SERIE “A”

TRABAJOS DE MATEMÁTICA

Nº 113/2012

REPRESENTATION EQUIVALENCE AND P-SPECTRUM OF CONSTANT CURVATURE SPACE FORMS

E. A. Lauret, R. J. Miatello And J. P. Rossetti

Editores: Jorge G. Adrover – Gastón García

CIUDAD UNIVERSITARIA – 5000 CÓRDOBA
REPÚBLICA ARGENTINA
Abstract. We study the p-spectrum of a locally symmetric space of constant curvature $\Gamma \backslash X$, in connection with the right regular representation of the full isometry group G of X on $L^2(\Gamma \backslash G)_{\tau_p}$, where τ_p is the complexified p-exterior representation of $O(n)$ on $\Lambda^p(\mathbb{R}^n)_C$. We give an expression of the multiplicity $d_{\lambda}(p, \Gamma)$ of the eigenvalues of the p-Hodge-Laplace operator in terms of multiplicities $n_{\Gamma}(\pi)$ of specific irreducible unitary representations of G.

As a consequence, we extend results of Pesce for the spectrum on functions to the p-spectrum of the Hodge-Laplace operator on p-forms of $\Gamma \backslash X$, and we compare p-isospectrality with τ_p-equivalence for $0 \leq p \leq n$. For spherical space forms, we show that τ-isospectrality implies τ-equivalence for a class of τ's that includes the case $\tau = \tau_p$. Furthermore we prove that $p - 1$ and $p + 1$-isospectral implies p-isospectral.

For nonpositive curvature space forms, we give examples showing that p-isospectrality is far from implying τ_p-equivalence, but a variant of Pesce’s result remains true. Namely, for each fixed p, q-isospectrality for every $0 \leq q \leq p$ implies τ_q-equivalence for every $0 \leq q \leq p$. As a byproduct of the methods we obtain several results relating p-isospectrality with τ_p-equivalence.

1. Introduction

Let $X = G/K$ be a homogeneous Riemannian manifold where $G = \text{Iso}(X)$ is the full isometry group and where $K \subset G$ is a compact subgroup. We shall consider discrete cocompact subgroups Γ of G acting on X without fixed points, so that $\Gamma \backslash X$ is a compact Riemannian manifold. Under the right regular representation R_{Γ} of G, $L^2(\Gamma \backslash G)$ splits as a direct sum

\[L^2(\Gamma \backslash G) = \sum_{\pi \in \hat{G}} n_{\Gamma}(\pi) H_{\pi} \]

of closed irreducible subspaces H_{π} with finite multiplicity $n_{\Gamma}(\pi)$. Here \hat{G} denotes the unitary dual of G. Let (τ, V_τ) be a finite dimensional complex unitary representation of K and consider the associated vector bundle

\[E_\tau := G \times V_\tau \longrightarrow G/K \]

endowed with a G-invariant inner product (see Subsection 2.1). Let $\Delta_{\Gamma, \tau}$ denote the Laplace operator acting on sections of the bundle $\Gamma \backslash E_\tau \to \Gamma \backslash X$ (see Subsection 2.1).
In [Pe2], Pesce considers spectra of Laplace operators on $\Gamma \backslash X$, in connection with the right regular representations R^{τ}_{Γ} of G on the space

\begin{equation}
L^2(\Gamma \backslash G)_\tau := \sum_{\pi \in \hat{G}_\tau} n_{\pi}(\pi) H_\pi,
\end{equation}

where $\hat{G}_\tau = \{ \pi \in \hat{G} : \text{Hom}_K(\tau, \pi) \neq 0 \}$. In the terminology in [Pe2], two subgroups Γ_1, Γ_2 of G, are said to be τ-representation equivalent or simply τ-equivalent, if the representations $L^2(\Gamma_1 \backslash G)_\tau$ and $L^2(\Gamma_2 \backslash G)_\tau$ are equivalent, that is, $n_{\Gamma_1}(\pi) = n_{\Gamma_2}(\pi)$ for any $\pi \in \hat{G}_\tau$. In the case when $\tau = 1$, the trivial representation of K, Pesce calls such groups K-equivalent. In analogy, $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are said to be τ-isospectral if the spectra of the Laplace operators $\Delta_{\Gamma_1, \tau}, \Delta_{\Gamma_2, \tau}$ are the same.

