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Abstract. Let k be an algebraically closed field of characteristic 0 and

let Dm be the dihedral group of order 2m with m = 4t, t ≥ 3. We

classify all finite-dimensional Nichols algebras over Dm and all finite-

dimensional pointed Hopf algebras whose group of group-likes is Dm, by

means of the lifting method. As a byproduct we obtain new examples

of finite-dimensional pointed Hopf algebras.

Introduction

This paper is concerned with the classification of finite-dimensional Hopf
algebras over an algebraically closed field k of characteristic 0. In particular,
we study pointed Hopf algebras over dihedral groups Dm, m = 4t ≥ 12, using
the lifting method, which leads to the study of finite-dimensional Nichols
algebras in the category kDm

kDm
YD of left Yetter-Drinfeld modules over Dm.

For more examples over Dp, p an odd prime or 4, see [AG1, Section 3.3].
A significant progress has been achieved in [AS4] in the case of pointed

Hopf algebras with abelian group of group-likes. When the group of group-
likes is not abelian, the problem is far from being completed. Some hope is
present in the lack of examples: in this situation, Nichols algebras tend to be
infinite dimensional, see for example [AZ, AF2, AFZ, AFGV, FGV1, FGV2].
Nevertheless, examples on which the Nichols algebras are finite dimensional
do exist. Over S3 and S4 these algebras were determined in [AHS]. All
of them arise from racks associated to a cocycle, and in loc. cit and [GG]
the classification of pointed Hopf algebras over S3 and S4 is completed,
respectively.

Let G be a finite group and let A0 be the group algebra of G. The main
steps of the lifting method for the classification of all finite-dimensional
pointed Hopf algebras with group G are:

(a) determine all Yetter-Drinfeld modules V such that the Nichols alge-
bra B(V ) is finite dimensional,

(b) for such V , compute all Hopf algebras A such that grA ' B(V )#A0,
the Radford-Majid product. We call A a lifting of B(V ) over G.
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(c) Prove that any finite-dimensional pointed Hopf algebras with group
G is generated by group-likes and skew-primitives.

Assume G = Dm, m = 4t, t ≥ 3. In Section 2 we complete step (a),
that is, we determine all V ∈ kDm

kDm
YD such that the Nichols algebra B(V ) is

finite-dimensional, and we describe explicitly these Nichols algebras. Then
we prove step (b) and (c) in Section 3, which are given by Theorem B and
Theorem 3.2, respectively.

Summarizing, the main theorems of the present paper are the following;
for definitions see Definitions 2.6, 2.9 and 2.14.

Theorem A. Let B(M) be a finite-dimensional Nichols algebra in kDm
kDm
YD.

Then B(M) '
∧
M , with M isomorphic either to MI , or to ML, or to

MI,L, with I ∈ I, L ∈ L and (I, L) ∈ K, respectively.

The proof of the preceeding theorem uses the classification of finite-
dimensional Nichols algebras of diagonal type due to I. Heckenberger [H].

Although all Nichols algebras in kDm
kDm
YD turn out to be exterior algebras,

we write B(M) to enphasize the Yetter-Drinfeld module structure. The
following theorem gives all liftings of these families of Nichols algebras.

Theorem B. Let H be a finite-dimensional pointed Hopf algebra over Dm.
Then H is isomorphic to one of the following algebras

(a) B(MI)#kDm, with I = {(i, k)} ∈ I, k 6= n.
(b) B(ML)#kDm, with L ∈ L.
(c) AI(λ, γ), with I ∈ I, |I| > 1 or I = {(i, n)} and γ ≡ 0.
(d) BI,L(λ, γ, θ, µ), with (I, L) ∈ K, |I| > 0 and |L| > 0.

Conversely, any Hopf algebra appearing in the list is a lifting of a finite-
dimensional Nichols algebra in kDm

kDm
YD.

After the study of finite-dimensional pointed Hopf algebras over S3,S4,
this theorem is the first result that gives an infinite family of non-abelian
groups where the classification of finite-dimensional pointed Hopf algebras
with non-trivial examples is completed and, unlike the symmetric groups
case, it provides for each dihedral group infinitely many non-trivial finite-
dimensional pointed Hopf algebras.

The paper is organized as follows. In Section 1 we establish conventions
and recall some basic facts about pointed Hopf algebras H such as the
coradical filtration, the grading associated to it and the category H0

H0
YD of

Yetter-Drinfeld modules over the corradical. If G = G(H), the irreducible
modules of H0

H0
YD are parametrized by pairs (O, ρ), where O is a conjugacy

class of G and ρ is a simple representation of the centralizer of an element
σ ∈ O. At the end of this first section we recall the type D-criterium
[AFGV, Thm. 3.6], which helps to determine when the Nichols algebra
B(O, ρ) associated to (O, ρ) is infinite-dimensional, depending only on the
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rack structure of the conjugacy class O. In Section 2 we work with Nichols
algebras over the dihedral groups Dm, with m = 4t ≥ 12 and give the proof
of Theorem A. We begin by determining which irreducible modules give
rise to finite-dimensional Nichols algebras and then we extend our study to
arbitrary modules. It turns out that all finite-dimensional Nichols algebras in
kDm
kDm
YD are exterior algebras of some irreducible modules or specific families

of them. The last section of the paper is devoted to the classification of
pointed Hopf algebras over Dm, that is, to the proof of Theorem B. It
consists mainly in the construction of the liftings of the finite-dimensional
Nichols algebras given in Section 2. To do this, we show first in Theorem
3.2 that all pointed Hopf algebras over Dm, m = 4t ≥ 12 are generated
by group-likes and skew-primitive elements. Then we prove that if H is a
pointed Hopf algebra over Dm, then some quadratic relations must hold and
using these relations we define in Definitions 3.9 and 3.11 two families of
quadratic algebras. Finally, using representation theory we prove that these
algebras together with the bosonizations are all the possible liftings. We
conclude the paper with the study of the isomorphism classes.

1. Preliminaries

1.1. Conventions. We work over an algebraically closed field k of charac-
teristic zero. Let H be a Hopf algebra over k with bijective antipode. We
use Sweedler’s notation ∆(h) = h1 ⊗ h2 for the comultiplication in H, but
dropping the summation symbol, see [S].

The coradical H0 of H is the sum of all simple sub-coalgebras of H. In
particular, if G(H) denotes the group of group-like elements of H, we have
kG(H) ⊆ H0. We say that a Hopf algebra is pointed if H0 = kG(H).
Denote by {Hi}i≥0 the coradical filtration of H; if H0 is a Hopf subalgebra
of H, then grH = ⊕n≥0 grH(n) is the associated graded Hopf algebra, with
grH(n) = Hn/Hn−1 (set H−1 = 0). Let π : grH → H0 be the homogeneous
projection, then R = (grH)coπ is the diagram of H; which is a braided Hopf
algebra in the category H0

H0
YD of left Yetter-Drinfeld modules over H0, and

it is a graded sub-object of grH. The linear space R(1), with the braiding
from H0

H0
YD, is called the infinitesimal braiding of H and coincides with the

subspace of primitive elements P (R) = {r ∈ R : ∆R(r) = r ⊗ 1 + 1 ⊗ r}.
It turns out that the Hopf algebra grH is the Radford-Majid biproduct
grH ' R#kG(H) and the subalgebra of R generated by V is isomorphic to
the Nichols algebra B(V ).

1.2. Yetter-Drinfeld modules over kG. Let G be a finite group. A left
Yetter-Drinfeld module over kG is a left G-module and left kG-comodule M
such that

δ(g.m) = ghg−1 ⊗ g.m, ∀ m ∈Mh, g, h ∈ G,
where Mh = {m ∈M : δ(m) = h⊗m}; clearly, M = ⊕h∈GMh. The support
of M is suppM = {g ∈ G : Mg 6= 0}. Yetter-Drinfeld modules over G are
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completely reducible. Also, irreducible Yetter-Drinfeld modules over G are
parameterized by pairs (O, ρ), where O is a conjugacy class and (ρ, V ) is an
irreducible representation of the centralizer CG(σ) of a fixed point σ ∈ O.
We denote the corresponding Yetter-Drinfeld module by M(O, ρ) and by
B(O, ρ) the associated Nichols algebra.

