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Abstract

This paper is concerned with the computational implementation of the
robust RA estimates for spatial autoregressive (AR-2D) models with three
parameters. The computational behavior of the RA estimators for AR-2D
models which depends on the number of parameters in the model, has been
studied for those models containing at most two parameters. A simulation
study is carried out to compare the relative performance of GM and RA esti-
mators under additive contamination, and to compare the RA and GM esti-
mators with the M and LS estimators. This implementation can be explored
in models with more than three parameters.
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1 Introduction and Motivation

Most of the real images of interest, e.g. the images of cultivated �elds and con-
centration of population are naturally rich in texture, level of gray, etc.. The same
thing happens to the images of geographical regions that allows the making of maps
and, in general, almost all the images of the earth. In this sense the AR-2D model
is an adequate model to show the diversity of the real sceneries. Another desirable
feature of a model for images is parsimony, which is, the capability to represent dif-
ferent real sceneries without requiring a large number of parameters. To illustrate
the capability of this model, in Figure 1 we show four images generated from AR-2D
models with di¤erent sets of parameters.
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(a) (b)

(c) (d)

Figure 1: (a) Image from an AR-2D model with 3 parameters, (b) Image from an
AR-2Dmodel with 5 parameters (c) Image from an AR-2Dmodel with 8 parameters,
(d) Image from an AR-2D model with 10 parameters.
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Figure 2: Images generated from an AR-2D model with 3 parameters.

The spatial autoregressive models have been used extensively to represent images
(Bennett and Khotanzad, 1999). In particular, the �rst order AR-2Dmodel has been
used to represent real scenaries (see Kashyap and Eom, 1988). Basu and Reinsel
(1993), derived the correlation structure and the maximum likelihood estimators of
the parameters for a �rst order AR-2D model. In this study, we provide an example
to illustrate the expressivity of the �rst order AR-2D model to represent several
di¤erent textures (see Figure 2).
The importance of contaminated models has been addressed by several authors

in the area of image processing and image analysis (Kashyap and Eom, 1988 and
Zhu and Beex 1994). Since a single outlier can produce bias and a large variance,
most of the proposals in this direction are oriented to provide robust estimations
for parametric models that represent the image intensity of a given picture by a
small number of parameters. In this paper we deal with robust parameter esti-
mation of contaminated weakly stationary random processes. These models have
been extensively studied in the context of image processing for modelling blurred
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images. Allende, Galbiati and Vallejos (2001) describe an algorithm base on GM
estimation to restore additively contaminated images. Later a modi�ed version of
this algorithm was studied by Vallejos and Mardesic (2004).
In the literature the M, GM, and RA estimators have been addressed by several

authors. The RA estimators for spatial AR-2D models (Ojeda, Vallejos and Lucini,
2002) are extensions of the RA estimators introduced by Bustos and Yohai (1986)
in the context of time series. The RA estimator is less sensitive than the M and GM
estimators when the process has been contaminated with additive outliers. Another
advantage of the RA estimator is that its consistency and asymptotic normality
have been studied in the context of spatial AR models. However, the asymptotic
properties of the M and GM estimators in this context were not studied.
In this paper the implementation of the robust RA estimator on AR-2D models

with three parameters is studied. We found two di¢ culties in the computational
implementation of the RA estimator. First, the RA estimator is the solution of a
highly nonlinear system of equations, hence a large number of parameters in the
model will require more computational time. Second, the de�nition of the RA esti-
mator requires a causal representation of the process. In general this representation
can involve complex coe¢ cients. In fact, a spatial AR-2D model is de�ned (Martin,
1996) as,

�(B1; B2)X(i; j) = e(i; j); (1)

where
�(B1; B2) =

X
k

X
l

�(k; l)Bk
1B

l
2;

with B1X(i; j) = X(i � 1; j); B2X(i; j) = X(i; j � 1) and e(i; j) is a collection of
uncorrelated random variables with mean zero and the same variance. If the sums
for �(B1; B2) begin at k = l = 0; the process is a top (left) quadrant process with
�(0; 0) = 1: Assume that the complex valued polynomial �(z1; z2) is not zero for
any z1; and z2; which simultaneously satisfy jz1j < 1 and jz2j < 1: Such a process is
called causal autoregressive process. Notice that in this case,

