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Abstract. Classifying all Hopf algebras of a given finite dimension over C is a challenging problem

which remains open even for many small dimensions, not least because few general approaches to

the problem are known. Some useful techniques include counting the dimensions of spaces related

to the coradical filtration [Fu2], [AN1], [BD], studying sub- and quotient Hopf algebras [G], [GV],

especially those sub-Hopf algebras generated by a simple subcoalgebra [N5], working with the antipode

[Ng1, Ng2, Ng3, Ng4], and studying Hopf algebras in Yetter-Drinfeld categories to help to classify

Radford biproducts [ChNg]. In this paper, we add to the classification tools in [BG] and apply our

results to Hopf algebras of dimension rpq and 8p where p, q, r are distinct primes. At the end of this

paper we summarize in a table the status of the classification for dimensions up to 100 to date.

1. Introduction

Let k be an algebraically closed field of characteristic 0. The question of classifying all Hopf algebras
of a given dimension over k goes back to Kaplansky in 1975. To date, there are very few general results.
The Kac-Zhu Theorem [Z], states that a Hopf algebra of prime dimension is isomorphic to a group
algebra. S.-H. Ng [Ng1] proved that in dimension p2, the only Hopf algebras are the group algebras and
the Taft algebras, using previous results in [AS1], [Mas3]. It is a common belief that a Hopf algebra of
dimension pq, where p and q are distinct prime numbers, is semisimple. Hence, it should be isomorphic
to a group algebra or a dual group algebra by [EGel1], [GelW], [Mas5], [N2], [So]. This conjecture has
been verified for some particular values of p and q, see [AN1, BD, EGel3, Ng2, Ng3, Ng4]. Hilgemann
and S.-H. Ng gave the classification of Hopf algebras of dimension 2p2 in [HNg] and more recently
Cheng and Ng [ChNg] studied the case 4p, solving the problem for dimension 20, 28 and 44.

In fact, all Hopf algebras of dimension ≤ 23 are classified: for dimension ≤ 11 the problem was
solved by [W]; an alternative proof appears in [Ş]. The classification for dimension 12 was done by
[F] in the semisimple case and then completed by [N5] in the general case and for dimension 16 it
was solved by [K], [CDR], [B2], [CDMM] and [GV]. For dimension 18 the problem was solved by D.
Fukuda [Fu1] and recently Cheng and Ng finished the classification for dimension 20. For the state of
the classification of low dimensional Hopf algebras as of 2009, see [B3].

The classification appears more difficult for even dimensions as studied in this article. One reason
may be that for H a nonsemisimple Hopf algebra of odd dimension, either H or H∗ has a nontrivial
grouplike element. The smallest dimension that is still unclassified is 24 and, since the classification
for dimension 27 was recently completed in [BG], the next unclassified dimension after 24 is 32.

In this paper we study Hopf algebras over k whose dimension is either smaller than 100 or can be
decomposed into the product of a small number of prime numbers. In particular, we give some partial
results on Hopf algebras of dimension 8p, with applications to the case of dimension 24, and dimension
rpq, where r, p, q are distinct prime numbers. Since there are many results on the classification
problem for dimension 4p [ChNg] but the complete classification is incomplete, we cannot hope to
complete the classification for dimension 8p. However we can narrow the possibilities.

We will say that a Hopf algebra H is of type (r, s) if |G(H)| = r and |G(H∗)| = s.
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Theorem A. Let H be a nonsemisimple Hopf algebra of dimension 8p with p an odd prime. If H is

not of type (r, s) with r, s powers of 2, (2p, 2) or (2p, 4), then H is pointed or copointed.

Using counting arguments we can improve the theorem above in case p = 3.

Theorem B. Let H be a Hopf algebra of dimension 24 such that the coradical is not a sub-Hopf

algebra of H. Then H is of type (2, 2), (2, 4) or (6, 4).

2. Preliminaries

In this section we introduce notation, recall some previous results which help with the classification
of finite dimensional Hopf algebras, see [AN1], [N5], [Ş], [BD], [B2], [GV], [Fu1], and introduce a few
new ones. For the general theory of Hopf algebras see [M], [S].

2.1. Conventions. Throughout this paper p, q will denote odd prime numbers, Ck the cyclic group
of order k and Dk the dihedral group of order 2k. Unless otherwise specified, all Hopf algebras in this
article are finite dimensional over a field k algebraically closed of characteristic zero.

Remark 2.1. By [LR], with the assumptions above, a Hopf algebra is semisimple if and only if it is

cosemisimple if and only if S2, the square of the antipode, is the identity. Thus if L,K are semisimple

sub-Hopf algebras of a Hopf algebra H, then 〈L,K〉, the sub-Hopf algebra of H generated by L and

K is semisimple since S2
H is the identity on L and on K.

For H a Hopf algebra over k then ∆, ε, S denote respectively the comultiplication, the counit and
the antipode; G(H) denotes the group of grouplike elements of H; H0 denotes the coradical; (Hn)n∈N
denotes the coradical filtration of H and Lh (resp. Rh) is the left (resp. right) multiplication in H by
h.

The set of (h, g)-primitives (with h, g ∈ G(H)) and set of skew-primitives of H are:

Ph,g(H) := {x ∈ H | ∆(x) = x⊗ h+ g ⊗ x},
P(H) :=

∑
h,g∈G(H) Ph,g(H).

We say that x ∈ k(h − g) is a trivial skew-primitive; a skew-primitive not contained in kG(H) is
nontrivial.

LetM∗(n,k) denote the simple coalgebra of dimension n2, dual to the matrix algebraM(n, k). We
say that a coalgebra C is a d × d matrix-like coalgebra if C is spanned by elements (eij)1≤i,j≤n such
that ∆(eij) =

∑
1≤l≤n eil⊗ elj and ε(eij) = δij . If the set (eij)1≤i,j≤d of a coalgebra C of dimension d2

is linearly independent, following Ştefan we call e = {eij : 1 ≤ i, j ≤ d} a multiplicative matrix and
then C 'M∗(d,k) as coalgebras.

Since the only semisimple and pointed Hopf algebras are the group algebras, we shall adopt the
convention that ‘pointed’ means ‘pointed nonsemisimple’. If the dual H∗ of a finite dimensional
nonsemisimple Hopf algebra H is pointed, then we say that H is copointed.

Recall that a tensor category C over k has the Chevalley property if the tensor product of any two
simple objects is semisimple. We shall say that a Hopf algebra H has the Chevalley property if the
category Comod (H) of H-comodules does.

Remarks 2.2. (i) The notion of the Chevalley property in the setting of Hopf algebras was introduced

by [AEGel]: it is said in loc. cit. that a Hopf algebra has the Chevalley property if the category

Rep(H) of H-modules does.

(ii) Unlike [AEGel], in [CDMM, Section 1], the authors refer to the Chevalley property in the

category of H-comodules; this definition is the one we adopt. Note that it is equivalent to say that

the coradical H0 of H is a sub-Hopf algebra.

(iii) If H is semisimple or pointed then it has the Chevalley property.
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Let N be a positive integer and let q be a primitive N th root of unity. We denote by Tq the Taft
algebra which is generated as an algebra by the elements g and x satisfying the relations xN = 0 =
1− gN , gx = qxg. Taft Hopf algebras are self-dual and pointed of dimension N2 with g grouplike and
x a (1, g)-primitive, i.e., ∆(g) = g ⊗ g and ∆(x) = x⊗ 1 + g ⊗ x. If N = 2 so that q = −1, then T−1

is called the Sweedler Hopf algebra and will be denoted H4 thoughout this article.

2.2. Spaces of coinvariants. Let K be a coalgebra with a distinguished grouplike 1. If M is a right
K-comodule via δ, then the space of right coinvariants is

M co δ = {x ∈M | δ(x) = x⊗ 1}.

Left coinvariants are defined analogously. If π : H → K is a morphism of Hopf algebras, then H is a
right K-comodule via (1⊗ π)∆. In this case Hcoπ := Hco(1⊗π)∆ and Hcoπ is a subalgebra of H.

We make the following observation.

Lemma 2.3. Let π : H → K be a Hopf algebra map and let R := Hcoπ. Then π|R = ε|R.

Proof. Let z ∈ Hcoπ. Since π is a morphism of Hopf algebras,

∆Kπ(z) = (π ⊗ π)∆H(z) = π(z1)⊗ π(z2) = π(z)⊗ 1,

so that, applying mK ◦ (εK ⊗ idK) to the equation above, we obtain π(z) = εK(π(z)) ∈ k. Again,

since π is a Hopf algebra map, εK(π(z)) = εH(z) and so π(z) = εH(z). �

2.3. Extensions of Hopf algebras. Recall [AD] that an exact sequences of Hopf algebras is a

sequence of Hopf algebra morphisms A
ı
↪→ H

π
� B where A,H,B are any Hopf algebras, ı is injective,

π is surjective, πı = εA, kerπ = A+H and A = Hcoπ. An exact sequence is called central if A is
contained in the centre of H.

The next result will be useful throughout. For a proof see [GV, Lemma 2.3].

Lemma 2.4. If π : H → B is an epimorphism of Hopf algebras then dimH = dimHcoπ dimB.

Moreover, if A = Hcoπ is a sub-Hopf algebra of H then the sequence A
ı
↪→ H

π
� B is exact. �

The following proposition tells us how to compute, in a particular case, the dimension of the
coradical of H∗ using exact sequences.

Proposition 2.5. Let Γ be a finite group and A ↪→ H � kΓ an exact sequence of Hopf algebras.

Then dim(H∗)0 = dim(H/ radH) = |Γ|dim(A∗)0.

Proof. The statement follows from the proof of [GV, Lemma 5.9]. The idea is the following: since the

sequence is exact, H is the Γ-crossed product A ∗Γ. Let g ∈ Γ, then the weak action of g on A defines

an algebra map and consequently radA is stable by Γ. Then radA ∗ Γ is a nilpotent ideal of A ∗ Γ

and radA ∗Γ ⊆ radH. Since H/(radA ∗Γ) is semisimple, it follows that radH ⊆ radA ∗Γ and hence

dim(H∗)0 = dim(H/ radH) = dim(A ∗ Γ/ radA ∗ Γ) = |Γ| dim(A/ radA) = |Γ|dim(A∗)0. �

2.4. Yetter-Drinfel’d modules. For H any Hopf algebra, a left Yetter-Drinfeld module M over H
is a left H-module (M, ·) and a left H-comodule (M, δ) such that for all h ∈ H,m ∈M ,

δ(h ·m) = h1m(−1)S(h3)⊗ h2 ·m(0),

where δ(m) = m(−1) ⊗m(0). We will denote this category by H
HYD.
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2.5. On the coradical filtration. We begin by recalling a description of the coradical filtration due
to Nichols. More detail can be found in [AN1, Section 1].

Let D be a coalgebra over k. Then there exists a coalgebra projection π : D → D0 from D to the
coradical D0 with kernel I, see [M, 5.4.2]. Define the maps

ρL := (π ⊗ id)∆ : D → D0 ⊗D and ρR := (id⊗π)∆ : D → D ⊗D0,

and let Pn be the sequence of subspaces defined recursively by

P0 = 0,

P1 = {x ∈ D : ∆(x) = ρL(x) + ρR(x)} = ∆−1(D0 ⊗ I + I ⊗D0),

Pn = {x ∈ D : ∆(x)− ρL(x)− ρR(x) ∈
∑

1≤i≤n−1

Pi ⊗ Pn−i}, n ≥ 2.