Here is a precise description of the Yetter-Drinfeld module M(O, ρ). Let
σ1 = σ, . . . , σn be a numeration ofO and let gi ∈ G such that giσg−1

i = σi for
all 1 ≤ i ≤ n. Then M(O, ρ) = ⊕1≤i≤ngi ⊗ V . Let giv := gi ⊗ v ∈M(O, ρ),
1 ≤ i ≤ n, v ∈ V . If v ∈ V and 1 ≤ i ≤ n, then the action of g ∈ G and the
coaction are given by

g · (giv) = gj(γ · v), δ(giv) = σi ⊗ giv,

where ggi = gjγ, for some 1 ≤ j ≤ n and γ ∈ CG(σ). The explicit formula
for the braiding is then given by

c(giv ⊗ gjw) = σi · (gjw)⊗ giv = gh(γ · v)⊗ giv (1)

for any 1 ≤ i, j ≤ n, v, w ∈ V , where σigj = ghγ for unique h, 1 ≤ h ≤ n
and γ ∈ CG(σ). Since σ ∈ Z(CG(σ)), Schur’s Lemma says that σ acts by a
scalar qσσ on V .

The following are useful tools that, under certain conditions, allow us to
determine if the dimension of a Nichols algebra is infinite. These results
are about abelian and non-abelian subracks of a conjugacy class O of G,
respectively.

Lemma 1.1. [AZ, Lemma 2.2] Let G be a finite group, Oσ a conjugacy class
in G. If Oσ is real (i.e. σ−1 ∈ O) and dim B(Oσ, ρ) < ∞, then qσσ = −1
and σ has even order. �

We say that O is of type D if there exist r, s ∈ O such that (rs)2 6= (sr)2

and r and s are not conjugate in some subgroup H of G containing r and s.

Lemma 1.2. [AFGV, Thm. 3.6]. If O is of type D, then B(O, ρ) is infinite-
dimensional for all ρ. �

Let A be a finite abelian group and g ∈ Aut(A). We denote by (A, g) the
rack with underlying set A and rack multiplication x.y := g(y)+(id−g)(x),
x, y ∈ A; this is a subrack of the group A o 〈g〉. Any rack isomorphic to
some (A, g) is called affine.

For instance, consider the cyclic group A = Cn and the automorphism g
given by the inversion; the rack (A, g) is denoted Dn and called a dihedral
rack. Thus, a family (µi)i∈Z/n of distinct elements of a rack X is isomorphic
to Dn if µi . µj = µ2i−j for all i, j.

Lemma 1.3. [AFGaV, Lemma 2.1]. If m > 2, then the dihedral rack D2m

is of type D. �
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2. Nichols algebras over Dm,m = 4t ≥ 12

Let m be a positive integer, m ≥ 3. The dihedral group of order 2m can
be presented by generators and relations as follows

Dm := 〈x, y | x2 = 1 = ym , xy = y−1x〉.
From now on we assume that m = 4t, with t ≥ 3, and set n = m

2 = 2t.

In this section we determine all finite-dimensional Nichols algebra over
Dm, see Theorem A.

2.1. Nichols algebras of irreducible Yetter-Drinfeld modules. In
[AF1, Table 2], it was determined the dimension of Nichols algebras of some
irreducible Yetter-Drinfeld modules over Dm, with m even. Here we com-
plete the study in the case m = 4t ≥ 12, determining the dimension of the
Nichols algebras of the irreducible Yetter-Drinfeld modules coming from the
remaining two conjugacy classes Ox and Oxy.

2.1.1. The conjugacy class of yn. Since yn is central, the conjugacy class and
the centralizer of yn in Dm are Oyn = {yn} and CDm(yn) = Dm, respectively.
The irreducible representations of Dm are well-known and they are of degree
1 or 2. Explicitly, there are:

(i) n− 1 = m−2
2 irreducible representations of degree 2. Set ω an m-th

primitive root of 1; they are given by ρ` : Dm → GL(2,k),

ρ`(xayb) =
(

0 1
1 0

)a(
ω` 0
0 ω−`

)b
, 1 ≤ ` < n. (2)

(ii) 4 irreducible representations of degree 1. They are given by Table 1.

σ 1 yn yb, 1 ≤ b ≤ n− 1 x xy

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 (−1)n (−1)b 1 −1
χ4 1 (−1)n (−1)b −1 1

Table 1. One-dimensional irreducible representations of
Dm, with m = 2n even.

Let ρ be an irreducible representation of CDm(yn) = Dm. Since n is even,
if deg ρ = 1 or ρ = ρ` as in (2) with ` even, then dim B(Oyn , ρ) = ∞.
Indeed, here qynyn 6= −1 and Lemma 1.1 applies. In the cases when ρ = ρ`
as in (2) with ` odd, we have that qynyn = −1. Let M` = M(Oyn , ρ`), then
we have the following lemma.

Lemma 2.1. [AF1, Thm. 3.1 (b) (i)] B(Oyn , ρ`) '
∧
M`, for all ` odd with

1 ≤ ` < n. In particular, dim B(Oyn , ρ`) = 4. �
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Notice that there are t irreducible Yetter-Drinfeld modules with support
Oyn such that its Nichols algebras is finite-dimensional.

2.1.2. The conjugacy class of yi, 1 ≤ i ≤ n − 1. The conjugacy class and
the centralizer of yi in Dm are Oyi = {yi, y−i} and CDm(yi) = 〈y〉 ' Z/m,
respectively. The group of characters of CDm(yi) is

̂CDm(yi) = {χ(k) | 1 ≤ k ≤ m− 1},

where χ(k)(y) := ωk, with ω an m-th primitive root of 1. Let Mi,k =
M(yi, χ(k)). Since Oyi is real, if χ(k)(yi) 6= −1, then dim B(Oyi , χ(k)) =∞,
by Lemma 1.1. Assume that χ(k)(yi) = −1; this amounts to: there exists r,
with r odd and 1 ≤ r ≤ m− 3, such that ik = rn.

Let Ni = {k | 0 ≤ k ≤ m − 1, χ(k)(yi) = −1}. Then, for every i with
1 ≤ i ≤ n − 1 there are cardNi irreducible Yetter-Drinfeld modules with
support Oyi and dim B(Oyi , χ(k)) <∞. Let ω ∈ k be a primitive m-th root
of 1. We define J = {(i, k) : ωik = −1, 1 ≤ i ≤ n− 1, 1 ≤ k ≤ m− 1}.

Remarks 2.2. Notice that if (i,m) = 1, then Ni = {n}. Also,

• if i = 2, then N2 = {t, 3t};
• if i = 3, then N3 = {n} if 3 6 | t, whereas N3 = {2u, 6u, 10u} if t = 3u;
• if i = 4, then N4 = ∅ if 2 6 | t, whereas N4 = {u, 3u, 5u, 7u} if t = 2u.

Lemma 2.3. [AF1, Thm. 3.1 (b) (ii)] B(Oyi , χ(k)) '
∧
Mi,k, for all (i, k) ∈

J . In particular, dim B(Oyi , χ(k)) = 4. �

2.1.3. The conjugacy classes of x and xy. We show that these two conjugacy
classes give rise to infinite-dimensional Nichols algebras.

Lemma 2.4. The classes Ox and Oxy are of type D. Hence dim B(Ox, ρ)
and dim B(Oxy, η) are infinite for all ρ ∈ ĈDm(x) and η ∈ ̂CDm(xy).

Proof. Since the classes Ox and Oxy are isomorphic as racks to the dihedral
rack Dn, the result follows from Lemma 1.3. �

2.2. Nichols algebras of arbitrary Yetter-Drinfeld modules. In this
subsection we determine all finite-dimensional Nichols algebras in kDm

kDm
YD.

Specifically, we prove that they are all exterior algebras over some Yetter-
Drinfeld modules. For such a module, we write B(M) instead of

∧
M to

enphasize the Yetter-Drinfeld module structure.

