L2].

The Lifting Method of Andruskiewitsch and Schneider is the leading method for the
classification of finite-dimensional pointed Hopf algebras. Such method depends on the
answers to some questions, including the following one:

Question 1.1. [And, Question 5.9]: Given a braided vector space of diagonal type, deter-
mine if the associated Nichols algebra is finite-dimensional, and in such case compute its
dimension. Give a nice presentation by generators and relations.
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(5000) Ciudad Universitaria, Córdoba, Argentina; e-mail: angiono@famaf.unc.edu.ar

Mathematics Subject Classification (2010): Primary 16T05; Secondary 17B37, 17B22

1



2 Iván Ezequiel Angiono

The first part of this question has been answered by Heckenberger in [H2], where the
author gives a list of all diagonal braidings whose associated Nichols algebra has a finite
root system, but neither an explicit formula for the dimension nor a finite set of defining
relations are given. Some of them are Lusztig’s examples, which are associated with the
so-called Cartan braidings and for which the dimension and a presentation by generators
and relations are known. Standard braidings were introduced in [AA] and they consti-
tute a family which includes properly the family of Cartan braidings. Nichols algebras
with standard braidings have been presented by generators and relations in [Ang], where
also an explicit formula for the dimension has been given. Another result about presen-
tation of Nichols algebras is given in [Y] for quantized enveloping algebras associated
with semisimple Lie superalgebras, and for quantized enveloping algebras of Lie algebras
[K1]. Some other preliminaries considerations on the relations of a Nichols algebra of
diagonal type appear in [He], and in [H3] for the rank-two case.

Andruskiewitsch and Schneider [AS3] have classified finite-dimensional pointed Hopf
algebras whose group of group-like elements is abelian of order not divisible by some
small primes using the Lifting method; all the possible such braidings are of finite Cartan
type. They answered positively the following conjecture for H0 = kΓ, Γ an abelian group
as above:

Conjecture 1.2. [AS1, Conj. 1.4] Let H be a finite-dimensional pointed Hopf algebra
over k. Then H is generated by group-like and skew-primitive elements.

This result was proved as a previous step of the main Theorem in [AS3] using the
presentation by generators and relations. The conjecture was recently proved in a more
general context [AnGa], when the braiding is of standard type. The proof follows also
using the presentation by generators and relations.

Because of the braidings of Cartan type we see that there exists a close relation be-
tween pointed Hopf algebras and the classical Lie theory. In such direction the definition
of the Weyl groupoid and the root system [H1, HS, HY] associated to a Nichols algebra
B(V ) of diagonal type has shown to be a good extension of the idea of root systems
and Weyl groups associated to semisimple Lie algebras. Such root system is obtained as
the set of degrees of the generators of any PBW basis, and controls coideal subalgebras
between other structures associated to B(V ) [HS].

In the classical case, convex orders over the root system were described in order to
characterize quantized enveloping algebras Uq(g) for g semisimple [KhT, Le, R2], and to
obtain Lusztig isomorphisms in the affine case [Be]. This kind of orders was first intro-
duced in [Z]. The characterization of convex orders is in consequence necessary, and it
has been done for finite [P] and affine [I] root systems.

Our main result is Theorem 4.9: we obtain a presentation by generators and relations
for any Nichols algebra of diagonal type whose root system is finite. We obtain two kind of
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relations that are enough to present B(V ): powers of root vectors (generators of a PBW
basis), and some generalizations of quantum Serre relations which express the braided
bracket of two root vectors as a linear combination of other root vectors in an explicit
way, see Lemmata 4.7, 4.5.

Theorem 4.9 follows by consideration of PBW bases as in [K1]. Such PBW bases
consist of homogeneous polynomials associated to Lyndon letters (which are called hy-
perletters) and inherit the lexicographical order. Another important element is the charac-
terization of convex orders for generalized root systems. Such convex orders are related
with reduced expressions of elements of the Weyl groupoid. These reduced expressions
characterize also right coideal subalgebras of Nichols algebras, so we can relate convex
orders and coideal subalgebras. In particular, the following result holds by Theorem 4.9:

Theorem 1.3. Let V be a braided vector space of diagonal type whose associated root
system in finite, and let I(V ) be the ideal of T (V ) such that B(V ) = T (V )/I(V ). Then
I(V ) is finitely generated.

Theorem 4.9 extends the presentation by generators and relations of Nichols algebras
of standard type, see Remark 5.4, and then gives a new proof for braidings of Cartan
type. In particular we obtain the classical presentation of quantized enveloping algebras
Uq(g) and Lusztig’s small quantum groups uq(g), with a different proof. We hope that
this presentation helps to prove Conjecture 1.2 when the group of group-like elements is
abelian, see Remark 5.3.

The plan of this article is the following. In Section 2 we recall the definition of Nichols
algebra. We also consider results from [K1, R2] concerning a PBW basis for Nichols
algebras of diagonal type.

In Section 3 we deal with root systems and coideal subalgebras of Nichols algebras of
diagonal type. In Subsection 3.1 we recall the notion of Weyl groupoid and root system,
and give some properties of these objects. In Subsection 3.2 we characterize convex orders
on finite root systems generalizing the results in [P]. In Subsection 3.3 we recall some
results from [HS] involving coideal subalgebras of Nichols algebras of diagonal type with
finite root systems and use these results to characterize PBW bases of hyperletters. In
particular we obtain that the lexicograpical order on the hyperletters is convex.

In Section 4 we obtain the desired presentation by generators and relations. First we
prove that the Kharchenko’s PBW basis is orthogonal for the canonical non-degenerate
bilinear form as in Proposition 2.1 when the braiding matrix is symmetric. Power root
vector relations hold in B(V ) by Lemma 4.7 and generalized quantum Serre relations
hold by Lemma 4.5. These two sets of relations are enough to give the presentation. We
show in Section 5 how the main theorem allows to obtain explicitly the presentation of
some Nichols algebras in some examples.
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Notation. N denotes the set of positive integers, and N0 the set of non-negative inte-
gers.

We fix an algebraically closed field k of characteristic 0; all vector spaces, Hopf alge-
bras and tensor products are considered over k.

For each N > 0, GN denotes the group of N -th roots of 1 in k.
Given n ∈ N, we set the following polynomials in q:(

n

j

)
q

=
(n)q!

(k)q!(n− k)q!
, where (n)q! =

n∏
j=1

(k)q, and (k)q =
k−1∑
j=0

qj.

2 Preliminaries

We recall some definitions and results that we shall need in the subsequent sections. They
are related with characterizations of Nichols algebras of diagonal type and PBW bases of
such algebras.

Recall that a braided vector space is a pair (V, c), where V is a vector space and
c ∈ Aut(V⊗V ) is a solution of the braid equation:

(c⊗ id)(id⊗ c)(c⊗ id) = (id⊗ c)(c⊗ id)(id⊗ c).

A braided vector space (V, c) is of diagonal type if there exists a basis x1, . . . xθ and
scalars qij ∈ k× such that

c(xi⊗xj) = qijxj⊗xi, 1 ≤ i, j ≤ θ. (2.1)

Following [K1] we describe an appropriate PBW-basis of a braided graded Hopf algebra
B = ⊕n∈NBn such that B1 ∼= V , where (V, c) is of diagonal type. In particular we
obtain PBW bases for Nichols algebras B(V ) of diagonal type. This construction is based
in the notion of Lyndon words. Each Lyndon word has a canonical decomposition as a
product of a pair of smaller Lyndon words, called the Shirshov decomposition. Using
such decomposition and the braided bracket, we define inductively a set of hyperwords,
which are the elements of a PBW basis for braided graded Hopf algebras of diagonal type.
We recall also some properties of this PBW basis.

2.1 Braided vector spaces of diagonal type and Nichols algebras

Given a braided vector space (V, c), this braiding can be extended to c : T (V )⊗T (V )→
T (V )⊗T (V ) canonically, see (2.3) for the diagonal case. We define for each pair x, y ∈
T (V ) the braided commutator as follows:

[x, y]c := multiplication ◦ (id− c) (x⊗y) . (2.2)
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Fix a braided vector space of diagonal type (V, c) and an ordered basisX = {x1, . . . , xθ}
of V as in (2.1). Let X be the corresponding vocabulary (the set of words with letters in
X) and consider the lexicographical order on X. We will identify the vector space kX
with T (V ). We shall consider two different gradings of the algebra T (V ). First, the usual
N0-grading T (V ) = ⊕n≥0T

n(V ). If we denote by ` the length of a word in X, then
T n(V ) = ⊕x∈X, `(x)=nkx.

Second, let α1, . . . , αθ be the canonical basis of Zθ. Then T (V ) is Zθ-graded, where the
degree is given by deg xi = αi, 1 ≤ i ≤ θ. Consider the bilinear form χ : Zθ × Zθ → k×

given by χ(αi, αj) = qij , 1 ≤ i, j ≤ θ. Then

c(u⊗v) = qu,vv⊗u, u, v ∈ X, (2.3)

where qu,v = χ(deg u, deg v) ∈ k×. The braided commutator satisfies a “braided” deriva-
tion equation which gives place to a “braided” Jacobi identity, namely

[[u, v]c , w]c = [u, [v, w]c]c − χ(α, β)v [u,w]c + χ(β, γ) [u,w]c v, (2.4)

[u, v w]c = [u, v]cw + χ(α, β)v [u,w]c , (2.5)

[u v, w]c = χ(β, γ) [u,w]c v + u [v, w]c , (2.6)

for any homogeneous u, v, w ∈ T (V ), of degrees α, β, γ ∈ Nθ, respectively.
We denote by H

HYD the category of Yetter-Drinfeld modules over H , where H is a
Hopf algebra with bijective antipode. Any V ∈ H

HYD becomes a braided vector space
[Mo, Section 10.6]. If H = kΓ, where Γ is a finite abelian group, then any V ∈ H

HYD is a
braided vector space of diagonal type: if Vg = {v ∈ V | δ(v) = g ⊗ v}, V χ = {v ∈ V |
g · v = χ(g)v for all g ∈ Γ} and V χ

g = V χ ∩ Vg, then V = ⊕g∈Γ,χ∈Γ̂V
χ
g . In this setting

the braiding is given by

c(x⊗ y) = χ(g)y ⊗ x, x ∈ Vg, g ∈ Γ, y ∈ V χ, χ ∈ Γ̂.