The question of comparing equivalence (resp. τ-equivalence) of representations with isospectrality (resp. τ-isospectrality) has been studied by several authors in recent years (see for instance [DG], [Pe1], [Pe2], [GM], [BR], [BPR], [Wo2]). One has that if two groups Γ_1, Γ_2 are τ-equivalent, then $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are τ-isospectral (see [Pe2, App. Prop. 2] or Proposition 2.5). Furthermore, Pesce has shown for constant sectional curvature space forms, that the converse holds for $\tau = 1$, that is, if the manifolds $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are isospectral on functions, then Γ_1 and Γ_2 are K-equivalent (see [Pe2, § 3, Prop. 2]).

In this paper, again in the context of spaces of constant sectional curvature, that is, of compact manifolds covered by S^n, \mathbb{R}^n or \mathbb{H}^n, we will study the case when $\tau = \tau_p$, the complexified p-exterior representation of $O(n)$ on $\Lambda^p(\mathbb{R}^n)^c$, thus $\Delta_{\Gamma, \tau}$ is the Hodge-Laplace operator acting on p-forms. That is, we study the p-spectrum of $\Gamma \backslash X$ in connection with the representation $L^2(\Gamma \backslash G)_\tau$. A main tool will be the following formula, valid for any compact locally symmetric space $\Gamma \backslash X$ and any representation τ of K, expressing the multiplicity of an eigenvalue λ of $\Delta_{\Gamma, \tau}$ in terms of the coefficients $n_{\pi}(\pi)$ for $\pi \in \hat{G}_\tau$:

$$d_{\lambda}(\tau, \Gamma) = \sum_{\pi \in \hat{G}_\tau : \lambda(C, \pi) = \lambda} n_{\pi}(\pi) \dim \left(\text{Hom}_K(V^*_\pi, H_\pi) \right).$$

Here $\lambda(C, \pi)$ denotes a scalar depending only on π (see Subsection 2.1). In the case at hand this formula reduces to

\begin{equation}
d_{\lambda}(\tau, \Gamma) = \sum_{\pi \in \hat{G}_{\tau, \lambda}} n_{\pi}(\pi).
\end{equation}

where $\hat{G}_{\tau, \lambda} = \hat{G}_\tau \cap \{ \pi \in \hat{G} : \lambda(C, \pi) = \lambda \}$. Therefore, Spec$_\tau(\Gamma \backslash X)$ is determined by the multiplicities $n_{\pi}(\pi)$ for π in the sets $\hat{G}_{\tau, \lambda}$.

We will use a general approach that applies to the three cases to be considered. In light of formula (1.3), the goal is to determine the sets $\hat{G}_{\tau, \lambda}$, then compute $\lambda(C, \pi)$ in each case, and then, for each given $\lambda \in \mathbb{R}$, to find the set $\hat{G}_{\tau, \lambda}$. For general $\tau \in \hat{K}$ this can be complicated, but it can be carried out for some choices of τ.

As a consequence of the method, by choosing $\tau = \tau_p$, we will give a generalization of results in [Pe2] for the p-spectrum of the Hodge-Laplace operator of $\Gamma \backslash X$, comparing p-isospectrality with τ_p-equivalence. We shall see that, for nonpositive curvature, p-isospectrality is far from implying τ_p-equivalence, but a variant of Pesce’s result remains true. We shall consider the three cases: spherical, flat and hyperbolic space forms separately, although they will all share common features.
The case when X has positive curvature has been studied by several authors. Most of the results in this case are included or implicit in the work of Ikeda-Taniguchi [IT], Ikeda [Ik], Pesce [Pe1] [Pe2], Gornet-McGowan [GM] and others. However, we will give a comprehensive presentation that allows us to extend the results to other choices of τ (see Proposition 3.3) and illuminates the cases when the curvature is zero and negative.

Theorem 1.1. Let Γ be a finite subgroup of $O(n+1)$ acting freely on an odd-dimensional sphere S^n with $n = 2m - 1$ and let $0 \leq p \leq n$.

