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Abstract An algorithm to solve equality constrained optimization problems
based on stabilized sequential quadratic programming, augmented Lagrangian
and inexact restoration methods is presented. This formulation has attractive
features in the sense that no constraint qualifications are needed at the limit
point, and that it overcomes ill-conditioning of the subproblems when the
penalty parameter is large. Well-definition of the algorithm is shown, and also
it is proved that any limit point of the sequence generated by the algorithm is
a KKT point or a stationary point of the problem that minimizes the infea-
sibility. Under suitable hypotheses the sequence generated by the algorithm
converges Q-linearly. Numerical experiments on a set of problems from the
Cuter collection are given to confirm theoretical results.

Keywords Augmented Lagrangian · nonlinear programming · global
convergence.

1 Introduction

Given f : Rn → R and h : Rn → R
m twice continuously differentiable, we

want to solve the following equality constrained nonlinear program,

minimize f(x)
subject to h(x) = 0,

x ∈ Ω,
(1)
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where Ω = {x ∈ Rn | a ≤ x ≤ b} with a, b ∈ Rn. The natural residual
σ : Rn ×Rm → R associated to problem (1) is given by

σ(x, λ) =

∥∥∥∥[ΠΩ

(
x− ∂L

∂x (x, λ)
)
− x

h(x)

]∥∥∥∥ , (2)

where ΠΩ denotes the orthogonal projection onto Ω and L : Rn × Rm →
R denotes the Lagrangian function of problem (1), i.e., L(x, λ) = f(x) +
〈λ, h(x)〉. Thus, x is a stationary point of problem (1) with associated Lagrange
multipliers λ if and only if σ(x, λ) = 0.

In order to solve (1), we propose to use the stabilized sequential quadratic
programming (sSQP) method with a suitable strategy to force its global con-
vergence. Recall that at a given primal-dual iterate (xk, λk) ∈ Rn × Rm, a
quasi-Newton sSQP subproblem has the form

minimize
(x,λ)

〈∇f(xk), x− xk〉+ 1
2 〈Qk(x− xk), x− xk〉+ 1

2ρk
‖λ‖2

subject to h(xk) +∇h(xk)>(x− xk)− 1
ρk

(λ− λk) = 0,

x ∈ Ω,
(3)

where ρk > 0 is a parameter and Qk ∈ Rn×n is an approximation to the
hessian of the Lagrangian of the problem (1).

The sSQP method was studied by Wright [33–35] to deal with optimiza-
tion problems with degenerate constraints. This method is known to be locally
convergent with quadratic/superlinear rate near any solution with associated
Lagrange multipliers satisfying the second-order sufficient condition (SOSC),
even in those cases where no constraint qualification is satisfied at this solution
(see [21,18,17]). For equality constrained problems, local convergence has re-
cently been studied in [23] for solutions with noncritical Lagrange multipliers
(weaker than SOSC) and without any constraint qualification assumptions. A
quasi-Newton strategy was studied in [16], showing that the classical BFGS
update can be used to generate a locally superlinear convergent primal-dual
sequence.

Before introducing the globally convergent method, we shall explain the
mathematical concepts that it involves. First, note that the primal-dual sub-
problem (3) can be obtained by performing an iteration of the SQP method
in the primal-dual variable at the point (xk, λk) to the problem

minimize
(x,λ)

Fk(x, λ) = f(x) + 1
2ρk
‖λ‖2

subject to Hk(x, λ) = h(x)− 1
ρk

(λ− λk) = 0,

x ∈ Ω.
(4)

Thus, local convergence of the sSQP method follows by solving problem (4)
inexactly at each iteration, where the inexactness comes from the fact that
just one SQP iteration is performed. When the current iterate (xk, λk) is far
from a primal-dual pair satisfying SOSC, it is not clear why a single SQP
iteration is enough. Therefore, we propose to perform as many SQP iterations
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as necessary up to obtain a suitable inexact solution of (4) by using inexact
restoration ideas.

Inexact restoration (IR) methods were introduced in [27] and modified in
[26,10,19]. A survey on this subject can be found in [28]. The advantage of
using this method to solve problem (4) is the fact that a feasible point is always
known (avoiding the restoration phase) and that subproblem (3) provides a
suitable tangent direction that satisfies sufficient conditions for convergence,
according to [19].

In this paper we develop a hybrid method that combines two well-known
strategies taking advantage of their individual features. On one hand, we have
feasibility and good local behavior of the sSQP method. On the other hand,
we obtain global convergence of the augmented Lagrangian method, and over-
come the ill-conditioned subproblems for large values of the penalty parameter
[6]. Moreover, the IR scheme is computationally attractive, in the sense that
the restoration phase is straightforward, and therefore we need to solve only
linearly constrained quadratic problems to obtain the inexact solution of the
subproblem.

The paper is structured as follows. In Section 2 the last results on IR
methods are summarized. The proposed algorithm as well as its well-definition
is described in Section 3. The main result, global convergence of the sequence
generated by the algorithm, is presented in Section 4. Local convergence and
penalty boundedness results are treated in Section 5. Section 6 is devoted to
numerical experiments and conclusions are given in Section 7.

In what follows we describe our notation. We use 〈·, ·〉 to denote the Eu-
clidean inner product and ‖ · ‖ its associated norm. When in matrix nota-
tion, vectors are considered columns. We denote by I the identity matrix and
by e the vector of ones (the dimension is always clear from the context).
For a function g : Rn → R, ∇g is a column vector where the i-th compo-
nent is ∂g

∂xi
. For a function G : Rn → R

m, ∇G is a n × m matrix where

the i, j component is
∂Gj

∂xi
. The normal cone to a set Ω at x is defined by

NΩ(x) = {v ∈ Rm | 〈v, y−x〉 ≤ 0 ∀ y ∈ Ω} if x ∈ Ω, or NΩ(x) = ∅ otherwise.

