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QUANTUM SUBGROUPS OF A SIMPLE QUANTUM
GROUP AT ROOTS OF 1

NICOLÁS ANDRUSKIEWITSCH AND GASTÓN ANDRÉS GARCÍA

Abstract. Let G be a connected, simply connected, simple complex
algebraic group and let ε be a primitive `-th root of 1, ` odd and 3 - ` if G
is of type G2. We determine all Hopf algebra quotients of the quantized
coordinate algebra Oε(G).

1. Introduction and preliminaries

1.1. Introduction. The purpose of this paper is to determine all quantum
subgroups of a quantum group at a root of one, or in equivalent terms, to
determine all Hopf algebra quotients of a quantized coordinate algebra at a
root of one (over the complex numbers). This problem was first considered
by P. Podleś [P95] for quantum SU(2) and SO(3). The characterization
of all finite-dimensional Hopf algebra quotients of the quantized coordinate
algebra Oq(SLN ) was obtained by Eric Müller [M00]. Müller’s approach
is via explicit computations with matrix coefficients; this strategy does not
apply to more general simple groups.

The present work can be viewed as a continuation of the long tradition
of studying subgroups of a simple algebraic group. In fact, our main theo-
rem assumes the knowledge of such subgroups, see Definition 1.1. Besides
its intrinsical mathematical interest, our result would have implications in
quantum harmonic analysis– see for example [L02]– and in the study of mod-
ule categories over the tensor category of comodules over the Hopf algebra
Oε(G)– in the sense of [EO04].

An outcome of our main theorem is the construction of many new exam-
ples of finite-dimensional Hopf algebras. At the present time, all examples
of finite-dimensional Hopf algebras, we are aware of, are:

• group algebras of finite groups,
• small quantum groups introduced by Lusztig [L90a, L90b], and vari-

ations thereof [AS],
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• other pointed Hopf algebras with abelian group arising from the
Nichols algebras discovered in [Gñ00, He],
• a few examples of pointed Hopf algebras with non-abelian group

[MS00, Gñ],
• combinations of the preceding via some standard operations (duals,

twisting, Hopf subalgebras and quotients, extensions).
How to build examples of Hopf algebras via extensions of a group algebra

by a dual group algebra is well understood– see for instance [Ma02]. Out of
this, extensions can in principle be constructed by means of weak actions and
coactions, and pairs of compatible 2-cocycles. However, very few explicit
examples were presented in this way, to our knowledge no one in finite
dimension, except for the trivial tensor product of two Hopf algebras. Our
examples are indeed nontrivial extensions of finite quantum groups by finite
groups, but it is not clear how they could be explicitly presented through
actions, coactions and cocycles. A natural subsequent question is when the
new examples of Hopf algebras are isomorphic with each other; this will be
addressed in (the forthcoming new version of) [AG].

Furthermore, a result of Ştefan [St99, Thm. 1.5] says that a non-semi-
simple finite-dimensional Hopf algebra generated by a simple 4-dimensional
coalgebra stable by the antipode is a quotient of the quantized coordinate
algebra of SL(2) at a root of one. It is tempting to suggest that finite-
dimensional quotients of more general quantized coordinate algebras might
play a prominent role in the classification of Hopf algebras.

We notice that a different problem is sometimes referred to with a similar
name: this is the classification of indecomposable module categories over
fusion categories arising in conformal field theory, e. g. from the represen-
tation theory of finite quantum groups at roots of one. See [O02, KiO02].
There is no evident relation between these two problems.

1.2. Statement of the main result. Let g be the Lie algebra of G, h ⊆ g
a fixed Cartan subalgebra, Π = {α1, . . . , αn} a basis of the root system
Φ = Φ(g, h) of g with respect to h and n = rk g.

Definition 1.1. A subgroup datum is a collection D = (I+, I−, N,Γ, σ, δ)
where

• I+ ⊆ Π and I− ⊆ −Π. Let Ψ± = {α ∈ Φ : Suppα ⊆ I±},
l± =

∑
α∈Ψ±

gα and l = l+ ⊕ h⊕ l−; l is an algebraic Lie subalgebra
of g. Let L be the connected Lie subgroup of G with Lie(L) = l.

• N is a subgroup of T̂Ic , see Remark 2.12 below.

• Γ is an algebraic group.

• σ : Γ→ L is an injective homomorphism of algebraic groups.

• δ : N → Γ̂ is a group homomorphism.
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If Γ is finite, we call D a finite subgroup datum. We parameterize with
injective group homomorphisms rather than group inclusions for a better
description of the isomorphism classes [AG]. An equivalence relation among
subgroup data is defined in Subsection 2.4.

Our main result is the following.

Theorem 1. There is a bijection between

(a) Hopf algebra quotients q : Oε(G)→ A.
(b) Subgroup data up to equivalence.

In Section 2, we carry out the construction of a quotient AD of Oε(G)
starting from a subgroup datum D, see Theorem 2.17. In Subsection 2.4,
we study the lattice of quotients AD. In Section 3, we attach a subgroup
datum D to an arbitrary Hopf algebra quotient A and prove that AD ' A
as quotients of Oε(G). This concludes the proof of the Theorem 1. As an
immediate corollary of Theorem 1, we get

Theorem 2. There is a bijection between

(a) Hopf algebra quotients q : Oε(G)→ A such that dimA <∞.
(b) Finite subgroup data up to equivalence.

Theorem 2 generalizes the main result of [M00].

1.3. Conventions. Let C = (aij)1≤i,j≤n be the Cartan matrix of g and
suppose that g is generated by the elements {hi, ei, fi| 1 ≤ i ≤ n} subject
to the Chevalley-Serre relations. Let Q = ZΦ =

⊕n
i=1 Zαi be the root

lattice, $1, . . . , $n the fundamental weights, P =
⊕n

i=1 Z$i the weight
lattice and W the Weyl group. Let P+ be the cone of dominant weights and
Q+ = P+ ∩ P . Let (−,−) be the positive definite symmetric bilinear form
on h∗ induced by the Killing form of g. Let di = (αi,αi)

2 ∈ {1, 2, 3}.
For t, m ∈ N0, q ∈ C and u ∈ Q(q) r {0,±1} we denote:

[t]u : =
ut − u−t

u− u−1
, [t]u! := [t]u[t− 1]u · · · [1]u,

[
m
t

]
u

:=
[m]u!

[t]u![m− t]u!
,

(t)u :=
ut − 1
u− 1

, (t)u! := (t)u(t− 1)u · · · (1)u,
(
m
t

)
u

:=
(m)u!

(t)u!(m− t)u!
.

1.4. Definitions. In this subsection we recall the definition of the quantized
coordinate algebra of G. Let R = Q[q, q−1], q an indeterminate. If p`(q) ∈ R
denotes the `-th cyclotomic polynomial, then R/[p`(q)R] ' Q(ε).

Definition 1.2. The simply connected quantized enveloping algebra Ǔq(g)
of g is the Q(q)-algebra with generators {Kλ| λ ∈ P}, E1, . . . , En and
F1, . . . , Fn, satisfying the following relations for λ, µ ∈ P and 1 ≤ i, j ≤ n:



4 N. ANDRUSKIEWITSCH AND G. A. GARCÍA

K0 = 1, KλKµ = Kλ+µ,

KλEjK−λ = q(λ,αj)Ej , KλFjK−λ = q−(λ,αj)Fj ,

EiFj − FjEi = δij
Kαi −K−1

αi

qi − q−1
i

,

1−aij∑
l=0

(−1)l
[

1−aij
l

]
qi
E

1−aij−l
i EjE

l
i = 0 (i 6= j),

1−aij∑
l=0

(−1)l
[

1−aij
l

]
qi
F

1−aij−l
i FjF

l
i = 0 (i 6= j).

Definition 1.3. [DL94, Section 3.4] Let qi = qdi , 1 ≤ i ≤ n. The algebra
Γ(g) is the R-subalgebra of Ǔq(g) generated by the elements

K−1
αi (1 ≤ i ≤ n),(

Kαi ; 0
t

)
:=

t∏
s=1

(
Kαiq

−s+1
i − 1
qsi − 1

)
(t ≥ 1, 1 ≤ i ≤ n),

E
(t)
i :=

Eti
[t]qi !

(t ≥ 1, 1 ≤ i ≤ n),

F
(t)
i :=

F ti
[t]qi !

(t ≥ 1, 1 ≤ i ≤ n).

Let C be the strictly full subcategory of Γ(g)-mod whose objects are Γ(g)-
modules M such that M is a free R-module of finite rank and the operators
Kαi and

(
Kαi ;0
t

)
are diagonalizable with eigenvalues qmi and (mt )qi respec-

tively, for some m ∈ N and for all 1 ≤ i ≤ n.

Definition 1.4. [DL94, Section 4.1] Let Rq[G] denote the R-submodule of
HomR(Γ(g), R) spanned by the coordinate functions tji of representations M
from C: < g, tji >=< g ·mi,m

j >, where (mi) is an R-basis of M , (mj) is
the dual basis of the dual module and g ∈ Γ(g). Since the subcategory C is
a tensor one, Rq[G] is a Hopf algebra.

Definition 1.5. [DL94, Section 6] The algebra Rq[G]/[p`(q)Rq[G]] is de-
noted by Oε(G)Q(ε) and is called the quantized coordinate algebra of G over
Q(ε) at the root of unity ε. In the same way as for Oε(G)Q(ε), we can form
the Q(ε)-Hopf algebra Γε(g) := Γ(g)/[p`(q)Γ(g)].

We now relate the Hopf algebras Oε(G)Q(ε) and Γε(g).