If $\lambda \in \text{Spec}_p(\Gamma \setminus S^n)$ then $\lambda \in \mathcal{E}_p \cup \mathcal{E}_{p+1}$, with \mathcal{E}_p and \mathcal{E}_{p+1} disjoint sets, where $\mathcal{E}_0 = \mathcal{E}_{n+1} = \emptyset$ and for $1 \leq p \leq n$,

$$(1.4) \quad \mathcal{E}_p = \{\lambda = k^2 + k(n-1) + (p-1)(n-p) : k \in \mathbb{N}\}.$$

Furthermore, for each $\lambda \in \mathcal{E}_p \cup \mathcal{E}_{p+1}$, we have

$$d_\lambda(p, \Gamma) = \begin{cases} n\Gamma(\pi_{k,p,\delta}) & \text{if } \lambda \in \mathcal{E}_p, \\ n\Gamma(\pi_{k,p+1,\delta}) & \text{if } \lambda \in \mathcal{E}_{p+1}. \end{cases}$$

Here $\pi_{k,p,\delta}$ is a specific irreducible representation of $O(n+1)$ (see (2.7), (2.8)) where $\pi_{k,p,\delta}|_{SO(n+1)}$ has highest weight $\Lambda_{k,p} = k\varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_p$,

$$(1.5) \quad k = k_{p,\lambda} = -(m-1) + \sqrt{(m-1)^2 + \lambda - (p-1)(n-p)},$$

and $\delta \in \{0, \pm 1\}$ is uniquely determined by λ.

In particular, if $\lambda \in \text{Spec}_0(\Gamma \setminus S^n)$ then $\lambda \in \{k(k+n-1) : k \in \mathbb{N}_0\}$ with

$$(1.6) \quad d_\lambda(0, \Gamma) = n\Gamma(\pi_{k\varepsilon_1,\delta}),$$

where $\pi_{k\varepsilon_1,\delta}$ restricted to $SO(n+1)$ has highest weight $k\varepsilon_1$ (see Subsection 2.2).

As a direct consequence:

Corollary 1.2. Let Γ_1, Γ_2 be finite subgroups of $O(n+1)$ acting freely on $X = S^n$. Then

(i) (see [IT], [Pe2], [GM]) $\Gamma_1 \setminus X$ and $\Gamma_2 \setminus X$ are p-isospectral if and only if Γ_1 and Γ_2 are τ_p-equivalent.

(ii) If $\Gamma_1 \setminus X$ and $\Gamma_2 \setminus X$ are $p-1$-isospectral and $p+1$-isospectral, then they are p-isospectral.

In [Ik], Ikeda constructed for each p, lens spaces q-isospectral for every $0 \leq q \leq p$ but not $p+1$-isospectral. More recently, Gornet and McGowan [GM] gave a very useful survey on the results of Pesce and Ikeda and, by computer methods using Ikeda’s approach, exhibited a rich list of lens spaces that are p-isospectral for some values of p only. Their list (see p. 274) again shows no simple ‘holes’ in the set of values of p for which there is p-isospectrality. This is consistent with the assertion in (ii) of the corollary that shows that this is valid in general for all spherical space forms. As noted in [GM], the examples in [GM] are τ_p-equivalent for these values of p only.

By following the general method described above we shall prove the following results for flat and negative curvature compact locally symmetric spaces:

Theorem 1.3. Let Γ be a Bieberbach group, that is, Γ is a discrete, cocompact subgroup of $\text{Iso}(\mathbb{R}^n) \simeq O(n) \ltimes \mathbb{R}^n$ acting without fixed points on \mathbb{R}^n. Let Λ denote
the translation lattice of Γ and let Λ^* be the dual lattice of Λ. The multiplicity of the eigenvalue $\lambda = 4\pi^2\|v\|^2$, $v \in \Lambda^*$, is given by

\begin{equation}
\begin{aligned}
d_\lambda(\tau_p, \Gamma) = \\
n_\Gamma(\tilde{\tau}_p) = \beta_p(\Gamma \setminus \mathbb{R}^n) & \quad \text{if } \lambda = 0, \\
n_\Gamma(\pi_{\sigma_p, \sqrt{\lambda}/2\pi}) + n_\Gamma(\pi_{\sigma_{p-1}, \sqrt{\lambda}/2\pi}) & \quad \text{if } \lambda > 0.
\end{aligned}
\end{equation}

Here σ_p is the p-exterior representation of $O(n-1)$ and $\tilde{\tau}_p$ and $\pi_{\sigma_p, r}$ are certain unitary irreducible representations of $\text{Iso}(\mathbb{R}^n)$ (see (4.2)).