2.2.1. Nichols algebras over the family {Mi,k}. Recall Mi,k = M(Oyi , χ(k)),
with 1 ≤ i ≤ n− 1, 0 ≤ k ≤ m− 1. We define an equivalence relation in J ,
see Subsection 2.1.2, by

(i, k) ∼ (p, q) if ωiq+pk = 1. (3)



ON POINTED HOPF ALGEBRAS OVER DIHEDRAL GROUPS 7

Conjugacy class Centralizer Rep. dim B(V )

e Dm any ∞
O
y

m
2

= {y
m
2 },

| O
y

m
2
|= 1

Dm χ1, χ2, χ3, χ4,
ρ`, ` even

∞

ρ`, ` odd 4
Oyi = {y±i}, i 6= 0, m2 ,
| Oyi |= 2

Z/m ' 〈y〉 χ(k), ωikm = −1 4

χ(k), ωikm 6= −1 ∞
Ox = {xyj : j even}
| Ox |= m

2

Z/2× Z/2 '
〈x〉 ⊕ 〈y

m
2 〉

ε⊗ ε, ε⊗ sgn,
sgn⊗ sgn, sgn⊗ε

∞

Oxy = {xyj : j odd}
| Oxy |= m

2

Z/2× Z/2 '
〈xy〉 ⊕ 〈y

m
2 〉

ε⊗ ε, ε⊗ sgn,
sgn⊗ sgn, sgn⊗ε

∞

Table 2. Dm, m = 4t with t ≥ 3.

In such a case, one can prove that ωpk = ωiq = −11. We denote by [i, k] =
{(p, q) ∈ J : (p, q) ∼ (i, k)} the class of (i, k) under this equivalence.

Proposition 2.5. Let M = Mi1,k1 ⊕ · · · ⊕Mir,kr with (is, ks) ∈ J for all
1 ≤ s ≤ r. Then dim B(M) < ∞ if and only if (ip, kp) ∼ (iq, kq) for all
1 ≤ p, q ≤ r. In such a case, B(M) '

∧
M and dim B(M) = 4r.

Proof. Assume first r = 2. Let (i, k), (p, q) ∈ J and consider Mi,k and
Mp,q. Then Oyi = {σ1 := yi, σ2 := y−i}, Oyp = {τ1 := yp, τ2 := y−p} and
χ(k)(yi) = −1 = χ(q)(yp). Set g1 = h1 = 1 and g2 = h2 = x, then

g1y
ig−1

1 = σ1, g2y
ig−1

2 = σ2, h1y
ph−1

1 = τ1, h2y
ph−1

2 = τ2.

Consider now the Yetter-Drinfeld module M = Mi,k ⊕Mp,q. As a vector
space M = k-span of {g1, g2, h1, h2}. The braiding c in M is given by
c|Mi,k⊕Mi,k

= cMi,k
, c|Mp,q⊗Mp,q = cMp,q , and

c(g1 ⊗ h1) = χ(q)(y
i)h1 ⊗ g1, c(g1 ⊗ h2) = χ(q)(y

−i)h2 ⊗ g1,

c(g2 ⊗ h1) = χ(q)(y
−i)h1 ⊗ g2, c(g2 ⊗ h2) = χ(q)(y

i)h2 ⊗ g2,

c(h1 ⊗ g1) = χ(k)(y
p) g1 ⊗ h1, c(h1 ⊗ g2) = χ(k)(y

−p) g2 ⊗ h1,

c(h2 ⊗ g1) = χ(k)(y
−p) g1 ⊗ h2, c(h2 ⊗ g2) = χ(k)(y

p) g2 ⊗ h2.

1Write n = (i, n)h. Since n|ik, one has that h|k. As n|iq + pk, we have that (i, n)|pk

and thus n|pk. Then prove that pk ≡ n mod m.
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Thus M is a diagonal vector space whose matrix of coefficients is

Q =


−1 −1 χ(q)(yi) χ(q)(y−i)
−1 −1 χ(q)(y−i) χ(q)(yi)

χ(k)(yp) χ(k)(y−p) −1 −1
χ(k)(y−p) χ(k)(yp) −1 −1

 .

Let λ := χ(q)(yi)χ(k)(yp) = ωiq+pk. If λ 6= 1, then (i, k) � (p, q) and
dim B(M) =∞, by [H], since the generalized Dynkin diagram associated to
M is given by Figure 1.

u
u

u
u

�
�
�
�

@
@
@
@

@
@
@
@

�
�
�
�

λ λ−1

λ−1 λ

-1 -1

-1

-1

Figure 1

If λ = 1, i. e. ωiq+pk = 1 then (p, q) ∼ (i, k). In such a case, ωpk =
ωiq = −1, see the paragraph after (3), and whence B(M) =

∧
M , since the

braiding in M is c = −flip; in particular dim(M) = 16.

Assume r ≥ 2 and let M = Mi1,k1 ⊕ · · · ⊕Mir,kr with (is, ks) ∈ J for
all 1 ≤ s ≤ r. In particular, ωisks = −1 for all 1 ≤ s ≤ r. If there exist
p, q, 1 ≤ p, q ≤ r such that (ip, kp) � (iq, kq), i. e. χ(kq)(yip)χ(kp)(yiq) =
ωipkq+iqkp 6= 1, then dim B(Mip,kp) ⊕Miq ,kq) = ∞ as above, which implies
that dim B(M) = ∞. Thus (ip, kp) ∼ (iq, kq) for all 1 ≤ p, q ≤ r and
χ(kq)(yip)χ(kp)(yiq) = ωipkq+iqkp = 1. As before, ωiqkp = ωipkq = −1, which
implies that B(M) =

∧
M , since the braiding inM is c = −flip; in particular

dim B(M) = 4r. �

Definition 2.6. Let

I =

{
I =

r∐
s=1

{(is, ks)} : (is, ks) ∈ J and (is, ks) ∼ (ip, kp), 1 ≤ s, p ≤ r

}
.

For I ∈ I, we define MI =
⊕

(i,k)∈IMi,k.

By Proposition 2.5, we have B(MI) '
∧
MI and dim B(MI) = 4|I|.
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Remark 2.7. Denote by ai,k, bi,k, (i, k) ∈ I the primitive elements that gen-
erate B(MI). Then, the Yetter-Drinfeld module structure is given by

x · ai,k = bi,k, y · ai,k = ωkai,k, δ(ai,k) = yi ⊗ ai,k, (4)

x · bi,k = ai,k, y · bi,k = ω−kbi,k, δ(bi,k) = y−i ⊗ bi,k. (5)

2.2.2. Nichols algebras over the family {M`}. Recall that M` = M(Oyn , ρ`).
In this subsection we study Nichols algebras over sums of irreducible Yetter-
Drinfeld modules isomorphic to M`, with 1 ≤ ` < n, ` odd.

Proposition 2.8. Let M = M`1 ⊕ · · · ⊕M`r with 1 ≤ `s < n odd numbers.
Then B(M) '

∧
M and dim B(M) = 4r.

Proof. It suffices to show the braiding c in M is c = −flip. Let 1 ≤ p, q ≤ r
and denote by v1, v2 and w1, w2 the linear generators of M`p and M`q , respec-
tively. Then c = −flip inM`p⊕M`q . Indeed, we know that c|M`p⊗M`p

= −flip
and c|M`q⊗M`q

= −flip, by Lemma 2.1, and

c(v1 ⊗ w1) = yn · w1 ⊗ v1 = ωn`qw1 ⊗ v1 = (−1)`qw1 ⊗ v1 = −w1 ⊗ v1,

c(v1 ⊗ w2) = yn · w2 ⊗ v1 = ω−n`qw2 ⊗ v1 = (−1)−`qw2 ⊗ v1 = −w2 ⊗ v1,

c(v2 ⊗ w1) = yn · w1 ⊗ v2 = ωn`qw1 ⊗ v2 = (−1)`qw1 ⊗ v2 = −w1 ⊗ v2,

c(v2 ⊗ w2) = yn · w2 ⊗ v2 = ω−n`qw2 ⊗ v2 = (−1)−`qw2 ⊗ v2 = −w2 ⊗ v2,

by straightforward computations. �

Definition 2.9. Let

L =

{
L =

r∐
s=1

{`s} : 1 ≤ `1, . . . , `r < n odd numbers

}
For L ∈ L, we define ML =

⊕
`∈LM`.