Then by a result of Nichols, Pn = Dn ∩ I for n ≥ 0, see [AN1, Lemma 1.1]. Suppose that
D0 =

⊕
τ∈I Dτ , where the Dτ are simple coalgebras of dimension d2

τ . Any D0-bicomodule is a direct
sum of simple D0-sub-bicomodules and every simple D0-bicomodule has coefficient coalgebras Dτ , Dγ

and has dimension dτdγ =
√

dimDτ dimDγ for some τ, γ ∈ I, where dτ , dγ are the dimensions of the
associated comodules of Dτ and Dγ , respectively.

Now suppose H is a Hopf algebra. Then Hn, Pn are H0-sub-bicomodules of H via ρR and ρL. As
in [AN1], [Fu1], for all n ≥ 1 we denote by P τ,γn the isotypic component of the H0-bicomodule of Pn of
type the simple bicomodule with coalgebra of coefficients Dτ ⊗Dγ . If Dτ = kg for g a grouplike, we
use the superscript g instead of τ . If the simple subcoalgebras are S(Dτ ), S(Dγ), (respectively gDτ ,

Dτg for g grouplike) we write PSτ,Sγn ,(respectively P gτ,gγn ,P τg,γgn .) For Dτ , Dγ simple coalgebras we
denote P τ,γ =

∑
n≥0 P

τ,γ
n .

Similarly, for Γ a set of grouplikes of H, let PΓ,Γ denote
∑

g,h∈Γ P
g,h and let HΓ,Γ := PΓ,Γ ⊕ kΓ.

If D, E are sets of simple subcoalgebras, let PD,E denote
∑

D∈D,E∈E P
D,E . Since Hn = H0 ⊕ Pn, we

have that H = H0 ⊕
∑

τ,γ P
τ,γ .

Following D. Fukuda, we say that the subspace P τ,γn is nondegenerate if P τ,γn * Pn−1. The following
results are due to D. Fukuda; note that (ii) is a generalization of [AN1, Cor. 1.3] for n > 1.

Lemma 2.6. (i) [Fu2, Lemma 3.2] If the subspace P τ,γn is nondegenerate for some n > 1, then there

exists a set of simple coalgebras {D1, · · · , Dn−1} with P τ,Di
i , PDi,γ

n−i nondegenerate for all 1 ≤ i ≤ n.

(ii) [Fu2, Lemma 3.5] For S the antipode in the Hopf algebra H and g ∈ G(H),

dimP τ,γn = dimPSγ,Sτn = dimP gτ,gγn = dimP τg,γgn .

(iii) [Fu2, Lemma 3.8] Let C,D be simple subcoalgebras such that PC,Dm is nondegenerate. If dimC 6=
dimD or dimPC,Dm − PC,Dm−1 6= dimC then there exists a simple subcoalgebra E such that PC,E` is

nondegenerate for some ` ≥ m+ 1. �

The following facts about dimensions from [AN1] will be useful later.

Lemma 2.7. [AN1] Let H be a Hopf algebra with G := G(H). Then for n ≥ 0, d ≥ 1, |G| divides

dimHn and dimH0,d, where H0,d denotes the direct sum of the simple subcoalgebras of H of dimension

d2. Also Hn = H0 ⊕ Pn so that |G| divides dimPn. �

It is well-known (see for example [AN1]) that if a Hopf algebra H has a nontrivial skew primitive
element, then dimH must be divisible by a square. More precisely we have the following lemma.

Lemma 2.8. Let H be a Hopf algebra with |G(H)| = m and dimH = mn where m,n are relatively

prime. Then H has no nontrivial skew-primitive element. �



TECHNIQUES FOR CLASSIFYING HOPF ALGEBRAS 5

Proof. Suppose that x is a nontrivial skew-primitive element in H and let L be the sub-Hopf algebra

of H generated by x and G(H). By [M, 5.5.1], L is pointed. By [AN1, Proposition 1.8], dimL is

divisible by rm where r 6= 1 is a positive integer dividing m. Then dimH = mn is divisible by rm,

contradicting the fact that (m,n) = 1. �

The next proposition generalizes results of Beattie and Dǎscǎlescu [BD] and gives a lower bound
for the dimension of a finite dimensional Hopf algebra without nontrivial skew-primitive elements.

Proposition 2.9. [BG, Proposition 3.2] Let H be a non-cosemisimple Hopf algebra with no nontrivial

skew-primitives.

(i) For any g ∈ G(H) there exists a simple subcoalgebra C of H of dimension > 1 such that PC,g1 6= 0,

PC,Dk is nondegenerate for some k > 1 and D a simple subcoalgebra of the same dimension as C, and

P g,hm is nondegenerate for some m > 1 and h grouplike.

(ii) Suppose H0 ' kG⊕
∑t

i=1M∗(ni,k) with t ≥ 1, 2 ≤ n1 ≤ . . . ≤ nt. Then

dimH ≥ dim(H0) + (2n1 + 1)|G|+ n2
1.

�

2.6. Matrix-like coalgebras. The next theorem due to Ştefan has been a key component for several
classification results.

Theorem 2.10. [Ş, Thm. 1.4] Let D be the simple coalgebra M∗(2, k).

(i) For f an antiautomorphism of D such that ord(f2) = n < ∞ and n > 1, there exist a

multiplicative matrix e in D and a root of unity ω of order n such that

f(e12) = ω−1e12, f(e21) = ωe21, f(e11) = e22, f(e22) = e11.

(ii) For f be an automorphism of D of finite order n, there exist a multiplicative matrix e on D

and a root of unity ω of order n such that f(eij) = ωi−jeij. �

Now we recall some useful results on matrix-like coalgebras. In [BD] all 2×2 matrix-like coalgebras
of dimension less than 4 were described; we summarize in the following theorem.

Theorem 2.11. [BD, Thm. 2.1] Let D be a 2× 2 matrix-like coalgebra of dimension less than 4. If

dimD = 1, 2 then D has a basis of grouplike elements. If dimD = 3, then D has a basis {g, h, x}
where g, h are grouplike and x is (g, h)-primitive. �

We end this section with the following lemma.

Lemma 2.12. Let π : H → H4 be a Hopf algebra epimorphism. If H is generated by a simple

subcoalgebra D of dimension 4, then dim coπD ≥ 2 or dimDcoπ ≥ 2.

Proof. Since H4 is pointed, dimπ(D) < 4. Moreover, since D generates H as an algebra, π(D)

generates H4. Then by Theorem 2.11, dimπ(D) = 3. Let {eij}1≤i,j≤2 be a multiplicative matrix of

D, then {π(eij)}1≤i,j≤2 is a linearly dependent set.

As in the proof of Theorem 2.11, see [BD, Thm. 2.1], we divide the proof into two cases.

Case 1: The set {π(e11), π(e12), π(e21)} is linearly independent.

Then π(e22) = π(e11) + aπ(e12) + bπ(e21) for scalars a, b. By comparing ∆π(e22) and π⊗π ◦∆(e22)

one sees that ab = −1 so that there exists 0 6= b ∈ k such that π(e22) = π(e11) + bπ(e12) − 1
bπ(e21).

Then it is straightforward to verify that the linearly independent elements h1 = π(e11)− 1
bπ(e21) and

h2 = π(e11) + bπ(e12) are grouplike.

Suppose that h1 = 1. Then it is straightforward to show that t1 = e11 − 1
be21 ∈ coπD.
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Let s1 = e22 − be12 and note that s1, t1 are linearly independent. Then π(s1) = π(e22)− bπ(e12) =

π(e11) + bπ(e12)− 1
bπ(e21)− bπ(e12) = π(e11)− 1

bπ(e21) = π(t1) = 1. Then a computation similar to

that for t1, shows that s1 ∈ coπD. Thus dim coπD ≥ 2.

If h2 = 1 then define t2 = e11 + be12 and s2 = e22 + 1
be21. A computation similar to that above

shows that t2, s2 ∈ Dcoπ so that Dcoπ has dimension at least 2.

Case 2: The set {π(e11), π(e12), π(e22)} is linearly independent.

Then there exist a, b ∈ k such that π(e21) = aπ(e11) + bπ(e12) − aπ(e22). If a 6= 0, then the case

reduces to Case 1. If a = 0, then π(e21) = bπ(e12) and by comparing ∆π(e21) and ∆π(be12), we

see that b = 0 so that π(e21) = 0. Thus ∆(π(e11)) = π(e11) ⊗ π(e11), ∆(π(e22)) = π(e22) ⊗ π(e22)

and ∆(π(e12)) = π(e11) ⊗ π(e12) + π(e12) ⊗ π(e22), which implies that G(H4) = 〈π(e11), π(e22)〉. If

π(e11) = 1, then e11 ∈ Dcoπ, for

(1⊗ π)∆(e11) = (1⊗ π)(e11 ⊗ e11 + e12 ⊗ e21) = e11 ⊗ π(e11) + e12 ⊗ π(e21) = e11 ⊗ 1.

Moreover, the element e11 + e21 ∈ Dcoπ, since

(1⊗ π)∆(e11 + e21) = (1⊗ π)(e11 ⊗ e11 + e12 ⊗ e21 + e21 ⊗ e11 + e22 ⊗ e21

= e11 ⊗ π(e11) + e12 ⊗ π(e21) + e21 ⊗ π(e11) + e22 ⊗ π(e21) = e11 ⊗ 1 + e21 ⊗ 1.

Thus, dimDcoπ ≥ 2. The case π(e22) = 1 is completely analogous and implies that dim coπD ≥ 2,

taking the elements e22 and e22 + e21. �

Note that if D in Lemma 2.12 is stable under S2 then the proof can be simplified considerably. For
then we may choose a multiplicative matrix for D consisting of eigenvectors for S2 and we must have
that π(eii) ∈ kC2 ⊂ H4.

2.7. Hopf algebras generated by a simple subcoalgebra. In this subsection we summarize some
known facts about Hopf algebras generated by simple subcoalgebras of dimension 4. The most impor-
tant is the next proposition, due to Natale but derived from a result of Ştefan [Ş].

Proposition 2.13. [N5, Prop. 1.3]. Suppose that H is nonsemisimple Hopf algebra generated by a

simple subcoalgebra of dimension 4 which is stable by the antipode. Then H fits into a central exact

sequence kG ı
↪→ H

π
� A, where G is a finite group and A∗ is a pointed nonsemisimple Hopf algebra. �

We have the following useful results from [GV]. If H is a Hopf algebra, Z(H) denotes its centre.

Lemma 2.14. [GV, Lemma 4.2] Let π : H → K be a morphism of Hopf algebras such that π(g) = 1

for some g ∈ G(H), g 6= 1. Suppose that H is generated by a simple subcoalgebra of dimension 4 stable

by Lg. Then π(H) ⊆ kG(K).

The same holds with Rg instead of Lg; or with ad`(g) or adr(g) if g /∈ Z(H). �

Lemma 2.15. [GV, Lemma 4.3] Let π : H → K be an epimorphism of Hopf algebras and assume

that K is nonsemisimple. Suppose that H is generated by a simple subcoalgebra of H of dimension 4

stable by S2
H . Then ordS2

H = ordS2
K . �

Remark 2.16. (i) If H is generated as an algebra by C⊕D with S(C) = D, then C also generate H as

an algebra, since the sub-bialgebra generated by C is finite dimensional and thus a sub-Hopf algebra.

(ii) Suppose that H is generated by a simple subcoalgebra C of dimension 4 stable by S2
H . If H4 is a

sub-Hopf algebra of H∗, then S4
H = id. For the inclusion H4 ↪→ H∗ induces a Hopf algebra surjection

H � H4 and by Lemma 2.15 the claim follows.

We end this section with the following proposition.
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Proposition 2.17. Let π : H � A be a Hopf algebra epimorphism and assume dimH = 2 dimA.