Definition 1.6. A Hopf pairing between two Hopf algebras U and H over
a ring R is a bilinear form (−,−) : H × U → R such that, for all u, v ∈ U
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and f, h ∈ H,

(i) (h, uv) = (h(1), u)(h(2), v); (iii) (1, u) = ε(u);

(ii) (fh, u) = (f, u(1))(h, u(2)); (iv) (h, 1) = ε(h).

It follows that (h,S(u)) = (S(h), u), for all u ∈ U , h ∈ H. Given a Hopf
pairing, one has Hopf algebra maps U → H◦ and H → U◦, where H◦ and
U◦ are the Sweedler duals. The pairing is called perfect if these maps are
injections.

Proposition 1.7. [DL94, 4.1 and 6.1] There exists a perfect Hopf pairing
Rq[G] ⊗R Γ(g) → R, which induces a perfect Hopf pairing Oε(G)Q(ε) ⊗Q(ε)

Γε(g)→ Q(ε). In particular, Oε(G)Q(ε) ⊆ Γε(g)◦ and Γε(g) ⊆ Oε(G)◦Q(ε). �

If k is any field containing Q(ε), we denote Oε(G)k := Oε(G)Q(ε) ⊗Q(ε) k.
When k = C we simply write Oε(G) for Oε(G)C. The following two results
imply by [Mo93, Prop. 3.4.3] that Oε(G) is a central extension of O(G) by
a finite-dimensional Hopf algebra.

Theorem 1.8. (a) [DL94, Prop. 6.4] Oε(G) contains a central Hopf
subalgebra isomorphic to the coordinate algebra O(G) of G.

(b) [BG, III.7.11] Oε(G) is a free O(G)-module of rank `dimG. �

We end this section by spelling out explicitly the quotient of Oε(G) by its
central Hopf subalgebra O(G).

Let Oε(G) = Oε(G)/[O(G)+Oε(G)] and denote by π : Oε(G) → Oε(G)
the quotient map. By Theorem 1.8 and [Mo93, Prop. 3.4.3], Oε(G) is a
Hopf algebra of dimension `dimG which fits into the exact sequence

1→ O(G)→ Oε(G)→ Oε(G)→ 1.

Let uε(g) be the Frobenius-Lusztig kernel of g at ε; that is, the Hopf subal-
gebra of Γε(g) generated by the elements Ei, Fi and Kαi for 1 ≤ i ≤ n. See
[BG] for details. We denote by

(1) T := {Kα1 , . . . ,Kαn} = G(uε(g))

the “finite torus” of group-like elements of uε(g).

Theorem 1.9. [BG, III.7.10] Oε(G) ' uε(g)∗ as Hopf algebras. �

Summarizing, the quantized coordinate algebra Oε(G) of G at ε fits into
the central exact sequence

(2) 1→ O(G) ι−→ Oε(G) π−→ uε(g)∗ → 1.

We shall need the following technical lemma.

Lemma 1.10. There exists a surjective algebra map ϕ : Γε(g)→ uε(g) such
that ϕ|uε(g) = id.
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Proof. Since Γε(g) = Γ(g)/[p`(q)Γ(g)], we may define ϕ as a map from Γ(g)
such that ϕ(q) = ε. Let ϕ be the unique algebra map which takes the
following values on the generators:

ϕ(E(m)
i ) =

{
E

(m)
i if 1 ≤ m < `

0 otherwise,

ϕ(F (m)
i ) =

{
F

(m)
i if 1 ≤ m < `

0 otherwise,

ϕ(
(
Kαi ;0
m

)
) =

{(
Kαi ;0
m

)
if 1 ≤ m < `

0 otherwise,

ϕ(K−1
αi ) = K`−1

αi , ϕ(q) = ε,

for all 1 ≤ i ≤ n. Since ϕ is the identity on the generators of uε(g) and
E`i = 0 = F `i , K`

αi = 1 on uε(g), it follows from a direct computation that
ϕ satisfies the relations given in [DL94, Section 3.4], see [G07, 4.1.17] for
details. Hence ϕ is a well-defined algebra map whose image is uε(g). �

1.5. Hopf subalgebras of a pointed Hopf algebra. We describe in this
subsection Hopf subalgebras of pointed Hopf algebras. Let U be a Hopf
algebra such that the coradical U0 is a Hopf subalgebra. Let (Un)n≥0 be the
coradical filtration of U , set U−1 = 0, grU(n) = Un/Un−1 and let grU =
⊕n≥0 grU(n) be the associated graded Hopf algebra. Let ι : U0 → grU be
the canonical inclusion and let π : grU → U0 be the homogeneous projection.
Let R = (grU)coπ be the diagram of U ; R is a graded braided Hopf algebra,
that is, a Hopf algebra in the category U0

U0
YD of Yetter-Drinfeld modules

over U0. Its coalgebra structure is given by ∆R(r) = ϑR(r(1))⊗ r(2), for all
r ∈ R, where ϑR : grU → R is the map defined by

(3) ϑR(a) = a(1)ιπ(Sa(2)), ∀ a ∈ grU.

It can be easily shown that ϑR(rh) = rε(h), ϑR(hr) = h ·r for r ∈ R, h ∈ U0.
One has that grU ' R#U0, R = ⊕n≥0R(n), R(0) ' C and R(1) = P(R).
We say that R is a Nichols algebra if R is generated as algebra by R(1). See
[AS02] for more details.

To state the following result, we need to introduce some terminology. Let
A be a Hopf algebra, M a Yetter-Drinfeld module over A and B a Hopf
subalgebra of A. We say that a vector subspace N of M is B-compatible if

(a) it is stable under the action of B, and
(b) it bears a B-comodule structure inducing the coaction of A.

In inaccurate but descriptive words, “N is a Yetter-Drinfeld submodule
over B” (although M is not necessarily a Yetter-Drinfeld module over B).

Lemma 1.11. Let Y be a Hopf subalgebra of U . Then the coradical Y0 is a
Hopf subalgebra and the diagram S of Y is a braided Hopf subalgebra of R.



QUANTUM SUBGROUPS 7

If R = B(V ) is a Nichols algebra with dimV < ∞, then S is also a
Nichols algebra. In this case, Hopf subalgebras of U are parameterized by
pairs (Y0,W ) where Y0 is a Hopf subalgebra of U0 and W ⊂ V = R(1) is
Y0-compatible.

Proof. The first claim follows since Y0 = Y ∩ U0 and the intersection of
two Hopf subalgebras is a Hopf subalgebra. By [Mo93, Lemma 5.2.12],
the coradical filtration of Y is given by Yn = Y ∩ Un; thus we have an
injective homogeneous map of Hopf algebras γ : grY ↪→ grU inducing the
commutative diagram

grY � � γ //

πY
��

grU

π

��
Y0

� � // U0.

Thus S = {a ∈ grY : (id⊗πY )∆(a) = a ⊗ 1} is a subalgebra, and also
a braided vector subspace, of R. Note that γϑS = ϑRγ, cf. (3); thus S
is a subcoalgebra of R. Assume now that R ' B(V ) is a Nichols algebra
with dimV <∞. Taking graded duals, we have a surjective map of graded
braided Hopf algebras ℘ : B(V ∗) → Sgr dual. Since B(V ∗) and Sgr dual are
pointed irreducible coalgebras, by [Sw69, Thm. 9.1.4], ℘ maps the corad-
ical filtration of the first onto the coradical filtration of the second; hence
P(Sgr dual) = Sgr dual(1) and a fortiori S is generated in degree 1, i. e. is a
Nichols algebra. Furthermore, Y is determined by Y0 and S(1), the last being
Y0-compatible. Conversely, if Y0 is a Hopf subalgebra of U0 and W ⊂ R(1)
is Y0-compatible, then choose (yi)i∈I in U1 such that the classes (yi)i∈I in
U1/U0 generate W#1. Then the subalgebra Y of U generated by Y0 and
(yi)i∈I is a actually a Hopf subalgebra giving rise to the pair (Y0,W ). �

The lemma above also holds if V is a locally finite braided vector space.
Let us now turn to Hopf subalgebras of pointed Hopf algebras. The notion

of “compatibility” for groups reads as follows. Let G be a group and M a
Yetter-Drinfeld module over the group algebra C[G]. If F is a subgroup of
G, a vector subspace N of M is F -compatible if

(a) it is stable under the action of F , and
(b) it is a C[G]-subcomodule and SuppN := {g ∈ G : Ng 6= 0} is

contained in F .

Corollary 1.12. Let U be a pointed Hopf algebra whose diagram R is a
Nichols algebra. Then Hopf subalgebras of U are parameterized by pairs
(F,W ) where F is a subgroup of G(U) and W ⊂ R(1) is F -compatible. �

The Corollary reads even nicer if G(U) is abelian and dimR(1)g = 1 for
all g ∈ SuppR(1). Indeed, Hopf subalgebras of U are parameterized in this
case by pairs (F, J) where F is a subgroup of G(U) and J ⊂ SuppR(1) is
contained in F . We recover in this way results from [CM96, M98].
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Corollary 1.13. [M98, Thm. 6.3] The Hopf subalgebras of uε(g) are pa-
rameterized by triples (Σ, I+, I−), where Σ is a subgroup of T and I+ ⊆ Π,
I− ⊆ −Π such that Kαi ∈ Σ if αi ∈ I+ ∪ −I−. �

1.6. A five-lemma for extensions of Hopf algebras. The following gen-
eral lemma was kindly communicated to us by Akira Masuoka.

Lemma 1.14. Let H be a bialgebra over an arbitrary commutative ring,
and let A, A′ be right H-Galois extensions over a common algebra B of
H-coinvariants. Assume that A′ is right B-faithfully flat. Then any H-
comodule algebra map θ : A→ A′ that is identical on B is an isomorphism.