By Proposition 2.8, we have: B(ML) '
∧
ML and dim B(ML) = 4|L|.

Remark 2.10. Denote by c`, d` with ` ∈ L the primitive elements that gen-
erate B(ML). Then, the Yetter-Drinfeld module structure is given by

x · c` = d`, y · c` = ω`c`, δ(c`) = yn ⊗ c`, (6)

x · d` = c`, y · d` = ω−`d`, δ(d`) = yn ⊗ d`. (7)

2.2.3. Nichols algebras over mixed families.

Proposition 2.11. Let Mi,k,` = Mi,k ⊕M` with (i, k) ∈ J and 1 ≤ ` < n

be an odd number. Then dim B(Mi,k,`) < ∞ if and only if k is odd and
(i, `) ∈ J . In such a case, B(Mi,k,`) '

∧
Mi,k,` and dim B(Mi,k,`) = 16.



10 FERNANDO FANTINO, GASTÓN A. GARCÍA

Proof. Let c : Mi,k,` ⊗Mi,k,` →Mi,k,` ⊗Mi,k,` be the braiding of Mi,k,`. As
before, it suffices to show that c = −flip. Denote by g1 = 1, g2 = x and
v1, v2 the linear generators of Mi,k and M`, respectively. Then by Lemmata
2.3 and 2.1, we have that c|Mi,k⊗Mi,k

= −flip and c|M`⊗M`
= −flip. Thus c

is determined by the values

c(g1 ⊗ v1) = yi · v1 ⊗ g1 = ωi`v1 ⊗ g1,

c(v1 ⊗ g1) = yn · g1 ⊗ v1 = χ(k)(y
n)g1 ⊗ v1 = ωnkg1 ⊗ v1 = (−1)kg1 ⊗ v1,

c(g2 ⊗ v1) = y−i · v1 ⊗ g2 = ω−i`v1 ⊗ g2,

c(v1 ⊗ g2) = yn · g2 ⊗ v1 = χ(k)(y
n)g2 ⊗ v1 = ωnkg2 ⊗ v1 = (−1)kg2 ⊗ v1,

c(g1 ⊗ v2) = yi · v2 ⊗ g1 = ω−i`v2 ⊗ g1,

c(v2 ⊗ g1) = yn · g1 ⊗ v2 = χ(k)(y
n)g1 ⊗ v2 = ωnkg1 ⊗ v2 = (−1)kg1 ⊗ v2,

c(g2 ⊗ v2) = y−i · v2 ⊗ g2 = ωi`v2 ⊗ g2,

c(v2 ⊗ g2) = yn · g2 ⊗ v2 = χ(k)(y
n)g2 ⊗ v2 = ωnkg2 ⊗ v2 = (−1)kg2 ⊗ v2.

This implies that M is a diagonal vector space with matrix of coefficients

Q =


−1 −1 ωi` ω−i`

−1 −1 ω−i` ωi`

(−1)k (−1)k −1 −1
(−1)k (−1)k −1 −1

 .

Let λ := (−1)kωi`. If λ 6= 1, then the generalized Dynkin diagram associated
to Mi,k,` is given by Figure 1 and whence dim B(M) =∞, by [H]. Therefore,
in order to have dim B(Mi,k,`) < ∞ we must have that λ = 1, that is,
(−1)k = ωi`. By assumption ωik = −1, thus ωik` = (−1)` = −1, because
` is odd. But −1 = (ωi`)k = ((−1)k)k = (−1)k

2
, thus k must be odd and

ωi` = −1, i.e. (i, `) ∈ J . In such a case, the braiding in Mi,k,` is c = −flip
and then B(Mi,k,`) '

∧
Mi,k,` and dim(Mi,k,`) = 16. �

For I ∈ I and L ∈ L, define MI,L =
(⊕

(i,k)∈IMi,k

)
⊕
(⊕

`∈LM`

)
. The

next result generalizes Proposition 2.11 for arbitrary finite sums.

Proposition 2.12. Let I ∈ I, L ∈ L and assume that k is odd for all
(i, k) ∈ I. Then dim B(MI,L) <∞ if and only if (i, `) ∈ J for all (i, k) ∈ I,
` ∈ L. In such a case, B(MI,L) '

∧
MI,L and dim B(MI,L) = 4|I|+|L|.

Proof. Denote by ai,k, bi,k and c`, d` the linear generators of Mi,k and M`,
respectively, for all (i, k) ∈ I, ` ∈ L. Then by the proof of Propositions 2.5,
2.8 and 2.11, it follows that dim B(MI,L) is finite if and only k is odd for all
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(i, k) ∈ I and (i, `) ∈ J for all (i, k) ∈ I, ` ∈ L. In such a case, the braiding
in MI,L is given by −flip and whence B(MI,L) '

∧
MI,L. �

Remark 2.13. Denote by ai,k, bi,k, c`, d` with (i, k) ∈ I and ` ∈ L the prim-
itive elements that generate B(MI,L). Then, the Yetter-Drinfeld module
structure is determined by (4), (5), (6) and (7).

Definition 2.14. We define

K = {(I, L) : I ∈ I, L ∈ L and k odd, (i, `) ∈ J for all (i, k) ∈ I, ` ∈ L} .

By Proposition 2.12, for all (I, L) ∈ K, we have B(MI,L) '
∧
MI,L and

dim B(MI,L) = 4|I|+|L|.

2.3. Proof of Theorem A. Let B(M) be a finite-dimensional Nichols al-
gebra in kDm

kDm
YD. Since kDm

kDm
YD is semisimple, M must be a finite direct

sum of irreducible Yetter-Drinfeld modules. Then the result follows from
Lemmata 2.3, 2.1 and Propositions 2.5, 2.8, 2.11. Clearly, Nichols algebras
over distinct families are pairwise non-isomorphic, since they are generated
by the set of primitive elements which are non-isomorphic as Yetter-Drinfeld
modules. �

3. Liftings of Nichols algebras over dihedral groups

In this section we describe all finite-dimensional pointed Hopf algebras
over dihedral groups Dm, assuming that m = 4t, t ≥ 3.

Let H be a Hopf algebra with bijective antipode and let B ∈ H
HYD be a

braided Hopf algebra. From B and H one can construct a new Hopf algebra
B#H, called the Majid-Radford product or bosonization, whose underlying
vector space is B ⊗H and the Hopf algebra structure is given by

(a#h)(b#k) = a(h(1) · b)#h(2)k,

∆(a#h) = a(1)#(a(2))(−1)h(1) ⊗ (a(2))(0)#h(2),

for all (a#h), (b#k) ∈ B#H, where ∆B(a) = a(1) ⊗ a(2) is the braided
coproduct and δB(a) = a(−1) ⊗ a(0) is the coaction of H on B.

Remark 3.1. Assume that A is a finite-dimensional pointed Hopf algebra
with A0 = kG(A) and let grA =

⊕
i>0Ai/Ai−1. Then grA is a Hopf

algebra which is isomorphic to the bosonization R#kG(A), where R = Acoπ.
If a ∈ R(1) is a homogeneos primitive element, i.e. δ(a) = g ⊗ a, g ∈ G(A),
then a#1 ∈ R#kG(A) is (g, 1)-primitive. Indeed, by the formula above we
have ∆(a#1) = a(1)#(a(2))(−1) ⊗ (a(2))(0)#1 = a#1 ⊗ 1#1 + 1#g ⊗ a#1.
Consider now the projection, π : A1 → A1/A0, which is in particular a
proyection of Hopf kG(A)-bimodules, and denote by σ a section of Hopf
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kG(A)-bimodules. Since A1/A0 = A0 ⊕ P (R)#kG(A), by [AS1, Lemma
2.4], we have that a#1 ∈ A1/A0, and σ(a#1) is (g, 1)-primitive in A.