Then Hcoπ = k{1, x} with x a (1, g)-primitive element with g ∈ G(H) and g2 = 1. Moreover, if x is

nontrivial, then H contains a sub-Hopf algebra isomorphic to H4. In particular, 4|dimH.

Proof. The statement follows from the proof of [HNg, Prop. 1.3]. We reproduce part of the proof.

Let R = Hcoπ; it is known that R is a left coideal subalgebra and dimR = 2. Let x ∈ R r {0} such

that ε(x) = 0. Then R = k{1, x} and ∆(x) = a⊗ 1 + b⊗ x for some a, b ∈ H. Since x ∈ R, it follows

that x = a and by the coassociativity of ∆ we have that b is grouplike. Thus x ∈ P1,b and x is a

skew-primitive element. �

2.8. Hopf algebras of dimension 4p. This section contains a brief overview of what is known for
dimension 4p. Knowledge of the classification in this dimension is of course necessary to understand
dimension 8p which we study in the last section of this note. Recall that for dimension 12 the
classification is due to [AN1], [F], [N5].

Up to isomorphism, the semisimple Hopf algebras of dimension 4p consist of group algebras and
their duals, and also of two self-dual Hopf algebras, constructed by Gelaki in [Gel1], which we will
denote by G1 and G2. Both have group of grouplikes of order 4 with G(G1) ∼= C4 and G(G2) ∼= C2×C2.

2.8.1. Nonsemisimple pointed Hopf algebras of dimension 4p. All pointed Hopf algebras of dimension
4p have group of grouplikes isomorphic to C2p and are described in [AN1, A.1].

In particular, let A be a pointed Hopf algebra of dimension 4p. Then, with g denoting a generator
of C2p, and ξ a primitive pth root of unity, A is isomorphic to exactly one of the following.

A(−1, 0) := k〈g, x | g2p − 1 = x2 = gx+ xg = 0〉,
∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x.

A(−1, 0)∗ := k〈g, x | g2p − 1 = x2 = gx+ ξxg = 0〉,
∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + gp ⊗ x.

A(−1, 1) := k〈g, x | g2p − 1 = x2 − g2 + 1 = gx+ xg = 0〉,
∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x.

H4 ⊗ kCp := k〈g, x | g2p − 1 = x2 = gx+ xg = 0〉,
∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + gp ⊗ x.

Note that H4 ⊗ kCp is self-dual. The Hopf algebra A(−1, 1) is a nontrivial lifting of A(−1, 0) and
has nonpointed dual. The nonpointed Hopf algebra A(−1, 1)∗ contains a copy of the Sweedler Hopf
algebra and as a coalgebra A(−1, 1)∗ ∼= H4 ⊗M∗(2, k)p−1. The Hopf algebras A(−1, 0) and A(−1, 1)
do not have sub-Hopf algebras isomorphic to H4 but A(−1, 0)∗ and H4 ⊗ kCp do. In all four cases,
S4 = id. In Section 4 we will use this notation for these pointed Hopf algebras.

2.8.2. Nonsemisimple nonpointed Hopf algebras of dimension 4p. These Hopf algebras were studied
in [ChNg] with the classification completed for p = 3, 5, 7, 11. The main theorems of [ChNg] are:

Theorem 2.18. [ChNg, Theorem I] For H a nonsemisimple Hopf algebra of dimension 4p, then H

is pointed if and only if |G(H)| > 2.

Theorem 2.19. [ChNg, Theorem II] For H a nonsemisimple Hopf algebra of dimension 4p where

p ≤ 11 is an odd prime, then H or H∗ is pointed.
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2.8.3. Applications of counting arguments. We end this section by applying the preceding preliminary
material to give some simple alternate arguments for known facts about nonsemisimple nonpointed
Hopf algebras of dimension 4p.

Proposition 2.20. Let H be a nonsemisimple nonpointed Hopf algebra of dimension 4p. Then

|G(H)| /∈ {p, 2p}.

Proof. Suppose that |G(H)| = p and then H0 = kG(H) ⊕ (⊕ti=1D
ni
i ) where the Di are simple sub-

coalgebras of dimension d2
i with 1 < d1 < d2 < . . . < dt. If p divides some di, then dimH0 ≥ p+ p2 =

p(1 + p) ≥ 4p since p ≥ 3, a contradiction. Thus (p, di) = 1 for all i and p must divide ni by Lemma

2.7. Then dimH0 ≥ p+ 4p > 4p, a contradiction. An analogous proof shows that |G(H)| 6= 2p. �

Proposition 2.21. Suppose that H is generated as an algebra by a simple coalgebra D of dimension

4 which is stable by the antipode. Then H∗ is pointed.

Proof. By Proposition 2.13, H fits into a central exact sequence of Hopf algebras

kG ↪→ H � A,

with A nonsemisimple and A∗ pointed. Since dimA divides 4p, then dimA ∈ {1, 2, 4, p, 2p, 4p}. We

will show that dimA = 4p so that H ∼= A and thus H∗ is pointed.

SinceH is nonsemisimple, dimA > 1. If dimA = 2, p or 2p, then A is semisimple by the classification

of Hopf algebras of these dimensions, see [Ş], [W], [Z], [Ng3]. Since kG is semisimple, this would imply

that H is also semisimple, a contradiction.

If dimA = 4, then dim kG = p and this implies that kG ' kCp. Thus Cp ⊆ G(H) so that |G(H)| = p

or 2p, a contradiction by Proposition 2.20. Thus A = H and H∗ is pointed. �

3. Hopf algebras of dimension rpq

In this section, H will be a Hopf algebra of dimension rpq, with r < p < q primes. Recently, Etingof,
Nikshych and Ostrik [ENO], finished the classification of the semisimple Hopf algebras of dimension
rpq and rp2. Specifically, they prove that all semisimple Hopf algebras of these dimensions can be
obtained as abelian extensions (Kac Algebras). Then, the classification follows by a result of Natale
[N1]. Thus, we will assume that H is nonsemisimple. One purpose of this section is to apply
counting arguments in the style of D. Fukuda as we did in [BG].

Remark 3.1. Recall that by Lemma 2.8 a nonsemisimple Hopf algebra H of dimension rpq is non-

pointed, has no pointed sub-Hopf algebras and has no pointed quotient Hopf algebras. In particular,

H cannot be generated by a simple 4-dimensional subcoalgebra C stable under the antipode. For then

by Proposition 2.13, H ∼= kG, which is semisimple, a contradiction. �

Also H cannot have the Chevalley property. The proof is based on the proof of [AN1, Lemma A.2].

Proposition 3.2. No nonsemisimple Hopf algebra H of dimension rpq has the Chevalley property.

Proof. Suppose that H has the Chevalley property. Then dimH0| dimH and since H is not pointed

or cosemisimple, 1 < dimH0 < dimH. Then dimH0 = st, where s, t ∈ {r, p, q} and s < t. But

by [EGel1], [So], [N1] or if s = 2 by [Ng3], all semisimple Hopf algebras of dimension st are trivial,

i.e. isomorphic to a group algebra or the dual of a group algebra. Hence H0 ' kF with F a non-

abelian group of order st; in particular, s|(t − 1). Consider now the coradical filtration on H and

the associated graded Hopf algebra grH. Then write grH ' R#kF with R the diagram of H. Then

(grH)∗ ' R∗#kF , which implies that (grH)∗ is pointed. This cannot occur, since dim(grH)∗ =

dim grH = dimH = rpq. Hence, H0 cannot be a sub-Hopf algebra. �
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We note that all Hopf algebras of dimension 30 = 2 · 3 · 5 are group algebras or duals of group
algebras by [Fu3] but the classification of the other Hopf algebras of dimension rpq with rpq < 100,
namely dimensions 42, 66, 70 and 78 is still open. We make a few observations about these cases.

Remark 3.3. (i) A nonsemisimple Hopf algebra of dimension 2pq cannot have a semisimple sub-Hopf

algebra A of dimension pq. For if this were the case, there would be a Hopf algebra epimorphism

π : H∗ → A∗ and we apply Proposition 2.17. Since H∗ has no nontrivial skew-primitive elements,

(H∗)coπ = kC2 and we have an exact sequence of Hopf algebras kC2 ↪→ H∗ � A∗. Thus if A, and

thus A∗, were semisimple, H∗ and H would be also.

(ii) Suppose that H is nonsemisimple of dimension 2pq where all Hopf algebras of dimension pq are

semisimple. Then by (i) above, H has no sub-Hopf algebras of dimension pq. Suppose that |G(H)| > 2

and let C be a simple subcoalgebra of dimension greater than 1. We will show that C generates H.

Indeed, let C := 〈C〉 be the sub-Hopf algebra generated by C. Then dim C ∈ {2p, 2q, 2pq}. If

C 6= H, then C ∼= kDm with m ∈ {p, q}. Then H is generated by C and kG(H), so by Remark 2.1, H

is semisimple, a contradiction.

Lemma 3.4. Suppose that H has dimension 2pq with 2 < p < q. Then

(i) |G(H)| 6= pq.

(ii) If p ≤ 7 then |G(H)| 6= 2q and if q ≤ 7 then |G(H)| 6= 2p.

(iii) If p ≤ 5 then |G(H)| 6= q.

Proof. (i) The statement was proved in Remark 3.3(i).

(ii) If |G(H)| = 2p, since for all d, by Lemma 2.7, 2p divides dimH0,d = nd2 for some n ≥ 1 then

dimH0 ≥ 2p+ 4p = 6p. Then by Proposition 2.9(ii) and Lemma 2.7, dimH ≥ 6p+ 2p(5) + 4p = 20p,

a contradiction if q ≤ 7.

If |G| = 2q and p ≤ 7 the argument is the same.

(iii) Assume |G(H)| = q. For G,D as above, dimH0 ≥ q+ 4q = 5q, 2 dimPG,D1 ≥ 4q, dimPG,G and

dimPD,D must be divisible by q and so dimH ≥ 11q > 2(5)q, a contradiction. �

Corollary 3.5. (i) If dimH = 42, then |G(H)| /∈ {21, 14, 7, 6}.
(ii) If dimH = 70, then |G(H)| /∈ {35, 14, 10, 7}.

(iii) If dimH = 66, then |G(H)| /∈ {33, 22, 11}.
(iv) If dimH = 78, then |G(H)| /∈ {39, 26, 13}. �

Next we show that for Hopf algebras of dimension 66, G(H) does not have order 6.

Lemma 3.6. If dimH = 6p with p < 13, then |G(H)| 6= 6.

Proof. First we suppose that H has a simple subcoalgebra of dimension 4 and consider various cases.

Let G := G(H), the group of grouplikes of H of order 6, and let D denote the set of simple subcoal-

gebras of dimension 4.

(i) Suppose that H0 = kG ⊕ M∗(2,k)3 so that dimH0 = 18. Since, by Remarks 3.1 and 3.3,

no D ∈ D is stable by the antipode, then no D ∈ D can be fixed by S2 either. Thus if P 1,D
1 is

nondegenerate, so are P
1,S2(D)
1 , P

S(D),1
1 and P

S3(D)=D,1
1 and 2 dimPG,D1 ≥ 2(6)4 = 48. Since PG,G has

nonzero dimension divisible by 6 and PD,D has nonzero dimension divisible by 12, then the dimension

of H is at least 18 + 48 + 6 + 12 = 84, a contradiction.