2 IR methods

The IR method as presented in [19] is divided in two phases: restoration and
minimization. In the restoration phase, given an iterate Xk, an intermediate
point Y k is computed (called restored point) in order to improve feasibility
without deteriorating the objective function value. A merit function is de-
fined combining feasibility and optimality, including a penalty parameter that
changes between different iterations. In the minimization phase a line search
is performed to the merit function along a direction Dk belonging to the first
order feasible direction set at Y k.
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In order to solve the problem:

minimize F (x)
subject to H(x) = 0,

x ∈ W,
(5)

we describe the Fischer-Friedlander IR model algorithm:

Algorithm 1 (Fischer-Friedlander model algorithm)

Let r ∈ (0, 1), β, η, η̄, τ be fixed.

Step 0: Initialization

Choose X0 ∈ W and θ0 ∈ (0, 1). Set j = 0.

Step 1: Inexact restoration

Compute Y j ∈ W such that:

‖H(Y j)‖ ≤ r‖H(Xj)‖, (6)

F (Y j) ≤ F (Xj) + β‖H(Xj)‖. (7)

Step 2: Search direction

Compute Dj ∈ Rn such that Y j +Dj ∈ W and

F (Y j + tDj) ≤ F (Y j)− ηt‖Dj‖2, (8)

‖H(Y j + tDj)‖ ≤ ‖H(Y j)‖+ η̄t2‖Dj‖2, (9)

holds for all t ∈ [0, τ ].

Step 3: Penalty parameter

Determine θj+1 ∈
{

2−iθj : i ∈ N ∪ {0}
}

as large as possible such that:

φ(Y j , θj+1)− φ(Xj , θj+1) ≤ (r − 1)

2

(
‖H(Xj)‖ − ‖H(Y j)‖

)
, (10)

where φ(X, θ) = θF (X) + (1− θ)‖H(X)‖ is a merit function.

Step 4: Line search

Determine tj ∈
{

2−i : i ∈ N ∪ {0}
}

as large as possible such that:

φ(Y j + tjD
j , θj+1)− φ(Xj , θj+1) ≤ (r − 1)

2

(
‖H(Xj)‖ − ‖H(Y j)‖

)
. (11)
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Step 5: Update

Set Xj+1 = Y j + tjD
j and j = j + 1. Go to Step 1.

The main result in [19] is that any sequence of search directions generated
by Algorithm 1 tends to zero.

Theorem 1 [19, Theorem 2] Suppose that W is a compact set and Step 1 of
Algorithm 1 is well defined. Then,

lim
j→∞

Dj = 0. (12)

3 Description of the algorithm

We begin this section introducing the proposed algorithm.

Algorithm 2

Let γ ∈ (0, 1), r ∈ (0, 1), ε > 0, {εk} with εk ↘ 0 and αL, αU > 0. For a
current penalty parameter ρk we call

Πk(x, λ) = (x,max {−αL
√
ρke,min {λ, αU

√
ρke}}) . (13)

Step 0: Initialization

Choose X0 = (x0, λ0) ∈ Ω × Rm an arbitrary initial approximation, ρ0 > 0
an initial penalty parameter, ψ−1 = σ(X0) and k = 0.

Step 1: Stopping criterion

If the condition:
σ(Xk) ≤ ε (14)

is satisfied, terminate the execution of the algorithm, declaring that the resid-
ual is less than the tolerance ε.

Step 2: Solve subproblem

Step 2.0: Set Xk,0 = (xk,0, λk,0) = (xk, λk), θ0 ∈ (0, 1), Qk,0 ∈ Rn×n a
symmetric positive definite, and j = 0.
Step 2.1: Set Y k,j = (xk,j , λk + ρkh(xk,j)).
Step 2.2: Find Dk,j ∈ Rn ×Rm the solution of

minimize
D

〈∇Fk(Y k,j), D〉+ 1
2

〈[
Qk,j 0

0 1
ρk
I

]
D,D

〉
subject to ∇Hk(Y k,j)>D = 0,

Y k,j +D ∈ Ω ×Rm.

(15)

If ‖Dk,j‖ < εk then set Xk+1 = Πk(Y k,j +Dk,j) and go to Step 3.
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Step 2.3: Determine θj+1 ∈
{

2−iθj : i ∈ N ∪ {0}
}

as large as possible such
that:

φk(Y k,j , θj+1)− φk(Xk,j , θj+1) ≤ (r − 1)

2
‖Hk(Xk,j)‖, (16)

where φk(X, θ) = θFk(X) + (1− θ)‖Hk(X)‖ is a merit function.
Step 2.4: Determine tj ∈

{
2−i : i ∈ N ∪ {0}

}
as large as possible such that:

φk(Y k,j + tjD
k,j , θj+1)− φk(Xk,j , θj+1) ≤ (r − 1)

2
‖Hk(Xk,j)‖. (17)

Step 2.5: Set Xk,j+1 = Y k,j+tjD
k,j , and choose Qk,j+1 ∈ Rn×n symmetric

positive definite, and j = j + 1. Go to Step 2.1.

Step 3: Update penalty parameter

Set ψk = min{ψk−1, σ(Xk)}. If ‖h(xk+1)‖ > γ‖h(xk)‖ and σ(Xk+1) > γψk,
then set ρk+1 = 10ρk. Otherwise, set ρk+1 = ρk.

Besides that, set k = k + 1 and go to Step 1.