Reciprocally, any braided vector space of diagonal type can be realized as a Yetter-
Drinfeld module over the group algebra of many abelian groups. For example let (V, c)

be a braided vector space of diagonal type. Call Γ the free abelian group of rank θ, with
basis g1, . . . , gθ, and define the characters χ1, . . . , χθ of Γ by

χj(gi) = qij, 1 ≤ i, j ≤ θ.

We can consider V as a Yetter-Drinfeld module over kΓ for which xi ∈ V χi
gi

.

Given V ∈ H
HYD, the tensor algebra T (V ) admits a unique structure of graded braided

Hopf algebra in H
HYD such that the elements of V are primitive. As in [AS2], we define the

Nichols algebra B(V ) associated to V as the quotient of T (V ) by the maximal element
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I(V ) of the family S of all the homogeneous two-sided ideals I ⊆ ⊕n≥2T (V ) such that
I is a Yetter-Drinfeld submodule of T (V ) and a Hopf ideal: ∆(I) ⊂ I⊗T (V )+T (V )⊗I .

The following proposition characterizes the Nichols algebra associated to V in a very
interesting way.

Proposition 2.1. [L2, Prop. 1.2.3], [AS2, Prop. 2.10]. Given scalars a1, . . . , aθ ∈ k×,
there exists a unique bilinear form (|) : T (V )× T (V )→ k such that (1|1) = 1, and:

(x|yy′) = (x(1)|y)(x(2)|y′), for all x, y, y′ ∈ T (V ); (2.7)

(xx′|y) = (x|y(1))(x
′|y(2)), for all x, x′, y ∈ T (V ), (2.8)

(xi|xj) = δijai, for all i, j. (2.9)

This form is symmetric and satisfies

(x|y) = 0, for all x ∈ T (V )g, y ∈ T (V )h, g, h ∈ Γ, g 6= h. (2.10)

The radical of this form {x ∈ T (V ) : (x|y) = 0, ∀y ∈ T (V )} is I(V ), so (·|·) induces
a non degenerate bilinear form on B(V ) denoted by the same name.

In consequence, if (V, c) is of diagonal type, then the ideal I(V ) is Zθ-homogeneous
and B(V ) is Zθ-graded, see [AS2, Prop. 2.10].

2.2 Lyndon words and PBW basis of braided graded Hopf algebras
generated in degree zero and one

A word u ∈ X, u 6= 1, is Lyndon if u is smaller than any of its proper ends; that is, for
any decomposition u = vw, v, w ∈ X− {1}, we have u < w. We denote by L the set of
Lyndon words, see [Lo, Chapter 5]

Note that X ⊂ L, and any Lyndon word begins by its smallest letter. They also satisfy
the following properties.

1. Let u ∈ X − X . Then u is Lyndon if and only if for any decomposition u = vw,
v, w ∈ X− {1}, it satisfies vw = u < wv.

2. If v, w ∈ L, v < w, then vw ∈ L.

3. Let u ∈ X − X . Then u ∈ L if and only if there exist v, w ∈ L with v < w such
that u = vw.

Definition 2.2. Let u ∈ L−X . The Shirshov decomposition of u is the decomposition
u = vw, with v, w ∈ L such that w is the smallest end among those proper non-empty
ends of u, see [Lo]. Following [He], we denote it by Sh(u) = (v, w) ∈ L× L. It satisfies
that w is the longest end between the ends that are Lyndon words.
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Given u, v, w ∈ L be such that u = vw, u 6= 1, then Sh(u) = (v, w) if and only if
either v ∈ X , or else Sh(v) = (v1, v2) satisfies w ≤ v2.

Lyndon Theorem says that any word u ∈ X admits a unique decomposition u =

l1l2 . . . lr, as a product of non-increasing Lyndon words: li ∈ L, lr ≤ · · · ≤ l1; see [Lo,
Thm. 5.1.5]. This is called the Lyndon decomposition of u ∈ X; we call Lyndon letters of
u to any li ∈ L appearing in such decomposition.

We recall the endomorphism [−]c, see [K1], defined inductively on kX using Shirshov
and Lyndon decomposition:

[u]c :=


u, if u = 1 or u ∈ X;

[[v]c , [w]c]c, if u ∈ L, `(u) > 1 and Sh(u) = (v, w);

[u1]c . . . [ut]c , if u ∈ X− L
with Lyndon decomposition u = u1 . . . ut.

Definition 2.3. [K1]. The hyperletter corresponding to l ∈ L is [l]c. A hyperword is a
word in hyperletters, and a monotone hyperword is a hyperword [u1]k1c . . . [um]kmc such
that u1 > · · · > um.

Note that for any u ∈ L, [u]c is a homogeneous polynomial with coefficients in the
subring Z [qij] and [u]c ∈ u+ Z [qij]X`(u)

>u .

The hyperletters inherit the order from the Lyndon words; this induces in turn an or-
dering in the hyperwords (the lexicographical order on the hyperletters). We describe now
the braided commutator of hyperwords.

Theorem 2.4. [R2, Thm. 10]. Let m,n ∈ L, with m < n. Then [[m]c , [n]c]c is a Z [qij]-
linear combination of monotone hyperwords [l1]c . . . [lr]c, li ∈ L, such that the hyperlet-
ters of those hyperwords satisfy n > li ≥ mn.

Moreover, [mn]c appears in the expansion with non-zero coefficient, and for any hy-
perword of this decomposition, deg(l1 . . . lr) = deg(mn).

The coproduct of T (V ) can be described also in the basis of hyperwords.

Lemma 2.5. [R2]. Let u ∈ X, and u = u1 . . . urv
m, v, ui ∈ L, v < ur ≤ · · · ≤ u1 be the

Lyndon decomposition of u. Then

∆ ([u]c) = 1⊗ [u]c +
m∑
i=0

(
m

i

)
qv,v

[u1]c . . . [ur]c [v]ic⊗ [v]m−ic

+
∑

l1≥···≥lp>v, li∈L
0≤j≤m

x
(j)
l1,...,lp

⊗ [l1]c . . . [lp]c [v]jc ;

where each x(j)
l1,...,lp

is Zθ-homogeneous, deg(x
(j)
l1,...,lp

l1 . . . lpv
j) = deg(u).
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We have then the following result from [R2].

Lemma 2.6. For each l ∈ L call Wl the subspace of T (V ) generated by

[l1]c[l2]c · · · [lk]c, k ∈ N0, li ∈ L, l1 ≥ . . . ≥ lk ≥ l. (2.11)

Then Wl is a right coideal subalgebra of T (V ).

Proof. It follows from Theorem 2.4 and Lemma 2.5.

We consider as in [U] and [K1] another order in X. Given u, v ∈ X, we say that u � v

if and only if either `(u) < `(v), or else `(u) = `(v) and u > v for the lexicographical
order. We call� the deg-lex order, which is a total order. The empty word 1 is the maximal
element for �, and this order is invariant by right and left multiplication.

Let I be a proper ideal of T (V ), and set R = T (V )/I . Let π : T (V ) → R be the
canonical projection. Let us consider the subset of X:

GI := {u ∈ X : u /∈ kX�u + I} .

Such set satisfies:

(a) If u ∈ GI and u = vw, then v, w ∈ GI .

(b) Any u ∈ GI factorizes uniquely as a non-increasing product of Lyndon words in
GI .

Proposition 2.7. [K1, R2]. The set π(GI) is a basis of R.

In what follows, we assume that I is a Hopf ideal. Consider now

SI := GI ∩ L. (2.12)

We then define the height function hI : SI → {2, 3, . . . } ∪ {∞} by

hI(u) := min
{
t ∈ N : ut ∈ kX�ut + I

}
. (2.13)

One can find a PBW-basis by hyperwords of the quotient R of T (V ) using the set SI and
the height previously defined.

Theorem 2.8. [K1]. The following set is a PBW-basis of R = T (V )/I:
{[u1]n1

c · · · [uk]nkc : k ∈ N0, u1 > . . . > uk ∈ SI , 0 ≤ ni < hI(ui)}.

Proofs are in [K1], where the next consequences are also considered.

Proposition 2.9. For any v ∈ SI such that hI(v) <∞, qv,v is a root of unity, whose order
coincides with hI(v).

Corollary 2.10. A word u does not belong to GI if and only if the associated hyperlet-
ter [u]c is a linear combination, modulo I , of hyperwords [w]c, w � u, where all the
hyperwords have their hyperletters in SI .

Moreover, if hI(v) := h < ∞, then [v]h is a linear combination of hyperwords [w]c,
w � vh.
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3 Root systems and coideal subalgebras

In this section we recall the definition of Weyl groupoid and the associated generalized
root system given in [CH1] and [HY]. We recall also some properties of these objects
that we shall use in the subsequent sections, and the relation with Nichols algebras of
diagonal type. After that, we describe convex orders for subsets of the root systems as
a generalization of Papi’s results in [P] for Weyl groups. We consider then a family of
coideal subalgebras of a Nichols algebra of diagonal type with finite root system in order
to prove that the ordering on the Lyndon words of a PBW basis as in Section 2.2 is convex.
For the proof of the convexity we use the characterization of coideal subalgebras given in
[HS].