(ii) Suppose that H0 = kG⊕M∗(2,k)3t with t ≥ 2 so that dimH0 = 6 + 4(3t) ≥ 30. Since for some

integers `,m, n ≥ 1, 2 dimPG,D = 24`, dimPG,G = 6m, dimPD,D = 12n, then dimH ≥ 72, so that

we obtain a contradiction if p < 13.
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(iii) Suppose that H0 = kG ⊕M∗(2, k)3t ⊕ E1 . . . ⊕ EN where t,N ≥ 1 and the Ei are simple

subcoalgebras of dimension greater than 4. Let E denote the set of Ei and D the set of simple

subcoalgebras of dimension 4. Then dimH0 ≥ 6 + 12 + 18 = 36. If PG,E 6= 0, then 2 dimPG,E ≥
2(6)(3) = 36, dimP E,E ≥ 9 and so dimH ≥ 81, contradiction. Thus PG,D 6= 0. If t = 1, then as in

(i) above 2 dimPG,D1 ≥ 2(6)4 = 48, so that dimH ≥ 36 + 48 = 84, a contradiction. If t ≥ 2, then

dimH0 ≥ 48 and 2 dimPG,D1 ≥ 24 so that dimH1 ≥ 72. But PD,D2 , PG,G2 are nondegenerate, so that

dimH2 ≥ 80, a contradiction.

Now suppose that H has no simple subcoalgebras of dimension 4 and H0 = kG⊕E1 . . .⊕Et where

the Ei are simple subcoalgebras of dimension at least 9 so that dimH0 ≥ 6 + 18 = 24. Let E denote

the set of simple coalgebras Ei. Then 2 dimPG,E1 ≥ 2(6)(3) = 36, dimPG,G ≥ 6, dimP E,E ≥ 9 and

must be divisible by 6 so that dimP E,E ≥ 12. But also dimP E,E must be a sum of squares larger than

4 so that dimP E,E > 12. Thus dimH > 24 + 36 + 6 + 12 = 78, a contradiction. �

Note that in the proof above, the only place where p 6= 13 was used was in case (ii). There if p = 13
we must have that ` = n = 1 and m = 2.

Next we show that for dimension 70 the group of grouplikes must have order 1 or 2.

Lemma 3.7. If dimH = 70 then G(H) � C5.

Proof. Again, we suppose first that H has a simple subcoalgebra of dimension 4 and consider various

cases. Let D denote the set of simple subcoalgebras of dimension 4 and let G := G(H) ∼= C5.

(i) Suppose that H0 = kC5 ⊕D1 ⊕ . . .⊕D5 where Di
∼=M∗(2,k). Since no Di is stable under the

antipode, we may assume that S(Di) = Di+1, subscripts modulo 5. For if S2(D1) = D1, then S would

permute D3, D4, D5. But by Corollary 3.5, |G(H∗)| ∈ {1, 2, 5} and so 3 does not divide the order of

S. Thus by Proposition 2.9(i), P 1,Di
1 is nondegenerate for all i and 2 dimPG,D ≥ 2(5)(10) = 100, a

contradiction.

(ii) Suppose that H0 = kC5⊕M∗(k, 2)5t where t > 1. Then dimH0 ≥ 5 + 10(4) = 45, 2 dimPG,D ≥
2(5)(2) = 20, dimPG,G ≥ 5, and dimPD,D ≥ 4, so that dimH ≥ 74.

(iii) Let H0 = kC5 ⊕M∗(2, k)5t ⊕ E, where t ≥ 1 and 0 6= E is a sum of simple subcoalgebras

Ei of dimension greater than 4. Let E denote the set of Ei. If the dimensions of any of the Ei are

relatively prime to 5, then dimH0 ≥ 5 + 20 + 5(9) = 70, a contradiction. The only remaining case

is H0 = kC5 ⊕M∗(2, k)5 ⊕M∗(5,k); here t = 1 or else H = H0. Then dimH0 = 50, 2 dimPG,D1 ≥
2(5)(2) = 20 and this is a contradiction since H 6= H1.

Thus H cannot have a simple subcoalgebra of dimension 4. The only other possibilities for H0 are

H0 = kC5⊕M∗(3,k)5 and H0 = kC5⊕M∗(5,k)t with t = 1, 2. In the first case, dimH0 = 50, and for

E the set of simple subcoalgebras of dimension 9, 2 dimPG,E ≥ 2(5)(3) = 30, a contradiction. In the

second case, first let t = 1 and here let E be the set of simple subcoalgebras of dimension 25. Then

dimH0 = 30 and 2 dimPG,E ≥ 2(5)(5) = 50, a contradiction. The proof for t = 2 is the same. �

Corollary 3.8. If H is a nonsemisimple Hopf algebra of dimension 70, then |G(H)| = 1, 2. �

Remark 3.9. (i) To summarize, we have that for H of dimension 42, 66, |G(H)| ∈ {1, 2, 3}, for H of

dimension 70, |G(H)| ∈ {1, 2} and for H of dimension 78, |G(H)| ∈ {1, 2, 3, 6}.
(ii) If dimH = 42 and G(H) ∼= C3, then dimension arguments such as those above show that H has

following form: H0
∼= kC3 ⊕ C with C ∼=M∗(3,k), 2 dimPG,C = 18, dimPG,G = 3, dimPC,C = 9.

4. Hopf algebras of dimension 8p

In this section we prove some results for Hopf algebras of dimension 8p.
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4.1. Hopf algebras of dimension 8. The structure of Hopf algebras of dimension 8 or dimension 4p
naturally plays a role in the classification of Hopf algebras of dimension 8p. Hopf algebras of dimension
4p were discussed in Section 2.8.1, including a complete description of the pointed ones.

For dimension 8 the semisimple Hopf algebras are group algebras, duals of group algebras or the
noncommutative noncocommutative semisimple Hopf algebra of dimension 8, denoted by A8 [Mas2].
This Hopf algebra is self-dual and G(A8) ∼= C2 × C2; it is constructed as an extension of k[C2 × C2]
by kC2. All other Hopf algebras of dimension 8 are pointed or copointed.

Let ξ be a primitive 4th root of 1. By [Ş], every pointed nonsemisimple Hopf algebra of dimension
8 is isomorphic to exactly one of the Hopf algebras listed below:

A2 := k〈g, x, y | g2 − 1 = x2 = y2 = gx+ xg = gy + yg = xy + yx = 0〉,
∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x, ∆(y) = y ⊗ 1 + g ⊗ y.

A′4 := k〈g, x | g4 − 1 = x2 = gx+ xg = 0〉,
∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x;

A′′4 := k〈g, x | g4 − 1 = x2 − g2 + 1 = gx+ xg = 0〉,
∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x;

A′′′4,ξ := k〈g, x | g4 − 1 = x2 = gx− ξxg = 0〉,
∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g2 ⊗ x;

A2,2 := k〈g, h, x | g2 = h2 = 1, x2 = gx+ xg = hx+ xh = gh− hg = 0〉,
∆(g) = g ⊗ g, ∆(h) = h⊗ h, ∆(x) = x⊗ 1 + g ⊗ x.

Except forA′′4, these pointed Hopf algebras have pointed duals. We have the following isomorphisms:
A2 ' (A2)∗, A′′′4,ξ ' A′′′4,−ξ ' (A′4)∗ and A2,2 ' (A2,2)∗ [Ş]. Moreover, one can check case by case that

A2, A′′′4,ξ and A2,2 have sub-Hopf algebras isomorphic to H4 and A′4,A′′4 do not.

Let K = (A′′4)∗. Up to isomorphism K is the only Hopf algebra of dimension 8 which is neither
semisimple nor pointed. The next remark is essentially [GV, Lemma 3.3].

Remark 4.1. (i) K is generated as an algebra by the elements a, b, c, d satisfying the relations

ab = ξba ac = ξca 0 = cb = bc cd = ξdc bd = ξdb

ad = da ad = 1 0 = b2 = c2 a2c = b a4 = 1

(ii) The elements a = e11, b = e12, c = e21, d = e22 form a matrix-like basis and

∆(a2) = a2 ⊗ a2 and ∆(ac) = ac⊗ a2 + 1⊗ ac.

(iii) K ' H4 ⊕M∗(2, k) as coalgebras.

Using Remark 4.1, one sees that K is a finite dimensional quotient of the quantum group Oξ(SL2);
this is consistent with Proposition 2.13.

4.2. Nonsemisimple Hopf algebras of dimension 8p. Throughout this section, unless otherwise
stated, we will assume that H is a nonsemisimple nonpointed non-copointed Hopf algebra of dimension
8p. Also recall that p denotes an odd prime. Our strategy will be to study the possible orders for the
grouplikes in H where dimH = 8p. In this section we prove Theorem A.
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4.2.1. Group of grouplikes divisible by p. In this subsection we concentrate on general results for Hopf
algebras of dimension 8p with |G(H)| divisible by p.

Proposition 4.2. |G(H)| 6= 8p, 4p or p.

Proof. For H non-cosemisimple, |G(H)| 6= 8p. If |G(H)| = 4p, since H is not pointed, H0 = kG(H)⊕E
with E the sum of simple coalgebras of dimension bigger than 1. Since 4p must divide dim(E) by

Lemma 2.7, then we must have H = H0, impossible because H is not cosemisimple.

If |G(H)| = p, then H has no nontrivial skew-primitives by Lemma 2.8. Now we use counting

arguments as in the previous sections. Suppose that H0 = kG(H) ⊕ Ds1
1 ⊕ . . . Dst

t for Di simple

of dimension n2
i and 2 ≤ n1 < . . . < nt. Let D denote the set of simple coalgebras Di. Then by

Proposition 2.9(i) and Lemma 2.6(ii), 2 dimPCp,D ≥ 2pn1. If p divides n1, then dimH ≥ dimH0 +

2 dimPCp,D ≥ p + p2 + 2p2 = p(1 + 3p) > 8p since p ≥ 3. If (p, n1) = 1, then p divides s1 and

dimH ≥ p+ 4p+ 4p > 8p. Thus in each case, we arrive at a contradiction. �

Thus, if |G(H)| = 2p, then H cannot have the Chevalley property. For, suppose that H0 is a
sub-Hopf algebra of H. Since H is not pointed or cosemisimple, dimH0 = 4p. Since the semisimple
Hopf algebras Gi have grouplikes of order 4, then H0

∼= kΓ where Γ is a nonabelian group of order
4p. But then H0 = kΓ ∼= kG(H0) ⊕D where |G(H0)| = 2p and D is a sum of simple coalgebras. By
Lemma 2.7, D is a sum of matrix coalgebras of dimension d > 1 and 2p = nd2 which is impossible.

Remark 4.3. As in the proof above, we use Lemma 2.8 together with counting arguments to eliminate

the possibility that |G(H)| = 8 for some small dimensions. Let dimH = 8p with p ∈ {3, 5, 7} and

suppose |G(H)| = 8. By Lemma 2.8, H has no nontrivial skew primitive elements. Since dimH0 =

8 + 8m for some integer m ≥ 1, by Lemma 2.9(ii), we have that dimH ≥ 16 + 40 + 4 = 60.

The next proposition shows that type (8, 2p) is impossible.

Proposition 4.4. If |G(H)| = 2p then H∗ has no semisimple sub-Hopf algebra L of dimension 8.

Proof. Suppose H∗ contains a semisimple sub-Hopf algebra L of dimension 8 and let Γ be a subgroup

of G(H) of order p. Since L∗ is semisimple and has no grouplike elements of order p, kΓ ↪→ H � L∗

is an exact sequence of Hopf algebras. This implies that H is semisimple, a contradiction. �

The next proposition determines the coalgebra structure of H when |G(H)| = 2p.

Proposition 4.5. Suppose |G(H)| = 2p.

(i) H contains a pointed sub-Hopf algebra A of dimension 4p and as a coalgebra H ∼= A ⊕
M∗(2, k)p.