Proof. Let β : A⊗BA→ A⊗H, β(x⊗y) = xy(0)⊗y(1) and β′ : A′⊗BA′ →
A′ ⊗ H, β′(x′ ⊗ y′) = x′y′(0) ⊗ y

′
(1) be the corresponding Galois maps, for

x, y ∈ A, x′, y′ ∈ A′. Using the A-module structure of A′ given by θ, we can
extend β to an isomorphism

α : A′ ⊗B A ' A′ ⊗A A⊗B A
id⊗β−−−→ A′ ⊗A A⊗H ' A′ ⊗H.

Explicitly, α(a′⊗a) = a′θ(a(0))⊗a(1) for all a′ ∈ A′, a ∈ A. Then α fits into
the following commutative diagram

A′ ⊗B A
id⊗θ //

α
'

%%LLLLLLLLLL A′ ⊗B A′

β

'

xxrrrrrrrrrr

A′ ⊗H
Hence id⊗θ is an isomorphism; since A′ is right B-faithfully flat, θ is an
isomorphism. �

The lemma applies to a commutative diagram of Hopf algebras

(4) 1 // B
ι // A

π //

θ
����

H // 1

1 // B
ι′ // A′

π′ // H // 1,

where the rows are exact sequences of Hopf algebras, in the sense of [AD95]:
Acoπ = B and kerπ = B+A; ditto for A′. If the top row is a cleft exact se-
quence, then θ is an isomorphism [AD95, Lemma 3.2.19]. Masuoka’s Lemma
1.14 implies another version of the five-lemma: If A and A′ are H-Galois
over B, and A′ is right B-faithfully flat, then θ is also an isomorphism.

Corollary 1.15. Assume in (4) that dimH is finite, A′ is noetherian and
B is central in A′. Then θ is an isomorphism.

Proof. As the rows are exact, the corresponding Galois maps β and β′ are
surjective; since dimH < ∞, they are bijective [KT81, Thm. 1.7]. Thus
A and A′ are H-Galois over B. Now A′ is B-faithfully flat by [S93, Thm.
3.3]. �
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2. Constructing quantum subgroups

In this section we construct quotients of the quantized coordinate algebra
Oε(G). We do this in three steps.

2.1. First step. We construct in this subsection a quotient of Oε(G) as-
sociated to a Hopf subalgebra of uε(g); it corresponds to a connected Lie
subgroup L of G. Let r : uε(g)∗ → H be a surjective Hopf algebra mor-
phism. Then we have an injective Hopf algebra map tr : H∗ → uε(g) and
by Corollary 1.13, the Hopf algebra H∗ corresponds to a triple (Σ, I+, I−).
We shall eventually show that this triple is part of a subgroup datum as in
Definition 1.1.

2.1.1. The Hopf subalgebra Γε(l) of Γε(g).

Definition 2.1. For every triple (Σ, I+, I−) define Γ(l) to be the subalgebra
of Γ(g) generated by the elements

K−1
αi (1 ≤ i ≤ n),(

Kαi ; 0
m

)
:=

m∏
s=1

(
Kαiq

−s+1
i − 1
qsi − 1

)
(m ≥ 1, 1 ≤ i ≤ n),

E
(m)
j :=

Emj
[m]qj !

(m ≥ 1, j ∈ I+),

F
(m)
k :=

Fmk
[m]qk !

(m ≥ 1, k ∈ I−),

where qi = qdi for 1 ≤ i ≤ n. Note that Γ(l) does not depend on Σ.

Choosing a reduced expression si1 · · · siN of the longest element of the
Weyl group one can order totally the positive part Φ+ of the root system
Φ with β1 = αi1 , β2 = si1αi2 , . . . , βN = si1 · · · siN−1αiN . Then using the
algebra automorphisms Ti introduced by Lusztig [L90b], one may define
corresponding root vectors Eβk = Ti1 · · ·Tik−1

Eik and Fβk = Ti1 · · ·Tik−1
Fik .

Consider now the R-submodules of Γ(g) given by

J` = R
{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

∃ nβ, ti,mα 6≡ 0 mod (`)
}

Γ` = R
{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

∀ nβ, ti,mα ≡ 0 mod (`)
}
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Then, by [DL94, Thm. 6.3] there is a decomposition of free R-modules
Γ(g) = J` ⊗ Γ` and Γ`/[p`(q)Γ`] ' U(g)Q(ε). Let QI± =

⊕
i∈I± Zαi and

define the following R-submodules of Γ(l):

W` = R
{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

∃ nβ, ti,mα 6≡ 0 mod (`) with β ∈ QI− , α ∈ QI+ , 1 ≤ i ≤ n
}

Θ` = R
{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

∀ nβ, ti,mα ≡ 0 mod (`) with β ∈ QI− , α ∈ QI+ , 1 ≤ i ≤ n
}

Using the decomposition of Γ(g) as free R-module we get the following.

Lemma 2.2. There is a decomposition of free R-modules Γ(l) = W` ⊗ Θ`.
In particular, Γ(l) is a direct summand of Γ(g).

Proof. Clearly, Γ(l) contains the free R-module W`⊗Θ`. Thus, it is enough
to show that Γ(l) ⊆ W` ⊗ Θ`, but this follows directly from the fact that
Γ(l) is generated as an algebra over R by the elements in Definition 2.1 and
these generators satisfy the relations given in [DL94, Sec. 3.4]. �

Let Γε(l) := Γ(l)/[p`(q)Γ(l)]. Then we have the following proposition.

Proposition 2.3. (a) Γε(l) is a Hopf subalgebra of Γε(g).
(b) Γε(g) ' Γ(g)⊗R R/[p`(q)R] and Γε(l) ' Γ(l)⊗R R/[p`(q)R].

Proof. We prove only (a) since (b) is straightforward. By definition, the
elements Ej are (Kαj , 1)-primitives, the Fk’s are (1,K−1

αk
)-primitives and the

Kαi ’s are group-like. Moreover, the antipode is given by S(Kαi) = K−1
αi ,

S(Ej) = −K−1
αj Ej and S(Fk) = −FkKαk with 1 ≤ i ≤ n, j ∈ I+ and

k ∈ I−. Hence, the subalgebra of Γ(l) generated by these elements is a Hopf
subalgebra of Γ(g) and Γ(l)/[p`(q)Γ(g)∩Γ(l)] is a Hopf subalgebra of Γε(g).
But by Lemma 2.2, we know that Γ(g) = Γ(l) ⊕ N for some R-submodule
N . Then p`(q)Γ(g)∩Γ(l) = p`(q)(Γ(l)⊕N)∩Γ(l) = p`(q)Γ(l), which implies
that Γε(l) = Γ(l)/[p`(q)Γ(g) ∩ Γ(l)]. �

2.1.2. The regular Frobenius-Lusztig kernel uε(l). Let uε(l) be the subalge-
bra of Γε(l) generated by the elements

{Kαi , Ej , Fk : 1 ≤ i ≤ n, j ∈ I+, k ∈ I−}.

Lemma 2.4. uε(l) is a Hopf subalgebra of Γε(l) such that Γε(l) ∩ uε(g) =
uε(l) and corresponds to the triple (T, I+, I−), see (1).
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Proof. It is clear that uε(l) is a Hopf subalgebra of Γε(l). Since the Frobenius-
Lusztig kernel uε(g) is the subalgebra of Γε(g) generated by the elements
{Kαi , Ei, Fi : 1 ≤ i ≤ n}, we have that uε(l) ⊆ Γε(l) ∩ uε(g). But from
Lemma 2.2, it follows that every element of Γε(l)∩uε(g) must be contained
in uε(l). The last assertion follows immediately from Corollary 1.13. �

Recall that the quantum Frobenius map Fr : Γε(g)→ U(g)Q(ε) is defined
on the generators of Γε(g) by

Fr(E(m)
i ) =

{
e

(m/`)
i if `|m
0 otherwise,

Fr(F (m)
i ) =

{
f

(m/`)
i if `|m

0 otherwise,

Fr(
(
Kαi ;0
m

)
) =

{
( hi;0m ) if `|m

0 otherwise,
Fr(K−1

αi ) = 1, for all 1 ≤ i ≤ n,

and one has an exact sequence of Hopf algebras– see [L90b], [DL94, Thm.
6.3]:

1→ uε(g) −→ Γε(g) Fr−→ U(g)Q(ε) → 1.

If we define U(l)Q(ε) := Fr(Γε(l)), then it follows that U(l)Q(ε) is a subalgebra
of U(g)Q(ε) and the following diagram commutes

(5) uε(g) � � // Γε(g) Fr // // U(g)Q(ε)

uε(l)
� � //

?�

OO

Γε(l)
Fr // //

?�

OO

U(l)Q(ε),
?�

OO

where Fr is the restriction of Fr to Γε(l).

Remarks 2.5. (a) Let l be the set of primitive elements P (U(l)Q(ε)) of
U(l)Q(ε). Then l is a Lie subalgebra of g, which is in fact regular in the
sense of [D57]: it is the Lie subalgebra generated by the set {hi, ej , fk : 1 ≤
i ≤ n, j ∈ I+, k ∈ I−}. This agrees with Definition 1.1.

(b) Ker Fr is the two-sided ideal I of Γε(l) generated by the set{
E

(m)
j , F

(m)
k ,

(
Kαi ; 0
m

)
,Kαi − 1 : 1 ≤ i ≤ n, j ∈ I+, k ∈ I−,m ≥ 0, ` - m

}
,

and coincides with W`. Indeed, by [DL94, Thm. 6.3] we know that Ker Fr =
J` and coincides with the two-sided ideal generated by{

E
(m)
i , F

(m)
i ,

(
Kαi ; 0
m

)
,Kαi − 1 : 1 ≤ i ≤ n,m ≥ 0, ` - m

}
.