3.1 Weyl groupoid and root systems

The notation used here is the same as in [CH1].
Fix a non-empty set X , a non-empty finite set I and call {αi}i∈I the canonical basis

of ZI . For each i ∈ I consider a map ri : X → X , and for each X ∈ X a generalized
Cartan matrix AX = (aXij )i,j∈I in the sense of [Ka].

Definition 3.1. [HY, CH1] The quadruple C := C(I,X , (ri)i∈I , (AX)X∈C) is a Cartan
scheme if

• for all i ∈ I , r2
i = id, and

• for all X ∈ X and i, j ∈ I: aXij = a
ri(X)
ij .

For each i ∈ I and X ∈ X denote by sXi the automorphism of ZI given by

sXi (αj) = αj − aXijαi, j ∈ I.

The Weyl groupoid of C is the groupoid W(C) whose set of objects is X and whose
morphisms are generated by sXi , where we consider sXi ∈ Hom(X, ri(X)), i ∈ I ,X ∈ X .

In general we shall denoteW(C) simply byW , and for any X ∈ X :

Hom(W , X) := ∪Y ∈XHom(Y,X), (3.1)

∆X re := {w(αi) : i ∈ I, w ∈ Hom(W , X)}. (3.2)

∆X re is the set of real roots of X . Each w ∈ Hom(W , X1) can be written as a product
sX1
i1
sX2
i2
· · · sXmim , where Xj = rij−1

· · · ri1(X1), i ≥ 2. We denote w = idX1si1 · · · sim: this
means that w ∈ Hom(W , X1), because the elements Xj ∈ X are univocally determined.
The length of w is defined by

`(w) = min{n ∈ N0 : ∃i1, . . . , in ∈ I such that w = idXsi1 · · · sin}.
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In what follows we will assume thatW is a connected groupoid:

Hom(Y,X) 6= ∅, ∀X, Y ∈ X .

Definition 3.2. [HY, CH1] Fix a Cartan scheme C, and for each X ∈ X a set ∆X ⊂ ZI .
R := R(C, (∆X)X∈X ) is a root system of type C if

1. for all X ∈ X , ∆X = (∆X ∩ NI
0) ∪ −(∆X ∩ NI

0),

2. for each i ∈ I and each X ∈ X , ∆X ∩ Zαi = {±αi},

3. for each i ∈ I and each X ∈ X , sXi (∆X) = ∆ri(X),

4. if mX
ij := |∆X ∩ (N0αi + N0αj)|, then (rirj)

mXij (X) = (X) for all i 6= j ∈ I and
all X ∈ X .

We call ∆X
+ := ∆X ⊂ NI

0 the set of positive roots, and ∆X
− := −∆X

+ the set of negative
roots.

By (3) we have that w(∆X) = ∆Y for any w ∈ Hom(Y,X).
We say that R is finite if ∆X is finite for some X ∈ X . By [CH1, Lemma 2.11], this

is equivalent to the fact that the sets ∆X are finite, for all X ∈ X , and thatW is finite.
The following result plays a fundamental role for our purposes in the next subsection.

Theorem 3.3. [CH2, Thm. 2.10] Let α ∈ ∆X
+ \ {αi : i = 1, . . . θ}. There exist β, γ ∈ ∆X

+

such that α = β + γ.

Now we recall some results involving real roots and the length of the elements inW .

Lemma 3.4. [HY, Cor. 3] Let m ∈ N, X, Y ∈ X and i1, . . . , im, j ∈ I . Call w =

idXsi1 · · · sim ∈ Hom(Y,X), and assume that `(w) = m. Then,

• `(wsj) = m+ 1 if and only if w(αj) ∈ ∆X
+ ,

• `(wsj) = m− 1 if and only if w(αj) ∈ ∆X
− .

Proposition 3.5. [CH1, Prop. 2.12] For each w = idXsi1 · · · sim such that `(w) = m, the
roots βj = si1 · · · sij−1

(αij) ∈ ∆X are positive and pairwise different. If w is an element
of maximal length andR is finite, then {βj} = ∆X

+ . In consequence, all the roots are real:
i.e., for each α ∈ ∆X

+ there exist i1, . . . , ik, j ∈ I such that α = sik · · · si1(xj).
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As in [HS], consider for X ∈ X , m ∈ N and (i1, . . . , im) ∈ Im the sets:

ΛX(i1, . . . , im) := {βk := idXsi1 · · · sik−1(αik) : 1 ≤ k ≤ m} ⊂ ∆X , (3.3)

ΛX
+ (i1, . . . , im) := {β ∈ ∆X

+ : |{k ∈ {1, . . . ,m} : β = ±βk}| is odd}. (3.4)

By [HS, Prop. 1.9], given other elements j1, . . . , jn ∈ I , we have

ΛX
+ (i1, . . . , im) = ΛX

+ (j1, . . . , jn) ⇔ idxsi1 · · · sim = idxsj1 · · · sjn ,

and moreover,
|ΛX

+ (i1, . . . , im)| = `(idxsi1 · · · sim). (3.5)

In this way, if w = idXsi1 · · · sim is any expression of w ∈ Hom(W , X), we can define
ΛX

+ (w) := ΛX
+ (i1, . . . , im).

3.2 Convex orders on root systems

Now we characterize convex orders on subsets of root systems of finite Weyl groupoids,
extending the results given in [P] for Weyl groups.

Definition 3.6. Consider a root system ∆X
+ with a fixed total order <. We say that it is

• convex if for each α, β ∈ ∆+ such that α < β and α + β ∈ ∆+, then

α < α + β < β.

• sub-convex if for each α, β ∈ ∆+ such that α < β and α + β ∈ ∆+, then

α < α + β.

• strongly convex if for each ordered subset α1 ≤ . . . ≤ αk of ∆+ such that α :=∑
αi ∈ ∆+ then α1 < α < αk.

Definition 3.7. Let L = {β1, . . . , βm} be an ordered subset of ∆X
+ . We say that L is

associated to w ∈ Hom(W , X) if there exists a reduced expression w = idXsi1 · · · sim
such that

βj = si1 · · · sij−1
(αij), ∀1 ≤ j ≤ m.

Compare this with [P]. For any w ∈ Hom(Y,X) define

Rw := {α ∈ ∆X
+ : w−1(α) ∈ ∆Y

−}.

Now we generalize some results about Weyl groups to the context of Weyl groupoids.
First we consider the analogue of a result in [Bo].
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Proposition 3.8. For any ordered set L associated to w, we have L = Rw. In conse-
quence, |Rw| = `(w) and two ordered sets associated to the same w differ at most by the
ordering.

Proof. Note that for any βj = si1 · · · sij−1
(αij),

w−1(βj) = −sim · · · sij+1
(αj).

sim · · · sij+1
sij is a reduced expression because it is contained in a reduced expression, so

we have w−1(βj) ∈ ∆Y
− by Lemma 3.4. Therefore L ⊆ Rw.

Reciprocally, let α ∈ Rw. As w−1(α) ∈ ∆Y
− and si1 · · · sim(w−1(α)) = α ∈ ∆X

+ , con-
sider the greatest j such that sij · · · simw−1(α) is positive. Therefore sij+1

· · · simw−1(α)

is negative, so sij · · · simw−1(α) = αij , and then αij = sij · · · simw−1(α); that is, α =

si1 · · · sij−1
(αj) ∈ L.

Second, we relate our sets Rw with the ones in [HS], see (3.4). Although the sets are
equal, our definition is more comfortable to prove statements about convexity.

Lemma 3.9. For each w ∈ Hom(W , X), Rw = ΛX
+ (w).

Proof. Fix a reduced expressionw = idXsi1 · · · sim , so βj = si1 · · · sij−1
(αij) is a positive

root, and α ∈ ∆X
+ is equal to ±βj if and only if α = βj . Therefore ΛX

+ (w) = L.

Now we extend another result from [P]. Note that condition (a) in our result is weaker
than the one in [P], but the proof is very similar. This weaker condition shall simplify
some proofs in what follows.

Theorem 3.10. Let L be an ordered subset of ∆X
+ . There exists w ∈ Hom(W , X) such

that L is associated to w if and only if the following conditions are satisfied:

(a) For each pair λ < µ ∈ L such that λ+ µ ∈ ∆X
+ , then λ+ µ ∈ L and λ < λ+ µ.

(b) If λ + µ ∈ L and λ, µ ∈ ∆X
+ , then at least one of them belongs to L and precedes

λ+ µ.

Proof. Assume that L is associated to w = idXsi1 · · · sim for some w ∈ Hom(Y,X).
If λ = si1 · · · sik−1

(αik) and µ = si1 · · · sij−1
(αij) are such that 1 ≤ k < j ≤ m and

λ+ µ ∈ ∆X
+ , we have λ+ µ ∈ L = Rw, because

w−1(λ+ µ) = w−1(λ) + w−1(µ) ∈ ∆Y
−.

Suppose that λ + µ < λ. Then λ + µ = si1 · · · sil−1
(αil) for some 1 ≤ l < k, so

sil · · · si1(λ+ µ) = −αl ∈ ∆
ril ···ri1 (X)

− . But as l < k < j, we have

sil · · · si1(λ), sil · · · si1(µ) ∈ ∆
ril ···ri1 (X)

− ,
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which is a contradiction. Therefore λ < λ+ µ, and L satisfies (a).
For (b), suppose that λ+ µ ∈ L, but λ, µ /∈ L: w−1(λ), w−1(µ) ∈ ∆Y

+, so w−1(λ+ µ)

is positive, which is a contradiction to the fact that λ + µ ∈ Rw. If both λ, µ ∈ L, a
similar proof to (a) gives that one of them precedes λ + µ. In consequence, suppose that
λ ∈ L, µ /∈ L and λ + µ < λ. If l < k is such that λ + µ = si1 · · · sil−1

(αil), we have
sil · · · si1(λ) ∈ ∆+ and

sil · · · si1(λ) + sil · · · si1(µ) = sil · · · si1(λ+ µ) = −αl ∈ ∆
ril ···ri1 (X)

− ,

so sil · · · si1(µ) ∈ ∆
ril ···ri1 (X)

− , and then µ ∈ RidXsi1 ···sil ⊂ RidXsi1 ···sim = L, a contradic-
tion.