X(i; j) = �(B1; B2)
�1�(i; j); (2)

where �(z1; z2)�1 can be written using a Laurent expansion as

�(z1; z2)
�1 =

X
k;l

 klz
k
1z
l
2:

To de�ne a �nite version of (1) in a more general context, let X = fX(s) : s 2
S � Z2g be a real random process over the probability space (
; F; �). Without loss
of generality suppose that E(X(s)) = 0; for all s 2 S, and let e = fe(s) : s 2 Sg be
a gaussian white noise process over (
; F; �). X will be called a real AR-2D process
with three parameters if it is stationary, and

X(m;n)�
X
(k;l)2T

�(k; l)X(m� k; n� l) = e(m;n);
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where �(k; l) are the parameters of the model such that the polynomial P (z1; z2) =
1�
P

(k;l)2T �(k; l)z
k
1z
l
2 is not null in the setD

� = f(z1; z2) 2 C2 : jz1j = jz2j = 1g, and
T is given by {(1,0),(1,1),(0,1) }. Because of the uniqueness of representation (2),
the coe¢ cients  kl can be obtained using a multinomial expansion for �(z1; z2)

�1.
Basu and Reinsel (1993) found conditions on the parameters to have an in�nite
moving average representation of X. These conditions are as follows: i) j�(k; l)j <
1; for k; l = 0; 1; ii) (1+�2(1; 0)��2(0; 1)��2(1; 1))2�4(�(1; 0)+�(0; 1)�(1; 1))2 > 0;
iii) (1��2(0; 1)) > j�(1; 0)+�(0; 1)�(1; 1)j: Then using a multinomial expansion for
the polynomial (1��(1; 0)z1��(0; 1)z2��(1; 1)z1z2)�1, X(m;n) can be written as

X(m;n) =
1X
k=0

1X
l=0

1X
r=0

(k + l + r)!

k! l! r!
�k(1; 0)�l(0; 1)�r(1; 1)e(m�k� r; n� l� r): (3)

(See also Tjostheim, 1978). In Section 2 we use (3) to de�ne the RA estimator for
models like (1).
The multinomial expansion used to derive (3) is not restrictive to models with

three parameters. For a high dimensional parameter space the same expansion can
be used.
The paper is organized by sections. Section 2 is concerned with the implemen-

tation of the RA estimator. Section 3 presents a simulation study to observe the
sensitivity of the estimators under additive contamination. We compare the behav-
ior of the RA and GM estimators with the M and LS estimators. Finally, in Section
4 we present some concluding remarks.

2 The RA and GM Estimators

Let X be a zero mean AR-2D process with V ar(e(m;n)) = �2. Assume that X is
observed on a strongly causal squared window WM = f(k; l) 2 S : 0 � k; l � Mg:
(Guyon, 1995) Let us de�ne WM n T = f(m;n) 2 WM : (m� 1; n� 1) 2 WMg, and
�T = (�(1; 0); �(1; 1); �(0; 1)). We de�ne the residual of order (m;n) in � of X as
follows,

r(m;n)(�) =

8<:
�
P

(k;l)2T 0 �(k; l)X(m� k; n� l) if (m;n) 2 (Wm n T )
0 if otherwise

where T 0 = T [f(0; 0)g and �(0; 0) = �1. Then the RA estimator �̂ of � is de�ned
by the following equations

1X
k=0

1X
l=0

1X
r=0

p�(k; l; r)
X

(m;n)2(WMnT )
�(
r(m;n)(�)

�̂
;
r(m� i� k � r; n� j � l � r)(�)

�̂
) = 0;

(4)X
(m;n)2(WMnT )

 (
r(m;n)(�)