Remark 1 The subproblem (15) is equivalent to solve a problem similar to (3).
It can be seen that if Dk,j is a solution of (15), then (x, λ) = Y k,j +Dk,j is a
solution of

minimize
(x,λ)

〈∇f(xk,j), x− xk,j〉+ 1
2 〈Qk,j(x− x

k,j), x− xk,j〉+ 1
2ρk
‖λ‖2

subject to h(xk,j) +∇h(xk,j)>(x− xk,j)− 1
ρk

(λ− λk) = 0,

x ∈ Ω.
(18)

When k is large enough and Xk+1 = Y k,0 +Dk,0 then the sequence generated
by Algorithm 2 is the same as the sequence generated by the sSQP method.

The remaining part of this section is devoted to the well-definiteness of
Algorithm 2, which depends on the well-definiteness of Step 2.

Let us define the function

µk(x, y) = λk + ρkh(x) + ρk∇h(x)>(y − x), x, y ∈ Ω. (19)

Since h and∇h are continuous andΩ is a compact set, we deduce that there
exists λkL and λkU depending on ρk and λk such that λk and µk(x, y) belongs
to the interior of [λkL, λ

k
U ] for all x, y ∈ Ω. Thus, there exists a compact set

Wk = Ω × [λkL, λ
k
U ] ⊂ Rn ×Rm such that problem (4) is equivalent to:

minimize
(x,λ)

Fk(x, λ)

subject to Hk(x, λ) = 0,
(x, λ) ∈ Wk.

(20)

It can be seen that Step 2 of Algorithm 2 is a direct application of Algorithm
1 applied to the problem (20). Therefore, we have to show that hypotheses of
Theorem 1 hold.
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Notice that if f and h are twice continuously differentiable in Ω, then Fk
and Hk are twice continuously differentiable in Wk.

In the following two lemmas we prove conditions (6), (7), (8) and (9) of
Algorithm 1.

Lemma 1 Let
{
Xk,j

}
,
{
Y k,j

}
and

{
Dk,j

}
be the sequences generated by Al-

gorithm 2. Then

(a) Y k,j +Dk,j and Xk,j belong to Wk for all j if xk ∈ Ω.
(b) There exists βk > 0 such that

Fk(Y k,j) ≤ Fk(Xk,j) + βk‖Hk(Xk,j)‖, (21)

‖Hk(Y k,j)‖ ≤ r‖Hk(Xk,j)‖, (22)

for all r > 0.

Proof We will prove (a) by induction in j. From the Step 2.0 and the def-
inition of λkL and λkU , and the fact that xk ∈ Ω, we have that Xk,0 =
(xk,0, λk,0) = (xk, λk) ∈ Wk. Let j ≥ 0 and suppose that Xk,j ∈ Wk.
Let us define (x, λ) = Y k,j + Dk,j . From the definition of Y k,j we have
Dk,j =

(
x− xk,j , λ−

(
λk + ρkh(xk,j)

))
. From the equality constraint in (15)

we obtain

0 = ∇Hk(Y k,j)>Dk,j

= ∇h(xk,j)>
(
x− xk,j

)
− 1

ρk

(
λ− λk

)
+ h(xk,j)

Solving for λ and using (19) we get λ = µk(xk,j , x). Since xk,j ∈ Ω, and
x ∈ Ω (because Y k,j +Dk,j ∈ Ω ×Rm) we have that λ ∈ [λkL, λ

k
U ]. Therefore,

Y k,j + Dk,j ∈ Wk. Since Y k,j = (xk,j , µk(xk,j , xk,j)) ∈ Wk, tj ∈ [0, 1] and
the convexity of Wk, we have that Xk,j+1 = Y k,j + tjD

k,j = (1 − tj)Y k,j +
tj(Y

k,j +Dk,j) ∈ Wk.
Next, we will prove (b). By the definition of Y k,j in Step 2.1, we can see

that condition (22) holds since Hk(Y k,j) = 0.
Using that λk + ρkh(xk,j) = ρkHk(Xk,j) + λk,j , we can see that

Fk(Y k,j)− Fk(Xk,j) =
1

2ρk

(∥∥ρkHk(Xk,j) + λk,j
∥∥2 −

∥∥λk,j∥∥2
)

=
1

2ρk

(∥∥ρkHk(Xk,j)
∥∥2

+ 2ρk〈Hk(Xk,j), λk,j〉
)

≤
∥∥Hk(Xk,j)

∥∥(ρk
2

∥∥Hk(Xk,j)
∥∥+

∥∥λk,j∥∥)
≤ βk

∥∥Hk(Xk,j)
∥∥ ,

where βk > 0 is a constant that exists because of the continuity of Hk, the
compactness of Wk and the fact that Xk,j ∈ Wk. Therefore, condition (21)
holds. ut
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It remains to prove that the direction Dk,j generated by the subproblem
(15) satisfies conditions (8) and (9).

Lemma 2 Suppose that matrices {Qk,j} are uniformly positive definite, then
there exist positive constants ηk, η̄k and τk such that

Fk(Y k,j + tDk,j) ≤ Fk(Y k,j)− ηkt‖Dk,j‖2, (23)

‖Hk(Y k,j + tDk,j)‖ ≤ ‖Hk(Y k,j)‖+ η̄kt
2‖Dk,j‖2, (24)

hold for all t ∈ [0, τk].

Proof Since Y k,j ∈ Ω×Rm then D = 0 is feasible for the problem (15). Hence,
the solution Dk,j satisfies

〈∇Fk(Y k,j), Dk,j〉+
1

2

〈[
Qk,j 0

0 1
ρk
I

]
Dk,j , Dk,j

〉
≤ 0.