Reciprocally, we prove that an ordered set L satisfying (a) and (b) is associated to
some w by induction on m := |L|. If m = 1, let α ∈ L. If we suppose that α is not
simple, by Theorem 3.3, α = β+ γ for some positive roots β, γ, and by condition (b) one
of them belongs to L, so m ≥ 2, which is a contradiction. Therefore L = {αj} = Rsj for
some 1 ≤ j ≤ θ.

Now assume m > 1 and call β1 < . . . < βm the elements of L. Notice that L′ =

{β1, . . . , βm−1} verifies conditions (a) and (b), so by inductive hypothesis there exists a
reduced expression v = idXsi1 · · · sim−1 such that

β1 = αi1 , βj = si1 · · · sij−1
(αij), j = 2, . . . ,m− 1.

Let Z = rim−1 · · · ri1(X). Then v−1(βm) ∈ ∆Z
+ because βm /∈ L′ = Rv. Suppose that

v−1(βm) is not simple. Then there exist α, β ∈ ∆Z
+ such that α + β = v−1(βm); i.e.

βm = α′ + β′, where α′ = v(α), β′ = v(β) ∈ ∆X . Therefore α′ ∈ ∆X
+ or β′ ∈ ∆X

+ .
On the other hand, if both are positive then one of them is βk for some k < m; assume
α′ = βk, but then α = v−1(βk) ∈ ∆Z

−, a contradiction. In consequence, we can consider
α′ ∈ ∆X

+ and β′ ∈ ∆X
− . For this case, α′ /∈ Rv = L′ and −β′ ∈ Rv = L′ ⊂ L. As

α′ = βm + (−β′), hypothesis (a) on the set L implies that α′ ∈ L, so α′ = βm ∈ L−L′, a
contradiction. Therefore, v−1(βm) = αim for some im ∈ I , w = vsim ∈ Hom(rim(Z), X)

is a reduced expression by Lemma 3.4, and L = Rw.

Theorem 3.11. Given an order on ∆X
+ , the following statements are equivalent:

1. the order is associated with a reduced expression of the longest element,

2. the order is strongly convex,

3. the order is convex.

Proof. (1)⇒ (2). Let ω = idXsi1 · · · sim be an element of maximal length in Hom(W , X).
By Proposition 3.5, m = |∆X

+ | and

βk := si1 · · · sik−1
(αik), k = 1, . . . ,m,



14 Iván Ezequiel Angiono

are all different, so {βk} = ∆X
+ . In consequence, it induces an order on ∆X

+ :

β1 < · · · < βm.

To prove that this order is strongly convex, consider β, βk1 , . . . , βkl ∈ ∆X
+ such that

k1 < · · · < kl and β = βk1 + · · · + βkl . Suppose that β = βk with k < k1. Then
u = idXsi1 · · · sik satisfies `(u) = k, β ∈ Ru but βkj /∈ Ru for all j = 1, ..., l, which is

a contradiction because u(β) ∈ ∆
rik ···ri1X
− should be the sum of the positive roots u(βj).

We obtain a similar contradiction if we assume k > kl. Therefore k1 < k < kl.

(2)⇒ (3) is clear.

(3)⇒ (1). Assume that a given order on ∆X
+ is convex; i.e. it satisfies trivially condition

(a) of Theorem 3.10 because we consider L = ∆X
+ . Therefore it satisfies also condition

(b) by the convexity, so the order is associated to some w. As `(w) = |∆X
+ | by Proposition

3.8, it should be the element of maximal length.

3.3 Coideal subalgebras and convex orders for PBW bases

Now we recall a description of coideal subalgebras of Nichols algebras with finite root
system given in [HS]. We will use this result to prove that the lexicographical order on the
PBW generators of Kharchenko’s basis is convex. Before to prove it, we recall the results
about the Weyl groupoid attached to a braided vector space of diagonal type. Given a
braided vector space (V, c) of diagonal type, fix a basis {x1, . . . , xθ} and scalars qij ∈ k×

as in (2.1), and the bilinear form as in (2.3). We set as in [H1], ∆V
+ the set of degrees of

a PBW basis of B(V ), counted with their multiplicities. Such set does not depend on the
PBW basis, as it is remarked in [H1] and proved in [AA].

In what follows, we fix a braided vector space (V, c) of diagonal type and assume
that the root system ∆V

+ is finite. In such case we can attach a Cartan scheme C, a
Weyl groupoidW and the corresponding root systemR, see [HS, Thms. 6.2, 6.9] and the
references therein, which coincides with the Weyl groupoid defined in [H1] for braided
vector space of diagonal type. Such Weyl groupoid can be built as follows, see [AA]. Set
X the set of ordered bases of Zθ, and for each F = {f1, . . . , fθ} ∈ X , set q̃ij = χ(fi, fj).
Define for each 1 ≤ i 6= j ≤ θ,

mij(F ) := min {n ∈ N0 : (n+ 1)q̃ii(1− q̃niiq̃ij q̃ji) = 0} , (3.6)

and set si,F ∈ Aut(Zθ) such that si,F (fj) = fj +mij(F )fi. Here mii = −2.
Note that G = Aut(Zθ) × X is a groupoid whose set of objets is X and whose mor-

phisms are:

x
(g,x)−→ g(x).
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The Weyl Groupoid W (χ) of χ is the least subgroupoid of G such that

• (id, E) ∈ W (χ),

• if (id, F ) ∈ W (χ) and si,F is defined, then (si,F , F ) ∈ W (χ).

Recall that the (right) Duflo order on Hom(W , X) is defined as follows: if x ∈
Hom(Y,X) and y ∈ Hom(Z, Y ), then x ≤D xy iff `(xy) = `(x) + `(y); see [HS,
Defn. 1.11]. By [HS, Thm. 1.13], given v, w ∈ Hom(W , X) we have v ≤D w if and only
if ΛX

+ (v) ⊂ ΛX
+ (w).

Remark 3.12. Let w1 ≤D w2 ≤D · · · ≤D wk be a maximal chain in Hom(W , X).
Then there exist a reduced expression idXsi1 · · · sik for some i1, . . . , ik ∈ I such that
wj = idXsi1 · · · sij , for each 1 ≤ j ≤ k.

In particular, a chain w1 ≤D w2 ≤D · · · ≤D wk has maximal length iff it is associated
to a reduced expression of the longest element in Hom(W , X), and in consequence k =

|∆X
+ |.

We recall now some results from [HS] about the classification of coideal subalgebras
of B(V ). As in loc. cit., we denote by K(V ) the set of all the Nθ

0-graded left coideal
subalgebras of B(V ). We rewrite these results in the context of diagonal braidings (in
[HS] the authors work in a more general context).

First results about the classification of coideal subalgebras were obtained in [K3, KL,
Po] for quantized enveloping algebras Uq(g) of type An, Bn and G2, respectively, where
it was proved that coideal subalgebras admit a PBW basis and these subalgebras were
classified.

Given n = (n1, . . . , nθ) ∈ Nθ
0, we set Xn = Xn1

1 · · ·X
nθ
θ in k[[x1, . . . , xθ]]. We also

set

qh(t) :=
th − 1

t− 1
∈ k[t], h ∈ N; q∞(t) :=

1

1− t
=
∞∑
s=0

ts ∈ k[[t]].

For each Nθ
0-graded k-vector space W = ⊕α∈Nθ0Wα, we denote its Hilbert series by

HW :=
∑
α∈Nθ0

(dimWα)Xα ∈ k[[x1, . . . , xθ]].

For any α ∈ Nθ
0, we set qα = χ(α, α), where χ is the bicharacter over Zθ as in (2.3),

and Nα = ordqα, where Nα =∞ if qα is not a root of unity.

Theorem 3.13. [HS] For each w ∈ Hom(W , V ) there exists a unique left coideal subal-
gebra F (w) ∈ K(V ) such that its Hilbert series is

HF (w) =
∏

β∈ΛV+(w)

qNβ(Xβ). (3.7)
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Moreover, the correspondence w 7→ F (w) gives an order preserving and order re-
flecting bijection between Hom(W , V ) and K(V ), where we consider the Duflo order
over Hom(W , V ) and the inclusion order over K(V ); i.e.

w1 ≤D w2 ⇔ F (w1) ⊂ F (w2).

Proof. Note that in [HS] the authors classify right coideal subalgebras, but that E is a
right coideal subalgebras if and only if S(E) is a left coideal subalgebra, where S denotes
the antipode of B(V ). Moreover, if they are Nθ-graded, then HE = HS(E), because S
is Nθ-graded, and the order given by inclusion on the family of left coideal subalgebras
corresponds with the one on the family of right coideal subalgebras because S is bijective.
In this context we define F (w) = S(EV (w)), where EV (w) is as in [HS, Thm. 6.12].

By [HS, Lemma 6.11], we have an isomorphism of Nθ
0-graded spaces

F (w) ∼= ⊗β∈ΛV+(w)B(Vβ),

where Vβ corresponds to Nβ of [HS, Defn. 6.5]. In this way Vβ is a 1-dimensional braided
vector space of diagonal type generated by a non-zero vector vβ , such that c(vβ⊗vβ) =

qβ vβ⊗vβ . Therefore,HB(Vβ) = qNβ(Xβ), and equation (3.7) follows.
The uniqueness of a coideal subalgebra with a given Hilbert series follows from [HS,

Lemma 6.4]. The map Hom(W , V ) → K(V ) is bijective and preserves the order in both
directions by [HS, Thms. 6.12, 6.15] (note that we can apply these Theorems because we
assume that V has diagonal braiding and ∆V

+ is finite).