The following is a key step for the classification, see [AS2, Prop. 5.4],
[AS3, Thm. 7.6], [AG2, Thm. 2.1], [GG, Thm. 3.1], [AGI, Thm. 2.6]. It
agrees with a well-known conjecture [AS2, Conj. 1.4].

Theorem 3.2. Let A be a finite-dimensional pointed Hopf algebra with
G(A) = Dm. Then A is generated by group-likes and skew-primitives.

Proof. Since grA = R#kDm, with R =
⊕

n≥0R(n) the diagram of A, it is
enough to prove that R is a Nichols algebra, since in such a case, A would
be generated by G(A) and skew-primitive elements. Let S be the graded
dual of R. By [AS2, Lemma 5.5], S is generated by V = S(1) and R is a
Nichols algebra if and only if P (S) = S(1), that is, if S is itself a Nichols
algebra.

Consider B(V ) ∈ kDm
kDm
YD. Since V = R(1)∗ = P (R)∗ and B(P (R)) is

finite-dimensional, we have by [AG1, Prop. 3.2.30] that B(V ) is also finite-
dimensional and by Theorem A, B(V ) is isomorphic to an exterior algebra
B(MI), B(ML) or B(MI,L), with I ∈ I, L ∈ L and (I, L) ∈ K, respectively.
Moreover, a direct computation shows that the elements r in S representing
the quadratic relations are primitive and since the braiding is −flip, they
satisfy that c(r ⊗ r) = r ⊗ r. As dimS < ∞, it must be r = 0 in S and
hence there exists a proyective algebra map B(V ) � S, which implies that
S is generated by S(1). �

3.1. Some liftings and quadratic relations. We begin this subsection
with the following proposition that shows how to deform the relations in the
Nichols algebras to get a lifting.

Let A be a finite-dimensional pointed Hopf algebra over kDm. Then by
Theorem 3.2, we have that grA = B(M)#kDm and its infinitesimal braiding
M is isomorphic either to MI with I ∈ I and |I| > 1 or I = {(i, n)}, or ML

with L ∈ L, or MI,L with (I, L) ∈ K and |L| > 0, |I| > 0, see Subsections
2.2.1, 2.2.2 and 2.2.3.

From now on, we denote by g, h the generators of G(A) ' Dm with
g2 = 1 = hm and ghg = h−1.

For all 1 ≤ r, s < m, let M s
r = {a ∈ M : δ(a) = hs ⊗ a, h · a = ωra}.

Then M =
⊕

r,sM
s
r . Following Remark 3.1, we write x = σ(a#1) for the

element in A defined by the Hopf kG(A)-bimodule section σ. In particular,
if a ∈M s

r , then x is (hs, 1)-primitive and hxh−1 = ωrx.

Proposition 3.3. Let A be a finite-dimensional pointed Hopf algebra with
G(A) = Dm and infinitesimal braiding M . Let a ∈ M s

r , b ∈ Mv
u with 1 ≤
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r, s, u, v < m and denote x = σ(a#1), y = σ(b#1). Then there exists λ ∈ k
such that

xy + yx = δu,m−rλ(1− hs+v). (8)

In particular, if x = y we have that x2 = δr,nλ
′(1− h2s) with λ′ = λ

2 .

Proof. By Theorem 3.2, M is isomorphic either to to MI with I ∈ I and
|I| > 1 or I = {(i, n)}, or ML with L ∈ L, or MI,L with (I, L) ∈ K and
|L| > 0, |I| > 0. As a ∈M s

r , b ∈Mv
u , Propositions 2.5, 2.8 and 2.12 yield that

ωsr = −1 = ωuv and (r, s) ∼ (u, v), i.e. ωrv+su = 1 and ωrv = −1 = ωsu.
A straightforward computation yields that the element α = xy + yx is

(hs+v, 1)-primitive. Indeed,

∆(α) = ∆(xy + yx)

= (x⊗ 1 + hs ⊗ x)(y ⊗ 1 + hv ⊗ y) + (y ⊗ 1 + hv ⊗ y)(x⊗ 1 + hs ⊗ x)

= xy ⊗ 1 + xhv ⊗ y + hsy ⊗ x+ hs+v ⊗ xy + yx⊗ 1+

+ yhs ⊗ x+ hvx⊗ y + hs+v ⊗ yx

= (xy + yx)⊗ 1 + hs+v ⊗ (xy + yx) + (xhv + hvx)⊗ y + (hsy + yhs)⊗ x

= (xy + yx)⊗ 1 + hs+v ⊗ (xy + yx).

If s + v ≡ 0 mod m, then α is primitive. Since A is finite-dimensional, we
must have that α = 0. Suppose s + v 6≡ 0 mod m. Then, by Theorem
3.2 there exist (hs+v, 1)-primitive elements xi,j ∈ M i

j with i = s + v and
λ, βi,j ∈ k such that

α = λ(1− hs+v) +
∑

i=s+v,j

βi,jxi,j .

Conjugating on both sides by h gives

hαh−1 = ωr+uα = λp,q,i,k(1− hs+v) +
∑

i=s+v,j

βi,jω
jxi,j ,

which implies that λ = λωr+u and βi,jωj = βi,jω
r+u for all i, j. If r+ u 6≡ 0

mod m, then λp,q,i,k = 0. Thus, to end the proof we need to show that
necessarily βi,j = 0 for all i, j. Suppose on the contrary that βi,j 6= 0 for
some i, j. Then j ≡ r + u mod m. In such a case, as i = s+ v we have

−1 = ωij = ω(s+v)(r+u) = ωsr+vuωsu+vr = 1,

a contradiction. In conclusion, we must have that α = δu,m−rλ(1−hs+v). �

As a direct consequence of Proposition 3.3 we get the following corol-
laries. The first one shows that all pointed Hopf algebras over Dm whose
infinitesimal braiding is isomorphic to MI , with I = {(i, k)} ∈ I, or ML
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with L ∈ L, as in Subsections 2.2.1 and 2.2.2, respectively, are isomorphic
to bosonizations.

Corollary 3.4. Let A be a finite-dimensional pointed Hopf algebra with
G(A) = Dm, such that its infinitesimal braiding M is isomorphic to MI

with I = {(i, k)} ∈ I and k 6= n, or ML with L ∈ L. Then A ' grA '
B(M)#kDm.

Proof. Suppose M ' MI , with I = {(i, k)} ∈ I and k 6= n and denote
x = σ(ai,k#1), y = σ(bi,k#1). Then Proposition 3.3 gives x2 = 0 = y2

and xy + yx = δi,m−iλ(1 − hi+m−i) = 0 for any λ ∈ k×. Thus A ' grA '
B(MI)#kDm. Assume now that ML with L ∈ L and denote x = σ(c`#1),
y = σ(c`′#1) with `, `′ ∈ L and e`, e`′ in the set of linear generators {c`, d` :
` ∈ L} of M . As x and y are (hn, 1)-primitive, a similar computation
as above shows that x, y and xy + yx are primitive. Hence A ' grA '
B(ML)#kDm and the corollary is proved. �

The following two corollaries give the explicit relations that a lifting of a
Nichols algebra over Dm must satisfy.