Assuming that matrices Qk,j are uniformly positive definite, the there ex-
ists a constant ck > 0 such that

〈∇Fk(Y k,j), Dk,j〉 ≤ −ck
2

∥∥Dk,j
∥∥2
. (25)

Let Lk > 0 be the Lipschitzian modulus of ∇Fk and ∇Hk (because of
smoothness of f and h).

By the Taylor’s formula we obtain

Fk(Y + tD) = Fk(Y ) + t〈∇Fk(Y ), D〉+ t

∫ 1

0

〈∇Fk(Y + stD)−∇Fk(Y ), D〉ds,

then by using (25) and Lipschitzianity of ∇Fk we get

Fk(Y k,j + tDk,j) ≤ Fk(Y k,j)− ckt

2

∥∥Dk,j
∥∥2

+
Lkt

2

2

∥∥Dk,j
∥∥2

= Fk(Y k,j)−
(
ck
2
− Lkt

2

)
t
∥∥Dk,j

∥∥2
,

for all t ∈ [0, 1]. Therefore, (23) is valid for all t ∈ [0, τk] with τk = min
{

1, ck
2Lk

}
and ηk = ck/4.

Similarly, using that ∇Hk(Y k,j)>Dk,j = 0 and Lipschitzianity of ∇Hk we
have ∥∥Hk(Y k,j + tDk,j)

∥∥ ≤ ∥∥Hk(Y k,j)
∥∥+

Lkt
2

2

∥∥Dk,j
∥∥2
,

for all t ∈ [0, 1]. Thus, (24) holds for all t ∈ [0, 1] with η̄k = Lk/2. Therefore,
(23) and (24) are valid for all t ∈ [0, τk] with ηk, η̄k and τk as defined in this
proof. ut

The next lemma assures us that a sequence
{
Xk
}

can be generated by
Algorithm 2.
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Lemma 3 Algorihm 2 is well-defined and generates sequences
{

(xk, λk)
}

,
where xk ∈ Ω and λk+1 ∈ [−αL

√
ρke, αU

√
ρke] for all k.

Proof Observe that x0 ∈ Ω (from Step 0). Let us assume that xk ∈ Ω for
k ≥ 0. Because of Lemmas 1 and 2, the compactness of Wk and Theorem 1,
we have that the directions Dk,j converge to zero when j tends to infinity.
Thus, the condition

∥∥Dk,j
∥∥ ≤ εk is satisfied for j sufficiently large, so Step 2

of Algorithm 2 is executed only a finite number of iterations. Therefore, Xk+1

can be generated. Since Y k,j +Dk,j ∈ Ω ×Rm, Xk+1 = Πk(Y k,j +Dk,j) and
Πk leaves invariant the primal part, we obtain that Xk+1 = (xk+1, λk+1) ∈
Ω × [−αL

√
ρke, αU

√
ρke]. ut

We should stress that no constraint qualification assumptions were needed
to guarantee neither the feasibility of the subproblem (15) nor the success
of execution of Step 2.1 of Algorithm 2. In [19, Lemma 2] the Mangasarian–
Fromovitz constraint qualification was required.

4 Convergence analysis

In this section we will prove that any accumulation point of the sequence
generated by Algorithm 2 is either a stationary point of problem (1), or a
stationary point of the squared norm of infeasibility. We will show that no
constraint qualification is needed in order to prove global convergence results.

The proposed method is related with an inexact augmented Lagrangian
method. The augmented Lagrangian method, also known as the method of
multipliers, is based on the minimization of the augmented Lagrangian func-
tion [22,31], L̄(x, λ, ρ) : Rn ×Rm × (0,+∞)→ R, defined by

L̄(x, λ, ρ) = f(x) + 1
2ρ‖λ+ ρh(x)‖2.

Recall that, at a given multiplier estimate λk ∈ Rm and a penalty parameter
ρk > 0, the (exact) augmented Lagrangian method generates the next iterate
(xk+1, λk+1) such that

xk+1 is a solution of minimize
x∈Ω

L̄(x, λk, ρk), (26)

λk+1 = λk + ρkh(xk+1). (27)

The augmented Lagrangian method had been studied by many authors [1,5,
12,14,11,30,7,3,4,9,8,25], among other literature (see also [6,29]).

Numerical implementations attempt to solve (26) inexactly, by using a suit-
able criterion. For example, some codes based on the augmented Lagrangian
method, such as LANCELOT [13] and ALGENCAN [2], define xk+1 = x if the
residual of the minimization problem in (26) at x is less than some tolerance
εk, i.e., ∥∥∥∥ΠΩ

(
x− ∂L̄

∂x
(x, λk, ρk)

)
− x
∥∥∥∥ ≤ εk.
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As it was noticed in [6, p. 102], the minimization problem in (26) becomes
ill-conditioned for large values of the penalty parameter ρk. This is a typical
problem of all penalty methods.

To overcome this drawback we can see that problem (26)-(27) is equivalent
to problem (4), which is well-conditioned [6]. Such equivalence comes from
(4) by solving Hk(x, λ) = 0 for λ and replacing it in the objective function
Fk. Due to this connection, the global convergence theory of Algorithm 2 is
an adaptation of the standard augmented Lagrangian theory. The connection
between the sequence generated by Algorithm 2 and the sequence generated
by the sSQP method is given by the next statement.