Consider the PBW basis of Lyndon words given in Theorem 2.8 for the fixed basis
{x1, . . . , xθ} of V . We assume that ∆V

+ is finite, so all the roots are real and have multi-
plicity one. In this way, we can label the PBW generators by the elements β ∈ ∆V

+: they
are xβ = [lβ]c for some Lyndon word lβ of degree β. It induces a total order on the roots:
if lβ1 < lβ2 < · · · < lβM are ordered lexicographically, we consider β1 < β2 < · · · < βM ,
where M = |∆V

+| and in particular lβ1 = x1, lβM = xθ. Call B the basis of B(V ) consist-
ing of hyperwords as above.

Let π : T (V ) → B(V ) = T (V )/I(V ) be the canonical projection. Recall the defini-
tion of the coideal subalgebras Wlβ in Lemma 2.6, and call

Wβ := π(Wlβ), β ∈ ∆V
+.

Remark 3.14. Wβ is a left coideal subalgebra of B(V ), because π is a morphism of
braided Hopf algebras and Wlβ is a left coideal subalgebra of T (V ). Also Wβj ⊆ Wβi if
i < j and

Wβ1 = B(V ), WβM = k〈xθ〉.
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Lemma 3.15. With the notation above, xβi /∈ Wβj if i < j.
In consequence, B(V ) = Wβ1 ) Wβ2 ) · · · ) WβM .

Proof. Suppose that xβi ∈ Wβj with i < j. Then xβi ∈ GI(V ) is a linear combination of
hyperwords greater or equal that xβj in B(V ), which is a contradiction to Corollary 2.10.
Therefore xβi /∈ Wβj . Then the second statement of the lemma follows from Remark
3.14.

We prove now the main result of this section.

Theorem 3.16. Keep the notation above. The order β1 < β2 < · · · < βM on ∆V
+ is

convex.

Proof. Each Wβi corresponds with one F (wi). As we have a chain as in previous lemma,
by Theorem 3.13 we have w1 ≥D w2 ≥D . . . ≥D wM .

As the wi’s are pairwise different, we have a chain of maximal length, and by Remark
3.12 there exists a reduced expression of the longest element ωV = idV siM · · · si1 such
that wk = idV siM · · · sik for each 1 ≤ k ≤M .

We will prove by induction (descending on j) that βj = siM · · · sij+1
(αj). If so, we

conclude the proof because of Theorem 3.11. For the first step, notice that HwM =

qNαθ (xθ) by Theorem 3.13, and by Remark 3.14 we have im = θ, so we have the ini-
tial step.

Assume now that k < M and βj = siM · · · sij+1
(αj) for j = k + 1, · · · ,M . Call

γ = siM · · · sik+1
(αk), so by inductive hypothesis we have

HWβk+1
=

M∏
j=k+1

qNβj (X
βj), HWβk

= qNγ (X
γ)

(
M∏

j=k+1

qNβj (X
βj)

)
.

On the other hand, {xnMβM · · ·x
nk
βk

: 0 ≤ nj < Nβj} is a linearly independent set of Wβk ,
so

HWβk
≥

M∏
j=k

qNβj (X
βj),

where the inequality between the series means that the inequality holds for all the cor-
responding coefficients. Looking at the coefficient of Xβk we obtain that there exists an
expression

βk = nγ +
M∑

j=k+1

njβj, n ∈ N, nj ∈ N0.

Note that Rwk = ΛV
+ = {γ, βk+1, . . . βM}, so if we apply wk to the last equality, we

obtain that w−1
l (βk) ∈ ∆

rl···rM (V )
m . Therefore βk ∈ Rwk , and as βk 6= βj for all j > k, we

conclude βk = γ.
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The next result is analogous to the one for the positive part of quantized enveloping
algebras Uq(g) given in [Le], and gives an inductive way to obtain the words lβ for β ∈
∆V

+.

Corollary 3.17. For each β ∈ ∆V
+, β 6= α1, . . . , αθ,

lβ = max{lδ1lδ2 : δ1, δ2 ∈ ∆V
+, δ1 + δ2 = β, lδ1 < lδ2}. (3.8)

Proof. Any factor of an element ofGI(V ) is inGI(V ) (see Subsection 2.2). If lβ = uv is the
Shirshov decomposition of lβ , then there exist γ1, γ2 ∈ ∆V

+ such that u = lγ1 < v = lγ2
and β = γ1 + γ2.

On the other hand, let δ1, δ2 ∈ ∆V
+ be such that δ1 + δ2 = β and lδ1 < lδ2 . By the

previous theorem, lδ1 < lβ < lδ2 . If lβ does not begin with lδ1 , then lδ1u < lβ for every
word u, so in particular lδ1lδ2 < lβ . If lβ begins with lδ1 , then lβ = lδ1u, where u has
degree δ2. Let u = lplp−1 · · · l1 be its Lyndon decomposition. Therefore each li ∈ GI(V ),
so u = lnMβM · · · l

n1
β1

for some ni ∈ N0. Let k = max{j : nj 6= 0}. As the order is strongly
convex, xβk ≥ xδ2; i.e. lβk ≥ lδ2 , so u ≥ lδ2 and then lβ = lδ1u ≥ lδ1lδ2 . In any case,
lβ = lδ1u ≥ lδ1lδ2 .

Another consequence shows that the family of coideal subalgebras Wβ (which are in
particular left B(V )-comodules) behaves as a kind of modules of highest weight.

Theorem 3.18. The setBk = {xnMβM · · ·x
nk
βk

: 0 ≤ nj < Nβj} is a basis ofWβk . Moreover,
if Wβk = ⊕α∈Nθ0Wβk(α) denotes the decomposition in the Nθ

0 homogeneous components,
then dimWβk(βk) = 1.

Proof. The first statement follows because Bk is included in Wβk , it is linearly indepen-
dent and the Hilbert series of the k-linear subspace spanned by Bk coincides with the
Hilbert series of Wβk .

For the second statement, if
∑M

i=1 niβi = βk for some ni ∈ N0, then ni = δi,k or there
exists i < k such that ni > 0, by Theorem 3.11.

The first consequence of the description of coideal subalgebras Wα as in previous
theorem is a new expression of the coproduct of hyperwords which we will use in next
section. We set

Ck := {xnkβkx
nk−1

βk−1
· · · xn1

β1
: 0 ≤ nj < Nβj}, (3.9)

Dk := {xnMβM · · ·x
n1
β1

: 0 ≤ nj < Nβj , ∃j ≥ k such that nj 6= 0}. (3.10)

Lemma 3.19. Let a ∈ Bk−{1}, b ∈ Bl, l ≤ k. Then ab = 0 or ab is spanned by elements
of Bl ∩Dk.
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Proof. If l = k, it follows directly. Assume then l < k and write b = b1b2 with b1 ∈ Bk

and b2 ∈ Ck−1 ∩ Bl (possibly b1 = 1). Then ab1 ∈ Wβk , because Wβk is a subalgebra, so
it is spanned by Bk. To end, just note that if c ∈ Bk, then cb2 ∈ Bl ∩Dk.

We set also ht(u) :=
∑
ni, if u = xnMβM x

nk−1

βk−1
· · ·xn1

β1
.

Lemma 3.20. Let u = xnkβk · · ·x
nl
βl
∈ Bl −Dk+1, l ≤ k, be such that nk, nl 6= 0. Then,

∆(u) ∈

( ⊕
v∈B, w∈Dk∩Bl

k v⊗w

)⊕( ⊕
v∈Dk, w∈Bl−Dk

k v⊗w

)
.

Proof. We prove it by induction on the height. If ht(u) = 1, u = xβi for some i. Then,
∆(u) ∈ u⊗1 + 1⊗u+ B(V )⊗Wβi , so the result follows.

Assume it holds for ht(w) < n, and u = xnkβk · · ·x
nl
βl

is such that ht(u) = n. Write
u = xβkw, so by inductive hypothesis,

∆(u) ∈

( ⊕
v∈B, w∈Ds∩Bl

k v⊗w

)⊕( ⊕
v∈Ds, w∈Bl−Ds

k v⊗w

)
,

where s = k−1 if nk = 1, or s = k if nk > 1. We calculate ∆(u) = ∆(xβk)∆(w). Using
that the braiding is diagonal and Lemma 3.19 we conclude that

(∆(xβk)− xβk⊗1)∆(w) ∈
⊕

v∈B, w∈Dk∩Bl

k v⊗w.

Also, for any v ∈ B we have xβkv ∈ Dk, because if v ∈ Bk then xβkv ∈ Wβk and if
v ∈ Bi for i < k then we apply Lemma 3.19 again, and we conclude the proof.

4 Presentation by generators and relations of Nichols al-
gebras of diagonal type

In this section we use the convex order of a PBW basis of hyperletters to prove that,
when the diagonal braiding is symmetric, such PBW basis is orthogonal with respect
to the bilinear form of Proposition 2.1. This fact gives a way to obtain relations which
holds in the Nichols algebras, even when the braiding is not symmetric. We obtain then a
presentation by generators and relations for any Nichols algebras of diagonal type whose
root system is finite considering a suitable set of relations.
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4.1 A general presentation

We continue with the setting fixed in Subsection 3.3. To begin with, we prove the or-
thogonality of the PBW basis with respect to the bilinear form in Proposition 2.1. This
result extends [Ang, Prop. 5.1], and the proof is very similar; anyway we rewrite it in this
general setting.

Proposition 4.1. Consider a PBW basis of B(V ) as above given by Lyndon words, and
assume that the braiding matrix is symmetric. Then the PBW basis is orthogonal with
respect to the bilinear form in Proposition 2.1.

