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Abstract

If the complex symmetric square matrix V has zero diagonal then
2 ‖ |V | ‖≤ tr(|V |).
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The purpose of this note is the proof of the following

Theorem For an arbitrary n×n complex matrix V = (Vjk) which is symmetric
–that is Vjk = Vkj – and has zero diagonal elements, one has

2 ‖ |V | ‖≤ tr(|V |) .

Here, |V | denotes the modulus of V (the positive semidefinite square-root of
V ∗V ), ‖ · ‖ is the spectral-norm, and tr denotes the trace.

The inequality emerged from our analysis of [1] where it is implicit for n = 4.
This inequality will play an important role in our ongoing study of quantum-state
entanglement. Our proof uses the Takagi diagonalization of symmetric matrices
([2]; p. 204-205), and the following elementary result:

Lemma Consider n ≥ 1 non-negative real numbers c1 ≥ c2 ≥ · · · ≥ cn ≥ 0.
Then

2c1 ≤

n
∑

j=1

cj

if and only if there are n real numbers θj (j = 1, 2, · · · , n) such that

n
∑

j=1

eiθjcj = 0 .
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Proof: For n = 1, 0 ≤ 2c1 ≤ c1 iff c1 = 0. We assume henceforth that n ≥ 2. If
∑n

j=1
eiθjcj = 0 then by the triangle inequality, c1 = |eiθ1c1| = | −

∑n

j=2
eiθjcj| ≤

∑n

j=2
cj, so the condition is sufficent.

The necessity is proved by considering first the cases n = 2 and n = 3 (which
cannot be reduced to n = 2) and then using induction on n ≥ 3. For n = 2, the
hypothesis and the inequality imply c1 = c2 so that θ1 = 0 and θ2 = π will do.

For n = 3, we show that there is α and β such that c1 = eiαc2 + eiβc3 so that
θ1 = 0, θ2 = α + π and θ3 = β + π will do. When c3 = 0 we have the case n = 2.
Otherwise, c1 ≥ c2 ≥ c3 > 0 and the numbers

c2
1 + c2

2 − c2
3

2c1c2

,
c2
1 + c2

3 − c2
2

2c1c3

are both non-negative and not above 1. A straightforward direct calculation
shows that

α = ± arccos

(

c2
1 + c2

2 − c2
3

2c1c2

)

, β = ∓ arccos

(

c2
1 + c2

3 − c2
2

2c1c3

)

,

give two possible choices of the phases.
We now proceed with induction. Given c1 ≥ c2 · · · ≥ cn ≥ cn+1, con-

sider b1 = c1 − cn+1 which is non-negative. If b1 ≥ c2, then by the induction
hypothesis, there are γ1, · · · , γn such that eiγ1b1 +

∑n

j=2
eiγj cj = 0; θj = γj

for j 6= n + 1 and θn+1 = γ1 + π does the job. If b1 < c2, then consider
a1 = c2 and let aj for j = 2, · · · , n be a renumeration of {b1, c3, · · · , cn} such
that a2 ≥ a3 ≥ · · ·an. Then, ak = c1 − cn+1 = b1 for some 2 ≤ k ≤ n. We have
a1 +cn+1 = c2+cn+1 ≤ c1+cn or, equivalently, a1 ≤ b1 +cn, so that a1 ≤

∑n

j=2
aj.

The induction hypothesis applied to the a’s implies the existence of real numbers
γj (j = 1, 2, · · · , n) such that

∑n

j=1
eiγjaj = 0. Then θ1 = γk, θn+1 = γk + π, and

θj = γj for j 6= k, does the job.

We state two inmediate corollaries of the Lemma.

Proposition 1 If n ≥ 1 and A is an n× n positive semidefinite complex matrix
with repeated eigenvalues a1, a2, · · · , an then 2 ‖ A ‖≤ tr(A) if and only if there
are n real numbers θj (j = 1, 2, · · · , n) such that

∑n

j=1
eiθjaj = 0.

Proposition 2 If n ≥ 1 and z1, z2, · · · , zn ∈ C and
∑n

j=1
zj = 0 then 2 maxj |zj| ≤

∑n

j=1
|zj|.

Another inmediate consequence is

Proposition 3 If V is an hermitian n× n complex matrix with tr(V ) = 0, then
2 ‖ V ‖≤ tr(|V |).
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Proof: Enumerate the eigenvalues of V as v1, · · · , vn according to their multi-
plicities; then 0 = tr(V ) =

∑n

j=1
vj implies

∑n

j=1
eiθj |vj| = 0 where θj = 0 if

vj > 0 and θj = π for vj < 0. Using the Lemma, 2 ‖ V ‖= 2 ‖ |V | ‖=
2 maxj |vj| ≤

∑n

j=1
|vj| = tr(|V |). This can be proved without invoking the

Lemma quite simply: V = V+ − V− and tr(V+) = tr(V−) ≥‖ V ‖ so that
tr(|V |) = tr(V+) + tr(V−) ≥ 2 ‖ V ‖.

We now proceed with the proof of the theorem. For n = 1 the claim is
trivially true, so we assume n ≥ 2. If V is symmetric, that is V = V T , where
T denotes transposition, the Takagi diagonalization (see [2], p. 204-205) insures
the existence of a unitary matrix U such that UT V U = D with D diagonal, that
is Djk = δjkdj (the fact that dj ≥ 0 does not simplify the argument below).
Since UT (UT )∗ = (U∗U)T , it follows that UT is unitary and thus V = (UT )∗DU∗.
Then, |V |2= V ∗V = UD∗UT (UT )∗DU∗ = U |D|2U∗, and thus |V | = U |D|U∗. In
particular,

‖ |V | ‖=‖ |D| ‖ , tr(|V |) = tr(|D|) .(1)

Now, Vjj = 0 for j = 1, 2, · · · , n implies

0 =
n

∑

`,m

(UT )j`D`mUmj =
n

∑

m=1

dmU2

mj , j = 1, 2, · · · , n.

By Proposition 2,

2 max
m

{| dm | | Ujm |2} ≤

n
∑

m=1

| dm | | Ujm |2 , j = 1, 2, · · · , n , .

Since U and thus U∗ is unitary,
∑n

j=1
| Ujm |2= 1 for m = 1, 2, · · · , n. But then,

2 max
m

| dm |= 2 max
m

[

n
∑

j=1

| Ujm |2| dm |

]

≤ 2
n

∑

j=1

max
m

{| Ujm |2| dm |}

≤

n
∑

j=1

n
∑

m=1

| dm | | Ujm |2=

n
∑

m=1

| dm | ;

which is exactly 2 ‖ |D| ‖≤ tr(|D|) and the claimed inequality follows from Eq.
(1).

The inequality is saturated for all symmetric matrices with zero diagonal and
at most two non-zero entries in the upper off-diagonal triangle. We remark that
if V is not hermitian but symmetric the condition of zero diagonal on V in the
theorem cannot be relaxed to tr(V ) = 0 (cf. Proposition 3). Consider

V =

(

1 , i

i , −1

)

,
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then 2 and 0 are the eigenvalues of |V | so that ‖ |V | ‖= tr(|V |).

G.A.R. acknowledges fruitful discussions with Jorge Antezana and Pedro
Massey.
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