Proposition 1 Algorithm 2 generates sequences {xk}, {yk}, {λk}, {νk}, {ρk}
and {Mk} satisfying〈

∇f(yk) +Mk

(
xk+1 − yk

)
+∇h(yk)νk+1, y − xk+1

〉
≥ 0, ∀ y ∈ Ω, (28)

h(yk) +∇h(yk)>
(
xk+1 − yk

)
− 1

ρk

(
νk+1 − λk

)
= 0, (29)

‖xk+1 − yk‖2 + ‖νk+1 − (λk + ρkh(yk))‖2 < ε2k. (30)

Proof Note that the optimality conditions of problem (15) are〈
∇Fk(Y k,j) +

[
Qk,j 0

0 1
ρk
I

]
Dk,j +∇Hk(Y k,j)ξk,j , Y − Y k,j −Dk,j

〉
≥ 0,

∇Hk(Y k,j)>Dk,j = 0,

for all Y ∈ Ω × Rm, where Y k,j + Dk,j ∈ Ω × Rm and ξk,j ∈ Rm is an
associated Lagrange multiplier.

Let j(k) be the index where
∥∥Dk,j(k)

∥∥ < εk. Let us call yk = xk,j(k), the

primal component of Y k,j(k), νk+1 the dual component of Y k,j(k) + Dk,j(k)

and Mk = Qk,j(k).

Since Xk+1 = (xk+1, λk+1) = Πk(Y k,j(k) + Dk,j(k)) and the projection
Πk (13) leaves invariant the primal part, we have that Y k,j(k) + Dk,j(k) =
(xk+1, νk+1). Hence, the optimality conditions can be rewritten in the following
form 〈

∇f(yk) +Mk

(
xk+1 − yk

)
+∇h(yk)ξk, y − xk+1

〉
≥ 0, ∀ y ∈ Ω,

1
ρk

(
λk + ρkh(yk)

)
+ 1

ρk

(
νk+1 − (λk + ρkh(yk))

)
− 1

ρk
ξk = 0,

∇h(yk)>
(
xk+1 − yk

)
− 1

ρk

(
νk+1 − (λk + ρkh(yk))

)
= 0.

Notice that from the second relation we obtain νk+1 = ξk. Therefore, Dk,j(k)

is a solution of (15) if and only if〈
∇f(yk) +Mk

(
xk+1 − yk

)
+∇h(yk)νk+1, y − xk+1

〉
≥ 0, ∀ y ∈ Ω, (31)

h(yk) +∇h(yk)>
(
xk+1 − yk

)
− 1

ρk

(
νk+1 − λk

)
= 0. (32)
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With this notation, ‖Dk,j(k)‖ < εk is equivalent to

‖xk+1 − yk‖2 + ‖νk+1 − (λk + ρkh(yk))‖2 < ε2k. (33)

ut

The next auxiliar proposition gives a relation between the Lagrange mul-
tiplier approximation and the penalty parameter.

Proposition 2 The sequence
{
λk/ρk

}
is convergent to zero if ρk tends to

infinity.

Proof From the definition ofΠk (13), we have that λk+1 belongs to the close set
[−αL

√
ρke, αU

√
ρke]. If ρk+1 > ρk, from the update of the penalty parameter,

we get
λk+1

ρk+1
∈
[
− αL√

10ρk+1
,

αU√
10ρk+1

]
.

In the other hand, if ρk+1 = ρk, then

λk+1

ρk+1
∈
[
− αL√

ρk+1
,

αU√
ρk+1

]
.

In both cases, if ρk+1 tends to infinity, the proposition holds. ut

Proposition 2 helps us to prove the following global convergence theorem.

Theorem 2 Let x̄ be a limit point of the sequence
{
xk
}

generated by Algo-
rithm 2 and assume that matrices {Mk} are uniformly bounded.

1. If {ρk} remains bounded, then x̄ is a stationary point of problem (1).
2. If {ρk} tends to infinity, then x̄ is a stationary point of the problem

minimize
x∈Ω

1
2 ‖h(x)‖2 . (34)

Proof Let x̄ be a limit point of
{
xk+1

}
, i.e., there exists an index subset K

such that
lim
k∈K

xk+1 = x̄. (35)

Since εk tends to zero, and using (35) and (30) we get

lim
k∈K

yk = x̄. (36)

Proof of 1. Let us consider the case when {ρk} remains bounded. By the
updating formula, we have that there exists k0 ∈ N such that ρk = ρ̄ for all
k ≥ k0. Then, λk+1 belongs to the close set [−αL

√
ρ̄e, αU

√
ρ̄e] for all k ≥ k0,

that is,
{
λk+1

}
is bounded.

From Step 3 of Algorithm 2 we have that σ(Xk+1) ≤ γψk or ‖h(xk+1)‖ ≤
γ‖h(xk)‖ for all k ≥ k0. Let K1 be the index set defined by

K1 =
{
k ∈ K | σ(Xk+1) ≤ γψk

}
.
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In what follows we will consider two subcases: when K1 is finite or is infinite.
(a) Suppose that K1 has infinite many elements. Since the sequence {ψk} is

nonincreasing and nonnegative, it converges to some ψ̄ ≥ 0. From the definition
of K1 and observing that ψk+1 ≤ σ(Xk+1), we deduce that ψ̄ ≤ γψ̄ by taking
limits for k ∈ K1. Hence, ψ̄ = 0 because γ ∈ (0, 1). Since

{
λk+1

}
is bounded,

taking subsequences if necessary, we can guarantee the existence of λ̄ such
that limk∈K1 λ

k+1 = λ̄. Thus, taking limits for k ∈ K1 we have that σ(x̄, λ̄) ≤
γψ̄ = 0. Hence, we conclude that x̄ is a stationary point of problem (1).