(ii) If H∗ is generated by a simple subcoalgebra of dimension 4 fixed by S4
H∗ then SH has order 4.

Proof. (i) Since H is not pointed, H0 = kG(H)⊕D1⊕ . . .⊕Dt where the Di are simple coalgebras of

dimension greater than 1. Suppose that H0,mp 6= 0 where m ≥ 1. Then dim(H0,mp) ≥ 2p2 and thus

dim(H0) ≥ 2p+ 2p2 = p(2 + 2p) ≥ 8p since p ≥ 3, and this is impossible since H is nonsemisimple. If

Ho,d 6= 0 for (d, p) = 1 and d > 2 then dim(H0) ≥ 2p+ pd2 = p(2 + d2) > 8p which is also impossible.

Thus Di =M∗(2,k) for all i, and H0
∼= kG(H)⊕M∗(2,k)p as coalgebras.

By Proposition 2.9(ii), H has a nontrivial skew-primitive x and x together with G(H) generates a

pointed sub-Hopf algebra A of H of dimension 4p and (i) is proved.

(ii) By (i) there is a Hopf algebra projection π : H∗ → A∗ for A the pointed Hopf algebra of

dimension 4p from (i). Then SA and SA∗ have order 4. Suppose D ∼=M∗(2, k) ⊂ H∗ is stable under
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S4
H∗ and generates H∗, and suppose that S4

H∗ has order N > 1. Let e be a multiplicative matrix for

D as in Theorem 2.10 such that S4
H∗(eij) = ωi−jeij where ω is a primitive N th root of unity. Then

if i 6= j, π(eij) = 0 and thus dimπ(D) < 3. By Theorem 2.11, π(D) ⊆ G(A∗) so that π(D) does not

generate A∗, contradicting the fact that D generates H∗. �

Next we show that if |G(H)| = 2p, then H∗ cannot contain a copy of the Sweedler Hopf algebra.

Proposition 4.6. Assume |G(H)| = 2p. Then H∗ has no sub-Hopf algebra isomorphic to H4.

Proof. If H∗ contains a sub-Hopf algebra isomorphic to H4, there exists a Hopf algebra epimorphism

π : H → H4. Then, by Lemma 2.4, dimHcoπ = dim coπH = 2p. Let G(H) = 〈c〉 ∼= C2p and let

Γ = 〈c2〉 ∼= Cp. Since p is odd, we have that kΓ is included both in Hcoπ and coπH.

On the other hand, Proposition 4.5 implies that H ' A ⊕ D where D = D1 ⊕ · · · ⊕ Dp, with

Dj ' M∗(2, k), for all 1 ≤ j ≤ p. We will prove that for every j, 1 ≤ j ≤ p, dimDcoπ
j ≥ 2 or

dim coπDj ≥ 2. This fact leads to a contradiction. Indeed, suppose that for n of the Dj , dimDcoπ
j ≥ 2

and for the remaining p−n coalgebras Dj , dim coπDj ≥ 2. Since p is odd, either 2n > p or 2(p−n) > p

so that either dimcoπD > p or dimDcoπ > p. Since k〈c2〉 lies in both the left and right coinvariants,

this implies that either dimcoπH > 2p or dimHcoπ > 2p, and this gives the desired contradiction.

Fix a simple subcoalgebra Dj and let K = 〈Dj〉, the sub-Hopf algebra of H generated by Dj .

Clearly, dimK = 8, 2p, 4p or 8p. We write π also for π|K when the meaning is clear. If π maps K

onto H4, then the result follows from Lemma 2.12; in particular, dimK 6= 8p. If π(K) = k, then

π|K = εK . Hence for d = (dij) a multiplicative matrix for Dj , π(dij) = δij and Dj lies in both the

left and right coinvariants. It remains to consider the case when π(K) = kG(H4) = k〈g〉 where g

generates G(H4) ' C2.

Assume dimK = 8. SinceK is nonpointed, by Subsection 4.1 we have thatK = K = (A′′4)∗ ∼= L⊕Dj

as coalgebras where L ∼= H4. Since G(L) ⊂ G(H), we have that cp ∈ K. Suppose π(cp) = 1. Since

π(c) is a grouplike element and |G(H4)| = 2, we have that π(c) = 1. If x is a nontrivial skew-primitive

in H4 ⊂ K such that π(x) = 0, then c, x lie in both coπH and Hcoπ, contradicting the fact that the

dimension of the coinvariants is 2p. Thus π(cp) = π(c) = g, coπL = {1, gx}, Lcoπ = {1, x}. Since

dim coπK = dimKcoπ = 4, then we must have that dim coπDj = dimDcoπ
j = 2.

Next we will show that if dimπ(K) = 2 then K cannot have dimension 4p or 2p. Suppose that

dimK = 4p. Then dimKcoπ = 2p = dim coπK so that Kcoπ = Hcoπ and the same for the left

coinvariants. Thus k〈c2〉 ∼= kCp ⊂ K. IfK is nonpointed semisimple, by the classification of semisimple

Hopf algebras of dimension 4p in Section 2.8, p does not divide the order of G(K) either if K is the

dual of a group algebra or if K is one of the semisimple Hopf algebras in [Gel1]. If K is not semisimple

then by Theorem 2.18, K is pointed, a contradiction.

Finally, suppose now that dimK = 2p so that K ∼= kDp and dimKcoπ = p. Let K̃ = 〈K,Γ〉 be the

sub-Hopf algebra of H generated by K and k〈c2〉. Since K̃ is semisimple, then K̃ 6= H and so has

dimension 4p. But K̃ is then a nonpointed semisimple sub-Hopf algebra of H of dimension 4p with a

grouplike of order p, and this is impossible by the proof in the paragraph above. �

The next proposition shows that type (2p, r) can occur only if r = 2, 4.

Proposition 4.7. Suppose |G(H)| = 2p. Then

(i) H fits into an exact sequence of Hopf algebras A ↪→ H � kC2, where A is a pointed Hopf

algebra of dimension 4p.
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(ii) If A∗ is nonpointed, i.e., A ∼= A(−1, 1), then dimH∗0 = 8p − 4, G(H∗) ∼= C4 and H∗ has a

sub-Hopf algebra isomorphic to A′′4.

(iii) If A∗ is pointed then dimH∗0 = 4p and |G(H∗)| is 2 or 4. If H∗ has a nontrivial skew-primitive

element, then H∗ has a sub-Hopf algebra isomorphic to A′′4.

Proof. (i) Proposition 4.5 implies that H ' A⊕M∗(2, k)p, with A a pointed Hopf algebra of dimension

4p. Dualizing this inclusion we get a Hopf algebra epimorphism π : H∗ � A∗ and dimH = 2 dimA.

Thus by Proposition 2.17, R := (H∗)coπ = k{1, x} with x a (possibly trivial) (1, g)-primitive element

for some grouplike g ∈ G(H) with g2 = 1. If x is a nontrivial skew-primitive, then by Proposition

2.17, H∗ has a sub-Hopf algebra isomorphic to H4 and this is impossible by Proposition 4.6.

Thus x ∈ kG(H∗) and R is a Hopf algebra isomorphic to the group algebra kC2. In particular, H

fits into the exact sequence of Hopf algebras A ↪→ H � kC2.

(ii) Suppose now that A∗ is nonpointed. Recall from Subsection 2.8.1 that then A ∼= A(−1, 1)

and A∗ ' H4 ⊕ M∗(2, k)p−1 as coalgebras. Hence dim(A∗)0 = 4p − 2 and by Proposition 2.5,

dim(H∗)0 = 8p−4. Thus H∗ contains a nontrivial skew-primitive element, since otherwise Proposition

2.9 gives a contradiction. Thus |G(H∗)| > 1. Since dimH∗ − dim(H∗)0 = 4 is divisible by |G(H∗)|
we have that |G(H∗)| is 2 or 4. But if G(H∗) ∼= C2 or if G(H∗) ∼= C2 × C2, then H∗ would contain a

sub-Hopf algebra isomorphic to H4, and this is impossible by Proposition 4.6.

Thus H∗ has a pointed sub-Hopf algebra L with G(L) ∼= C4 and so L has dimension 8. Then there

is a Hopf algebra epimorphism ρ : H → L∗ and Hcoρ ∼= kCp so that we have an exact sequence of

Hopf algebras kCp ↪→ H � L∗, and dualizing we obtain the exact sequence L ↪→ H∗ � kCp. By

Proposition 2.5, 6p = dimH0 = p dimL∗0. Thus we must have that dimL∗0 = 6 and L∗ cannot be

pointed. We must have that L∗ ∼= K and L ∼= A′′4.

(iii) Now suppose that A∗ is pointed so that G(A∗) ∼= C2p by Subsection 2.8.1. Then again using

Proposition 2.5 we have that dimH∗0 = 4p. If |G(H∗)| 6= 2, 4, since H∗ has a grouplike of order 2, by

Proposition 4.2 and Proposition 4.4, |G(H∗)| must be 2p. Then H∗0 = kC2p ⊕ E where dimE = 2p

and E is a sum of simple subcoalgebras of dimension greater than 1. No simple subcoalgebra can have

dimension divisible by p since p2 > 2p. But if a simple subcoalgebra has dimension d2 with 1 < d and

(d, p) = 1 then H∗0 must contain at least p such simple coalgebras and d2p > 2p, a contradiction.

If H∗ has a nontrivial skew-primitive element then the same argument as in (ii) above shows that

H∗ has a sub-Hopf algebra isomorphic to A′′4. �

Corollary 4.8. If |G(H)| = 2p with p = 3 or 5, then H∗ has a sub-Hopf algebra isomorphic to A′′4.

Proof. It suffices to show that H∗ has a nontrivial skew-primitive element and then the statement

follows from Proposition 4.7. We may assume that we are in case (iii) of Proposition 4.7, so that

dimH∗0 = 4p.

Let p = 3. By Proposition 2.9, if H∗ has no skew-primitive, then for |G(H∗)| ≥ 2, 24 = dimH∗ ≥
12 + 2(5) + 4 = 26, a contradiction.

If p = 5, and |G(H∗)| = 2, then dimH∗0 = 20 forces H∗0
∼= kC2 ⊕M∗(3, k)2. Then if H∗ has no

nontrivial skew-primitive, Proposition 2.9 implies that 40 ≥ 20+2(7)+9 = 43, a contradiction. If p = 5

and |G(H∗)| = 4, then Proposition 2.9 implies that 40 ≥ 20+4(5)+4 = 44, again a contradiction. �

Now we can give the proof of Theorem A.



TECHNIQUES FOR CLASSIFYING HOPF ALGEBRAS 15

Proof of Theorem A. Let H be a nonsemisimple Hopf algebra of dimension 8p. By Proposition
4.2 we have that |G(H)| ∈ {1, 2, 4, 8, 2p}. If |G(H)| = 2p, then by Proposition 4.7 we have that
2 ≤ |G(H∗)| ≤ 4 and the theorem is proved. �

4.2.2. Further results for some specific primes. In this section, we improve the results of Theorem A
for some specific primes p.

Proposition 4.9. Suppose |G(H)| = 2p, G(H∗) ∼= C4 = 〈g〉 and H∗ contains a simple subcoalgebra

D of dimension 4. Also assume that (H∗)0 is not a sub-Hopf algebra of H∗, i.e., H∗ does not have

the Chevalley property. Then

(i) D generates H∗ as a Hopf algebra;

(ii) D is not fixed by Lg2, Rg2, i.e., by left or right multiplication by g2. If g2 /∈ Z(H∗) then D is

also not fixed by the adjoint action of g2.

