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DISCRETE SPECTRUM

BENT ORSTED AND JORGE VARGAS

Abstract. In this note, whenever we restrict a square integrable representation of a con-
nected semisimple Lie group to a reductive subgroup, we obtain information about the discrete
spectrum.

1. Introduction

Let G be a connected semisimple matrix Lie group. Henceforth, we fix a connected reductive
subgroup H of G and a maximal compact subgroup K of G such that H ∩ K is a maximal
compact subgroup of H. We fix Haar measures in G and H and assume that group G have a
nonempty Discrete Series. Let (π, V ) be a square integrable representation of G and let (τ, W )
its lowest K−type [2], [6]. Then (τ, W ) has multiplicity one in the restriction of π to K. Let
E := G×τ W −→ G/K be the G−homogeneous, hermitian, smooth vector bundle attached to
the representation τ. We denote its space of L2− (resp. smooth) sections by

L2(G, τ) = {f : G −→ W, f(gk) = τ(k−1)f(g), g ∈ G, k ∈ K,

∫

G

|f(g)|2dg < ∞}

(resp. C∞(G, τ)) The Lie algebra of a Lie group will be denoted by the corresponding German
lower case letter, the complexification of a real Lie algebra n will be denoted by nC. Let Ω be
the Casimir element of the universal enveloping algebra of g and let Ω̄ denote its closure as a
linear operator on L2(G, τ). Then,

H2(G, τ) := {f ∈ L2(G, τ) : Ω̄(f) = (‖λ‖2 − ‖ρ‖2)f }
is a closed linear subspace of L2(G, τ) on which G acts continuously and isometrically. Thus, G
acts on H2(G, τ) by a unitary representation. In [4] and [1] it is shown that (π, V ) is equivalent
to the representation of G in H2(G, τ). From now on, we think of (π, V ) as the representation
of G in H2(G, τ). Since Ω̄ is an elliptic and real analytic coefficients linear operator we have
that H2(G, τ) is contained in the space of real analytic sections of the bundle E → G/K. Let
(τ?,W ) denote the restriction of τ to the subgroup H ∩K. Let F := H ×τ? W −→ H/(H ∩K)
denote the associated H−homogeneous, hermitian bundle over H/(H ∩ K). Owing to our
choice, H/(H ∩K) can be thought as the orbit of H through the point eK on G/K and F as
a subbundle of E over this orbit. Let

r : C∞(G, τ) −→ C∞(H, τ?)

denote the restriction map. The first result of this note is:

Theorem 1. If we further assume that the representation (π, V ) is integrable, then
1) r(H2(G, τ)) ⊂ L2(H, τ?)
2) r : H2(G, τ) −→ L2(H, τ?) is a continuous map.
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In [14] it is computed the image of r for G = SO(2n, 1) and H = SO(2n−1, 1); in [9] for G a
semisimple Lie group so that (G,K) is a hermitian symmetric pair, H is such that H/(H ∩K)
is a real form for the hermitian symmetric space G/K and π a holomorphic discrete series
representation with a one dimensional lowest K−type; in [5] it is computed the image of r for
G = G1×G1, H the diagonal elements and π = π1⊗π∗1, π1 being a holomorphic Discrete Series
representation of G1.

In order to state the second result we assume, as we may, that H is invariant under the
Cartan involution associated to K. Thus, we have the Ad(H ∩ K)−invariant decompositions
g = k ⊕ s, g = h ⊕ q, and q = q ∩ k ⊕ q ∩ s. For each nonnegative integer m let Sm(q ∩ s)
denote the mth−symmetric power of q∩s. Thus, Sm(q∩s)⊗W is a H ∩K−module. Let (ρ, Z)
be an H−irreducible constituent of (π, V ). In [13] it is proved that ρ is an square integrable
representation for H. We have,

Theorem 2. There exists m ≥ 0 and a H ∩K type of Z which is H ∩K type of Sm(q∩ s)⊗W

For a converse to Theorem 2, in [14] we have shown that if the lowest H∩K−type of a discrete
series of H is contained in (τ?,W ), then the such a discrete series is a subrepresentation of
resH(π). In [8], it is shown that holomorphic Discrete Series representations restricts discretely
for suitable reductive subgroups H. Since a H ∩K irreducible representation is contained in at
most finitely many inequivalent square integrable representations for H, we have that Theorem
2, in some sense, is the best we can achieve.

