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Abstract
If the complex symmetric square matrix V' has zero diagonal then

2 V< (V).
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The purpose of this note is the proof of the following

Theorem For an arbitrary n x n complex matriz V = (Vj,) which is symmetric
~that is Vi = Vi; — and has zero diagonal elements, one has

2| VI IT< tr([V]) .

Here, |V| denotes the modulus of V' (the positive semidefinite square-root of
V*V), |l - || is the spectral-norm, and tr denotes the trace.

The inequality emerged from our analysis of [1] where it is implicit for n = 4.
This inequality will play an important role in our ongoing study of quantum-state
entanglement. Our proof uses the Takagi diagonalization of symmetric matrices
([2]; p. 204-205), and the following elementary result:

Lemma Consider n > 1 non-negative real numbers ¢y > co > -+ > ¢

Then .
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if and only if there are n real numbers 6; (j =1,2,---,n) such that

n

i0; .
E ec;=0.

j=1
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Proof: Forn =1, 0 < 2¢; < ¢ iff ¢ = 0. We assume henceforth that n > 2. If
22:1 e’%ic; = 0 then by the triangle inequality, ¢; = [e?ci| = | = X7, ei¢y| <
> =2 Cj, s0 the condition is sufficent.

The necessity is proved by considering first the cases n = 2 and n = 3 (which
cannot be reduced to n = 2) and then using induction on n > 3. For n = 2, the
hypothesis and the inequality imply ¢; = ¢3 so that ; = 0 and 6, = 7 will do.

For n = 3, we show that there is @ and 3 such that ¢; = e*®c, + ePc3 so that
0, =0,60, =a+mand 03 = f+ 7 will do. When ¢3 = 0 we have the case n = 2.
Otherwise, ¢; > ¢o > ¢3 > 0 and the numbers
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are both non-negative and not above 1. A straightforward direct calculation
shows that

C%Jrc%—cg C%+c§—c§
« = *arccos | ——=—= | , = Farccos | ——————= | ,
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give two possible choices of the phases.

We now proceed with induction. Given ¢; > ¢+ > ¢, > ¢pypq, COD-
sider by = ¢; — ¢,41 which is non-negative. If by > co, then by the induction
hypothesis, there are 7,---,v, such that e?1b, + Z?:Q eic; = 0; 0; =
for j # n+1 and 6,1 = v + w does the job. If by < ¢y, then consider
a; = ¢y and let a; for j = 2,---,n be a renumeration of {by,cs,---,¢,} such
that as > a3 > ---a,. Then, ap = ¢; — ¢,41 = by for some 2 < k < n. We have
a1+ Cpi1 = co+cpy1 < 1+, or, equivalently, a; < by +c¢,, so that a; < 2?22 a;.
The induction hypothesis applied to the a’s implies the existence of real numbers
v; (7 =1,2,---,n) such that Z?:1 eia; = 0. Then 6; =y, 0,01 = v + 7, and
0; =, for j # k, does the job.

We state two inmediate corollaries of the Lemma.

Proposition 1 Ifn > 1 and A is an n X n positive semidefinite complexr matrix
with repeated eigenvalues ay, as,- -, a, then 2 || A ||< tr(A) if and only if there
are n real numbers 0; (j =1,2,---,n) such that 3 7_, efia; = 0.

Proposition 2 Ifn > 1andz, 29, -, 2, € C and Z;;l z; = 0 then 2max; |z;| <

2?21 |21

Another inmediate consequence is

Proposition 3 If V is an hermitian n x n complex matriz with tr(V) = 0, then
2[| V [I< tr(IV]).



Proof: Enumerate the eigenvalues of V' as vq,---,v, according to their multi-
plicities; then 0 = tr(V) = > v; implies Y77 e*]v;| = 0 where 6; = 0 if
v; > 0 and §; = 7 for v; < 0. Using the Lemma, 2 | V ||= 2 || |V]| ||=
2max; |v;| < 37 |v;| = tr(]V[). This can be proved without invoking the
Lemma quite simply: V = Vi, — V_ and tr(Vy) = tr(V_) >|| V || so that
(V) = (V) +tr(V) > 2| V.

We now proceed with the proof of the theorem. For m = 1 the claim is
trivially true, so we assume n > 2. If V is symmetric, that is V = V7T, where
T denotes transposition, the Takagi diagonalization (see [2], p. 204-205) insures
the existence of a unitary matrix U such that UTVU = D with D diagonal, that
is Dji, = 0xd; (the fact that d; > 0 does not simplify the argument below).
Since UT(UT)* = (U*U)7, it follows that U? is unitary and thus V = (UT)*DU*.
Then, |V]*=V*V = UD*UT(UT) DU* = U|D|*U*, and thus |V| = U|D|U*. In
particular,

(1) | VI =1 DI, (V) = t(1D)])
Now, V;; =0 for j = 1,2,---,n implies

0="> (U");tDmUn, Zd 2 j=12-n

lm
By Proposition 2,
2max{] du || Upm Y < Y [ || Ujen [, G =12,

m=1

Since U and thus U* is unitary, 23;1 | Ujm [*=1for m =1,2,---,n. But then,

2max | d,, |= 2max
m m

S| Up [ |] <23 max{] Uy | d |}

J=1 J=1

<S5 V|1 U P= Z\dm|

j=1 m=1

which is exactly 2 || |D| ||< tr(]D]) and the claimed inequality follows from Eq.

(1).

The inequality is saturated for all symmetric matrices with zero diagonal and
at most two non-zero entries in the upper off-diagonal triangle. We remark that
if V' is not hermitian but symmetric the condition of zero diagonal on V in the
theorem cannot be relaxed to tr(V) = 0 (cf. Proposition 3). Consider

1,
(0 h)



then 2 and 0 are the eigenvalues of |V| so that || [V ||= tr(|V]).
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