Proof. (i) Let L = 〈D〉 be the sub-Hopf algebra of H∗ generated by D, then L is a nonpointed Hopf

algebra of dimension 8, 2p, 4p or 8p. We will show that each dimension except 8p is impossible.

Suppose the dimension of L is 8. Then, by Section 4.1, either G(L) ∼= C2 × C2, impossible since

G(H∗) ∼= C4 or else L contains a copy of H4, impossible by Proposition 4.6.

Suppose the dimension of L is 2p so that L ∼= kDp . Let L = 〈L,k〈g〉〉 be the semisimple sub-Hopf

algebra of H∗ generated by L and by g, a generator of G(H∗). Then the dimension of L is divisible

by 2p and by 4 so it must be 4p. Suppose that L ∼= Gi, i = 0, 1, one of the self-dual semisimple Hopf

algebras of dimension 4p from [Gel1]. Then the inclusion L ↪→ H∗ and the fact that Gi is self-dual

gives a Hopf algebra projection π from H onto Gi. Denote by h the generator of G(H). Since G(Gi)
has order 4, we have that π(h2n) = 1 so that h2n ∈ Hcoπ for 0 ≤ n ≤ p− 1. This contradicts Lemma

2.4 which states that the dimension of Hcoπ is 2. Finally suppose that L ∼= kΓ for Γ a nonabelian

group of order 4p. Then there is a Hopf algebra projection π from H onto kΓ and by Proposition 2.17,

Hcoπ = k{1, x} where 0 6= x is (1, hp)-primitive. If x is a trivial skew-primitive, i.e., x = 1 − hp then

Hcoπ ∼= kC2. But then by Lemma 2.4, the sequence kC2
ı
↪→ H

π
� kΓ is exact so that H is semisimple,

a contradiction. Thus x is nontrivial and H has a sub-Hopf algebra isomorphic to H4. This means

that the pointed sub-Hopf algebra A of H of dimension 4p guaranteed by Proposition 4.5 is either

A(−1, 0)∗ or is H4 ⊗ Cp. In either case the dual is pointed and so we are in Case (iii) of Proposition

4.7. Then dimH∗0 = 4p and so L = H∗0 . Since we assumed that H∗ does not have the Chevalley

property, this is a contradiction.

Suppose the dimension of L is 4p. By its construction L is not pointed. Also L cannot be semisimple

by the arguments in the case above where dimL = 4p. If L is copointed then L ∼= A(−1, 1)∗ ∼=
H4 ⊕M∗(2, k)p−1, which is impossible since H∗ does not contain a copy of H4. Thus both L and

L∗ are nonsemisimple, nonpointed so that by Theorem 2.18, |G(L)|, |G(L∗)| ≤ 2. But since L is a

sub-Hopf algebra of H∗, we have a Hopf algebra epimorphism π : H � L∗ with dimHcoπ = 2. This

implies that π(c2) 6= 1 and consequently p ≤ |G(L∗)| ≤ 2, a contradiction. Thus, this case is also

impossible and we have proved (i), namely that L = H.

(ii) Now suppose that g2L = L; if L is stable under Rg2 or ad`(g
2) with g2 /∈ Z(H∗), the argument

is the same. Let A ⊂ H be the 4p-dimensional pointed sub-Hopf algebra of H from Proposition 4.5;

there is a Hopf algebra epimorphism π : H∗ → A∗. If A∗ is pointed, then G(A∗) ∼= C2p, otherwise

G(A∗) ∼= C2. In either case, π(g2) = 1. Then Lemma 2.14 implies that π(H∗) ⊆ kG(A∗), and this

contradiction finishes the proof. �
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Corollary 4.10. Assume |G(H)| = 2p with p = 3, 7, 11 and suppose that the 4p dimensional pointed

sub-Hopf algebra A of H from Proposition 4.5 has pointed dual. If H∗ does not have the Chevalley

property, then G(H∗) � C4.

Proof. Suppose that G(H∗) = 〈g〉 ∼= C4. With the notation of Proposition 4.7, the assumption that

A∗ is pointed means that we are in Case (iii) so that dimH∗0 = 4p. With notation as in Proposition

4.9, it remains to show that for p = 3, 7, 11, then H∗ has a simple subcoalgebra of dimension 4 stable

under Lg2 and that will give a contradiction.

If p = 3, H∗0
∼= kC4 ⊕M∗(2, k)2 so since the order of g is 4, the statement is clear.

If p = 7 then either H∗0
∼= kC4 ⊕M∗(4,k)⊕M∗(2, k)2 or else H∗0

∼= kC4 ⊕M∗(2,k)6 and in either

case, the statement follows.

If p = 11 then H∗0
∼= kC4 ⊕D where D is one of the following: M∗(2, k)10 orM∗(3, k)4 ⊕M∗(2, k)

or M∗(4, k) ⊕ E where E has dimension 24. Then E ∼=M∗(2, k)6 or E ∼=M∗(2,k)2 ⊕M∗(4, k). In

any case, H∗ has a simple 4-dimensional subcoalgebra stable under Lg2 . �

Corollary 4.11. Let dimH = 24 and suppose H is of type (6, 4) and H∗ does not have the Chevalley

property. Then H fits into an exact sequence A(−1, 1) ↪→ H � kC2, in other words, we are in Case

(ii) of Proposition 4.7. Then we have that either H∗0
∼= kC4⊕M∗(2, k)4 or else H∗0

∼= kC4⊕M∗(4,k).

Proof. The statement follows from Corollary 4.8 and Corollary 4.10. �

4.3. Generalizations of results of Cheng and Ng. In this section we generalize some results of
[ChNg] to study Hopf algebras of dimension 8p with group of grouplikes of order 2i. We assume
throughout this section that H is nonsemisimple, nonpointed, non-copointed and has dimension 8p.

The following propositions are similar to [ChNg, Prop. 3.2].

Proposition 4.12. (i) If H contains a pointed sub-Hopf algebra K of dimension 8, then G(H) =

G(K).

(ii) Assume H ' R#K where K is pointed and copointed of dimension 8, and R is a braided Hopf

algebra of dimension p in K
KYD. Then G(H) ∼= G(H∗) so that H is of type (4, 4) or type (2, 2).

(iii) Suppose that |G(H)| = 2t for t ∈ {1, 2, 3} and suppose that H∗ contains a sub-Hopf algebra

L of dimension 8 so that there is a Hopf algebra epimorphism π : H → L∗. Then π is an

injective Hopf algebra map from kG(H) to kG(L∗).

(iv) Suppose that H contains a pointed sub-Hopf algebra K of dimension 8 with |G(K)| = 4 and

H∗ contains a pointed sub-Hopf algebra L of dimension 8. Then K ∼= L∗ and H ∼= R#K

where R is a braided Hopf algebra in K
KYD of dimension p.

Proof. (i) Suppose H has a grouplike element g such that g /∈ G(K). Then 〈g,K〉, the sub-Hopf

algebra of H generated by g and K, is pointed and has dimension greater than 8 and divisible by 8,

so must be all of H. This is a contradiction since H is not pointed.

(ii) Assume H ' R#K with K and K∗ pointed. By (i), G(H) = G(K). Since H∗ ' R∗#K∗, and

K∗ is pointed by assumption, then again by (i), G(H∗) = G(K∗). By Section 4.1, since K is pointed

and copointed, then G(K) ∼= G(K∗) and thus G(H) ∼= G(H∗).

(iii) Dualizing the inclusion L ⊂ H∗, we get a Hopf algebra epimorphism π : H −→ L∗. Since

dimL∗ = 8, dimR = p where R = Hcoπ is the algebra of coinvariants. Suppose that π(g) = 1 for

some g ∈ G(H) and let Γ = 〈g〉. Then kΓ ⊂ R and R is a left (H,kΓ)-Hopf module where the left

action of kΓ on R is left multiplication. Then by the Nichols-Zoeller theorem, R is a free kΓ-module

which is impossible unless Γ = {1}. Thus π is an injective Hopf algebra map on kG(H) as claimed.



TECHNIQUES FOR CLASSIFYING HOPF ALGEBRAS 17

(iv) Let π : H −→ L∗ and R = Hcoπ as in the proof of (iii). Let x be a nontrivial (g, 1)-primitive in

K. We wish to show that π(x) is a nontrivial skew-primitive in L∗ and then π will be an isomorphism

from K to L∗, proving the statement.

By (i), G(H) = G(K) and G(H∗) = G(L). By (iii), since |G(H)| = 4, |G(L∗)| ≥ 4, and since L

is pointed, by the description of the duals of pointed Hopf algebras of dimension 8 in Section 4.1, L∗

must also be pointed. Again, by Section 4.1, G(L) ∼= G(L∗). Let G denote G(H) ∼= G(K) ∼= G(L) ∼=
G(L∗) ∼= G(H∗).

By (iii), π(x) is (g, 1)-primitive. Suppose that π(K) ⊆ kG ⊂ L∗. Then π(x) = λ(g − 1) with

λ ∈ k. But this implies that π(x2) = λ2(g2 − 2g + 1), which is only possible if λ = 0 since x2 = 0 or

x2 = g2 − 1. Thus k{1, x} ⊂ R = Hcoπ. On the other hand, if V denotes the vector space with basis

{hxi|h ∈ G(H), h 6= 1, i = 0, 1}, then V ∩ R = {0}. Since dimR = p, there is some 0 6= z ∈ R such

that z /∈ K. Then 〈K, z〉, the sub-Hopf algebra generated by K and z, has dimension greater than 8

and divisible by 8 so is all of H. By Lemma 2.3, π(z) ∈ k. Thus π(H) ⊆ kG, a contradiction, and so

π(z) is a nontrivial skew-primitive in L∗. �

Corollary 4.13. Suppose that H is of type (4, 4) and H,H∗ each have a nontrivial skew-primitive

element. Then H ∼= R#K where K,K∗ are pointed Hopf algebras of dimension 8 and R is a braided

Hopf algebra in K
KYD of dimension p.

Proof. By Proposition 4.12(iv), it remains only to show that H, H∗ have pointed sub-Hopf algebras

of dimension 8. Let K = 〈G(H), x〉, the sub-Hopf algebra of H generated by G(H) and a nontrivial

skew-primitive element. Then dimK < 8p and is divisible by 4 so is either 8 or 4p. Since all pointed

Hopf algebras of dimension 4p have group of grouplikes of order 2p (see Section 2.8.1), dimK = 8.

Similarly H∗ has a pointed sub-Hopf algebra of dimension 8. �

The following proposition follows the proof of [ChNg, Thm. 3.1].

Proposition 4.14. Let K be a Hopf algebra and R be a braided Hopf algebra in K
KYD of odd dimension.

If the order of the antipode in the bosonization R#K is a power of 2, then R and R∗ are semisimple.

Proof. Let H = R#K be the Radford biproduct or bosonization of R with K. As R is stable by S2
H ,

by [AS1, Thm. 7.3] it suffices to prove that Tr(S2
H |R) 6= 0. Clearly, the order of S2

H |R divides the

order of S2
H and hence is a power of 2. If Tr(S2

H |R) = 0, then by [Ng1, Lemma 1.4] dimR is even, a

contradiction. Thus R is semisimple. The same proof holds for R∗ since H∗ ' R∗#K∗. �

Recall that H nonsemisimple of dimension 24 with |G(H)| = 4 has a nontrivial skew-primitive
element by Proposition 2.9. Then Corollary 4.13 and Proposition 4.14 imply the next statement.

Corollary 4.15. Suppose dimH = 24 and H is of type (4, 4). Then H ' R#K with K and K∗

pointed Hopf algebras of dimension 8 and R a semisimple Hopf algebra in K
KYD of dimension 3. �

The following lemmata generalize results of Cheng and Ng used to study H4-module algebras, in
particular [ChNg, 3.4,3.5].