Proof. We prove by induction on k = `(u)+`(v) that (u|v) = 0, where u 6= v are ordered
products of PBW generators. If k = 1, then u = 1, v = xj or u = xi, v = 1, for some
i, j ∈ {1, . . . , θ}, and (1|xj) = (xi|1) = 0.

Suppose the statement is valid when `(u) + `(v) < k, and let u 6= v be hyperwords
such that `(u)+`(v) = k. If both are hyperletters, they have different degrees α 6= β ∈ Zθ,
so u = xα, v = xβ , and (xα|xβ) = 0, since the homogeneous components are orthogonal
for (·|·).

Suppose that u = xα and v = xhkβkx
hk−1

βk−1
. . . xhiβi , for some 1 ≤ i ≤ k ≤ M (we

consider hk, hl 6= 0). If they have different Zθ-degree, they are orthogonal. Then, we
assume that α =

∑k
j=i hjβj , so βi < α because the ordered root system is strongly

convex by Theorem 3.16. Using Lemma 2.5 and (2.1),

(u|v) =(xα|w)(1|xβi) + (1|w)(xα|xβi)
+

∑
l1≥···≥lp>lα, li∈L

(xl1,...,lp |w)([l1]c · · · [lp]c|xβi)

where v = wxβi . Note that (1|xβi) = (1|w) = 0. Also, [l1]c · · · [lp]c is a linear combi-
nation of greater hyperwords of the same degree and an element of I(V ), so by induc-
tive hypothesis and the fact that I(V ) is the radical of the bilinear form, we conclude
([l1]c · · · [lp]c|xβi) = 0. Therefore (u|v) = 0.

For the final case, we consider

u = xhkβk . . . x
hi
βi
, 1 ≤ i ≤ k ≤M, v = x

fq
βq
. . . x

fp
βp
, 1 ≤ p ≤ q ≤M.

The bilinear form is symmetric, so we can assume i ≤ p. By Lemma 2.5 and (2.7),

(u|v) = (w|1)(xβi |v) +

fp∑
j=0

(
fp
j

)
qβp

(w|xfqβq . . . x
fp−1

βp−1
xjβp)(xβi |x

fp−j
βp

)

+
∑

l1≥···≥lt>lβp , ls∈L
0≤j≤fp

(w|x(j)
l1,...,lt

)(xβi | [l1]c . . . [lt]c x
j
βp

)
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where u = wxβi . Note that (w|1) = 0, and [l1]c . . . [lp]c x
j
βp

is a combination of hyper-
words of the PBW basis greater or equal than it and an element of I(V ). Using induction
hypothesis and the fact that I(V ) is the radical of this bilinear form, we conclude that
(xβi | [l1]c . . . [lp]c x

j
βp

) = 0. As also xβi , x
fp−j
βp

are different elements of the PBW basis for
fp − j 6= 1, we have that

(u|v) = (fp)qβp (w|xfqβq . . . x
fp−1

βp−1
x
fp−1
βp

)(xβi |xβp). (4.1)

Then it is zero if i < p, but also if i = p, because in that case w 6= x
fq
βq
. . . x

fp−1

βp−1
x
fp−1
βp

and
we use induction hypothesis.

Corollary 4.2. If u = xnMβM · · ·x
n1
β1

, where 0 ≤ nj < Nβj , then

cu := (u|u) =
M∏
j=1

nj!qβj c
nj
xβj
6= 0. (4.2)

Proof. We check the equality by induction on ht(w). If ht(w) = 1, w is an hyperletter. If
we assume it holds for ht(w) < k, and ht(u) = k, we use the orthogonality of the PBW
basis and a calculation as (4.1) for v = u to deduce (4.2) from the inductive hypothesis.

Such scalar is not zero because u /∈ I(V ) and the PBW basis generates a k-linear
complement to I(V ), the radical of this bilinear form.

Remark 4.3. Note that:

(xβixβj |u) = (xβi |u(1))(xβj |u(2)) = di,jcxβicxβj ,

where di,j is the coefficient of xβi⊗xβj in the expression of ∆(u) as a linear combination
of elements of the PBW basis in both sides of the tensor product.

We return to the general case where the braiding matrix is not necessarily symmetric.
We obtain some relations and prove then the presentation of Nichols algebras by gener-
ators and relations. To obtain these relations is the key step to find the presentation in
Theorem 4.9. Note that Bi∩Cj is the set of monotone hyperwords whose hyperletters are
between xβi and xβj ,see Theorem 3.18 and the definition of Cj in Subsection 3.3.

Let (W,d) be a braided vector space of diagonal type, x̂1, . . . , x̂θ a basis of W and
q̂ij ∈ k× such that d(x̂i⊗ x̂j) = q̂ijx̂j ⊗ x̂i. Assume that q̂ij = q̂ji for all 1 ≤ i, j ≤ θ, and
that (V, c) and (W,d) are twist equivalent:

qijqji = q̂ij q̂ji, qii = q̂ii, 1 ≤ i 6= j ≤ θ.

We define x̂β = [lβ]d: that is, the corresponding hyperletter to lβ , but where we change
the braiding c by d. By Corollary 3.17 and the invariance of the root system under twist
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equivalence, the set of all the x̂β , β ∈ ∆V
+ = ∆W

+ , is a set of generators of a PBW basis
as in Kharchenko’s Theorem. If u = xnMβM · · ·x

n1
β1

, then we denote û = x̂nMβM · · · x̂
n1
β1

.
Let σ : Zθ × Zθ → k× the bilinear form given by

σ(gi, gj) =

{
q̂ijq

−1
ij , i ≤ j

1, i > j
(4.3)

By [AS2, Prop. 3.9, Rem. 3.10] there exists a linear isomorphism Ψ : B(W )→ B(V )

such that Ψ(x̂i) = xi and for any x ∈ B(W )α, y ∈ B(W )β , α, β ∈ Nθ
0,

Ψ(xy) = σ(α, β)Ψ(x)Ψ(y), (4.4)

Ψ([x, y]d) = σ(α, β)[Ψ(x),Ψ(y)]d. (4.5)

Define tαi = 1 for all 1 ≤ i ≤ θ, and inductively

tβ = σ(β1, β2)tβ1tβ2 , Sh(lβ) = (lβ1 , lβ2).

Also for any u = xnMβM · · ·x
n1
β1

define

f(u) :=
∏

1≤i<j≤M

σ(βj, βi)
ninj

∏
1≤i≤M

σ(βi, βi)
(ni2 )tniβi . (4.6)

Lemma 4.4. For any u = xnMβM · · ·x
n1
β1

, Ψ(û) = f(u)u.

Proof. We prove first by induction on `(lβ), β ∈ ∆V
+, that Ψ(x̂β) = tβ xβ . It follows by

definition when `(lβ) = 1, i.e. when β = αi for some 1 ≤ i ≤ θ. Now assume it holds for
`(lγ) < k, and consider β ∈ ∆V

+ such that `(lβ) = k. Let Sh(lβ) = (β1, β2). Then,

Ψ(x̂β) = Ψ([x̂β1 , x̂β2 ]d) = σ(β1, β2)[Ψ(x̂β1),Ψ(x̂β2)]c

= σ(β1, β2)tβ1tβ2 [xβ1 , xβ2 ]c = tβ xβ,

by (4.5) and inductive hypothesis.
Now we prove that Ψ(û) = f(u)u by induction on ht(u). Note that if ht(u) = 1

it reduces to Ψ(x̂β) = tβ xβ . Assume now that it holds for ht(v) < N , and consider
u = xnMβM · · ·x

nk
βk

such that ht(u) = N and nk > 0. Call v = xnMβM · · ·x
nk−1
βk

. Then,

Ψ(û) = σ

(
(nk − 1)βk +

M∑
i=k+1

niβi, βk

)
Ψ(v̂)Ψ(x̂βk)

=

(
M∏

i=k+1

σ(βi, βk)
ni

)
σ(βk, βk)

nk−1f(v)v tβkxβk = f(u)u,

by (4.4) and inductive hypothesis.
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We define for 1 ≤ i < j ≤ θ and u = xnMβM · · ·x
n1
β1

,

cui,j :=
f(u) (x̂βix̂βj |û)

σ(βi, βj)tβitβjcû
, (4.7)

where (·|·) denotes the bilinear form associated to (W,d), and cû is computed as in Corol-
lary 4.2. Note that if (qij) is symmetric and we consider qij = q̂ij , then σ(α, β) = 1 for
all α, β ∈ Zθ and then f(u) = 1 for any u. In consequence, cui,j = (xβixβj |u)c−1

u .
We obtain a first set of relations for our presentation.

Lemma 4.5. Let 1 ≤ i < j ≤ M be such that lβilβj 6= lβk for all k, and Sh(lβilβj) =

(lβi , lβj), and cui,j ∈ k as above. Then,[
xβi , xβj

]
c

=
∑

u∈Bi∩Cj−{xβjxβi}: deg u=βi+βj

cui,j u. (4.8)

Proof. Assume that the braiding is symmetric. As lβilβj 6= lβk for all k, and Sh(lβilβj) =

(lβi , lβj), [lβilβj ]c = [xβi , xβj ]c = xβixβj − χ(βi, βj)xβjxβi is a linear combination of
greater monotone hyperwords by Corollary 2.10.

As xβixβj ∈ Wβi , it is a linear combination of elements in Bi by Theorem 3.18.
Also, B(V ) is Nθ

0-graded, so this linear combination is over elements of Bi of the degree
βi+βj . Moreover, if cui,j 6= 0 for u = xnkβk · · ·x

nl
βl

, l ≤ k, such that nk, nl 6= 0, then xβi⊗xβj
appears in the expression of ∆(u) by Remark 4.3. Note that xβi⊗xβj /∈ Dk⊗(Bl −Dk),
because i < j. By Lemma 3.20, we have xβj ∈ Bk, so j ≥ k, and u ∈ Cj .