But by Lemma 2.2, Ker Fr = Ker Fr∩Γε(l) = J` ∩ Γε(l) = W` and the last
one coincides with the ideal I.
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(c) Since by [DL94, Thm. 6.3], the morphism Γ`/[p`(q)Γ`] → U(g)Q(ε)

induced by the quantum Frobenius map is bijective and by definition Θ` ⊆
Γ` and U(l)Q(ε) = Fr(U(g)Q(ε)), it follows by Lemma 2.2 that Θ`∩p`(q)Γ` =
p`(q)Θ` and the morphism Θ`/[p`(q)Θ`]→ U(l)Q(ε) is also bijective.

The following proposition gives some properties of uε(l).

Proposition 2.6. (a) The following sequence of Hopf algebras is exact

(6) 1→ uε(l)
j−→ Γε(l)

Fr−→ U(l)Q(ε) → 1.

(b) There is a surjective algebra map ψ : Γε(l)→ uε(l) such that ψ|uε(l) = id.

Proof. (a) We need only to prove that Ker Fr = uε(l)+Γε(l) and co FrΓε(l) =
uε(l). The first equality follows directly from Remark 2.5 (b), since the
two-sided ideal generated by uε(l)+ coincides with I. The second equality
follows from Lemma 2.4, because co FrΓε(g) = uε(g) by [A96, Lemma 3.4.1]
and uε(l) = uε(g) ∩ Γε(l) = co FrΓε(g) ∩ Γε(l) = co FrΓε(l).

(b) By Lemma 1.10, there exists a surjective algebra map ϕ : Γε(g) →
uε(g) such that ϕ|uε(g) = id. If we define ψ := ϕ|uε(l) : Γε(l) → uε(g), then
Imψ ⊆ uε(l) and ϕ|uε(l) = id, from which follows that Imψ = uε(l). �

2.1.3. The quantized coordinate algebra Oε(L). The inclusion Γε(l) ↪→ Γε(g)
determines by duality a Hopf algebra map Res : Γε(g)◦ → Γε(l)◦. Since by
Proposition 1.7, we have that Oε(G)Q(ε) ⊆ Γε(g)◦, we may define

Oε(L)Q(ε) := Res(Oε(G)Q(ε)).

Moreover, as O(G)Q(ε) ⊆ Oε(G)Q(ε), Res(O(G)Q(ε)) is a central Hopf sub-
algebra of Oε(L)Q(ε) and whence there exists an algebraic subgroup L of G
such that Res(O(G)Q(ε)) = O(L)Q(ε). Next we show that L is connected
and the corresponding Lie subalgebra of g is no other than the Lie algebra
l discussed in Remark 2.5 (a).

Recall that a Lie subalgebra k ⊆ g is called algebraic if there exists an
algebraic subgroup K ⊆ G such that k = Lie(K). We say that k+ is the
algebraic hull of k if k+ is an algebraic subalgebra of g such that k ⊆ k+ and
if a is an algebraic subalgebra of g that contains k, then k+ ⊆ a.

Proposition 2.7. The algebraic group L is connected and Lie(L) = l.

Proof. SinceO(G)Q(ε) ⊆ U(g)◦Q(ε), dualizing diagram (5) we haveO(L)Q(ε) =
Res(O(G)Q(ε)) ⊆ U(l)◦Q(ε). But by [H81, XVI.3], U(l)◦Q(ε) and consequently
O(L)Q(ε) are integral domains, implying that L is irreducible and therefore
connected.

To show Lie(L) = l, we prove that Lie(L) is the algebraic hull of l and
l is an algebraic Lie algebra. Since Ker Res |Oε(G)Q(ε)

= {f ∈ Oε(G)Q(ε) :
f |Γε(l) = 0} and the inclusion of O(G)Q(ε) in Oε(G)Q(ε) is given by the
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transpose of the quantum Frobenius map Fr (see page 11), it follows that
O(L)Q(ε) ' O(G)Q(ε)/J , where

J = {f ∈ O(G)Q(ε) : 〈f,Fr(x)〉 = 0,∀ x ∈ Γε(l)}
= {f ∈ O(G)Q(ε) : 〈f, x〉 = 0, ∀ x ∈ U(l)Q(ε)}.

In particular, 0 = 〈f, x〉 = x(f) for all x ∈ U(l)Q(ε). Since by [FR05, Lemma
6.9], Lie(L) = {τ ∈ g : τ(f) = 0, ∀f ∈ J}, it is clear that l ⊆ Lie(L). Now
let K ⊆ G such that l ⊆ Lie(K) =: k and denote by I the ideal of K; then
k = {τ ∈ g : τ(I) = 0}. As l ⊆ k, τ(I) = 0 for all τ ∈ l. Since the pairing 〈, 〉
is multiplicative, we have that I ⊆ J and whence L ⊆ K. Thus Lie(L) ⊆ k
for all algebraic Lie subalgebra k such that l ⊆ k, implying that Lie(L) = l+.

Now we show that l is algebraic, implying that l = l+ = Lie(L). Consider
g as a G-module with the adjoint action and define Gl = {x ∈ G : x · l = l}
and gl = {τ ∈ g : [τ, l] ⊆ l}. Then by [FR05, Ex. 8.4.7], Lie(Gl) = gl. Thus,
it is enough to show that l equals its normalizer in g.

By construction, we know that l = l+ ⊕ h ⊕ l−, where h is the Cartan
subalgebra of g and l± =

⊕
α∈Ψ±

gα, with Ψ± = {α ∈ Φ : Supp(α) ⊆ I±}.
Let x ∈ gl, then we may write x =

∑
α∈Φ cαxα + x0 with x0 ∈ h. Thus, for

all H ∈ h we have that [H,x] =
∑

α∈Φ cαα(H)xα ∈ l. This implies that for
all H ∈ h, cαα(H) = 0 for all α /∈ Ψ = Ψ+∪Ψ−. Hence cα = 0 for all α /∈ Ψ
and x ∈ l. �

Since O(L)Q(ε) is a central Hopf subalgebra of Oε(L)Q(ε), the quotient

Oε(L)Q(ε) := Oε(L)Q(ε)/[O(L)+
Q(ε)Oε(L)Q(ε)]

is a Hopf algebra which is finite-dimensional. The following proposition
shows that, as expected, this algebra is isomorphic to uε(l)∗, see 2.1.2.

Proposition 2.8. (a) The following sequence of Hopf algebras is exact

(7) 1→ O(L)Q(ε)
ιL−→ Oε(L)Q(ε)

πL−−→ Oε(L)Q(ε) → 1.

(b) There exists a surjective Hopf algebra map P : uε(g)∗ → Oε(L)Q(ε)

making the following diagram commutative:

(8) 1 // O(G)Q(ε)
ι //

res
����

Oε(G)Q(ε)
π //

Res
����

uε(g)∗

P����

// 1

1 // O(L)Q(ε)
ιL // Oε(L)Q(ε)

πL // Oε(L)Q(ε)
// 1.

(c) Oε(L)Q(ε) ' uε(l)∗ as Hopf algebras.

Proof. (a) We need only to show that O(L)Q(ε) = coπLOε(L)Q(ε). The
algebra Oε(G)Q(ε) is noetherian, by Theorem 1.8 (b). Therefore Oε(L)Q(ε)

is also noetherian, since it is a quotient of Oε(G)Q(ε). Then by [S93, Thm.
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3.3], Oε(L)Q(ε) is faithfully flat over O(L)Q(ε) and by [Mo93, Prop. 3.4.3] it
follows that O(L)Q(ε) = coπLOε(L)Q(ε) = Oε(L)coπL

Q(ε) .

(b) Since the sequence (2) is exact, we have Kerπ = O(G)+
Q(ε)Oε(G)Q(ε)

and uε(g)∗ ' Oε(G)Q(ε)/[O(G)+
Q(ε)Oε(G)Q(ε)]. But then, πL Res(Kerπ) =

πL(O(L)+
Q(ε)Oε(L)Q(ε)) = 0 and hence there exists a Hopf algebra map P :

uε(g)∗ → Oε(L)Q(ε) which makes the diagram (8) commutative.

(c) Dualizing diagram (5) we obtain a commutative diagram

(9) U(g)◦Q(ε)

��

� � t Fr // Γε(g)◦ F //

Res

��

uε(g)∗

p
����

U(l)◦Q(ε)
� �

tFr

// Γε(l)◦
f

// uε(l)∗.

Since Oε(L)Q(ε) = Res(Oε(G)Q(ε)), O(L)Q(ε) = Res(O(G)Q(ε)) and O(G)Q(ε)

' U(g)◦Q(ε), because g is simple, it follows that O(L)Q(ε) ⊆ tFr(U(l)◦Q(ε)). In
particular, O(L)+

Q(ε) ⊆ Ker f . Moreover, since F (Oε(G)Q(ε)) = π(Oε(G)Q(ε))
= uε(g)∗ we have that uε(l)∗ = f Res(Oε(G)Q(ε)) = f(Oε(L)Q(ε)). Hence,
there exists a surjective Hopf algebra map β : Oε(L)Q(ε) → uε(l)∗; and
dimOε(L)Q(ε) ≥ dim uε(l)∗.

We show next that there exists a surjective morphism uε(l)∗ → Oε(L)Q(ε)

implying that β is an isomorphism. Consider the map p : uε(g)∗ → uε(l)∗

as in (9) and let a ∈ Ker p. Since uε(g) is finite-dimensional, the coordinate
functions of the regular representation of uε(g) span linearly uε(g)∗ and we
may assume that a is a coordinate function of a finite-dimensional represen-
tation M of uε(g). As p is just the map given by the restriction, we have
that a must be trivial on every basis of uε(l), in particular the following:

{∏
β≥0

F
nβ
β ·

n∏
i=1

Kti
αi ·

∏
α≥0

Emαα : 0 ≤ nβ, ti,mα < `,

β ∈ QI− , 1 ≤ i ≤ n, α ∈ QI+
}
.