Theorem 1.4. Let $G = \text{SO}(n, 1)$, $K = O(n)$, $\Gamma \subset G$ be a discrete subgroup acting without fixed points on \mathbb{H}^n.

If $0 \leq p \leq n$, and $\lambda = 0$, then

\[
d_0(\tau_p, \Gamma) = \beta_p(\Gamma \setminus \mathbb{H}^n) = \begin{cases}
n_\Gamma(J_{\sigma_p, \rho_p}) + n_\Gamma(J_{\sigma_{p-1}, \rho_{p-1}}) & \text{if } p \neq \frac{n}{2}, \\
n_\Gamma(D_{\frac{n}{2}}^+ \oplus D_{\frac{n}{2}}^-) & \text{if } p = \frac{n}{2}.
\end{cases}
\]

If $\lambda \neq 0$, then

\[
d_\lambda(\tau_p, \Gamma) = \begin{cases}
n_\Gamma(\pi_{\sigma_p, \sqrt{\lambda^2/4} - \lambda}) + n_\Gamma(\pi_{\sigma_{p-1}, \sqrt{\lambda^2/4} - \lambda}) & \text{if } p \neq \frac{n}{2}, \\
n_\Gamma(\pi_{\sigma_{m-1}, \sqrt{1/4 - \lambda}}) + n_\Gamma(\pi_{\sigma_{m-1}, \sqrt{1/4 - \lambda}}) & \text{if } p = \frac{n}{2} = m.
\end{cases}
\]

In the expressions above, σ_p is the p-exterior representation of $M \simeq O(n-1)$, $\rho_p := \frac{n-p}{2} - \min(p, n+1-p)$ and $\pi_{\sigma_p, \rho}$, $J_{\sigma_p, \rho}$ and $D_{\frac{n}{2}}^+ \oplus D_{\frac{n}{2}}^-$ denote specific unitary irreducible representations of G (see Section 5).

In the proofs of Theorem 1.3 and Theorem 1.4 we use the description of the unitary duals of G in terms of induced representations. It will turn out that, generically, there will be at most two irreducible representations in \widehat{G} contributing to the multiplicity of a given eigenvalue λ and these multiplicities will be linked to each other for p and $p+1$. Using this fact, one first shows that 0-isospectrality implies τ_0-equivalence, then one realizes that 0- and 1-isospectrality, taken together, imply τ_0- and τ_1-equivalence, taken together. In this way, one can build an interval from 0 to p and obtain the assertion in the following theorem that gives a generalization of Pesce’s result for nonpositive curvature space forms.

Theorem 1.5. Let $X = G/K$ be a simply connected symmetric space of constant nonpositive curvature where G is the full isometry group of X. Let Γ_1, Γ_2 be discrete cocompact subgroups of G acting without fixed points on X. For each $0 \leq p \leq n$, $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are q-isospectral for every $0 \leq q \leq p$ if and only if Γ_1 and Γ_2 are τ_q-equivalent for every $0 \leq q \leq p$.

From Theorem 1.5 and its proof, one can derive several consequences relating p-isospectrality and τ_p-equivalence (see Proposition 4.5, Corollary 4.6 in the flat case and in the negative curvature case). Denote by $\beta_p(M)$ the p-th Betti number of M. If $X = \mathbb{R}^n$ or $X = \mathbb{H}^n$, given Γ_1, Γ_2 discrete cocompact subgroups of $G = \text{Iso}(X)$ acting without fixed points on X, we show

- If Γ_1, Γ_2 are τ_1-equivalent, then $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are 0 and 1-isospectral.

Example 4.8 gives two 4-dimensional compact flat manifolds that are 1-isospectral but not 0-isospectral, hence Γ_1, Γ_2 are not τ_1-equivalent.

- If Γ_1, Γ_2 are τ_{p+1}-equivalent (or τ_{p-1}-equivalent) and $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are p-isospectral, then Γ_1 and Γ_2 are τ_p-equivalent.
• If \(\Gamma_1, \Gamma_2 \) are \(\tau_p \)-equivalent and \(\beta_p(\Gamma_1 \backslash X) = \beta_p(\Gamma_2 \backslash X) \), then \(\Gamma_1, \Gamma_2 \) are \(\tau_p \)-equivalent. Hence \(\Gamma_1 \backslash X \) and \(\Gamma_2 \backslash X \) are \(p-1 \), \(p \) and \(p+1 \)-isospectral.