Corollary 3.5. Let A be a finite-dimensional pointed Hopf algebra with
G(A) = Dm, such that its infinitesimal braiding is isomorphic to MI , with
I ∈ I and |I| > 1 or I = {(i, n)}. Denote xp,q = σ(ap,q#1) and yp,q =
σ(bp,q#1) for all (p, q) ∈ I. Then there exist two families of elements in k,
λ = (λp,q,i,k)(p,q),(i,k)∈I , and γ = (γp,q,i,k)(p,q),(i,k)∈I , such that

xp,qxi,k + xi,kxp,q = δq,m−kλp,q,i,k(1− hp+i), (9)

yp,qyi,k + yi,kyp,q = δq,m−kλp,q,i,k(1− h−p−i), (10)

xp,qyi,k + yi,kxp,q = δq,kγp,q,i,k(1− hp−i). (11)

�

Remark 3.6. Note that the symmetry of relations (9) and (11) imply that
the families λ = (λp,q,i,k)(p,q),(i,k)∈I , and γ = (γp,q,i,k)(p,q),(i,k)∈I satisfy

λp,m−k,i,k = λi,k,p,m−k and γp,k,i,k = γi,k,p,k. (12)

Corollary 3.7. Let A be a finite-dimensional pointed Hopf algebra with
G(A) = Dm such that its infinitesimal braiding is isomorphic to MI,L, with
(I, L) ∈ K. Denote xp,q = σ(ap,q#1), yp,q = σ(bp,q#1), z` = σ(c`#1)
and w` = σ(d`#1) for all (p, q) ∈ I, ` ∈ L. Then there exist four fami-
lies of elements in k, λ = (λp,q,i,k)(p,q),(i,k)∈I , γ = (γp,q,i,k)(p,q),(i,k)∈I , θ =
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(θp,q,`)(p,q)∈I,`∈L, and µ = (µp,q,`)(p,q)∈I,`∈L, such that the following relations
in A hold:

x2
p,q = 0 = y2

p,q, z`w` ′ + w` ′z` = 0, (13)

z`z` ′ + z` ′z` = 0, w`w` ′ + w` ′w` = 0 (14)

xp,qxi,k + xi,kxp,q = δq,m−kλp,q,i,k(1− hp+i), (15)

yp,qyi,k + yi,kyp,q = δq,m−kλp,q,i,k(1− h−p−i), (16)

xp,qyi,k + yi,kxp,q = δq,m−kγp,q,i,k(1− hp−i), (17)

xp,qz` + z`xp,q = δq,m−` θp,q,`(1− hn+p), (18)

yp,qw` + w`yp,q = δq,m−` θp,q,`(1− hn−p), (19)

xp,qw` + w`xp,q = δq,` µp,q,`(1− hn+p), (20)

yp,qz` + z`yp,q = δq,` µp,q,`(1− hn−p). (21)

�

Remark 3.8. As before, (15) and (17) imply the equalities in (12).

3.2. Quadratic algebras. In this section we introduce two families of
pointed Hopf algebras which are defined by quadratic relations. They are
constructed by deforming the relations on two families of Nichols algebras in
kDm
kDm
YD. Moreover, we show that they are liftings of bosonizations of Nichols

algebras and belong to the family of Hopf algebras that characterize pointed
Hopf algebras over Dm, m = 4t, t ≥ 3.

The families of parameters. Let I ∈ I and L ∈ L be as in Definitions 2.6
and 2.9, respectively, and let λ = (λp,q,i,k)(p,q),(i,k)∈I , γ = (γp,q,i,k)(p,q),(i,k)∈I ,
θ = (θp,q,`)(p,q)∈I,`∈L, and µ = (µp,q,`)(p,q)∈I,`∈L be families of elements in k,
satisfying the following conditions:

λp,m−k,i,k = λi,k,p,m−k and γp,k,i,k = γi,k,p,k. (22)

In particular, θ and µ are families of free parameters in k.

Definition 3.9. For I ∈ I, denote by AI(λ, γ) the algebra generated by the
elements g, h, xp,q, yp,q with (p, q) ∈ I satisfying the following relations:

g2 = 1 = hm, ghg = hm−1, (23)

gxp,q = yp,qg, hxp,q = ωqxp,qh, hyp,q = ω−qyp,qh, (24)

xp,qxi,k + xi,kxp,q = δq,m−kλp,q,i,k(1− hp+i), (25)

xp,qyi,k + yi,kxp,q = δq,kγp,q,i,k(1− hp−i). (26)
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It is a Hopf algebra with its structure determined by

∆(g) = g ⊗ g, ∆(h) = h⊗ h,
∆(xp,q) = xp,q ⊗ 1 + hp ⊗ xp,q, ∆(yp,q) = yp,q ⊗ 1 + h−p ⊗ yp,q.

Since it is generated by group-likes and skew-primitives, it is pointed by [M,
Lemma 5.5.1]. We will call the pair (λ, γ) a lifting datum for B(MI). We
set γ = 0 if |I| = 1.

Example 3.10. If I = {(i, k)} with k 6= n, then by Corollary 3.4, the Hopf
algebra defined above is the bosonization B(MI)#kDm. If k = n we obtain
the Hopf algebra Ai,n(λ) generated by the elements g, h, x, y satisfying

g2 = 1 = hm, ghg = hm−1,

gx = yg, hx = −xh, hy = −yh,

x2 = λ(1− h2i), y2 = λ(1− h−2i), xy + yx = 0.

It is a finite-dimensional pointed Hopf algebra with its structure given by

∆(g) = g⊗g, ∆(h) = h⊗h, ∆(x) = x⊗1+hi⊗x, ∆(y) = y⊗1+h−i⊗y.

Definition 3.11. For (I, L) ∈ K, denote by BI,L(λ, γ, θ, µ) the algebra
generated by g, h, xp,q, yp,q, z`, w` satisfying the relations:

g2 = 1 = hm, ghg = hm−1, (27)

gxp,q = yp,qg, hxp,q = ωqxp,qh, (28)

gz` = w`g, hz` = ω`z`h, (29)

x2
p,q = 0 = y2

p,q z`w`′ + w`′z` = 0 z`z`′ + z`′z` = 0 (30)

xp,qxi,k + xi,kxp,q = δq,m−kλp,q,i,k(1− hp+i), (31)

xp,qyi,k + yi,kxp,q = δq,kγp,q,i,k(1− hp−i), (32)

xp,qz` + z`xp,q = δq,m−`θp,q,`(1− hn+p), (33)

xp,qw` + w`xp,q = δq,`µp,q,`(1− hn+p). (34)

It is a Hopf algebra with its structure determined by

∆(g) = g ⊗ g, ∆(h) = h⊗ h,
∆(xp,q) = xp,q ⊗ 1 + hp ⊗ xp,q, ∆(yp,q) = yp,q ⊗ 1 + h−p ⊗ yp,q,

∆(z`) = z` ⊗ 1 + hn ⊗ z`, ∆(w`) = w` ⊗ 1 + hn ⊗ w`.

Since it is generated by group-likes and skew-primitive elements, it is pointed
by [M, Lemma 5.5.1]. We call the 4-tuple (λ, γ, θ, µ) a lifting datum for
B(MI,L).
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Example 3.12. If I = {(i, k)} and L = {`} with 1 ≤ k, ` < m odd numbers
and m − ` 6= k, then the Hopf algebra defined above is the bosonization
B(MI,L)#kDm. If k = m−` we obtain the Hopf algebraBI,L(θ, µ) generated
by the elements g, h, x, y, z, w satisfying the relations

g2 = 1 = hm, ghg = hm−1,

gx = yg, hx = ωkxh, gz = wg, hz = ω−kzh,

x2 = 0 = y2, z2 = 0 = ω2, xy + yx = 0,

zw + wz = 0, xz + zx = θ(1− hn+i), xw + wx = µ(1− hn+i).

As we have seen in Section 2, finite-dimensional Nichols algebras in kDm
kDm
YD

are exterior algebras, see Theorem A. Also, the Hopf algebras AI(λ, γ)
and BI,L(λ, γ, θ, µ) defined above are quadratic algebras for all I ∈ I and
(I, L) ∈ K. Our next goal is to show that if H is a lifting of a finite-
dimensional Nichols algebra in kDm

kDm
YD, then H is isomorphic to a quadratic

algebra defined above for some lifting data, and conversely, these Hopf al-
gebras together with the bosonizations are all liftings of finite-dimensional
Nichols algebras in kDm

kDm
YD. First we work on quadratic algebras to obtain

a bound on the dimensions of AI(λ, γ) and BI,L(λ, γ, θ, µ). We follow [GG]
for our exposition.