(b) Suppose that K1 has finite many elements. Then there exists k1 ≥ k0

such that ‖h(xk+1)‖ ≤ γ‖h(xk)‖ for all k ≥ k1. Taking limits for k ∈ K and
using (35) we have that h(x̄) = 0. Passing onto a sebsequence if necessary,
assume that limk∈K λ

k = λ̄ (because of the boundedness of
{
λk
}

). Taking
limits in (30) for k ∈ K, using (36) and the facts that h(x̄) = 0 and ρk = ρ̄ for
k large enough, we deduce that

lim
k∈K

νk+1 = λ̄. (37)

From (35), (36), (37) and the fact that {Mk} are uniformly bounded, taking
limits in (28) for k ∈ K, we conclude that

〈∇f(x̄) +∇h(x̄)λ̄, y − x̄〉 ≥ 0, ∀ y ∈ Ω.

This condition is equivalent to ΠΩ

(
x̄− ∂L

∂x (x̄, λ̄)
)
− x̄ = 0, which means that

σ(x̄, λ̄) = 0. Hence, we conclude that x̄ is a stationary point of problem (1).
Proof of 2. Let us consider the case when {ρk} tends to infinity. Taking

limits in (29) we obtain

lim
k∈K

νk+1

ρk
= h(x̄). (38)

where we have used (35), (36) and the fact that {λk/ρk} converges to zero by
Proposition 2.

Dividing (28) by ρk, and using (35), (36), (38) and the fact that {Mk} are
uniformly bounded, taking limits for k ∈ K, we conclude that

〈∇h(x̄)h(x̄), y − x̄〉 ≥ 0, ∀ y ∈ Ω.

Hence, we conclude that x̄ is a stationary point of problem (34). ut

5 Penalty boundedness results

From now on we will prove that, under suitable conditions, the sequence of
penalty parameter {ρk} generated by Algorithm 2 remains bounded. Let us
assume the following assumptions:

Assumption A1 {xk} converges to a feasible point x̄.

Assumption A2 There is no vector λ 6= 0 such that −∇h(x̄)λ ∈ NΩ(x̄) and
there is only one vector λ̄ of associated multipliers (this condition is equivalent
to the Strict Mangasarian–Fromovitz constraint qualification).
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Assumption A3 There exists k0 ∈ N such that λ̄ ∈ (−αL
√
ρke, αU

√
ρke)

for all k ≥ k0.

Assumption A4 The second order sufficient optimality conditions is satisfied
at (x̄, λ̄), where λ̄ is a Lagrange multiplier associated to x̄. That is,〈

∂2L

∂x2
(x̄, λ̄)d, d

〉
> 0 ∀d ∈ C \ {0}. (39)

where

C =

{
d ∈ Rn

∣∣∣∣ 〈∇f(x̄), d〉 = 0, ∇h(x̄)>d = 0,
di ≤ 0 if x̄i = bi, di ≥ 0 if x̄i = ai, i = 1, . . . , n

}
(40)

Assumption A5 The sequence {εk} is chosen according to

εk ≤ χ(σ(xk, λk)) (41)

where χ : (0,+∞)→ (0,+∞) is such that limt→0 χ(t)/t = 0.

We will prove a lemma that establishes the convergence of the dual se-
quence {λk}.

Lemma 4 Let assumptions A1, A2 and A3 hold. Then limk→∞ λk = λ̄.

Proof By A1, xk converges to x̄. By (30), yk converges to x̄.
Suppose that the sequence {νk+1} is unbounded. Taking subsequences if

necessary, assume that νk+1/‖νk+1‖ converges to a unitary vector ν̄. Dividing
(28) by ‖νk+1‖ and taking limits, we obtain that

〈∇h(x̄)ν̄, y − x̄〉 ≥ 0, ∀ y ∈ Ω,

that is equivalent to −∇h(x̄)ν̄ ∈ NΩ(x̄). From A2 we have that ν̄ = 0 and this
leads us to a contradiction.

Let ν̄ be a limit point of {νk+1}. Passing onto subsequences if necessary
and taking limits in (28) we get

〈∇f(x̄) +∇h(x̄)ν̄, y − x̄〉 ≥ 0, ∀ y ∈ Ω.

This means that ν̄ is a Lagrange multiplier associated to x̄. From A2 we
conclude that ν̄ = λ̄. Hence, {νk+1} converges to λ̄.

By A3, νk+1 ∈ [−αL
√
ρke, αU

√
ρke] for k large enough. Therefore λk+1 =

νk+1 since no projection is needed. ut

The next lemma gives a relation between the natural residual (2) and the
distance to the solution.

Lemma 5 If A1–A4 hold, then there exist k0 ∈ N, β1, β2 > 0 such that for
all k ≥ k0,

β1‖(xk, λk)− (x̄, λ̄)‖ ≤ σ(xk, λk) ≤ β2‖(xk, λk)− (x̄, λ̄)‖. (42)
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Proof By Lipschitz continuity of σ and the fact that σ(x̄, λ̄) = 0 we guarantee
the existence of β2 satisfying the right–hand side inequality. By Assumption
A4 and [18, Lemma 5, Theorem 2] there exists β1 > 0 such that σ(x, λ) ≥
β1‖(x, λ)− (x̄, λ̄)‖ for all (x, λ) close enough to (x̄, λ̄). From A1 and Lemma 4
we have that (xk, λk) converges to (x̄, λ̄) and this concludes the proof. ut

The following lemma is a technical result that will be used in the next
theorem.

Lemma 6 Let us assume that A1–A5 hold. Then there exist k1 ∈ N, c1,
c2 > 0 such that(

1− c2
ρk

)
σ(xk+1, λk+1) ≤

(
c1ηk +

c2
ρk

)
σ(xk, λk), (43)

where

ηk =
χ(σ(xk, λk))

σ(xk, λk)
.