On the other hand, we know by Lemma 1.10 that there exists a surjec-
tive algebra map ϕ : Γε(g) → uε(g) such that ϕ|uε(g) = id. Hence, the
uε(g)-module M admits a Γε(g)-module structure via ϕ. Since M is finite-
dimensional and K`

αi acts as the identity for every 1 ≤ i ≤ n, it follows that
each operator Kαi is diagonalizable with eigenvalues εmi for some m ∈ N.
This implies by definition that the coordinate function ϕ∗(a) of the Γε(g)-
module M must be contained in Oε(G)Q(ε). Thus, using the definition of ϕ
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we have that Resϕ∗(a) must annihilate the set

W` = Q(ε)
{∏
β≥0

F
(nβ)
β ·

n∏
i=1

(
Kαi ; 0
ti

)
KEnt(ti/2)
αi ·

∏
α≥0

E(mα)
α :

∃ nβ, ti,mα 6≡ 0 mod (`) with β ∈ QI− , 1 ≤ i ≤ n, α ∈ QI+
}
.

Since by Lemma 2.2, Γ(l) = W`⊗Θ` as free R-modules and by Remark 2.5,
Ker Fr = W` and the map Θl/[p`(q)Θ`]→ U(l)Q(ε) induced by the restriction
of the quantum Frobenius map Fr is bijective. Then there exists b ∈ U(l)◦Q(ε)

such that tFr(b) = Res(ϕ∗(a)). Hence,

P (a) = P (π(ϕ∗(a))) = πL(Res(ϕ∗(a))) = πL(tFr(b)) = ε(b) = ε(a) = 0,

and a ∈ KerP . Thus Ker p ⊆ KerP and there exists a surjective map
uε(l)∗ → Oε(L)Q(ε). �

Remark 2.9. By the Proposition above, we have the following commutative
diagram of exact sequences of Hopf algebras

(10) 1 // O(G)Q(ε)
ι //

res
����

Oε(G)Q(ε)
π //

Res
����

uε(g)∗

p
����

// 1

1 // O(L)Q(ε)
ιL // Oε(L)Q(ε)

πL // uε(l)∗ // 1

2.2. Second Step. We consider now the complex form of the algebras de-
fined above. Denote the C-form of the Frobenius-Lusztig kernels just by
uε(g) and uε(l).

The following proposition tell us how to construct Hopf algebras from a
central exact sequence and a surjective Hopf algebra map. We perform it in
a general setting and then we apply it to our situation. The characterization
of these algebras as pushouts will be crucial.

Proposition 2.10. Let A and K be Hopf algebras, B a central Hopf subal-
gebra of A such that A is left or right faithfully flat over B and p : B → K a
surjective Hopf algebra map. Then H = A/AB+ is a Hopf algebra and A fits
into the exact sequence 1 → B

ι−→ A
π−→ H → 1. If we set J = Ker p ⊆ B,

then (J ) = AJ is a Hopf ideal of A and A/(J ) is the pushout given by the
following diagram:

B
� � ι //

p
����

A

q
����

K
� �

j
// A/(J ).
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Moreover, K can be identified with a central Hopf subalgebra of A/(J ) and
A/(J ) fits into the exact sequence

(11) 1→ K → A/(J )→ H → 1.

Proof. The first assertion follows directly from [Mo93, Prop. 3.4.3]. Since
B is central in A, (J ) is a two-sided ideal of A. Moreover, from the fact
that ε and ∆ are algebra maps and S(J ) ⊆ J , it follows that (J ) is indeed
a Hopf ideal. Identify K with B/J . Then the map j : K → A/(J ) given
by j(b + J ) = ι(b) + (J ) defines a morphism of Hopf algebras because
ι is a Hopf algebra map. Since A is faithfully flat over B, by [S92, Cor.
1.8], B is a direct summand in A as a B-module, say A = B ⊕M . Then
(J ) ∩ B = JA ∩ B = (JB ⊕ JM) ∩ B = (J ⊕ JM) ∩ B = J . Thus, if
j(b+ J ) = 0 then ι(b) ∈ (J ) and this implies that b ∈ (J ) ∩B = J by the
equality above. Hence, j is injective.

Let us see now that A/(J ) is a pushout: let C be a Hopf algebra and
suppose that there exist Hopf algebra maps ϕ1 : K → C and ϕ2 : A → C
such that ϕ1p = ϕ2ι. We have to show that there exists a unique Hopf
algebra map φ : A/(J )→ C such that φq = ϕ2 and φj = ϕ1.

B
ι //

p

��

A

q

�� ϕ2

��

K
j

//

ϕ1 ,,

A/(J )

∃!φ
F

F

""F
F

C

Since ϕ2((J )) = ϕ2(AJ ) = ϕ2(A)ϕ2(ι(J )) = ϕ2(A)ϕ1(p(J )) = 0, there
exists a unique Hopf algebra map φ : A/(J ) → C such that φq = ϕ2.
Moreover, let x ∈ K and b ∈ B such that p(b) = x. Then φj(x) = φjp(b)
= φqι(b) = ϕ2ι(b) = ϕ1p(b) = ϕ1(x), from which follows that φj = ϕ1.

Denote also by K the image of K under j. To see that K is central in
A/(J ) we have to verify that j(c)ā = āj(c) for all ā ∈ A/(J ), c ∈ K. Since p
is surjective, for all c ∈ K there exists b ∈ B such that p(b) = c and since q is
an algebra map, it follows that āj(c) = q(a)j(p(b)) = q(a)q(ι(b)) = q(aι(b))
= q(ι(b)a) = q(ι(b))q(a) = j(c)ā, because B is central in A. In particular,
the quotient H̃ = [A/(J )]/[K+(A/(J ))] is a Hopf algebra. To see that
A/(J ) is a central extension of K by H̃, by [Mo93, Prop. 3.4.3] it is enough
to show that A/(J ) is flat over K and K is a direct summand of A/(J )
as K-modules, since by [S92, Cor. 1.8] this implies that A/(J ) is faithfully
flat over K.

First we show that A/(J ) is flat over K. Let M1 and M2 be two right K-
modules and let f : M1 →M2 be an injective homomorphism. In particular,
they admit a B-module structure via the map p : B → K, which we denote
by M i for i = 1, 2; thus f is an injective homomorphism of B-modules. Since
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A is faithfully flat over B, the homomorphism of A-modules f ⊗ id : M1⊗B
A → M2 ⊗B A is also injective. As J is central in A, we have for i = 1, 2
that (M i ⊗B A)(J ) = 0. Then the A-modules are also A/(J )-modules
and M i ⊗B A ' Mi ⊗K A/(J ) as A/(J )-modules by the construction of
M i. Hence the homomorphism of A/(J )-modules f ⊗ id : M1⊗K A/(J )→
M2 ⊗K A/(J ) is injective and A/(J ) is flat over K.

As A = B⊕M as B-modules, we have that (J ) = AJ = J ⊕MJ , where
MJ is a B-submodule of M and J = B ∩ (J ⊕MJ ). Hence A/(J ) =
(B ⊕M)/(J ⊕MJ ) = K ⊕ (M/MJ ) as K-modules, which implies that K
is a direct summand of A/(J ).

In conclusion, A/(J ) fits into an exact sequence of Hopf algebras

1→ K
j−→ A/(J ) r−→ H̃ → 1.

Since the map Ψ : K+(A/(J )) → (B+A)/(J ) defined by Ψ(ba) = ba

is a k-linear isomorphism, it follows that H̃ = (A/(J ))/[K+(A/(J ))] '
(A/(J ))/[(B+A)/(J )] ' A/B+A = H and therefore A/(J ) fits into an
exact sequence (11). �

Let Γ be an algebraic group and let σ : Γ→ G an injective homomorphism
of algebraic groups such that σ(Γ) ⊆ L. Then we have a surjective Hopf
algebra map tσ : O(L) → O(Γ). Applying the pushout construction given
in Proposition 2.10, we obtain a Hopf algebra Al,σ which is part of an exact
sequence of Hopf algebras and fits into the following commutative diagram

(12) 1 // O(G) ι //

res

��

Oε(G) π //

Res
��

uε(g)∗ //

p

��

1

1 // O(L)

tσ
��

ιL // Oε(L)
πL //

ν

��

uε(l)∗ // 1

1 // O(Γ)
j // Al,σ

π̄ // uε(l)∗ // 1.

Remark 2.11. Let 1 → K → A → H → 1 be an exact sequence of Hopf
algebras. If β : A ⊗K A → A ⊗ H, β(x, y) = xy(0) ⊗ y(1) denotes the
Galois map, then β is surjective, since H ' A/K+A. If moreover H is
finite-dimensional, A is a finitely generated projective K-module, by [KT81,
Thm. 1.7]. In particular, if dimK is finite, then dimA = dimK dimH is
also finite. In our case, if Γ is finite we obtain that dimAl,σ = |Γ| dim uε(l).

2.3. Third Step. In this subsection we make the third and last step of the
construction. It consists essentially on taking a quotient by a Hopf ideal
generated by differences of central group-like elements of Al,σ. The crucial
point here is the description of H as a quotient of uε(l)∗ and the existence
of a coalgebra morphism ψ∗ : uε(l)∗ → Oε(L).
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Recall that from the beginning of this section we fixed a surjective Hopf
algebra map r : uε(g)∗ → H and H∗ is determined by the triple (Σ, I+, I−).
Since the Hopf subalgebra uε(l) is determined by the triple (T, I+, I−) with
T ⊇ Σ, we have that H∗ ⊆ uε(l) ⊆ uε(g). Denote by v : uε(l)∗ → H the
surjective Hopf algebra map induced by this inclusion. Then H is a quotient
of uε(l)∗ which fits into the following commutative diagram

uε(g)∗
p // //

r $$ $$IIIIIIIII
uε(l)∗

v
����
H.