• If \(\Gamma_1 \backslash X \) and \(\Gamma_2 \backslash X \) are \(p \)-isospectral for every \(p \in \{1, 2, \ldots, k\} \) and they are not \(0 \)-isospectral then \(\Gamma_1 \) and \(\Gamma_2 \) are not \(\tau_p \)-equivalent for any \(p \in \{0, 1, 2, \ldots, k+1\} \).

In Example 4.10 we give two flat 8-manifolds that are \(p \)-isospectral for \(p = 1, 2, 3, 5, 6, 7 \) but not for \(0, 4, 8 \), hence the corresponding groups cannot be \(\tau_p \)-equivalent for any \(p \in \{0, 1, 2, \ldots, 8\} \). Similarly, Example 4.9 gives two flat 4-manifolds that are \(p \)-isospectral for \(p = 1, 3 \) only. Thus, these pairs of Bieberbach groups cannot be \(\tau_p \)-equivalent for any \(0 \leq p \leq 4 \).

The examples we give in the flat case show that, a priori, the theorems cannot be improved substantially. In the hyperbolic case, similar examples should exist but their construction seems much more difficult. In general, little is known about the multiplicities \(\mu_1(\tau) \).

The authors wish to thank Peter Gilkey for several useful comments on a first version of this paper.

2. General setting and preliminaries

Let \(X = G/K \) be a simply connected Riemannian symmetric space, where \(G \) is the full isometry group of \(X \) and \(K \) is the isotropy subgroup of a point in \(X \). Let \(\Gamma \subset G \) be a discrete cocompact subgroup acting freely on \(X \), thus the manifold \(\Gamma \backslash X \) inherits a locally \(G \)-invariant Riemannian structure. We shall be interested in the cases when \(X \) is a space of constant sectional curvature:

- \(X = S^n \), \((G, K) = (O(n + 1), O(n)) \);
- \(X = \mathbb{R}^n \), \((G, K) = (O(n) \times \mathbb{R}, O(n)) \);
- \(X = \mathbb{H}^n \), \((G, K) = (SO(n, 1), O(n)) \).

The embedding of \(O(n) \) in \(SO(n, 1) \) in the third case is the standard one in \(S(O(n) \times O(1)) \).

2.1. Homogeneous vector bundles. Given \((\tau, V) \), a unitary representation of \(K \), we consider the homogeneous vector bundle \(E_\tau = G \times_\tau V \) of \(X \). This is constructed as the quotient of \(G \times V \) under the right action of \(K \) given as \((x, v) \cdot k = (xk, \tau(k^{-1})v) \). We denote \([x, v]\) the class of \((x, v) \in G \times V\) in \(E_\tau \) and \((E_\tau)_{xK} = [\{x, v\} \in E_\tau : v \in V]\) the fiber of \(xK \). The full isometry group \(G \) of \(X \) acts on \(E_\tau \) by \(g[x, v] = [gx, v] \) and sends \((E_\tau)_{xK}\) to \((E_\tau)_{g \cdot xK}\) linearly. We equip \(E_\tau \) with the unique unitary structure which, at the fiber of \(eK \), coincides with the unitary structure of \(V \) and such that the action of \(G \) is unitary. This homogeneous vector bundle is natural in the sense that an isometry \(g \) of \(X \) gives an isomorphism of the complex vector spaces \((E_\tau)_{xK}\) and \((E_\tau)_{g \cdot xK}\) that preserves the unitary structure.

Let \(\Gamma^\infty(E_\tau) \) denote the space of smooth sections of \(E_\tau \). Given \(\psi \in \Gamma^\infty(E_\tau) \), we have that \(\psi(xK) = [x, f(x)] \), with \(f \) in \(C^\infty(G/K; \tau) \), the set of smooth functions \(f \) : \(G \to V \) such that \(f(xk) = \tau(k^{-1})f(x) \). Conversely, any \(f \in C^\infty(G/K; \tau) \) defines an element \(\psi \in \Gamma^\infty(E_\tau) \). The group \(G \) acts on \(\Gamma^\infty(E_\tau) \) on the left by \((g \cdot \psi)(xK) := g\psi(g^{-1}xK) = [g^{-1}x, f(g^{-1}x)] = [x, f(g^{-1}x)] \), and hence on \(C^\infty(G/K; \tau) \) by \((g \cdot f)(x) = f(g^{-1}x) \).