�̂
) = 0;
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where �̂ is estimated independently by

�̂ =Med(jr(m;n)(~�)j : (m;n) 2 (WM n T ))=0:6745;

the constant 0.6745 is the median of the absolute value of a standard normal random
variable,

p�(k; l; r) =
(k + l + r)!

k! l! r!
�(1; 0)k�(0; 1)l�(1; 1)r; (5)

� is a continuous, bounded and odd function in two variables,  is a continuous,
bounded and odd function, and ~� is the least square estimator of �. Suitable
proposals for � and  are discussed in Bustos and Yohai (1986).
Note from (4) that the de�nition of the RA estimator involves in�nite sums.

However, for computing purposes we need to consider a �nite version of equation
(4). One way to accomplish this is to consider a �nite support based in the fact
that the residuals are non-null only for those values belonging toWm nT (see Ojeda,
Vallejos and Lucini, 2002). Here, we propose an alternative way to carry out the
computational implementation of the RA estimator. Notice from (5) that if k = l =
r, then p�(k) is decreasing when k increases, because X is stationary. Hence we
can �nd a value k0 = min(ks), where ks is a solution of the inequality

p�(k) < � (6)

with � small. Stirling�s formula can be used to get an approximated version of (6).
To obtain the RA estimator of �, instead of (4) we consider the following equation

k0X
k=0

k0X
l=0

k0X
r=0

p�(k; l; r)
X

(m;n)2(WMnT )
�(
r(m;n)(�)

�̂
;
r(m� i� k � r; n� j � l � r)(�)

�̂
) = 0:

(7)
Two types of contamination will be introduced, innovation and additive outliers
(Martin, 1980). The following is a brie�y description of those outliers.

Innovation Outliers: In this case the e(n;m)�s in (1) have a F contaminated
Normal distribution noted as F = (1 � �)N(0; �2) + � G, where G is an arbitrary
distribution with variance � 2 � �2. This means that the innovations e(m;n) comes
from a N(0; �2) with probability 1�� and from an arbitrary distribution G having
greater dispersion with probability �. The e(n;m)�s coming from G are considered
outliers.

Additive Outliers: In this case , it is considered that the ARmodel is not perfectly
observable due to a small fraction � (in practice � � 0:1) of observations which are
generated by the outlier process {�(i; j)�(i; j) }, where �(i; j) is such that P [�(i; j) =
1] = � and P [�(i; j) = 0] = 1 � �, and the variables �(i; j) have an arbitrary
distribution H. � is similar to the innovation outliers case. Thus the observational
model is

Y (i; j) = X(i; j) + �(i; j)�(i; j): (8)

Therefore with probability (1��) the AR model X(i; j) itself is observed, and with
probability � the observations X(i; j) are corrupted by an error with distribution
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H. Alternatively to the RA estimator of (8), the robust GM-estimator can be used,
which is obtained by solving the equationX

ij

tij 

�
Y (i; j)� �TZ(i; j)

ij�

�
ZT (i; j) = 0; (9)

where Z(i; j)T = [ Y (i� 1; j); Y (i� 1; j� 1); Y (i; j� 1)], the in�uence function  is
bounded and continuous, and tij and ij are weights corresponding to the respective
Z(i; j). There are several proposals for the choice of  as the robustness and the
rate of convergence of the procedure that depend upon this function. Further details
can be found in Martin (1980).
In the next section we will develop a simulation study to observe the performance

of the RA estimator with respect to the M and GM estimators when the process is
contaminated with additive contamination.