Lemma 4.16. Let K be a pointed Hopf algebra generated by grouplikes and skew-primitives, and

let A be a finite dimensional left K-module algebra. If A is a semisimple algebra and e is a central

idempotent of A such that the two-sided ideal I = Ae is stable by the action of G(K), then I is a

K-submodule of A with g · e = e for all g ∈ G(K) and x · e = 0 for any skew-primitive element x.
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Proof. Write e = e1 + · · ·+ et as a sum of orthogonal primitive central idempotents. Since I is stable

under the action of G(K), then G(K) permutes the primitive idempotents e1, . . . , et and hence g ·e = e

for all g ∈ G(K).

Let x be a (1, g)-primitive. Then x · e = x · e2 = (x · e)e+ (g · e)(x · e) = 2(x · e)e. Thus x · e ∈ I so

that x · e = (x · e)e and then x · e = 2(x · e) implying that x · e = 0. Moreover, since x · (ae) = (x · a)e

for all a ∈ A, it follows that I is stable under the action of x and since K is generated by grouplikes

and skew-primitives, I is a K-submodule of A. �

Lemma 4.17. Let K be a pointed Hopf algebra with abelian group of grouplikes. Let A be a semisimple

braided Hopf algebra in K
KYD. If I is a one-dimensional ideal of A, then x ·I = 0 for all skew-primitive

elements x of K.

Proof. Let x be a (1, g)-primitive element of K and denote by K the pointed sub-Hopf algebra of K

generated by x and g. Note that since G(K) is abelian, then gxg−1 = χ(g)x = ωx for some character

χ of G and 1 6= ω an N -th root of unity with N = ord g.

Since A is semisimple, I = Ae1 = ke1 for some central primitive idempotent. Thus we need to prove

that x · e1 = 0. If g · e1 = e1, then the result follows from Lemma 4.16 using K instead of K. Assume

g ·e1 6= e1 and let e1, . . . , et be representatives of the set {gi ·e1}0≤i<N of primitive central idempotents

of A; in particular t divides N and g · et = e1. Let e = e1 + · · ·+ et, then I = Ae is a two-sided ideal

of A which is stable under the action of Γ = 〈g〉. Hence, by Lemma 4.16 we have that x · e = 0. Since

∆(x) = x ⊗ 1 + g ⊗ x, we have that x · ei = x · e2
i = αi,iei + αi,i+1ei+1 and x · et = αt,tet + αt,1e1

for some αij ∈ k. Using that x · e = 0 we get that αi−1,i + αi,i = 0 and αt,1 + α1,1 = 0 for all

2 ≤ i ≤ t. On the other hand, using that gxg−1 = ωx we obtain that ωαi,i = αi−1,i−1 for all 2 ≤ i ≤ t,
ωαi,i+1 = αi−1,i for all 2 ≤ i ≤ t − 1 and ωα1,1 = αt,t, ωα1,2 = αt,1 and ωαt,1 = αt−1,t. Hence

α1,2 = ω−1αt,1 = −ω−1α1,1 and x · e1 = α1,1(e1 − ω−1e2).

Denote by λA the right integral of A. Then by [FMS, Thm. 5.8, Rmk. 5.9], see also [ChNg, Eq.

(3.4)], for k ∈ K, a ∈ A, we have λA(k ·a) = εK(k)λA(a). Then g ·e1 = e2 implies that λA(e1) = λA(e2)

and consequently

0 = εK(x)λA(e1) = λA(x · e1) = α1,1(λA(e1)− ω−1λA(e2)) = α1,1(1− ω−1)λA(e1).

This implies that α1,1 = 0, since ω−1 6= 1 and λA(e1) 6= 0 because the kernel of a right integral does

not contain any nontrivial ideal. Hence x · e1 = 0 and the lemma is proved. �

Proposition 4.18. Suppose that H ∼= R#K where K is a pointed Hopf algebra of dimension 8, and

R is a Hopf algebra of dimension p in K
KYD such that x ·R = 0 for some (1, g) primitive x ∈ K, x ·R

being the adjoint action of x on R.

(i) If |G(H)| = 4, suppose furthermore that K is copointed and the condition above holds for R∗

and K∗, i.e., for y some nontrivial (1, h)-primitive in K∗, then y · R∗ = 0. Then G(H) ∼=
C2 ×C2, K ∼= A2,2 in the notation of Section 4.1 and H and H∗ have the Chevalley property.

(ii) If |G(H)| = 2 then there is a Hopf algebra epimorphism π : H → A where A is a Hopf algebra

of dimension 4p which is nonsemisimple, nonpointed and non-copointed. Thus if p ≤ 11, this

situation cannot occur.

Proof. We note that by Proposition 4.12(i), G(K) = G(H).

(i) Let J be the Hopf ideal of H generated by x. Since x · R = 0, then xR = −gRx ⊆ Hx and so

J = Hx. As a k-space, J = Span{rihx|r1, . . . , rp a basis for R, h ∈ G(H)} and so the dimension of J
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is at most 4p. Then dimH/J ≥ 4p and divides 8p since (H/J)∗ is isomorphic to a sub-Hopf algebra

of H∗. Thus dim J = dimH/J = 4p. Then there is a Hopf algebra epimorphism π : H → A where

A := H/J is a Hopf algebra of dimension 4p and Hcoπ = k{1, x}. By Proposition 2.17, g2 = 1 so that

K ∼= A′′4,ξ if G(H) ∼= C4 and K ∼= A2,2 if G(H) ∼= C2 × C2.

If H ∼= R#A′′4,ξ, consider H∗ ∼= R∗#A′4. Now the same arguments applied to H∗ give a contradiction

and so this case is impossible.

Since π : H → A := H/J is injective on kG(H), 4 divides |G(A)|. Thus, by Theorem 2.18, if A is

not semisimple, A is pointed. But every pointed Hopf algebra of dimension 4p has group of grouplikes

of order 2p which is not divisible by 4, so A must be semisimple.

Since A2,2 is self-dual, we have H∗ ∼= R∗#A2,2. The same argument as for H then gives us a Hopf

algebra epimorphism from H∗ to a semisimple Hopf algebra B of dimension 4p with coinvariants {1, y}
where y is (1, h)-primitive.

Then B∗ is isomorphic to a sub-Hopf algebra of H, call it L. Since L is cosemisimple, L ⊆ H0 and

we wish to show equality. Since L has dimension 4p, the sub-Hopf algebra 〈L, x〉 of H generated by L

and x is all of H. Since π(x) = 0, this means that by dimensions π is injective on L and so π : L ∼= A

is a Hopf algebra isomorphism. This implies that H ∼= S#A where S = k{1, x} is a braided Hopf

algebra in A
AYD and thus H has the Chevalley property. Reversing the roles of H∗ and H in the above

argument we get that H∗ also has the Chevalley property.

(ii) Now suppose that |G(K)| = 2 and K ∼= A2. Then G(K) = 〈g〉 and K is generated by g and

two (1, g)-primitives, x and x′. Let J be the Hopf ideal of H generated by x and as in (i), J = Hx.

Thus as a k-space, J = Span{rigjz|r1, . . . , rp a basis for R, j = 0, 1, z ∈ {x, x′x}}. Thus dim J ≤ 4p

so that dimH/J ≥ 4p and is a divisor of 8p so dimH/J = 4p and as above there is a Hopf algebra

epimorphism π : H → A where A := H/J is a Hopf algebra of dimension 4p and Hcoπ = {1, x}. Since

π(x′), π(g) generate a sub-Hopf algebra of A isomorphic to H4, then A is not semisimple. If A∗ is

pointed, then H∗ has grouplikes of order 2p. This is a contradiction since H∗ ∼= R∗#K∗ with K∗ ∼= A2,

so that by Proposition 4.12(i), G(H∗) = G(A2) ∼= C2. Suppose that A is pointed. Since A∗ is not

pointed, then A ∼= A(−1, 1) in the notation of Section 2.8.1. But this is impossible since A(−1, 1) has

no sub-Hopf algebra isomorphic to H4. By Theorem 2.19, for p ≤ 11, A is either semisimple, pointed

or copointed. �

Corollary 4.19. Suppose H ∼= R#K where K is a pointed Hopf algebra of dimension 8, and R is

commutative and semisimple.

(i) If |G(H)| = 2, then there is a Hopf algebra map π from H onto a Hopf algebra A of dimension

4p which is nonsemisimple, nonpointed and non-copointed.

(ii) If |G(H)| = 4 and furthermore K is copointed and R∗ is commutative and semisimple, then

G(H) ∼= C2 × C2 and H and H∗ have the Chevalley property.

Proof. It remains only to show that under the given conditions there is a (1, g)-primitive x such that

x ·R = 0. Since R is semisimple commutative, R can be written as the sum of one-dimensional simple

ideals Rei with ei a central primitive idempotent. Now apply Lemma 4.17 and Proposition 4.18. �

Corollary 4.20. If dimH = 24 and H has type (4, 4), then H and H∗ have the Chevalley property.

Proof. By Corollary 4.15, H ∼= R#K where K,K∗ are pointed Hopf algebras of dimension 8, R is a

semisimple braided Hopf algebra in K
KYD of dimension 3, and R∗ is a semisimple braided Hopf algebra
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in K∗
K∗YD of dimension 3. Since all simple representations of R and R∗ must be one-dimensional, R,R∗

are commutative and the result follows from Corollary 4.19. �

Remark 4.21. Suppose that H is of type (2i, 2j), has dimension 24 and H ∼= R#K where K is pointed

of dimension 8. Then |G(H)| 6= 2. For by Proposition 4.14, R and R∗ are semisimple and thus, since

both have dimension 3, they are commutative also. Then the conditions of Proposition 4.18 hold.

The next remark summarizes the results proved for various particular dimensions 8p, with H non-
semsimple, nonpointed, noncopointed as assumed throughout this section.

Remark 4.22. (i) From Remark 4.3, if dimH = 24, 40, 56, then |G(H)| 6= 8.

(ii) From Corollary 4.8, if dimH = 24, 40, then type (2p, 2) is impossible and for type (2p, 4),

G(H∗) ∼= C4.

(iii) From Corollary 4.10, if p = 3, 7, 11, |G(H)| = 2p, H∗ does not have the Chevalley property,

and H does not contain a copy of A(−1, 1), i.e., we are in Case (iii) of Proposition 4.7, then

G(H∗) � C4.

(iv) From Corollary 4.11 if dimH = 24 and H has type (6, 4) then if H∗ does not have the

Chevalley property, then H has a sub-Hopf algebra isomorphic to A(−1, 1), dimH∗0 = 20 and

as coalgebras, either H∗ ∼= A′′4 ⊕M∗(2,k)4 or H∗ ∼= A′′4 ⊕M∗(4,k).

(v) By Corollary 4.20, if dimH = 24 and H does not have the Chevalley property, then H is not

of type (4, 4).

4.4. Hopf algebras of dimension 24. In this subsection we specialize to the case of p = 3,
dimH = 24. Unless otherwise stated, throughout this section H will denote a Hopf algebra with-
out the Chevalley property.

Our first result is a general statement for all Hopf algebras of dimension 8p and will need the
following remark about nonabelian groups of order 4p.

Remark 4.23. Suppose that L is a nonabelian group of order 4p, p an odd prime. Then unless p = 3

and L = A4, L has a normal subgroup N of order p. (This follows from the Sylow Theorems; see, for

example, [L, p. 34].) Then there is a Hopf algebra map from kL to k(L/N) where L/N is a group

of order 4. Dualizing we see that kL contains a sub-Hopf algebra isomorphic to a group algebra of

dimension 4 and thus G(kL) is a group of order 4.