Remark 2.12. Let I = I+ ∪ −I−, Ic = Π − I and TI = {Kαi : i ∈ I}. Let
s = |Ic|. By Corollary 1.13, we know that TI ⊆ Σ ⊆ T = TI × TIc . If we
set Ω = Σ ∩ TIc , it follows clearly that Σ ' TI × Ω.

Thus, giving a subgroup Σ such that TI ⊆ Σ ⊆ T is the same as giving
a subgroup Ω ⊆ TIc , and this is the same as giving a subgroup N ⊆ T̂Ic .
Namely, N is the kernel of the group homomorphism ρ : T̂Ic → Ω̂ induced
by the inclusion. In particular, we have that |Σ| = |TI ||Ω| = `n−s|Ω| = `n

|N | .

Definition 2.13. For all 1 ≤ i ≤ n such that αi /∈ I+ or αi /∈ I− we define
Di ∈ G(uε(l)∗) = Alg(uε(l),C) on the generators of uε(l) by

Di(Ej) = 0 ∀ j : αj ∈ I+, Di(Fk) = 0 ∀ k : αk ∈ I−,
Di(Kαt) = 1 ∀ t 6= i, 1 ≤ t ≤ n, Di(Kαi) = εi,

where εi is a primitive `-th root of 1. If αi /∈ I+ or αi /∈ I−, then Ei or Fi
is not a generator of uε(l), respectively. Hence, Di is a well-defined algebra
map, since it verifies all the defining relations of Γε(g) [DL94, Sec. 3.4], see
[G07, 5.2.12] for details.

Let Ic = {αi1 , . . . , αis} and let N ⊆ T̂Ic , correspond to Σ as in Remark
2.12. We define for all z = (z1, . . . , zs) ∈ T̂Ic the following group-like element

Dz := Dz1
i1
· · ·Dzs

is
.

Recall that (M) denotes the two-sided ideal generated by a subset M of
an algebra R.

Lemma 2.14. (a) If αi ∈ Ic then Di is central in uε(l)∗. In particular
Dz is central for all z ∈ T̂Ic.

(b) H ' uε(l)∗/(Dz − 1|z ∈ N).

Proof. (a) We have to show that Dif = fDi for all f ∈ uε(l)∗. First observe
that Di coincide with the counit of uε(l) in all elements of the basis which
do not contain some positive power of Kαi . By Lemma 2.2 we know that
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uε(l) has a basis of the form{∏
β≥0

F
nβ
β ·

n∏
i=1

Kti
αi ·

∏
α≥0

Emαα : 0 ≤ nβ, ti,mα < `,

with β ∈ QI− , α ∈ QI+ , 1 ≤ i ≤ n
}
.

Thus, using the defining relations of Γε(g) [DL94, Sec. 3.4], we may assume
that this basis is of the form Kti

αiM with 0 ≤ ti < ` and M does not contain
any power of Kαi . Then for every element of this basis we have

Dif(Kti
αiM) = Di(Kti

αiM(1))f(Kti
αiM(2)) = Di(Kti

αi)Di(M(1))f(Kti
αiM(2))

= εtii ε(M(1))f(Kti
αiM(2)) = εtii f(Kti

αiM)

= fDi(Kti
αiM),

(b) By (a) we know that Dz is a central group-like element of uε(l)∗ for
all z ∈ N . Hence the quotient uε(l)∗/(Dz − 1|z ∈ N) is a Hopf algebra.

On the other hand, following Corollary 1.13 we know that H∗ is deter-
mined by the triple (Σ, I+, I−) and consequently H∗ is included in uε(l). If
we denote v : uε(l)∗ → H the surjective map induced by this inclusion, we
have that Ker v = {f ∈ uε(l)∗ : f(h) = 0, ∀ h ∈ H∗}. But Dz − 1 ∈ Ker v
for all z ∈ N , since Dz(ω) = ρ(z)(ω) = 1 for all ω ∈ Ω. Hence there exists
a surjective Hopf algebra map

γ : uε(l)∗/(Dz − 1| z ∈ N) � H.

Combining Corollary 1.13 with the PBW-basis of H and uε(l) we have that

dimH = `|I+|+|I−||Σ| = `|I+|+|I−|`n−s|Ω| = `|I+|+|I−|`n−s|Ω̂| = `|I+|+|I−|
`n

|N |
= dim(uε(l)∗/(Dz − 1| z ∈ N)),

which implies that γ is an isomorphism. �

Remark 2.15. The lemma above is very similar to a result used by E. Müller
in the case of type An [M00, Sec. 4] for the classification of the finite-
dimensional quotients of Oε(SLN ). The new point of view here consists in
regarding H as a quotient of the dual of uε(l).

Before going on with the construction we need the following technical
lemma. Let X = {Dz| z ∈ T̂Ic} be the set of central group-like elements of
uε(l)∗ given by Lemma 2.14.

Lemma 2.16. There exists a subgroup Z := {∂z| z ∈ T̂Ic} of G(Al,σ)
isomorphic to X consisting of central elements.

Proof. By Proposition 2.6 (b), we know that there exists an algebra map
ψ : Γε(l)→ uε(l); it induces a coalgebra map ψ∗ : uε(l)∗ → Γε(l)◦ such that
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the following diagram commutes

Γε(g)◦

Res
����

uε(g)∗
ϕ∗oo

p
����

Γε(l)◦ uε(l)∗.
ψ∗

oo

Here, ϕ∗ is the coalgebra map induced by the algebra map ϕ : Γε(g)→ uε(l)
given by Lemma 1.10, whose restriction to Γε(l) defines ψ. Furthermore, by
the proof of Proposition 2.6 (c), Imϕ∗ ⊆ Oε(G); since Res(Oε(G)) = Oε(L),
it follows that Imψ∗ ⊆ Oε(L). Consequently, we obtain a group of group-
like elements Y = {dz = ψ∗(Dz)| z ∈ T̂Ic} in Oε(L). Moreover, by Lemma
2.2 and the definitions of ψ and the elements Di, the elements of Y are
central.

Since the map ν : Oε(L) → Al,σ given by the pushout construction is
surjective, the image of Y defines a group of central group-like elements in
Al,σ:

Z = {∂z = ν(dz)| z ∈ T̂Ic}.
Besides, |Z| = |Y| = |X| = `s. Indeed, π̄(Z) = π̄ν(Y) = πL(Y) =
πLψ

∗(X) = X since the diagram (12) is commutative and πLψ∗ = id. Hence
|π̄(Z)| = |X|, from which the assertion follows. �

We are now ready for our first main result.

Theorem 2.17. Let D = (I+, I−, N,Γ, σ, δ) be a subgroup datum. Then
there exists a Hopf algebra AD which is a quotient of Oε(G) and fits into the
exact sequence

1→ O(Γ) ι̂−→ AD
π̂−→ H → 1.

Concretely, AD is given by the quotient Al,σ/Jδ where Jδ is the two-sided
ideal generated by the set {∂z − δ(z)|z ∈ N} and the following diagram of
exact sequences of Hopf algebras is commutative

(13) 1 // O(G) ι //

res

��

Oε(G) π //

Res
��

uε(g)∗ //

p

��

1

1 // O(L)

tσ
��

ιL // Oε(L)
πL //

ν

��

uε(l)∗ // 1

1 // O(Γ)
j // Al,σ

π̄ //

t

��

uε(l)∗ //

v

��

1

1 // O(Γ) ι̂ // AD
π̂ // H // 1.
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Proof. By Remark 2.12, N determines a subgroup Σ of T and the triple
(Σ, I+, I−) give rise to a surjective Hopf algebra map r : uε(g)∗ → H. Since
σ : Γ → L ⊆ G is injective, by the first two steps developed before one can
construct a Hopf algebra Al,σ which is a quotient of Oε(G) and an extension
of O(Γ) by uε(l)∗, where uε(l) is the Hopf subalgebra of uε(g) associated to
the triple (T, I+, I−). Moreover, by Lemma 2.14 (b), H is the quotient of
uε(l)∗ by the two-sided ideal (Dz − 1| z ∈ N). If δ : N → Γ̂ is a group map,
then the elements δ(z) are central group-like elements in Al,σ for all z ∈ N ,
and the two-sided ideal Jδ of Al,σ generated by the set {∂z − δ(z)|z ∈ N} is
a Hopf ideal. Hence, by [M00, Prop. 3.4 (c)] the following sequence is exact

1→ O(Γ)/J→ Al,σ/Jδ → uε(l)∗/π̄(Jδ)→ 1,

where J = Jδ ∩ O(Γ). Since π̄(∂z) = Dz and π̄(δ(z)) = 1 for all z ∈ N , we
have that π̄(Jδ) is the two-sided ideal of uε(l)∗ given by (Dz − 1| z ∈ N),
which implies by Lemma 2.14 (b) that uε(l)∗/π̄(Jδ) = H. Hence, if we
denote AD := Al,σ/Jδ, we can re-write the exact sequence of above as

(14) 1→ O(Γ)/J→ AD → H → 1.

To end the proof it is enough to see that J = Jδ ∩ O(Γ) = 0. Clearly, Jδ
coincides with the two-sided ideal (∂zδ(z)−1 − 1| z ∈ N) of Al,σ. Moreover,
Υ := {∂zδ(z)−1| z ∈ N} is a subgroup of central group-like elements of
G(Al,σ) and Jδ = (g−1| g ∈ Υ) = Al,σC[Υ]+. Let ∂N = {∂z| z ∈ N}. Then
clearly the subalgebra B := O(Γ)C[∂N ] is a central Hopf subalgebra of Aσ
which contains C[Υ]. Further, B ' O(Γ̃) for some algebraic group Γ̃ and
one has the following exact sequence of Hopf algebras

1→ O(Γ)→ O(Γ̃)→ R→ 1,

where R = O(Γ̃)/O(Γ̃)O(Γ)+. But R ' π̄(O(Γ̃)) = C[N ], since

π̄(O(Γ̃)) = [O(Γ̃) +O(Γ)+Al,σ]/[O(Γ)+Al,σ] ' O(Γ̃)/[O(Γ̃) ∩ (O(Γ)+Al,σ)]

' O(Γ̃)/O(Γ̃)O(Γ)+.