Proof By Taylor expansion centered at yk we get

∂L

∂x
(xk+1, λk+1) =

∂L

∂x
(yk, λk+1)+

∂2L

∂x2
(yk, λk+1)(xk+1−yk)+o(‖xk+1−yk‖),

and therefore

∂L

∂x
(xk+1, λk+1) −

[
∂L

∂x
(yk, νk+1) +Mk

(
xk+1 − yk

)]
=

(
∂2L

∂x2
(yk, λk+1)−Mk

)
(xk+1 − yk) + o(‖xk+1 − yk‖)

= O(‖xk+1 − yk‖), (44)

where we are using that λk+1 = νk+1 for k large enough (see Lemma 4), the
continuity of the second derivative of L with respect to x and the fact that
{Mk} are uniformly bounded.

By definition of projection and (28) we have that

xk+1 = ΠΩ

(
xk+1 −

[
∂L

∂x
(yk, νk+1) +Mk

(
xk+1 − yk

)])
. (45)

Since ΠΩ is nonexpansive, using (44) and (45) we obtain∥∥∥∥ΠΩ

(
xk+1 − ∂L

∂x
(xk+1, λk+1)

)
− xk+1

∥∥∥∥ ≤ O(‖xk+1 − yk‖). (46)

On the other hand, by using (29) and the fact that λk+1 = νk+1 for k large
enough, we get

h(xk+1) = h(yk) +∇h(yk)>(xk+1 − yk) + o(‖xk+1 − yk‖)

=
1

ρk
(λk+1 − λk) + o(‖xk+1 − yk‖).
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Then, by the previous two equations, there exists k1 ∈ N, c1, c2 > 0 such
that for all k ≥ k1,

σ(xk+1, λk+1) ≤ O(‖xk+1 − yk‖) +
√

2‖h(xk+1)‖

≤ O(‖xk+1 − yk‖) +

√
2

ρk
‖λk+1 − λk‖

≤ c1εk +

√
2

ρk
‖λk+1 − λ̄‖+

√
2

ρk
‖λk − λ̄‖

≤ c1εk +
c2
ρk
σ(xk+1, λk+1) +

c2
ρk
σ(xk, λk),

where in the third inequality we use (30) and for the last inequality we use
(42).

Thus, by using A5, we conclude that(
1− c2

ρk

)
σ(xk+1, λk+1) ≤

(
c1ηk +

c2
ρk

)
σ(xk, λk).

ut

Now, under the set of assumptions of this section, we prove the following
result about the boundedness of the penalty parameter.

Theorem 3 Suppose that Assumptions A1–A5 hold. Then, the sequence of
penalty parameter {ρk} is bounded.

Proof By contradiction, suppose that limk→∞ ρk =∞. Since limk→∞ ηk = 0,
then for k sufficiently large we have

1− c2
ρk

>
1

2
and c1ηk +

c2
ρk

<
γ

2
,

where γ is a parameter defined in Algorithm 2. Hence, by (43),

σ(xk+1, λk+1) ≤ γσ(xk, λk),

for k large enough.

Since γ < 1, {σ(Xk)} is a strictly decreasing sequence, which implies that
ψk = min{ψk−1, σ(Xk)} = σ(Xk) for k sufficiently large. Thus, σ(Xk+1) ≤
γψk. Therefore, by Step 3 of the Algorihm 2 we conclude that ρk+1 = ρk for
k large enough, in contradiction with the initial assumption. ut

Theorem 4 Let us assume that A1–A5 hold. Then, given q ∈ (0, 1) there
exists ρ̄ such that if ρk̄ ≥ ρ̄ for some k̄, it holds that the sequence {(xk, λk)}
converges Q-linearly to (x̄, λ̄) with rate equal to q.
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Proof Let us define ρ̄ ≥ (qβ1 +β2)c2/(qβ1), where β1 and β2 are the constants
defined as in (42), and c2 is given by Lemma 6. Due to the fact that {ρk} is
nondecreasing, for all k ≥ k̄ we have that

c2
ρk
≤ qβ1

qβ1 + β2
and

(
1− c2

ρk

)−1

≤ qβ1 + β2

β2
. (47)

Hence,

‖(xk+1, λk+1)− (x̄, λ̄)‖ ≤ 1

β1
σ(xk+1, λk+1)

≤ 1

β1

(
1− c2

ρk

)−1(
c1ηk +

c2
ρk

)
σ(xk, λk)

≤
(
qβ1 + β2

β1β2
c1ηk +

q

β2

)
σ(xk, λk)

≤
(
qβ1 + β2

β1
c1ηk + q

)
‖(xk, λk)− (x̄, λ̄)‖,

where for the first inequality we use the left-hand side of (42), the second
inequality comes from (43), for the third inequality we use (47) and the last
inequality follows from the right-hand side relation in (42).

Since {(xk, λk)} converges to (x̄, λ̄) and limk→∞ ηk = 0, we conclude that
the primal-dual sequence converges with Q-linear rate equal to q. ut

6 Numerical experiments

In this section we show preliminary numerical results obtained with the Algo-
rithm 2. We have considered a set of nonlinear equality constrained problems
from the Cuter collection [15]. All tests were performed on a PC running
Linux, the algorithm was written in Fortran 2003 and compiled with the Intel
Compiler 12.0.

The following choices were made and used on all test problems:

- Algorithmic parameters: γ = 0.99, ε = 10−6, εk = 1/(k + 1)2 for all k ≥ 0,
r = 0.99 and αL = αU = 100.

- Initialization parameters: ρ0 = 0.01, θ0 = 0.9, Qk,0 is the identity matrix
for all k ≥ 0.

