REPRESENTATION EQUIVALENCE AND P-SPECTRUM OF CONSTANT CURVATURE SPACE FORMS

E. A. LAURET, R. J. MIATELLO AND J. P. ROSSETTI

ABSTRACT. We study the *p*-spectrum of a locally symmetric space of constant curvature $\Gamma \setminus X$, in connection with the right regular representation of the full isometry group *G* of *X* on $L^2(\Gamma \setminus G)_{\tau_p}$, where τ_p is the complexified *p*-exterior representation of O(n) on $\bigwedge^p(\mathbb{R}^n)_{\mathbb{C}}$. We give an expression of the multiplicity $d_\lambda(p,\Gamma)$ of the eigenvalues of the *p*-Hodge-Laplace operator in terms of multiplicities $n_{\Gamma}(\pi)$ of specific irreducible unitary representations of *G*.

As a consequence, we extend results of Pesce for the spectrum on functions to the *p*-spectrum of the Hodge-Laplace operator on *p*-forms of $\Gamma \setminus X$, and we compare *p*-isospectrality with τ_p -equivalence for $0 \leq p \leq n$. For spherical space forms, we show that τ -isospectrality implies τ -equivalence for a class of τ 's that includes the case $\tau = \tau_p$. Furthermore we prove that p - 1 and p + 1-isospectral implies *p*-isospectral.

For nonpositive curvature space forms, we give examples showing that *p*-isospectrality is far from implying τ_p -equivalence, but a variant of Pesce's result remains true. Namely, for each fixed *p*, *q*-isospectrality for every $0 \le q \le p$ implies τ_q -equivalence for every $0 \le q \le p$. As a byproduct of the methods we obtain several results relating *p*-isospectrality with τ_p -equivalence.