The last isomorphism follows from the fact that O(Γ̃) ∩ (O(Γ)+Al,σ) =
O(Γ̃)O(Γ)+. Indeed, since O(Γ̃) is a central Hopf subalgebra of the noe-
therian algebra Al,σ, by [S92, Thm. 3.3], O(Γ̃) is a direct summand of Al,σ

as O(Γ̃)-module, say Al,σ = O(Γ̃) ⊕M . Then O(Γ)+Al,σ = O(Γ)+O(Γ̃) ⊕
O(Γ)+M and the claim follows since O(Γ̃) ∩ O(Γ)+M = 0. Hence we have
an exact sequence

1→ O(Γ)→ O(Γ̃) π̄−→ C[N ]→ 1,

which is cleft by the proof of Lemma 2.16, since π̄ admits a coalgebra section.
Moreover, this section on C[N ] is by definition a bialgebra section, implying
that O(Γ̃) ' O(Γ)⊗ C[∂N ].
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Let Λ = 1
|Υ|
∑

z∈N δ(z)∂
−z be the integral of C[Υ] and denote by LΛ the

endomorphism of O(Γ̃) given by left multiplication of Λ. Since O(Γ̃) '
O(Γ) ⊗ C[∂N ] ' O(Γ) ⊗ C[Υ], it follows that KerLΛ = O(Γ)(C[Υ])+.
But since Al,σ = O(Γ̃) ⊕M as O(Γ̃)-modules, we have that Jδ ∩ O(Γ̃) =
Al,σ(C[Υ])+ ∩ O(Γ̃) = O(Γ̃)(C[Υ])+ = O(Γ)(C[Υ])+ = KerLΛ. Hence
Jδ ∩ O(Γ) = KerLΛ ∩ O(Γ) = 0 for if x ∈ KerLΛ ∩ O(Γ), then

0 = Λx =
1
|Υ|

∑
z∈N

(δ(z)⊗ ∂−z)(x⊗ 1) =
1
|Υ|

∑
z∈N

δ(z)x⊗ ∂−z,

which implies that δ(z)x = 0 for all z ∈ N , because the elements ∂z are
linearly independent. Thus x = 0 since δ(z) is invertible for all z ∈ N . �

Remark 2.18. (a) If Γ is finite-dimensional, then O(Γ) = CΓ and by Remark
2.11, dimAD = |Γ| dimH. In this case, D is a finite subgroup datum and the
last step of the proof of the theorem above follows easily by dimension argu-
ments. Indeed, by [M00, Lemma 4.8], we have that dimAD = dimAl,σ/|Υ|.
Since Al,σ and AD are extensions, it follows that
(15)

dim CΓ dim uε(l)
|Υ|

= dimAD = dim(CΓ/J) dimH = dim(CΓ/J)
dim uε(l)
|N |

.

Since π̄(Υ) = {Dz| z ∈ N} and π̄(∂zδ(z)−1) = Dz = 1 if and only if
z = 0, we have that |Υ| = |N |. Thus, from the equality (15) it follows that
CΓ = CΓ/J.

(b) All exact sequences in the rows of diagram (13) are of the type B ↪→
A� H, where B is central inA andH is finite-dimensional. Thus, by [KT81,
Thm. 1.7], B ⊂ A is an H-Galois extension and A is a finitely-generated
projective B-module. Moreover, using Lemma 1.10 and Proposition 2.6 (b),
one can see that the first three exact sequences are cleft.

2.4. Relations between quantum subgroups. Let U be any Hopf alge-
bra and consider the category QUOT (U), whose objects are surjective Hopf
algebra maps q : U → A. If q : U → A and q′ : U → A′ are such maps,
then an arrow q α // q′ in QUOT (U) is a Hopf algebra map α : A → A′

such that αq = q′. In this language, a quotient of U is just an isomorphism
class of objects in QUOT (U); let [q] denote the class of the map q. There
is a partial order in the set of quotients of U , given by [q] ≤ [q′] iff there
exists an arrow q α // q′ in QUOT (U). Notice that [q] ≤ [q′] and [q′] ≤ [q]
implies [q] = [q′].

Our aim is to describe the partial order in the set [qD], D a subgroup
datum, of quotients qD : Oε(G) � AD given by Theorem 2.17. Eventually,
this will be the partial order in the set of all quotients of Oε(G). We begin
by the following definition. By an abuse of notation we write [AD] = [qD].

Definition 2.19. Let D = (I+, I−, N,Γ, σ, δ) and D′ = (I ′+, I
′
−, N

′,Γ′, σ′, δ′)
be subgroup data. We say that D ≤ D′ iff
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• I ′+ ⊆ I+ and I ′− ⊆ I−.
In particular, this condition implies that I ′ ⊆ I, TI′ ⊆ TI and
TIc ⊆ TI′c . Since Σ = TI × Ω and Σ′ = TI′ × Ω′, we have that
Ω′ ⊆ Ω ⊆ TIc ⊆ TI′c . As TI′c = TIc × TI′c−Ic , the restriction map
T̂I′c � T̂Ic admits a canonical section η and η(N) ⊆ N ′.
• There exists a morphism of algebraic groups τ : Γ′ → Γ such that
στ = σ′.
• δ′η = tτδ.

Furthermore, we say that D ' D′ iff D ≤ D′ and D′ ≤ D. This means that
• I+ = I ′+ and I− = I ′−.
• There exists an isomorphism of algebraic groups τ : Γ′ → Γ such

that στ = σ′.
• N = N ′ and δ′ = tτδ.

Theorem 2.20. Let D and D′ be subgroup data. Then
(a) [AD] ≤ [AD′ ] iff D ≤ D′.
(b) [AD] = [AD′ ] iff D ' D′.

Proof. Let q = qD and q′ = qD′ . Suppose that [AD] ≤ [AD′ ], that is, there
exists a surjective Hopf algebra map α : AD → AD′ such that αq = q′.
Since by Theorem 2.17, ι̂ tσ = qι and ι̂′ tσ′ = q′ι, we have that αι̂ tσ
= αqι = q′ι = ι̂′ tσ′. Thus, the Hopf algebra map β := αι̂ : O(Γ) → O(Γ′)
is surjective with Imβ ⊆ Im tσ and its transpose defines an injective map
of algebraic groups τ : Γ′ → Γ such that στ = σ′.

Again by Theorem 2.17, we know that both AD and AD′ are central
extensions by H ' AD/ADO(Γ)+ and H ′ ' AD′/AD′O(Γ′)+, respectively.
Since π̂′α(ADO(Γ)+) = π̂′(AD′O(Γ′)+) = 0, there exists a surjective Hopf
algebra map γ : H → H ′ such that the following diagram commutes

1 // O(G) ι //

tσ′

��

tσ
��

Oε(G) π //

q

��

q′

��

uε(g)∗ //

r

��

r′

��

1

1 // O(Γ)

β
��

ι̂ // AD
π̂ //

α

��

H //

γ

��

1

1 // O(Γ′) ι̂′ // AD′
π̂′ // H ′ // 1.

Since tr : H∗ ↪→ uε(g) and tr′ : (H ′)∗ ↪→ uε(g) are just the inclusions, it
follows that tγ : (H ′)∗ ↪→ H∗ is the same inclusion. If H∗ and (H ′)∗ are
determined by the triples (Σ, I+, I−) and (Σ′, I ′+, I

′
−), it follows that Σ′ ⊆ Σ,

I ′+ ⊆ I+, I ′− ⊆ I−, whence η(N) ⊆ N ′. Thus, uε(l′) ⊆ uε(l) by Lemma 2.4.

Now by Theorem 2.17, δ(z) = t(∂z) in AD and δ′(z′) = t′(∂z
′
) in AD′ , for

all z ∈ N and z′ ∈ N ′. Thus, for all z ∈ N we have
tτδ(z) = αδ(z) = αt(∂z) = αtν(ψ∗(Dz)) = t′ν ′((ψ′)∗η(Dz)) = δ′(η(z)),
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where the fourth equality follows from the construction of the quotients AD,
AD′ and αq = q′. All this implies that D ≤ D′.

Suppose now that D ≤ D′. This implies that uε(l′) ⊆ uε(l) and by
construction, there exists a Hopf algebra map κ : Oε(L)→ Oε(L′) such that

Oε(G) Res // //

Res′ $$ $$IIIIIIIII
Oε(L)

κ
����

Oε(L′)

commutes. Since tτ tσ = tσ′, there exists a commutative diagram

O(L)
ιL //

tσ
��

Oε(L)

ν

��
t′ν′κ

��

O(Γ)
ῑ

//

tτ ''

Al,σ

O(Γ′)
ι̂′

// AD′ .

As Al,σ is a pushout, there exists a surjective Hopf algebra map α̃ : Al,σ →
AD′ such that α̃ν = t′ν ′κ. Since AD = Al,σ/Jδ, to show the existence of a
surjective map α : AD → AD′ such that αq = q′, it is enough to prove that
α̃(Jδ) = 0. But Jδ is the two-sided ideal of Al,σ generated by δ(z)− ∂z with
z ∈ N ; now

α̃(δ(z)− ∂z) = tτδ(z)− α̃(νψ∗(Dz)) = tτδ(z)− t′ν ′η(z)

= tτδ(z)− δ′η(z) = 0,

by assumption. Hence, α̃(Jδ) = 0. This finishes the proof of (a). Now (b)
follows immediately. �

3. Determining quantum subgroups

Let q : Oε(G)→ A be a surjective Hopf algebra map. We prove now that
it is isomorphic to qD : Oε(G) → AD for some subgroup datum D. This
concludes the proof of Theorem 1.