The explicit formula of the coefficients comes from Proposition 4.1.
If we want to compute c

xβjxβi
i,j , we have to calculate the coefficient of xβi⊗xβj in

∆(xβjxβi), because of Remark 4.3 and the formula cxαjxαi = cxαicxαj . This coefficient
is χ(βj, βi), but as the braiding matrix is symmetric, χ(βj, βi) = χ(βi, βj). Therefore we
conclude the proof when the matrix braiding is symmetric.

When the braiding is not symmetric, we use the linear isomorphism Ψ considered
previously to reduce the computation to the symmetric case. Then,

0 = Ψ
([
x̂βi , x̂βj

]
d
−
∑

(x̂βix̂βj |û)c−1
û û

)
= σ(βi, βj)tβitβj [xβi , xβj ]c −

∑
(x̂βix̂βj |û)c−1

û f(u)u,

by (4.5) and Lemma 4.4, so (4.8) holds in B(V ).

Corollary 4.6. Assume that i, j are as in Lemma 4.5, and βi +βj =
∑j

k=i nkβk, nk ∈ N0

if and only if ni = nj = 1, nk = 0 for k 6= i, j. Then,

[xβi , xβj ]c = 0. (4.9)
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Proof. It follows from the previous proposition.

Now we extend [Ang, Cor. 5.2]. Recall that Nβ = ord(qβ) = h(xβ).

Lemma 4.7. If β ∈ ∆V
+ and Nβ is finite, then

x
Nβ
β = 0, in B(V ). (4.10)

Proof. Assume first that (qij) is symmetric. Consider w = w̃xmβ , where β ∈ ∆+ and w̃ is
a non-increasing product of hyperletters xγ , γ ∈ ∆+, γ > β or w̃ = 1. If β > α,

(xNαα |w) = (xNα−1
α |1)(xα|w) +

m∑
i=0

(
m

i

)
qβ

(xNα−1
α |w̃xiβ)(xα|xm−iβ )

+
∑

l1≥···≥lp>xβ ,0≤j≤m

(xNα−1
α |x(j)

l1,...,lp
)(xα| [l1]c . . . [lp]c x

j
β) = 0,

where we use that (xNα−1
α |1) = (xα|xm−iβ ) = (xα| [l1]c . . . [lp]c x

j
β) = 0 by the orthogo-

nality of the PBW basis.
If β ≤ α, then

(xNαα |w) = (1|w̃xm−1
β )(xNαα |xβ) +

Nα∑
i=1

(
Nα

i

)
qα

(xiα|w̃xm−1
β )(xNα−iα |xβ)

+
∑

l1≥···≥lp>xα,0≤j≤Nα

(x
(j)
l1,...,lp

|w̃xm−1
β )([l1]c . . . [lp]c x

j
α|xβ)

where we use that qα ∈ GNα , the orthogonality of the PBW basis and the fact that Nβ /∈
∆+ if N > 1 (so (xNαα |xβ) = 0).

Therefore (xNαα |v) = 0 for all v in the PBW basis. Also (I(V )|xNαα ) = 0, because it is
the radical of this bilinear form, so (T (V )|xNαα ) = 0, and then xNαα ∈ I(V ). That is, we
have xNαα = 0 in B(V ).

For the general case, we recall that a diagonal braiding is twist equivalent to a braiding
with a symmetric matrix, see [AS2, Theorem 4.5]. Also, there exists a linear isomorphism
between the corresponding Nichols algebras. The corresponding xα are related by a non-
zero scalar, because they are an iteration of braided commutators between the hyperwords.

Before proving the main result of this section, we need another technical lemma.

Lemma 4.8. Let B be a quotient of T (V ) such that relations (4.8) hold. Then for any
i < j, xβixβj can be written as a linear combination of monotone hyperwords greater
than xβi , whose hyperletters are xβk , i ≤ k ≤ j.
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Proof. It is similar to the proof of Theorem 2.4, see [R2, Thm. 10]. Set for each n ≥ 2,

Ln := {(xβi , xβj) : i < j, `(lβi) + `(lβj) = n}.

We order Lk as follows: (xβi , xβj) < (xβk , xβm) if lβilβj) < lβk lβm , or lβilβj = lβk lβm and
lβi < lβk .

We prove the statement by induction on n = `(xβi) + `(xβj), and then by induction on
the previous order on Ln. When n = 2, then βi, βj are simple, and [xi, xj]c = xαi+αj or
[xi, xj]c = 0 in B.

Fix then a pair (xβi , xβj) ∈ Ln and assume that the statement holds for (xβk , xβm) ∈
Ln, (xβi , xβj) > (xβk , xβm), and for (xβk , xβm) ∈ Ln′ , n′ < n. If Sh(lβilβj) = (lβi , lβj)

then the assertion holds because

• if lβilβj = lβk for some k, necessarily (by the definition of the order) i < k < j and
[xβi , xβj ]c = xβk ,

• if not, it holds because we assume (4.8).

If Sh(lβilβj) 6= (lβi , lβj), let Sh(lβi) = (lβp , lβq), so xβi = [xβp , xβq ]c. Therefore lβq < lβj
(see Subsection 2.2). By (2.4),

[xβi , xβj ]c = [xβp , [xβq , xβj ]c]c − χ(βp, βq)xβq [xβp , xβj ]c + χ(βq, βj)[xβp , xβj ]cxβq .

We apply induction hypothesis and express [xβq , xβj ]c as a linear combination of mono-
tone hyperwords whose hyperletters are between xβq and xβj . By (2.5) and inductive hy-
pothesis, we express [xβp , [xβq , xβj ]c]c as a linear combination of monotone hyperwords
whose letters are between xβi and xβj . It is important here the order in Ln, because in such
linear combination can appear a single hyperletter xβk , which by hypothesis is between
xβq and xβj , and so (lβi , lβj) > (lβp , lβk).

We use also inductive hypothesis to express [xβp , xβj ]c as a linear combination of hy-
perwords whose hyperletters are between xβp and xβj . As in the previous step we can re-
order the hyperletters in order to find the desired expression by inductive hypothesis.

Now we are ready to prove the main result of this work.

Theorem 4.9. Let (V, c) be a finite-dimensional braided vector space of diagonal type
such that ∆V

+ is finite. Let x1, · · · , xθ be a basis of V such that c(xi⊗xj) = qijxj⊗xi,
where (qij) ∈ (k×)θ×θ is the braiding matrix, and let {xβk}βk∈∆V

+
be the associated set of

hyperletters.
Then B(V ) is presented by generators x1, . . . , xθ, and relations

x
Nβ
β = 0, β ∈ ∆V

+, ord(qβ) = Nβ <∞, (4.11)[
xβi , xβj

]
c

=
∑

u∈Bi∩Cj−{xβjxβi}: deg u=βi+βj

cui,j u, (4.12)

1 ≤ i < j ≤M, Sh(lβilβj) = (lβi , lβj), lβilβj 6= lβk ,∀k,
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where cui,j are as in (4.7). Moreover, {xnMβM · · ·x
n1
β1

: 0 ≤ nj < Nβj} is a basis of B(V ).

Proof. The statement about the basis follows by Kharchenko’s theory on PBW bases (see
Subsection 2.2) and the definition of ∆V

+ (see Subsection 3.1), where the hyperletters xβk
are univocaly determined by Corollary 3.17.

Let B := T (V )/I , where I is the ideal of T (V ) generated by (4.11), (4.12): by Lem-
mata 4.5 and 4.7, I ⊆ I(V ), so the projection π : T (V ) � B(V ) induces canonically a
projection π′ : B � B(V ). Let W be the subspace of B spanned by B, where B is the
PBW basis of B(V ); 1 ∈ W . For each pair 1 ≤ i ≤ j ≤ M , we set Wi,j the subspace of
W spanned by Bi ∩ Cj .

We assert that
xβkWi,j ⊂ Wmin{i,k},max{j,k}. (4.13)

We shall prove it by induction on k. When k = M , fix i ≤ j. For each w ∈ Bi ∩ Cj , we
have that xβMw ∈ Bi ∩ CM = Bi, or xβMw = 0 if j = M , NM < ∞ and w begins with
xNM−1
βM

, so xβMWi,j ⊂ Wi,M .
Now assume that (4.13) holds for all l > k and all i ≤ j. We argue by induction on

j. If i ≤ j ≤ k, for each w ∈ Bi ∩ Cj , we have that xβkw ∈ Bi ∩ Ck or xβkw = 0 as
in the initial step, so xβkWi,j ⊂ Wi,k. Now assume j > k, and consider w ∈ Bi ∩ Cj;
it is enough to prove that xβkw ∈ Wmin{i,k},j . Moreover, we can assume w = xβjw

′ for
some monotone hyperword w′ in Wi,j (if w begins with another hyperletter xβl , l < j, we
considerw ∈ Wi,l ⊂ Wi,j). By Lemma 4.8, we can write xβkxβj as a linear combination of
monotone hyperwords whose hyperletters belong to Bk ∩Cj . Therefore the result follows
by the inductive hypothesis: any of these hyperwords has no letters xβk’s and we use the
first inductive hypothesis (it holds for all l > k), or it ends with hyperletters xβk’s and
we write xβkw

′ as a linear combination of hyperwords in Bmin{i,k} ∩ Cj by the second
inductive hypothesis.

In this way we prove that W is a left ideal which contains 1, so W = B. But then the
projection π′ is an isomorphism, and B = B(V ).