3 A simulation study

The simulations were performed for a grid of size 16�16 and for six sets of parameters

(i)�(1; 0) = 0:5; �(1; 1) = 0:1; �(0; 1) = 0:3;

(ii)�(1; 0) = 0:3; �(1; 1) = 0:2; �(0; 1) = 0:2;

(iii)�(1; 0) = 0:8; �(1; 1) = 0:7; �(0; 1) = �0:6;
(iv)�(1; 0) = 0:1; �(1; 1) = 0:2; �(0; 1) = 0:05;

(v)�(1; 0) = 0:15; �(1; 1) = 0:07; �(0; 1) = �0:1;
(vi)�(1; 0) = 0:3; �(1; 1) = 0:2; �(0; 1) = 0:06:

For additive contamination we considered �2 = 1; � 2 = 50; and � = 0:1: Distribution
H was supposed to be N(0; � 2). Then, for each combination, 500 simulations of the
data set were generated and the LS, RA, M, and GM estimators were computed.
The value of k0 is computed for each set of parameters from (6). In all cases we
have considered � = 10�9. For example in cases (i) k0 = 14, (ii) k0 = 18, and (iii)
k0 = 50. The M estimates were computed as in Kashyap and Eom (1988). The
GM estimates were obtained using the algorithm proposed by Allende, Galbiati and
Vallejos (1998). The RA estimates were obtained from (7) by using the Newton-
Raphson method. In this section we present only a brief summary of our results.
Table 1 shows the results of a Monte Carlo study. In all cases the mean, stan-

dard deviation and the empirical mean squared error were computed. According to
Vallejos and Garcia-Donato (2006)

MSE =
1

N

NX
i=1

(�̂� �)2: (10)

where N is the number of simulation runs. Notice from Table 1 that in most of the
cases, the smallest values of the MSE are for the GM and RA estimators. The bias
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and variance of the LS and M estimators are strongly a¤ected by the outliers. How-
ever, the GM and RA estimators are more resistant to the additive contamination.
This patterns are visually con�rmed in Figure 3. The performance of the estimators
for the other cases not shown in Figure 3 is similar. In all cases the behavior of the
GM and RA estimators are comparable and there is no clear patterns to prefer one
of them.
The asymptotic normality of the GM estimator has not been studied. In the

one-dimensional case, theoretical properties were studied by Bustos (1982), however
its good robust behavior was reported by Allende, Galbiati and Vallejos (2001). The
asymptotic properties of the RA estimator in the context of time series has been
examined by Bustos and Yohai (1986). The consistency of the RA estimator for 2D
autoregressive models has been shown by Ojeda (1999). The asymptotic normality
of the RA estimator for the same models was examined by Bustos et, al. (2006). To
illustrate the normality of the RA estimator we plot the estimated density function
for case (ii), based on 500 simulations. The theoretical value is �(0; 1) = 0:2: In
Figure 4 we observe that there is no large departure from normality. In all cases the
asymptotic normality was not rejected by the Anderson-Darling test at the level of
signi�cance � = 0:05:

Case (vi) in the simulation study corresponds to a model for which the para-
meters satisfy �(1; 1) = �(1; 0)�(0; 1): These models are called doubly-geometric
processes since its correlation function is the product of two geometric terms. Que-
nouille (1949) used its correlation structure for numerical comparison between cer-
tain planar sampling schemes. These processes are a special case of Moran�s (1973)
strongly Markovian process, and have also been given by Pichard (1978) as an ex-
ample of unilateral Ising model. Martin (1979), (1990), studied the properties of the
maximum likelihood estimators for the parameters of a doubly-geometric process.
The standard deviation of the RA estimator is smaller than the standard deviation
of the GM estimator. However, the GM estimator has smaller bias. In Figure 5 we
show the boxplot for case (vi). The robust estimations performed well for �(1; 0)
and �(0; 1). All estimations of �(1; 1) are strongly biased.
The performance of the GM and RA estimators were compared under several

simulation studies that are not reported here. In all cases the behavior was similar.
For window sizes of 32 � 32 and 64 � 64 we noted that the RA estimator behaves
slightly better than the GM estimator and much better than the M and LS estima-
tors. The same conclusion was reported by Ojeda, Lucini and Vallejos (2002). Thus
we expect to have more precise RA estimations when the window size increases.
The main drawback of the RA estimator is that it requires more time to be

computed than the GM estimator. This is because the system of equations (7) is
highly nonlinear and depends on the dimension of the parameter space.
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Figure 3: LS, M, GM, and RA estimators for cases (i) and (ii).
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Window Size 16� 16