Next we state a corollary to the previous theorem. For this, we denote by πd the closed
subspace of V spanned by the irreducible H−subrepresentations of the restriction resH(π) of π
to H. We recall that the abstract Plancherel theorem let us write resH(π) = πd⊕πcont. Thus, if

L := {i ∈ Ĥ : HomH(Zi, V ) 6= 0}, we may write as a Hilbert sum, πd =
∑

i∈L Zi⊗HomH(Zi, V ).

Corollary 1. Assume that H ∩K acts trivially on q ∩ s. Then L is a finite set.

We will actually show, for j ∈ L, that the lowest H ∩ K−type of Zj is contained in
(τ?,W ). Examples of pair (G,H) as above are (SO(2n, 1), SO(2n − 2k, 1)) for k ≥ 2 and
(SU(n, 1), SU(n− k, 1)) for k ≥ 1.

Finally, we have the following,

Proposition 1. Assume that G is either of the groups SO(2n, 1), SU(n, 1), U(n, 1) and H is
one of SO(2k)×SO(2n−2k, 1), SU(k)×SU(n−k, 1), U(k)×U(n−k, 1) immersed in the usual
way, in the obvious G. Let π be a square integrable representation of G. Then the multiplicity
of each discrete factor in the restriction of π to H is finite.

For certain pairs (G,H) we can assure that multiplicity of the discrete factors is infinite.
In fact, assume that the centralizer of H in G contains a semisimple non compact subgroup
H2. Next, we consider the pair (G,H2 × H). In [14] it is proved that π restricted to H2 × H
contains a discrete factor. Since the irreducible representations of H2 ×H are exterior tensor
product of representations of H2 by representations of H. We obtain that the restriction of π
to H contains discrete factors with infinity multiplicity. Examples of such a pairs are (SO(2p+
2q, 2r + 2s), SO(2r, 2s)), p > 0, q > 0, r > 0, s > 0.

2. Proof of Theorem 1

For any square integrable representation In [14] it is proven,

(1) If f ∈ H2(G, τ) is a K−finite function, then r(f) ∈ L2(H, τ?)
(2) Let D := {f ∈ H2(G, τ) : r(f) ∈ L2(H, τ?)}, then r : D −→ L2(H, τ?) is a closed

densely defined linear transformation.
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Hence, if r? denotes the adjoint linear transformation to r : D −→ L2(H, τ?), we have that r?

is a closed densely defined linear transformation from L2(H, τ?) to H2(G, τ) and we may write
the polar decomposition for r?,

r? = U(rr?)
1
2

Therefore, the continuity of (rr?) gives the continuity of r? and hence the continuity of r. In
order to verify the continuity of (rr?) we recall the reproducing kernel for H2(G, τ). Since Ω̄
is an elliptic operator, L2 convergence in H2(G, τ) implies uniform convergence on the induced
topology by C∞(G, τ) ([10] Theorem 52.1) Thus, point evaluation are continuous linear func-
tionals in H2(G, τ). Therefore, the orthogonal projector of L2(G, τ) onto H2(G, τ) is an integral
operator given by a smooth kernel, k : G × G −→ EndC(W ), x, y ∈ G. In [15] it is explicitely
computed this kernel k. In order to describe the kernel k, we fix a K−equivariant immersion
i : W → H2(G, τ) whose adjoint linear map is the linear map e : H2(G, τ) → W defined
via evaluation at the identity of G. Finally, let P : H2(G, τ) → i(W ) denote the orthogonal
projector onto the K−type W in H2(G, τ). Then, we have

k(x, y)(v) = e(P (π(y−1x)(i(v)))), x, y ∈ G.