- Starting points: λ0 the origin, and x0 is taken from the corresponding
problem from the Cuter collection.

- For solving the quadratic programming problem (15) we used an imple-
mentation of the Goldfarb-Idnani algorithm [20] written by B. Turlach
[32].

We remark that we only want to show viability of the approach proposed.
An optimal choice of the parameters is out of the scope of this paper.

In Table 1 we report, for each problem, the problem name in the Cuter
collection, the number of variables n , the number of constraints m, the last
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Table 1 Numerical experiments from the Cuter collection

Name n m ρ̄ f(x̄) σ(x̄, λ̄) qp calls

BT1 2 1 1.0E+02 -1.000003 0.3492216E-07 5,2,1
BT2 3 1 1.0E+09 0.3256820E-01 0.1455329E-07 1,1,5
BT3 5 3 1.0E+01 4.093022 0.4014316E-06 1,3,2
BT4 3 2 1.0E+07 -3.704768 0.4203023E-11 1,1,3
BT5 2 2 1.0E-01 961.7152 0.4927916E-06 1,1,1
BT6 5 2 1.0E+06 0.2770448 0.1040323E-06 1,1,4
BT9 4 2 1.0E+00 -1.000000 0.4629197E-06 1,1,1
BT10 2 2 1.0E+00 -1.000000 0.4827694E-06 1,1,1
BT11 5 3 1.0E+03 0.8248918 0.2520146E-06 2,1,3
BT12 5 3 1.0E+00 6.188119 0.4814203E-06 1,1,1
BYRDSPHR 3 2 1.0E-02 -4.683300 0.4981593E-06 1,1,1
DIXCHLNG 10 5 1.0E+04 0.2920977E-11 0.1259454E-06 12,2,11
HS6 2 1 1.0E+01 0.5149135E-13 0.4110476E-06 1,1,1
HS7 2 1 1.0E+02 -1.732051 0.1332312E-07 1,3,1
HS8 2 2 1.0E+00 -1.000000 0.4417480E-06 1,1,1
HS9 2 1 1.0E+00 0.5000000 0.4878523E-06 1,1,1
HS27 3 1 1.0E+06 0.4000011E-01 0.1687748E-09 1,1,6
HS28 3 1 1.0E+04 0.3543495E-13 0.3856428E-06 1,2,1
HS39 4 2 1.0E+02 -1.000000 0.4629197E-06 1,1,1
HS42 4 2 1.0E+03 13.85786 0.7307294E-08 1,1,2
HS48 5 2 1.0E+12 0.2933576E-29 0.2884765E-13 1,2,5
HS49 5 2 1.0E-02 0.3503371E-11 0.1038659E-07 2,1,18
HS50 5 3 1.0E+06 0.6883040E-15 0.7299110E-07 1,1,2
HS51 5 3 1.0E+13 0.5053640E-30 0.1055938E-13 1,3,4
HS52 5 3 1.0E+02 5.326644 0.2636263E-07 3,2,4
HS61 3 2 1.0E+02 -143.6461 0.3309869E-07 1,2,1
HS77 5 2 1.0E+06 0.2415051 0.1130220E-07 1,1,3
HS79 5 3 1.0E+05 0.7877682E-01 0.2686601E-08 1,1,2
MARATOS 2 1 1.0E-01 -1.000000 0.3845145E-06 1,1,1
ORTHREGB 27 6 1.0E-01 0.3004344E-13 0.3513701E-06 1,1,1
S316-322 2 1 1.0E+03 334.3146 0.3563555E-07 2,1,4

penalty parameter ρ̄, the optimal objective function f(x̄), the natural residual
σ(x̄, λ̄) and number of calls to the quadratic solver in the last three iterations.

Our implementation found the same solutions obtained by LANCELOT
[24] in the whole set of test problems. In case of problems BT3 and HS49 we
used different starting points.

We observe that the penalty parameter ρ remains bounded (ρ ≤ 106)
in 90% of the problems, which confirms that, according to Theorem 2, the
solution found by the Algorithm 2 is a KKT point.

In most of the problems we perform few calls to the quadratic solver in
the last iterations. Notice that if we perform one call to the quadratic solver,
it means that ‖Dk,0‖ < εk (see Algorithm 2). According to Remark 1 the last
iterations of Algorithm 2 are the same as the iterations of the sSQP method.

This preliminary numerical results are promising and show the robustness
of our algorithm.
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7 Conclusions

In this paper we present a new hybrid method for solving equality constrained
optimization problems. The proposed method combines: (a) the sSQP method,
which has good local behavior; (b) the augmented Lagrangian method, which
has global convergence properties; and (c) the IR method, which is an appro-
priate strategy to inexactly solve the subproblems.

In our method, the ill-conditioned subproblems, due to large values of
the penalty parameters, are overcome. Moreover, no constraint qualifications
are needed. This features makes this formulation very attractive. Besides that,
this method presents an interesting connection between augmented Lagrangian
methods and inexact-restoration methods.

It has been proved that the algorithm is well-defined and that any limit
point of the sequence generated by the algorithm converges to a KKT point or
to a stationary point of the problem that minimizes the infeasibility, depending
on the boundedness of the sequence of the penalty parameters.

Moreover, if the sequence generated by the algorithm converges to a feasible
point, and some constraint qualifications hold (strict Mangasarian-Fromovitz
and second order sufficient optimality conditions), then the penalty parameter
remains bounded, and the primal-dual sequence converges Q-linearly.

Regarding numerical experiments, the algorithm was implemented in For-
tran 2003 and tested on a set of problem from the Cuter collection. The algo-
rithm found the same solutions obtained by LANCELOT and confirmed the
theoretical results.
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