Let W be a finite-dimensional vector space and let T (W ) = ⊕n≥0W
⊗n

be the graded tensor algebra with the induced increasing filtration F i :=
⊕j≤iW⊗j . Let R ⊂ W ⊗W be a subspace and denote by J(R) the two-
sided ideal of T (W ) generated by R. A (homogeneous) quadratic algebra
Q(W,R) is the quotient T (W )/J(R). Analogously, for a subspace P ⊂
F 2 = k ⊕W ⊕W ⊗W , we denote by J(P ) the two-sided ideal in T (W )
generated by P . A (nonhomogeneous) quadratic algebra Q(W,P ) is the
quotient T (W )/J(P ).

Let A = Q(W,P ) be a nonhomogeneous quadratic algebra. It inherits
an increasing filtration An from T (W ) given by An = Fn/(J(P ) ∩ Fn) and
the associated graded algebra is grA = ⊕n≥0An/An−1, where A−1 = 0.
Consider now the projection π : F 2 → W ⊗W with kernel F 1 and set R =
π(P ) ⊂ W ⊗W . Let B = Q(W,R) be the homogeneous quadratic algebra
defined by R. If P ∩W = 0, then we have an epimorphism ρ : B → grA.
Indeed, let ρ′ : T (W ) → grA be the graded algebra map induced by W ↪→
A1 � A1/A0. Suppose x ∈ R ⊂W⊗2, then there exist x0 ∈ k, x1 ∈W such
that x−x1−x0 ∈ P and therefore x = x1+x0 ∈ F 2/(J(P )∩F 2) = A2. Thus
ρ′(x) = 0 ∈ A2/A1, and whence ρ′ induces ρ : B = T (W )/J(R) � grA.

Let G be a finite group and suppose that B(V ) is a finite-dimensional
Nichols algebra in kG

kGYD which is given by quadratic relations, i.e. B(V ) =
B̂2(V ). Denote by pi(xj1 , . . . , xjk) = 0 these quadratic relations, where
xj ∈ P (V ) are gj-homogeneous elements with gj ∈ G and pi, i ∈ I, are
finitely many quadratic polynomials with coefficients in k.
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Assume H is a Hopf algebra containing kG as a Hopf subalgebra which is
generated by kG and P (V ) such that xj is (gj , 1)-primitive for all xj ∈ P (V ),
gxjg

−1 = g · xj for all g ∈ G, xj ∈ P (V ) and pi(xj1 , . . . , xjk) = λi,j1,...,jk(1−
gi,j1,...,jk) for some λi,j1,...,jk ∈ k and gi,j1,...,jk ∈ G. The next lemma is a
slight generalization of [GG, Prop. 4.2].

Lemma 3.13. dimH ≤ dim B(V )|G|.

Proof. H is the nonhomogeneous quadratic algebra Q(W,P ) defined by W
and P , for W = k{xj , Hg : xj ∈ P (V ), g ∈ G} and P ⊂ k ⊕W ⊕W ⊗W
the subspace generated by

{He − 1, Hg ⊗Ht −Hgt, Hg ⊗ xj − g · xj ⊗Hg,

pi(xj1 , . . . , xjk)− λi,j1,...,jk(1− gi,j1,...,jk)}.

Let R = π(P ). Explicitly, R ⊂ W ⊗ W is the subspace generated by
{Hg ⊗Ht, Hg ⊗ xj − g · xj ⊗Hg, pi(xj1 , . . . , xjk)}. Let B = Q(W,R) be the
homogeneous quadratic algebra defined by W and R. Then B ∼= B(V )#YG,
where YG is the algebra linearly spanned by the set {1, yg : g ∈ G} with unit
1 and multiplication table given by ygyt = 0 for all g, t ∈ G and # stands for
the commutation relation (1#yg)(xj#1) = g · xj#yg, (1#1)(xj#1) = xj#1
for all g ∈ G, xj ∈ P (V ). Thus by the preceeding discussion, there exists
an epimorphism ρ : B(V )#YG � grH.

Since P ∩ F 1 = k{He − 1}, by [GG, Lemma 4.1] we have ρ(He) = 0 and
whence there exists an epimorphism ρe : B/ByeB → grH. The commuta-
tion relation and the fact that the elements {yg}g∈G are pairwise orthogo-
nal, give ByeB = B(V )ye ⊂ B. This implies dimBn − dim(B(V )nye) ≥
dim grHn and since dimBn = dim B(V )n(|G|+1), we have dim B(V )n|G| ≥
dim grHn and consequently dimH ≤ dim B(V )|G|. �

The next corollary follows inmediately.

Corollary 3.14. For all I ∈ I and (I, L) ∈ K we have

dimAI(λ, γ) ≤ dim B(MI)|Dm| = 4|I|2m and

dimBI,L(λ, γ, θ, µ) ≤ dim B(MI,L)|Dm| = 4|I|+|L|2m.

�

3.3. Representation theory. Let H be a finite-dimensional pointed Hopf
algebra over kDm. In this subsection we prove using representation theory
that the quadratic algebras defined in Definitions 3.9 and 3.11 are liftings
of finite-dimensional Nichols algebras over kDm for all lifting data (λ, γ) or
(λ, γ, θ, µ), and we end the section with the proof of Theorem B.
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Let H = AI(λ, γ) with I ∈ I or H = BI,L(λ, γ, θ, µ) with (I, L) ∈ K. By
definition, the group G(H) is a quotient of Dm; in particular, any H-module
is a kDm-module. Denote by π : Dm � G(H) this quotient. The following
lemma is a key step to determine the dimension of H.

Lemma 3.15. Let ρ : H → End(V ) be a representation of H such that

(i) ρ|G(H) ◦ π : Dm → End(V ) is faithful and
(ii) if H = AI(λ, γ), then ρ(xp,q) /∈ kρ(G(H)) for all (p, q) ∈ I and if

H = BI,L(λ, γ, θ, µ), then ρ(xp,q), ρ(z`) /∈ kρ(G(H)) for all (p, q) ∈ I
and ` ∈ L.

Then grH = B(M)#kDm and thus dimH = dim B(M)|Dm|.

Proof. Let M = MI,L and suppose that H = BI,L(λ, γ, θ, µ). Since G(H) is
a quotient of Dm, from (i) it follows that G(H) ' Dm. Thus H is a pointed
Hopf algebra over Dm and by Theorem 3.2, grH ' B(N)#kDm, with B(N)
an exterior algebra, see Theorem A. Furthermore, by Lemma 3.13 we have
that dim B(N) ≤ dim B(M). But by (ii) the map ϕ : M → H1/H0, sending

ap,q 7→ x̄p,q, bp,q 7→ ȳp,q, c` 7→ z̄`, d` 7→ w̄`,

induces an injective map φ : M → N in kDm
kDm
YD which implies that dim B(N)

≥ dim B(M). The proof for H = AI(λ, γ) is completely analogous. �

3.4. Proof of Theorem B. Let H be a finite-dimensional pointed Hopf
algebra with G(H) = Dm. Then grH ' R#kDm and by Theorem 3.2 the
diagram R is a Nichols algebra B(M) for some M ∈ kDm

kDm
YD and conse-

quently it is isomorphic to one of the Hopf algebras of Theorem A.
If M 'MI with I = {(i, k)} and k 6= n or M 'ML with L ∈ L, then H '

B(M)#kDm by Corollary 3.4. If M ' MI with I ∈ I and |I| > 0, then by
Corollary 3.5 there exists a lifting datum (λ, γ) and an epimorphism of Hopf
algebras AI(λ, γ) � H. Hence dimH ≤ dimAI(λ, γ) ≤ dim B(MI)|Dm|.
This implies that H ' AI(λ, γ), since dimH = dim grH = dim B(MI)|Dm|.
If M 'MI,L with (I, L) ∈ L, then using the same argument as before with
Corollary 3.7 shows that H ' BI,L(λ, γ, θ, µ).

For the converse, it is clear that the algebras listed in items (a) and (b)
are liftings of Nichols algebras over Dm. Thus, we need to show only that
the Hopf algebras AI(λ, γ) and BI,L(λ, γ, θ, µ) are liftings for all I ∈ I,
(I, L) ∈ K and for all lifting data.