In particular, we have,

(f(z), v)W = (f, k(?, z)v)L2(G,τ), f ∈ H2(G, τ), z ∈ G, v ∈ W. (1)

Here, (.., ..)V denotes the inner product in the Hilbert space V. For further use we notice that

k(x)(v) := e(P (π(x−1)(i(v)))) ∈ H2(G, τ)

and it is K−finite function. For a semisimple Lie group G let

ΞG(x) =

∫

K

e−ρ(H(xk))dk

denote the Harish-Chandra Ξ−function [6] page 187. We recall that ΞG ∈ L2+γ(G) for every
γ > 0. Since (π, V ) is an square integrable representation, in [11] it is proved that there exist
ε > 0, q ≥ 0, 0 ≤ Cv < ∞ so that

‖k(x)(v)‖ ≤ Cv Ξ1+ε
G (x)(1 + ‖x‖)q, x ∈ G, v ∈ W.

Whenever (π, V ) is integrable, in [6] page 256, we find the estimate

‖k(x)(v)‖ ≤ Cv Ξ2+ε
G (x)(1 + ‖x‖)q′ , x ∈ G, v ∈ W.

Since H is a reductive Lie subgroup of G, for an integrable representation, from the estimate
in [14], it follows that k ∈ L2(H, τ?) ∩ L1(H, τ?). Therefore, the linear operator

G(z) :=

∫

H

k(z, h)g(h)dh

is bounded in L2(H, τ?). We now verify that

(rr?)(z) = r?(z) =

∫

H

k(z, h)g(h)dh, z ∈ H, g ∈ Domain(r?).

In fact, the equality (1) applied to r?(g) yields

(r?(g)(z), v)W = (r?(g), k(?, z)v)L2(G,τ)
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Since k(?, z)v is K−finite, it belongs to the domain of r, hence we have

(r?(g), k(?, z)v)L2(G,τ) = (g, r(k(?, z)v)L2(H,τ?)

=

∫

H

(g(h), k(h, z)v)W dh

=

∫

H

(k(h, z)?g(h), v)W dh

=

∫

H

(k(z, h)g(h), v)W dh

=

∫

H

(k(h−1z)g(h), v)W dh

= (

∫

H

k(h−1z)g(h)dh, v)W .

(1)

and we have conclude the proof of theorem 1.

Remark 1. Using the estimate ‖f ? g‖∞ ≤ ‖f‖2‖g‖2, f ∈ L2, g ∈ L2 and that U is a partial
isometry, it follows, for any square integrable representation, that r is a continuous map from
H2(G, τ) into C∞(H, τ?), here, in the last space we have set the smooth uniform convergence
on compacts topology.

3. Proof of theorem 2 and Proposition 1

Let S(g) (resp. U(g))be symmetric algebra of g (resp. the universal enveloping algebra of g.
Let λ : S(g) → U(g) be the symmetrization. For any D ∈ U(g), RD will denote infinitesimal
right translation by D. Let

rm : C∞(G, τ) → C∞(H, HomC(S
m(s ∩ q),W ))

the linear map defined by the rule

rm(f)(h)(X1, · · · , Xm) = (Rλ(D)f)(h).

The action, via the Adjoint representation, of H ∩ K in s ∩ q gives rise to a representation
of H ∩K in HomC(S

m(s ∩ q),W ). We denote this representation by •. It readily follows that
rm(f)(hk) = k−1 • rm(g)(h), h ∈ H, k ∈ H ∩K. Thus, rm maps C∞(G, τ) into C∞(H, •).
Remark 2. For any pair G,H and π a square integrable representation we may prove i) rm

is a closed densely defined linear transformation from H2(G, τ) into L2(H, •) whose domain
contains the K−finite vectors. Indeed, this follows from the estimate in Corollary 7.4 in [11]
and the proof of Theorem 1 in [14]. ii) If further π is an integrable representation, then rm

extends to a continuous linear map from H2(G, τ) into L2(H, •). In fact, as in the proof of
Theorem 1, we have that rmr?

m is an integral operator given by an integrable kernel. In this case
the kernel is km(x, y)(D⊗ v) = k(x, y)(π̇(λ(D))(v)). In particular, this remark shows Theorem
2 for integrable representations.