The Hopf subalgebra K = q(O(G)) is central in A and whence A is an
H-extension of K, where H is the Hopf algebra H = A/AK+. Indeed, it
follows directly from [Mo93, Prop. 3.4.3], because A is faithfully flat over
K by [S92, Thm. 3.3]. Since K is a quotient of O(G), there exists an
algebraic group Γ and an injective map of algebraic groups σ : Γ→ G such
that K ' O(Γ). Moreover, since q(Oε(G)O(G)+) = AK+, we have that
Oε(G)O(G)+ ⊆ Ker π̂q, where π̂ : A→ H is the canonical projection. Since
uε(g)∗ ' Oε(G)/[Oε(G)O(G)+], there exists a surjective map r : uε(g)∗ →
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H and by Proposition 1.12, H∗ is determined by a triple (Σ, I+, I−). In
particular, we have the following commutative diagram

(16) 1 // O(G) ι //

tσ
��

Oε(G) π //

q

��

uε(g)∗ //

r

��

1

1 // O(Γ) ι̂ // A
π̂ // H // 1.

Let N correspond to Σ as in Remark 2.12. Our aim is to show that there
exists δ such that A ' AD for the subgroup datum D = (I+, I−, N,Γ, σ, δ).
Recall the Lie algebra l from Definition 1.1 and the Hopf algebra uε(l) ⊇ H∗
from 2.1.2. Denote by v : uε(l)∗ → H the surjective Hopf algebra map
induced by this inclusion.

Lemma 3.1. The diagram (16) factorizes through the exact sequence

1 // O(L)
ιL // Oε(L)

πL // uε(l)∗ // 1,

that is, there exist Hopf algebra maps u, w such that the following diagram
with exact rows commutes:

1 // O(G) ι //

tσ
��

res

��

Oε(G) π //

Res
��

q

��

uε(g)∗ //

p

��

r

��

1

1 // O(L)

u

��

ιL // Oε(L)
πL //

w

��

uε(l)∗ //

v

��

1

1 // O(Γ) ι̂ // A
π̂ // H // 1.

Proof. To show the existence of the maps u and w it is enough to show that
Ker Res ⊆ Ker q, since u is simply wιL. This clearly implies that vπL = π̂w.

Let Ǔε(b+) and Ǔε(b−) be the Borel subalgebras of Ǔε(g) (see [DL94] and
[J96, Cap. 4]), and let Aε be the subalgebra of Ǔε(b+) ⊗ Ǔε(b−) generated
by the elements

{1⊗ ej , fj ⊗ 1,K−λ ⊗Kλ : 1 ≤ j ≤ n, λ ∈ P},
where P is the weight lattice. By [DL94, Sec. 4.3], this algebra has a basis
given by the set {fK−λ ⊗ Kλe}, where λ ∈ P and e, f are monomials in
eα and fβ respectively, α, β ∈ Q+. Moreover, Aε is a (Q−, P,Q+)-graded
algebra whose gradation is given by

deg(fj ⊗ 1) = (−αj ,0, 0), deg(1⊗ ej) = (0, 0, αj),

deg(K−λ ⊗Kλ) = (0, λ, 0),

for all 1 ≤ j ≤ n, λ ∈ P . By [DL94, 4.3 and 6.5], there exists an injective
algebra map µε : Oε(G) → Aε such that µε(O(G)) ⊆ A0, where A0 is the
subalgebra of Aε generated by the elements

{1⊗ e`j , f `j ⊗ 1,K−`λ ⊗K`λ : 1 ≤ j ≤ n, λ ∈ P}.
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Hence, it is enough to show that µε(Ker Res) ⊆ µε(Ker q).

Claim: µε(Ker Res) is the two-sided ideal I generated by the elements

{1⊗ ek, fj ⊗ 1 : αk /∈ I−, αj /∈ I+}.

Indeed, let λ ∈ P+ and let ψλ ∈ Γε(g)◦ such that

ψλ(FME) = δ1,Eδ1,FM(λ), ψ−λ(EMF ) = δ1,Eδ1,FM(−λ),

for all elements FME of the PBW basis of Γε(g), where M ∈ Q and the form
M(λ) is simply the linear extension of the bilinear form < αj , λ >= εdi(αi,λ)

for all λ ∈ P , 1 ≤ i ≤ n. By [DL94, Sec. 4.4], there exist matrix coefficients
ψ±α±λ , and α ∈ Q+ such that

ψα−λ(EMF ) = ψ−λ(EMFEα), ψ−α−λ (EMF ) = ψ−λ(FαEMF ),

for all elements EMF of the PBW basis of Γε(g). Moreover, one has that

µε(ψ−$i) = K−$i⊗K$i , µε(ψ
αk
−$i) = K−$i ⊗K$iek,

µε(ψ
−αj
−$i) = fjK−$i ⊗K$i ,

for all 1 ≤ i, j ≤ n. Through a direct computation one can see that
ψαk−$i , ψ

−αj
−$i ∈ Ker Res and

µε(ψ$iψ
αk
−$i) = 1⊗ ek µε(ψ

−αj
−$iψ$i) = fj ⊗ 1.

for all αk /∈ I−, αj /∈ I+. Hence, the generators of I are in µε(Ker Res).

Conversely, if h ∈ Ker Res, then h|Γε(l) = 0 and by definition we have that

< µε(h), EM ⊗NF >=< h,EMNF >= 0,

for all elements EMNF of the PBW basis of Γε(l). Thus, using the exis-
tence of perfect pairings (see [DL94, Sec. 3.2]) and evaluating in adequate
elements, it follows that each term of the basis {fK−λ⊗Kλe} that appears
in µε(h) must lie in I.

Since 0 = πL Res(h) = rπ(h) = π̂q(h), we have that q(h) ∈ Ker π̂ =
O(Γ)+A = q(O(G)+Oε(G)). Then there exist a ∈ O(G)+Oε(G) and c ∈
Ker q such that h = a + c; in particular, for all generators t of I we have
that t = µε(a) + µε(c), where µε(a) is contained in A0. Comparing degrees
in both sides of the equality we have that µε(a) = 0, which implies that each
generator of I must lie in µε(Ker q). �

The following lemma shows the convenience of characterizing the quo-
tients Al,σ of Oε(G) as pushouts.
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Lemma 3.2. σ(Γ) ⊆ L and therefore A is a quotient of Al,σ given by the
pushout. Moreover, the following diagram commutes

(17) 1 // O(G) ι //

res

��

Oε(G) π //

Res
��

uε(g)∗ //

p

��

1

1 // O(L)

u

��

ιL // Oε(L)
πL //

ν

��

uε(l)∗ // 1

1 // O(Γ)
j // Al,σ

π̄ //

t

��

uε(l)∗ //

v

��

1

1 // O(Γ) ι̂ // A
π̂ // H // 1.

Proof. Recall the maps u, w defined in the lemma above; we have that
wιL = ι̂u, that is, the following diagram commutes

O(L)
ιL //

u

��

Oε(L)

ν

�� w

��

O(Γ)
j

//

ι̂ ,,

Al,σ

A.

Since Al,σ is a pushout, there exists a unique Hopf algebra map t : Al,σ → A
such that ts = w and tj = ι̂. This implies that Ker π̄ = j(O(Γ))+Al,σ ⊆
Ker π̂t and therefore the diagram (17) is commutative. �

Let (Σ, I+, I−) be the triple that determines H. Recall that by Remark
2.12, giving a group Σ such that TI ⊆ Σ ⊆ T is the same as giving a
subgroup N ⊆ T̂Ic . In fact, by Lemma 2.16, we know that the Hopf algebra
Al,σ contains a set of central group-like elements Z = {∂z| z ∈ T̂Ic} such
that π̄(∂z) = Dz for all z ∈ T̂Ic and H = uε(l)∗/(Dz − 1| z ∈ N). To see
that A = AD for a subgroup datum D = (I+, I−, N,Γ, σ, δ) it remains to
find a group map δ : N → Γ̂ such that A ' Al,σ/Jδ. This is given by the
last lemma of the paper.

Lemma 3.3. There exists a group homomorphism δ : N → Γ̂ such that
Jδ = (∂z − δ(z)| z ∈ N) is a Hopf ideal of Al,σ and A ' AD = Al,σ/Jδ.

Proof. Let ∂z ∈ Z. Then π̂t(∂z) = vπ̄(∂z) = 1 for all z ∈ N , by Lemma 2.14
(b). Since t(∂z) is a group-like element, this implies that t(∂z) ∈ Aco π̂ =
O(Γ). As G(O(Γ)) = Γ̂, we have a group homomorphism δ given by

δ : N → Γ̂, δ(z) = t(∂z) ∀ z ∈ N.
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The two-sided ideal of Al,σ given by Jδ = (∂z − δ(z)| z ∈ N) is clearly a
Hopf ideal and t(Jδ) = 0. Consequently we have a surjective Hopf algebra
map θ : AD � A, which makes the following diagram commutative

(18) 1 // O(Γ) ι̃ // AD
π̃ //

θ
����

H // 1

1 // O(Γ) ι̂ // A
π̂ // H // 1.

Then θ is an isomorphism by Corollary 1.15. �

Acknowledgments. We thank Akira Masouka for kindly communicating
us Lemma 1.14.
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dad de Córdoba (2007). Available at http://www.mate.uncor.edu/~ggarcia/.
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