Proposition 4.24. Let H be a nonsemisimple, nonpointed non-copointed Hopf algebra with dimH =

8p and suppose H has a simple subcoalgebra D of dimension 4 stable under the antipode. Then H has

a nontrivial grouplike element of order 2.

Proof. Let H denote the sub-Hopf algebra of H generated by D. Then dimH 6= 2, 4, p and so dimH =

8, 2p, 4p or 8p.

If dimH = 8, then by the classification of Hopf algebas of dimension 8, [W], [Ş], H ∼= k[C2 ×C2]⊕
M∗(2, k) as coalgebras if H is semisimple and H ∼= H4 ⊕M∗(2, k) if H is copointed. In either case,

H, and thus H, contains a grouplike element of order 2.

If dimH = 2p, then by [Ng3], H is semisimple, so that H = kDp and has a grouplike of order 2.

Now suppose that dimH = 4p. By Proposition 2.13, H fits into a central exact sequence:

kG i
↪→ H

π
� A

for a group G and A a nonsemisimple copointed Hopf algebra. Then |G| ∈ {1, 2, 4, p, 2p, 4p}. If

|G| = 1, then H is nonpointed nonsemisimple but has pointed dual, so by Subsection 2.8.1, H ∼=
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A(−1, 1)∗ ∼= H4 ⊕M∗(2, k)p−1 as coalgebras and consequently has a grouplike element of order 2. If

|G| ∈ {2, 4, 2p}, then kG has also a grouplike element of order 2. If |G| = p, then p divides |G(H)| and

|G(H)| so that by Proposition 4.2, G(H) ∼= C2p and H has a grouplike of order 2. If |G| = 4p, then

H = kG for G a nonabelian group of order 4p. By Remark 4.23, kG has a group of grouplikes of order

4 unless p = 3, G = A4 and the dimension of H is 12. But if H = kA4 does not have a grouplike of

order 2, then as a coalgebra kA4 ∼= kC3 ⊕M∗(3,k). But H has a simple subcoalgebra of dimension 4,

so this case is impossible.

Finally, assume that D generates H so that as above, we have an exact sequence kG i
↪→ H

π
� A for a

group G and A a nonsemisimple copointed Hopf algebra. Since H is assumed to be non-copointed, then

|G| 6= 1, and since H is nonsemsimple, |G| 6= 8p. The argument above shows that if |G| ∈ {2, 4, p, 2p},
then H has a grouplike element of order 2. If |G| is 8 or 4p, then A has dimension p or 2 respectively

and so must be semisimple. This would imply that H is semisimple, a contradiction. �

Lemma 4.25. If dimH = 24 then H has a grouplike element of order 2.

Proof. By Proposition 4.2, G(H) � Cp = C3 so it suffices to show that H has a nontrivial grouplike

element, i.e., that H0 is not of the form k ·1⊕E where E is a sum of simple subcoalgebras of dimension

greater than 1. Suppose that

H0 = k · 1⊕⊕ti=1Di where Di
∼=M∗(ni, k) and nj ≤ nj+1.

By Proposition 2.9, dimH0 ≤ 15 so that the possibilities for H0 are H0 = k · 1 ⊕M∗(2, k)s with

s = 1, 2, 3, H0 = k · 1⊕M∗(3, k) or H0 = k · 1⊕M∗(2,k)⊕M∗(3, k). If H has a simple subcoalgebra

of dimension 4 stable under the antipode then by Proposition 4.24, H has a grouplike element of order

2. If H0 = k · 1⊕M∗(3, k) then Proposition 2.9 implies that dimH ≥ 26, a contradiction. Thus only

the cases H0 = k · 1⊕M∗(2,k)s with s = 2, 3 and S(Di) 6= Di remain.

Suppose that H0 = k · 1 ⊕
∑

iDi with Di
∼= M∗(2,k) and S(Di) = Dj for some j 6= i. Note that

dimH0 > 8. Let D denote the set of Di. Then since 4 divides dimDi, 2 dimP 1,D, and dimPD,D, then

4 divides 1 + dimP 1,1 and dimP 1,1 ≥ 3. Thus by Lemma 2.6, P 1,1
` is nondegenerate for some ` > 2.

Then P 1,Di
m , PDi,1

1 , P
1,S(Di)
1 are nondegenerate for m = `− 1 ≥ 2, some i. Then 2 dimP 1,D ≥ 8. Since

PDi,1
1 and P

S(Di),1
m are nondegenerate then PDi,D and PS(Di),D are nondegenerate and dimPD,D ≥ 8.

But this is impossible if dimH = 24. �

Remark 4.26. Similar arguments to the proof of Lemma 4.25 apply if dimH = 4n and H0 = k ·
1 ⊕

∑t
i=1Di with Di = M∗(2,k) and Di 6= S(Di) for all i. Let D denote the set of Di. Then

2 dimP 1,D + dimPD,D ≥ 20 where D denotes the set of simple 4-dimensional subcoalgebras.

For, we may suppose that P 1,1 = P 1,1
` with ` ≥ 3. Then P 1,C

1 , PC,1`−1, P
S(C),1
1 , PC,E`−1 , P

C,D
`−2 , P

D,1
1

are nondegenerate for some C,D,E ∈ D so that 2 dimP 1,D ≥ 8 and dimPD,D ≥ 8. Furthermore,

since ` − 1 ≥ 2, then PC,X1 , PX,E`−2 are nondegenerate for some coalgebra X. If dimX = 1, then

PC,11 , P
S(C),1
1 , PC,1`−1 are nondegenerate and 2 dimP 1,D ≥ 12. If dimX = 4, then PC,X1 , PC,E`−1 , P

C,D
`−2 are

nondegenerate and the statement follows.

We finish the section with the proof of Theorem B.

Proof of Theorem B. Let dimH = 24 and suppose that H does not have the Chevalley property.
Then |G(H)| 6= 1, 3, 8, 12 or 24, by Lemma 4.25, Remark 4.3 and Proposition 4.2. Since |G(H)| divides
dimH, we have that |G(H)| ∈ {2, 4, 6} and by Remark 4.22, the proof is complete. �



22 M. BEATTIE AND G. A. GARCÍA

5. Open cases

The following table enumerates all open cases in the classification of Hopf algebras of dimension
less than 100 up to isomorphism. In this table, p is arbitrary, not necessarily odd.

dimH Semisimple Pointed Chevalley Other

p Completed:

All trivial [Z]

None None None: [Z]

2p

p odd

Completed:

All trivial [Mas5]1
None None None: [Ng3]

p2 Completed: All trivial

[Mas3]

Completed: ∃ p − 1, the Taft

Hopf algebras [AS1]

None None: [Ng1]

pq Completed: All trivial

[Mas2, Ng3, EGel1,

GelW, So, N2]

None None None: for p < q ≤ 4p + 11

[Ng4]

Open: 87, 93.

p3 Completed:

p = 2 , ∃ 1 [KacP] [Mas2]

p odd , ∃ p + 1 [Mas4]

Completed: p = 2, ∃ 5 [Ş]

p odd ∃ (p − 1)(p + 9)/2 [AS2,

CD, ŞvO]

None None :

8 [W], [Ş]

27 [G], [BG]

2p2

p odd

Completed: ∃ 2, they

are duals [Mas1], [N1]

Completed:

∃ 4(p− 1) [AN1, A.1]

None None:2[HNg]

pq2

p odd

Completed:3

[Gel1, Mas1, N1, N2, N3,

ENO]

Completed:

∃ 4(q − 1) [AN1, A.1]

None: [AN1, Lemma A.2] Completed: 12 [N5]

20, 28, 44 [ChNg]

Open: 45, 52, 63, 68, 75,

76, 92, 99.

pqr Completed:4

[N1, N2, ENO]

None None: Prop. 3.2 Completed: 30 [Fu3]

Open: 42, 66, 70, 78

p4 Completed: p = 2, ∃ 16

[K, Theorem 1.2]

Open: 81

Completed: 16; ∃ 29 [CDR] 5

Completed: p odd [AS2]. Infi-

nite nonisomorphic families ex-

ist [AS2], [BDG], [Gel2]10

Completed: 16 [CDMM]

∃ 2 selfdual, coradical A8

Open: 81

Completed: 16 [GV]

Open: 81

p3q Open Completed:6

24, 40, 54, 56 [Gr1]

Open: 88 9

Open Open:

24, 40, 54, 56, 88.

p2q2 Open Completed: 36 [Gr1]

Open: 100 9

Open Open: 36, 100

p2qr Open Completed: 60 [Gr1]

Open: 84, 90 9

Open Open: 60, 84, 90

p3q2 Open Open7 Open 8 Open: 72

pn

n = 5, 6

Open Completed: 32. [Gr2] Infinite

families of nonisomorphic Hopf

algebras exist. [Gr2], [B1]10

Open: 64

Open Open: 32, 64

p4q Open Completed: 48 [Gr1]

Open: 80

Open Open: 48, 80

p5q Open Open6 Open Open: 96

Table 1. Hopf algebras of dimension ≤ 100

1Dimension 6 was classified in [Mas2].
2The classification for dimension 18 = 2(32) was completed in [Fu1].
3The complete classification of semisimple Hopf algebras of dimension 12 = 3(22) is given in [F].
4The complete classification of semisimple Hopf algebras of dimension 30 and 42 is given in [N4].
5The duals to these are explicitly constructed in [B3].
6Pointed Hopf algebras H with dimH

|G(H)| < 32 or dimH
|G(H)| = p3 were classified in [Gr1].

7Pointed Hopf algebras with nonabelian grouplikes known to exist by [AHS] dimension p3p2 , [FG] dimension p5q.
8Nonpointed Hopf algebras with Chevalley property known to exist [AV1, AV2].
9dim p3q, p2q2, p2qr: For dimensions 88, 100, 84, 90, the classification of the pointed Hopf algebras was completed for

those with coradical a group algebra of order a power of 2 in [Ni] and [Gr1].
10The families of nonisomorphic pointed Hopf algebras of dimension 81 consist of quasi-isomorphic Hopf algebras

[Mas6] but the duals of the families of nonisomorphic pointed Hopf algebras of dimension 32 give an infinite family of

non-quasi-isomorphic Hopf algebras [EGel2].
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The columns from left to right describe the classification of Hopf algebras which are semisimple,
pointed nonsemisimple, nonsemisimple nonpointed with the Chevalley property, etc. We call a Hopf
algebra trivial if it is a group algebra or the dual of a group algebra. For dimension mn2, pointed
Hopf algebras always exist; just take kCm ⊗ Tq where q is a primitive nth root of unity.

Note that by [AN1, Prop. 1.8], a Hopf algebra of square-free dimension cannot be pointed. Also
note if for every divisor m of some dimension n the only semisimple Hopf algebras of dimension m
are the group algebras, then there are no Hopf algebras of dimension n with the Chevalley property.
For example, this is why there are no nonpointed Hopf algebras of dimension p3 with the Chevalley
property.

Examples of nonpointed but copointed Hopf algebras do exist. They are given by duals of nontrivial
liftings which are not Radford bosonizations. See for example [B2].

In general, this table does not contain references to partial results for a particular dimension even
though the literature may contain some. For example the general classification for dimension 24 is
listed only as Open. Also when a general result has been proven, the table cites only that result. For
example, [HNg] is cited for the result that all Hopf algebras of dimension 2p2, p odd, are semisimple
or pointed; the specific case of dimension 18 was proved in [Fu1]. We have attempted to include
references to some specific cases in the footnotes but make no claim that these are complete.
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