Remark 4.10. Recall that we have defined for i, j ∈ {1, . . . , θ},

mij := max{m : (adc xi)
mxj 6= 0},

see (3.6), and then mαi + αj ∈ ∆V
+ iff 0 ≤ m ≤ mij . Moreover assume i < j. Then

xmαi+αj = (adc xi)
mxj , and a pair as in Corollary 4.6 is (xi, x

mij
i xj), so such corollary

implies the well-known quantum Serre relation in B(V ): (adc xi)
mij+1xj = 0. If i > j,

then the pair changes to (xjx
mij
i , xi), but then 0 = [xmαi+αj , xi]c = a(adc xi)

mij+1xj for
some a ∈ k×. In any case we have (adc xi)

mij+1xj = 0.
This shows that the set of relations (4.8), (4.10) is not minimal: if ordqii = mij + 1,

then xmij+1
i is one of the relations (4.10), and then (adc xi)

mij+1xj belongs to the ideal
generated by xmij+1

i .
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5 Explicit presentations by generators and relations of
some Nichols algebras of diagonal type

We shall apply the previous theory about how to obtain a PBW basis (Corollary 3.17)
and a presentation of the corresponding Nichols algebra (Theorem 4.9) in some concrete
examples.

5.1 Examples when dimV = 3

We consider the Weyl equivalence classes 9, 10, 11 in [H2, Table 2]. We fix the following
notation: let q, r, s ∈ k× be such that qrs = 1. Set M,N,P ∈ N as the orders of these
scalars, if they are finite. Such Weyl equivalence class includes the following generalized
Dynkin diagrams:

• ◦q q−1

◦−1 r−1

◦r ,

• ◦q q−1

◦−1 s−1

◦s ,

• ◦r r−1

◦−1 s−1

◦s ,

• ◦−1

r

◦−1

q

s ◦−1

.

Notice that 10, 11 are particular cases of 9 when q = r, q = r = s ∈ G3, respectively.
Also the second and the third diagrams are analogous to the first one, so it is enough to
obtain the presentation for the first and the last braidings.

If i < j, lαi+αj = xixj , so xαi+αj = [xi, xj]c = (adc xi)xj . Also,

lα1+α2+α3 =

{
x1x2x3 if (adc x1)x3 = 0 : xα1+α2+α3 = [x1, xα2+α3 ]c;
x1x3x2 if (adc x1)x3 6= 0 : xα1+α2+α3 = [xα1+α3 , x2]c;

When (adc x1)x3 = 0, we have also

lα1+2α2+α3 = x1x2x3x2 : xα1+2α2+α3 = [xα1+α2+α3 , x2]c

Proposition 5.1. Let (V, c) be a braided vector space such that dimV = 3, and the
corresponding generalized Dynkin diagram is

◦q q−1

◦−1 r−1

◦r .
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Then B(V ) is presented by generators x1, x2, x3, and relations

xM1 = x2
2 = xN3 = xPα1+2α2+α3

= 0, (5.1)

(adc x1)2x2 = (adc x3)2x2 = (adc x1)x3 = 0, (5.2)

[xα1+α2 , xα1+α2+α3 ]c = [xα1+α2+α3 , xα2+α3 ]c = 0. (5.3)

Moreover, B(V ) has a PBW basis as follows:{
xn3

3 xn23
α2+α3

xn2
2 xn1232

α1+2α2+α3
xn123
α1+α2+α3

xn12
α1+α2

xn1
1 :

0 ≤ n1 < M, 0 ≤ n2 < N, 0 ≤ n1232 < P, n12, n123, n2, n23 ∈ {0, 1}} .

If M,N,P <∞, then dimB(V ) = 16MNP .

Proof. For this case,

∆V
+ = {α3, α2 + α3, α2, α1 + 2α2 + α3, α1 + α2 + α3, α1 + α2, α1}.

Therefore we obtain lβ , β ∈ ∆V
+, easily from Corollary 3.17.

By Remark 4.10, we consider the relations

(adc x1)2x2 = (adc x3)2x2 = (adc x1)x3 = 0,

because (adc x2)2x1, (adc x2)2x3 follows from x2
2 = 0.

We have the following decompositions:

Sh(lα1+α2lα1+α2+α3) = (lα1+α2 , lα1+α2+α3),

Sh(lα1+α2+α3lα2+α3) = (lα1+α2+α3 , lα2+α3).

Relations (5.3) then follows by Corollary 4.6.
Also Sh(lα1lα1+α2+α3) = (lα1 , lα1+α2+α3), so

[x1, xα1+α2+α3 ]c = 0.

Note that xα1+α2+α3 = [xα1+α2 , x3]c by (adc x1)x3 = 0 and the identity (2.4). There-
fore, this relation is redundant because of (2.4), x2

1 = 0. The same holds for relation
[xα1+α2+α3 , x3]c = 0, coming from the decomposition Sh(lα1+α2+α3lα3) = (lα1+α2+α3 , lα3).

Also Sh(lα1lα1+2α2+α3) = (lα1 , lα1+2α2+α3), so by Lemma 4.5 there exists a ∈ k such
that:

[x1, xα1+2α2+α3 ]c = a xα1+α2+α3xα1+α2 .

This relation is also redundant:

[x1, xα1+2α2+α3 ]c =[[x1, xα1+α2+α3 ]c, x2]c + q11q12q13xα1+α2+α3xα1+α2

− q12q22q32xα1+α2xα1+α2+α3

=q11q12q13(1− s)xα1+α2+α3xα1+α2 .
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where we use (2.4) and the previous relations.
We have finally

Sh(lα1+α2lα1+2α2+α3) = (lα1+α2 , lα1+2α2+α3),

Sh(lα1+α2+α3lα1+2α2+α3) = (lα1+α2+α3 , lα1+2α2+α3),

which give place to the following relations:

[xα1+α2 , xα1+2α2+α3 ]c = [xα1+α2+α3 , xα1+2α2+α3 ]c = 0

These relations also follow by the previous ones using (2.4).
We can prove in the same way that

x2
α1+α2

, x2
α2+α3

, x2
α1+α2+α3

are redundant relations too. The proposition follows then by Theorem 4.9, where we omit
some redundant relations.

Proposition 5.2. Let (V, c) be a braided vector space such that dimV = 3, and the
corresponding generalized Dynkin diagram is

◦−1

r

◦−1

q

s ◦−1

.

Then B(V ) is presented by generators x1, x2, x3, and relations

x2
1 = x2

2 = x2
3 = x2

α1+α2+α3
= 0, (5.4)

xMα1+α2
= xNα2+α3

= xPα1+α3
= 0, (5.5)

[xαi+αj , xαi+αk ]c = 0, {i, j, k} = {1, 2, 3}. (5.6)

[x1, xα2+α3 ]c =
1− s

q23(1− r)
xα1+α2+α3 + q12(1− s)x2xα1+α3 . (5.7)

Moreover, B(V ) has a PBW basis as follows:{
xn3

3 xn23
α2+α3

xn2
2 xn13

α1+α3
xn123
α1+α2+α3

xn12
α1+α2

xn1
1 :

0 ≤ n12 < M, 0 ≤ n23 < N, 0 ≤ n13 < P, n1, n123, n2, n3 ∈ {0, 1}} .

If M,N,P <∞, then dimB(V ) = 16MNP .

Proof. Again we obtain lβ , β ∈ ∆V
+, easily from Corollary 3.17, because

∆V
+ = {α3, α2 + α3, α2, α1 + α3, α1 + α2 + α3, α1 + α2, α1}.
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By Remark 4.10, all the quantum Serre relations (adc xi)
2xj = 0, i 6= j, follow from

x2
i = 0, i = 1, 2, 3.

We have the decompositions:

Sh(lα1+α2lα1+α3) = (lα1+α2 , lα1+α3),

Sh(lα1+α2lα2+α3) = (lα1+α2 , lα2+α3),

Sh(lα1+α3lα2+α3) = (lα1+α3 , lα2+α3),

which give place to relations (5.6) by Corollary 4.6.
The decomposition Sh(lα1lα2+α3) = (lα1 , lα2+α3) tell us that [x1, xα2+α3 ]c is a linear

combination of xα1+α2+α3 and x2xα1+α3 by Lemma 4.5, and we calculate the correspond-
ing coefficients using Lemma 4.4.

Also Sh(lα1lα1+α2+α3) = (lα1 , lα1+α2+α3), so

[x1, xα1+α2+α3 ]c = 0.

This relation is again redundant because of (2.4), x2
1 = 0 and the first relation in (5.6).

The same holds for the relation [xα1+α2+α3 , x2]c = 0, coming from the decomposition
Sh(lα1+α2+α3lα2) = (lα1+α2+α3 , lα2).

Also Sh(lα1+α2lα1+α2+α3) = (lα1+α2 , lα1+α2+α3), so

[xα1+α2 , xα1+α2+α3 ]c = 0.

This relation is also redundant by the previous relations and (2.4). In the same way,
[xα1+α2+α3 , xα1+α3 ]c = [xα1+α2+α3 , xα2+α3 ]c = 0 are redundant. The proposition follows
by Theorem 4.9.

Remark 5.3. We can prove that if (V, c) is a braided vector space as in Proposition 5.1
or Proposition 5.2, and R = ⊕n≥0Rn is a finite-dimensional graded braided Hopf algebra
such that R0 = k1 and R1

∼= V as braided vector spaces, then R is generated by R1 as an
algebra. The proof is exactly as in [AnGa, Thm. 2.7], using the corresponding presentation
by generators and relations.

Remark 5.4. When the braiding is of standard type, we obtain the presentation by gen-
erators and relations given in [Ang, Section 5]. In fact, Corollary 3.17 gives the set of
Lyndon words obtained in [Ang, Section 4B]. Then we obtain a set of relations as in The-
orem 4.9, where the set of relations (4.12) includes the ones [Ang, Theorems 5.14, 5.19,
5.22, 5.25] which are not root vectors powers. Then we can reduce this set of relations
because of (2.4) as in such paper, in order to obtain a minimal set of relations.
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