We now show Theorem 2, let (ρ, Z) be an H−irreducible subrepresentation of H2(G, τ).
For each left K ∩ K−finite element f of Z, we claim that rm(f) is tempered function on H.
In fact, rm(f) is a smooth, H ∩ K and Bh−finite because rm is a continuous map on C∞

topology of uniform convergence on compact sets. On the other hand, Z is a square integrable
representation of H ([13]). Therefore for each H ∩ K−finite continuous linear functional on
Z we have that the function h → λ(Lh(f)) is tempered in H (for a proof cf. [6]). Since
point evaluation at e is K−finite and continuous linear functional, we obtain that rm(f) is
tempered. Since tempered functions are square integrable, we have that rm(ZH∩K−finite) is
a linear subspace of L2(H, •). Moreover, the elements in H2(G, τ) are real analytic functions,
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hence rm(f) is nonzero for some m (for a proof cf [7], lemma 2.2) Frobenius reciprocity conclude
the proof of Theorem 2.

In order to show Corollary 1 we consider an irreducible H−subrepresentation (ρ, Z) of π.
Then theorem 2 tell us that a H ∩K−type of Z lies in Sm(s∩q)⊗W for some m. Since, H ∩K
acts trivially on s ∩ q we have that the irreducible constituents of Sm(s ∩ q)⊗W are the same
as those of W. We now recall that there are finitely many equivalence class of irreducible square
integrable representations having in common a given K−type. Thus L is a finite set.

We begin to show Proposition 1, for this end, we consider the usual maximal compact sub-
group of G and we fix (ρ, Z) an H−irreducible subrepresentation of H2(G, τ), and let σ denote
the H ∩ K lowest K−type for ρ. Let χ0 (resp. χ) denote the infinitesimal character of ρ
(resp. H2(G, τ)). Let dσ (resp. χσ) denote the dimension of σ (resp. the character of σ).
For any Lie algebra g let Bg denote the center of U(g). As a matter of convenience, we fix
H2(G, τ) = {f : f(kg) = τ(k)f(g)}. Hence, the action by G becomes right translation. Since
H2(G, τ) is a subspace of the space of smooth sections (the kernel of an elliptic operator) we
have that RDf = χ(D)f, for every f ∈ H2(G, τ), D ∈ Bg and that RD(f) = χ0(D)f for every
f ∈ Z, D ∈ Bh.

Lemma 1. The vector space

A = {f : G → W : freal analytic,

f(kg) = τ(k)f(g), k ∈ K, g ∈ G, RZ(f) = χ(Z)f, ∀Z ∈ Bg,

RZf = χ0(D)f, ∀Z ∈ Bh, f ? dσχσ = f}
is finite dimensional.

For the proof of the lemma we follow Harish-Chandra and van den Ban [12]. We write K0

for one of the three groups SO(2k), SU(k), U(k), and H1 for either of SO(2n− 2k, 1), SU(n−
k, 1), U(n − k, 1). We denote by K1 the usual maximal compact subgroup of H1. Let H :=
K0 × H1. From now on, we think of H immersed in G in the usual manner. Thus, (G,H)
is a rank one symmetric pair and K0 × K1 is a maximal compact subgroup for H. Let g =
k + s = h + q be the associated “Cartan” decompositions. Let apq be a maximal abelian
subspace in s ∩ q. Let L denote the centralizer of apq in G. In our case we have that (K0, L ∩
K0) is a compact, rank one symmetric pair. Also that L ∩ H1 = H1 ∩ K = K1. Moreover
K1 acts trivially on s ∩ q. Let µ : Bg → Bl be the map defined in [12] Lemma 3.7. as in