Assume first that I ∈ I. Following Lemma 3.15, we give a representation
for AI(λ, γ). Give I an order and write I = ((i1, k1), . . . , (ir, kr)). Let V be a
vector space with basis given by two families of vectors {uα}, {vα}, indexed
by all possible ordered monomials in the letters is,1, is,2 for all 1 ≤ s ≤ r
such that each letter appears at most once (set u0, v0 if no letter appears)
and the order is given by is,p < it,p for all p = 1, 2 iff s < t, is,1 < is,2 for all
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1 ≤ s ≤ r and is,2 < it,1 iff s < t; e.g. vi1,1i2,2i3,1i3,2 is a basis element. In
particular, dimV = 2 dim

∧
MI .

For all 1 ≤ j < n, V bears an AI(λ, γ)-module structure determined by

g · u0 = v0, h · u0 = ωju0, xis,ks · u0 = uis,1 , yis,ks · u0 = uis,2

(xit,ktxis,ks) · u0 = −uis,1it,1 + δks,m−ktλis,ks,it,kt(1− ωj(is+it))u0 if t > s,

(yit,ktxis,ks) · u0 = −uis,1it,2 + δs,tγis,ks,it,kt(1− ωj(is−it))u0 if t ≥ s.

because of the defining relations of AI(λ, γ), see Definition 3.9. Hence,
ρ|G(AI(λ,γ)) ◦ π : Dm → End(V ) is faithful since (k{u0, v0}, ρ|G(AI(λ,γ))) '
(k2, ρj), and ρ(xis,ks) /∈ kρ(G(AI(λ, γ)) by definition. Then grAI(λ, γ) =
B(MI)#kDm and AI(λ, γ) is a lifting. The proof for BI,L(λ, γ, θ, µ) is anal-
ogous. �

3.4.1. Isomorphism classes. In this last subsection we study the isomor-
phism classes of the families of Hopf algebras given by Theorem B.

Let H be a finite-dimensional pointed Hopf algebra over Dm. Then H
is isomorphic to a Hopf algebra listed in Theorem B; in particular, it is a
lifting of a finite-dimensional Nichols algebra over Dm.

It is clear that two algebras from different families are not isomorphic
as Hopf algebras since their infinitesimal braidings are not isomorphic as
Yetter-Drinfeld modules.

Thus, we have to show that two different members in the same family are
not isomorphic. By the argument above, if I = {(i, k)}, I ′ = {(p, q)} ∈ I,
with k, q 6= n and (i, k) 6= (p, q), then B(MI)#kDm 6' B(MI′)#kDm, and
if L,L′ ∈ L with L 6= L′, then B(ML)#kDm 6' B(ML′)#kDm. We end the
paper by showing the isomorphism classes of the families of the items (c)
and (d).

Observe that Z/m acts on I with the action on each I ∈ I induced by

` · (is, ks) =

{
(`is, `−1ks) if 1 ≤ `is < n mod m,

(m− `is, `−1ks) if n ≤ `is mod m.

Lemma 3.16. Let I, I ′ ∈ I. Then AI(λ, γ) ' AI′(λ′, γ′) if and only if
there exists ` ∈ Z/m, with (`,m) = 1 such that ` · I = I ′, and for all
(p, q), (i, k) ∈ I,λp,q,i,m−q = λ′`·(p,q),`·(i,m−q),

γp,q,i,q = γ′`·(p,q),`·(i,q),
if p`, i` < n or n < p`, i` mod m, (35)

and

δq,m−kλp,q,i,k = δk,qγ
′
`·(p,q),`·(i,k),

δq,kγp,q,i,q = δq,m−kλ
′
`·(p,q),`·(i,q),

otherwise. (36)

In particular, AI(λ, γ) ' B(MI)#kDm if and only if λ ≡ 0 ≡ γ.
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Proof. Suppose ϕ : AI(λ, γ) → AI′(λ′, γ′) is a Hopf algebra isomorphism
and denote by g, h, xi,k, yi,k and g′, h′, x′i,k, y

′
i,k the generators of AI(λ, γ)

and AI′(λ′, γ′), respectively. Since both must have the same dimension, we
have that |I| = |I ′|. Moreover, ϕ(g) = g′, ϕ(h) = h′` for some ` ∈ Z/m with
(m, `) = 1, and ϕ(xi,k), ϕ(yi,k) are (h′i`, 1)-primitive and (h′−i`, 1)-primitive
in AI′(λ′, γ′) for all (i, k) ∈ I, respectively. Using that ϕ(hxi,kh−1) =
h′`ϕ(xi,k)h′−` we have that ϕ(xi,k) = ai,k,i`,k`−1x′i`,k`−1 if i` < n and ϕ(xi,k) =
bi,k,m−i`,k`−1y′m−i`,k`−1 if n < i` < m, for some ai,k,p,q, bi,k,p,q ∈ k×. In
particular, this implies that I ′ = ` · I. Clearly, we may assume that
ai,k,p,q, bi,k,p,q = 1. Denote ϕ` = ϕ.

Let (p, q), (i, k) ∈ I and suppose that `p, `i < n. Then applying ϕ` on
both sides of (25) yields

x′`p,`−1qx
′
`i,`−1k + x′`i,`−1kx

′
`p,`−1q = δq,m−kλp,q,i,k(1− h′`(p+i)).

But the left hand side equals δ`−1q,m−`−1kλ
′
`p,`−1q,`i,`−1k(1 − h

′`p+`i), by the
same relation in AI′(λ′, γ′). Hence λp,q,i,m−q = λ′`·(p,q),`·(i,m−q). On the other
hand, applying ϕ` on both sides of (26) yields

x′`p,`−1qy
′
`i,`−1k + y′`i,`−1kx

′
`p,`−1q = δq,kγp,q,i,k(1− h′`(p−i)).

But the left hand side equals δ`−1q,`−1kγ
′
`p,`−1q,`i,`−1k(1 − h′`p−`i), by the

same relation in AI′(λ′, γ′). Hence γp,q,i,q = γ′`·(p,q),`·(i,q). The proof for the
remaining cases is completely analogous.

Assume now there exists ` ∈ Z/m, with (`,m) = 1 such that ` · I =
I ′, and equations (35), (36) hold for all (p, q), (i, k) ∈ I. Then we may
define an algebra morphism by ϕ`(xp,q) = x′`p,`−1q, ϕ`(yp,q) = y′`p,`−1q if
`p < n and ϕ`(xp,q) = y′m−`p,`−1q, ϕ`(yp,q) = x′m−`p,`−1q if n < `p mod m.
Equations (35), (36) and the fact that ` · I = I ′, ensure that ϕ` is a well-
defined surjective Hopf algebra map, which is indeed an isomorphism by
Thm. B. �

Note also that Z/m also acts on L with the action induced by

` · r =

{
`−1r if 1 ≤ `−1r < n mod m,

m− `−1r if n ≤ `−1r mod m.

The proof of the following lemma is completely analogous to the proof of
Lemma 3.16.

Lemma 3.17. Let (I, L), (I ′, L′) ∈ K. BI,L(λ, γ, θ, µ) ' BI′,L′(λ′, γ′, θ′, µ′)
if and only if there exists ` ∈ Z/m with (`,m) = 1 such that ` · I = I ′,
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` · L = L′, λ, λ′ and γ, γ′ satisfy conditions (35) and (36), and for all
(p, q) ∈ I, r ∈ L,δq,m−rθp,q,r = δq,m−rθ

′
`·(p,q),`·r,

δq,rµp,q,r = δq,rµ
′
`·(p,q),`·r,

if p`, r`−1 < n,

δq,m−rθp,q,r = δq,rθ
′
`·(p,q),`·r,

δq,rµp,q,r = δq,m−rµ
′
`·(p,q),`·r,

if n < p`, r`−1 mod m,

δq,m−rθp,q,r = δq,m−rµ
′
`·(p,q),`·r,

δq,rµp,q,r = δq,rθ
′
`·(p,q),`·r,

if p` < n < r`−1 mod m,

δq,m−rθp,q,r = δq,rµ
′
`·(p,q),`·r,

δq,rµp,q,r = δq,m−rθ
′
`·(p,q),`·r,

if r`−1 < n < p` mod m.

�
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