�̂(1; 0) s.d.(�̂(1; 0)) MSE �̂(1; 1) s.d(�̂(1; 1)) MSE �̂(0; 1) s.d.(�̂(0; 1)) MSE
case (i)

LS 0.1784 0.0787 0.1095 0.1214 0.0707 0.0052 0.1286 0.0746 0.0349
M 0.1893 0.0665 0.1009 0.1236 0.0509 0.0031 0.1294 0.0559 0.0321
GM 0.4087 0.0825 0.0151 0.1427 0.0795 0.0081 0.2391 0.0770 0.0096
RA 0.4189 0.0905 0.0147 0.1241 0.0698 0.0054 0.2519 0.0800 0.0087

case (ii)
LS 0.0805 0.0666 0.0525 0.0738 0.0677 0.0204 0.0613 0.0641 0.0233
M 0.0827 0.0475 0.0494 0.0731 0.0445 0.0180 0.0636 0.0430 0.0204
GM 0.2396 0.0792 0.0098 0.1715 0.0768 0.0066 0.1619 0.0738 0.0068
RA 0.2333 0.0787 0.0106 0.1378 0.0706 0.0088 0.1679 0.0749 0.0066

case (iii)
LS 0.3656 0.1125 0.2013 0.1278 0.0821 0.3340 -0.1238 0.0770 0.2326
M 0.4110 0.1136 0.1641 0.1339 0.0736 0.3258 -0.1216 0.0643 0.2329
GM 0.6825 0.0812 0.0203 0.4529 0.1007 0.0711 -0.3831 0.0990 0.0567
RA 0.6647 0.1192 0.0324 0.4161 0.1525 0.1037 -0.3481 0.1206 0.0779

case (iv)
LS 0.0174 0.0675 0.0113 0.0369 0.0652 0.0308 0.0194 0.0649 0.0051
M 0.0195 0.0371 0.0078 0.0379 0.0344 0.0274 0.0161 0.0339 0.0022
GM 0.0758 0.0723 0.0058 0.1474 0.0736 0.0081 0.0421 0.0744 0.0055
RA 0.0644 0.0608 0.0049 0.1099 0.0631 0.0120 0.0473 0.0569 0.0032

case (v)
LS 0.0262 0.0640 0.0194 0.0095 0.0627 0.0075 -0.0203 0.0649 0.0105
M 0.0275 0.0367 0.0163 0.0097 0.0351 0.0048 -0.0189 0.0345 0.0077
GM 0.1067 0.0764 0.0077 0.0484 0.0738 0.0059 -0.07437 0.0744 0.0061
RA 0.0782 0.0577 0.0084 0.03232 0.0547 0.0044 -0.0509 0.0545 0.0053

case (vi)
LS 0.0612 0.0707 0.0620 0.0314 0.0652 0.0050 0.0529 0.0671 0.0261
M 0.0650 0.0438 0.0571 0.0319 0.0352 0.0020 0.0503 0.0394 0.0239
GM 0.2301 0.0786 0.0110 0.0615 0.0727 0.0052 0.1546 0.0790 0.0083
RA 0.1964 0.0721 0.0159 0.0564 0.0590 0.0034 0.1394 0.0641 0.0077

Table 1: LS, M, GM, and RA estimators for cases (i)� (vi).

11



4 Conclusions

In this paper the performance of the GM and RA estimators for �rst order spatial
autoregressive models was examined. Using Monte Carlo simulation we observed
that the performance of the RA and GM estimators are highly superior than the
M and LS estimators. The behavior of the GM and RA estimators is comparable
under additive contamination. All estimators underestimate the true value. The
asymptotic behavior of the GM has not been studied, but the computational im-
plementation is simpler than the RA estimator and for small window size has the
best performance. Robust estimators for the doubly-geometric process need further
research.
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