[12] we fix v1, · · · , vr ∈ Bl so that Bl =
∑j=r

j=1 µ(Bg)vj. In Lemma 3.8 in [12] it is proven for

each D ∈ U(g) that there exists D0 ∈ U(k ∩ l)(
∑

j Bgvj)U(h) and finitely many functions

fi : Apq → C, ξi ∈ U(k), ηi ∈ (
∑

j Bgvj)U(h) such that D = D0 +
∑

i fi(a)ξa−1

i ηi for all

a ∈ A+
pq. From now on we fix a ∈ A+

pq. Thus, for a real analytic function on G we have that
RD(f) := f(a; D) = 0, ∀D ∈ U(g) if and only if f ≡ 0. We write D0 =

∑
k ΘkZkvkHk, with

Θk ∈ U(k ∩ l), Zk ∈ Bg, Hk ∈ U(h) and ηi =
∑

r Zi,rvrHi,r with Zir ∈ Bg, Hir ∈ U(h). Thus, we
obtain f(a; D) =

∑
k τ̇(Θk)χ(Zk)f(a; vkHk) +

∑
i fi(a)τ̇(ξi)

∑
r χ(Zi,r)f(a; vrHi,r). Therefore,

each f ∈ A is determinated by the functions

{H 3 h → f(a; vj; h) =: Gf,j(h), j = 1, · · · , r}.
Next, for a fixed j, we verify that the vector space {Gf,j : f ∈ A} is finite dimensional. Hence-

forth, we drop the letter j from Gf,j. Let k0 ∈ K be fixed and define for h1 ∈ H1, gf,k0(h) :=
Gf (k0h1). Obviously, gf,k0 is a W−valued real analytic function on H1. We write σ = σ0⊗̂σ1

with σ0 ∈ K̂0, σ1 ∈ K̂1. Let J denote the kernel of σ̇1 in U(k1). Thus J is a finite codimension
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two sided ideal in U(k1). We claim that

gf,k0(k1h1) = τ(k1)gf,k0(h1), k1 ∈ K1, h1 ∈ H1;

RDgf,k0 = 0, D ∈ J ;

RDgf,k0 = χ0(D)gf,k0 , D ∈ Bh1 .

In fact, if k1 ∈ K1, then Ad(k1) acts trivially on s ∩ q, thus, k1 ∈ L and gf,k0(k1h1) =
f(a, vj, k0k1h1) = f(k1a; vj; h1) = τ(k1)gf,k0(h1). Since f ?dσ χσ = f , we have that f ?dσ1χσ1 =
f. Hence RD(gf,k0) = 0 ∀D ∈ J . Finally, for D ∈ Bh1 , RD(gf,k0)(h1) = f(a; vj, k0h1; D) =
χ0(D)gf,k0(h1). Owing to a Theorem of Harish-Chandra [3], for each k0 ∈ K0, we obtain that
Sk0 := {gf , k0; f ∈ A} is contained in the finite dimensional vector space of spherical functions
on H1 of the same type (τ⊗σ1, χ0). Let S be the finite dimensional vector space spanned by the
union of the Sk0 , k0 ∈ K0. We now define a double representation φ of K0 ∩L in S by the rule
φ(c, d)(gf,k0)(h1) :== τ(c)(gf,k0d(h1)). From the above formula, we have that the function from
K0 into S defined by k0 → gf,k0 is spherical of type (φ, χ0). Indeed, by definition the function
is of type φ, and if D ∈ Bk0 , then D is in Bh and RD acts on the function by χ0(D). Therefore,
[3] implies that {Gf,j, f ∈ A} is contained in a finite dimensional vector space of S−valued
functions on K0. Thus, we have conclude the proof of the lemma.

Remark 3. We would like to point out that the proof of the lemma shows that it holds under the
hypothesis: (G,H) is a symmetric pair, H = K0 ×H1, K0 being a compact group and K ∩H1

acts trivially on s ∩ q.

Proposition 1 follows readily from lemma, because if we fix a nonzero vector v in the lowest
H ∩K−type of Z, each T ∈ HomH(Z,H2(G, τ)) is determinated by the function T (v) and this
function lies in A.
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