Let \(\Gamma \) be a discrete cocompact subgroup of \(G \) that acts freely on \(X \). We restrict to \(\Gamma \) the left actions of \(G \) on \(X = G/K \), \(E_\tau \), \(\Gamma^\infty(E_\tau) \) and \(C^\infty(G/K; \tau) \). The
space $\Gamma \backslash X$ is a compact Riemannian manifold and $\Gamma \backslash E_\tau$ is a natural homogeneous vector bundle over $\Gamma \backslash X$. The space of smooth sections $C^\infty(\Gamma \backslash E_\tau)$ of this vector bundle is isomorphic to the space $C^\infty(\Gamma \backslash G/K; \tau)$ of left G-invariant functions in $C^\infty(\Gamma \backslash G/K; \tau)$. We denote by $L^2(\Gamma \backslash E_\tau)$ the closure of $C^\infty(\Gamma \backslash G/K; \tau)$ with respect to the inner product

$$(f_1, f_2) = \int_X \langle f_1(x), f_2(x) \rangle \, dx.$$

The Lie algebra \mathfrak{g} of G acts on $C^\infty(G/K; \tau)$ by

$$(X \cdot f)(x) = \frac{d}{dt} \big|_{t=0} f(\exp(-tX)x),$$

for $X \in \mathfrak{g}$ and $f \in C^\infty(G/K; \tau)$. This action induces a representation of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}. If G is semisimple we let $C = \sum X_i^2 \in U(\mathfrak{g})$ where X_1, \ldots, X_n is an orthonormal basis of \mathfrak{g}. In this case, C is called the Casimir element. When $G = \text{Iso}(\mathbb{R}^n)$, thus $X = \mathbb{R}^n$, we let $C = \sum_{i=1}^n X_i^2 \in U(\mathfrak{g})$, where X_1, \ldots, X_n is an orthonormal basis of \mathbb{R}^n. In both cases, the element C does not depend on the basis.

The element C defines a differential operator Δ_c on $C^\infty(G/K; \tau)$. This operator commutes with the left action of G on $C^\infty(G/K; \tau)$, in particular with elements in Γ, thus Δ_c induces a differential operator $\Delta_c|_\Gamma$ acting on smooth sections of $\Gamma \backslash E_\tau$.

Proposition 2.1. Let $X = G/K$ be an irreducible simply connected Riemannian symmetric space of constant curvature and denote by $(\tau_\mu, \Lambda^p(\mathbb{C}^n))$ the p-exterior representation of $K = O(n)$. Then $\Delta_{\tau_\mu, \Gamma}$ coincides with the Hodge-Laplace operator on complex valued differential forms of degree p.

We now recall some notions from the Introduction that will be the main object of this paper.

Definition 2.2. Let τ be a unitary representation of K. Let Γ_1 and Γ_2 be two cocompact discrete subgroups of G acting freely on X. The spaces $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are said to be τ-isospectral if the Laplace type operators Δ_{τ, Γ_1} and Δ_{τ, Γ_2} have the same spectrum. Here, we shall just say that the spaces are p-isospectral if $\tau = \tau_p$.

Given Γ a discrete cocompact subgroup of G acting freely on X, we consider the right regular representation $R_\Gamma = \text{Ind}_G^G(1_\Gamma)$ of G on $L^2(\Gamma \backslash G)$. This representation decomposes as an orthogonal direct sum of closed invariant subspaces of finite multiplicity

$$L^2(\Gamma \backslash G) = \sum_{\pi \in \hat{G}} n_\pi(\pi) H_\pi \tag{2.1}$$

where \hat{G} is the unitary dual of G and, for each $\pi \in \hat{G}$, $n_\pi(\pi)$ denotes the multiplicity of π in this decomposition. Note that if G is noncompact then, generically, H_π will be infinite dimensional.

Following the notation in [Pe2], we let $\hat{G}_\tau = \{ \pi \in \hat{G} : \text{Hom}_K(\tau, \pi) \neq 0 \}$ and we let $R_{\Gamma, \tau}$ be the unitary subrepresentation of R_Γ given by

$$L^2(\Gamma \backslash G)_\tau = \sum_{\pi \in \hat{G}_\tau} n_\pi(\tau) H_\pi. \tag{2.2}$$
Definition 2.3. (see [Pe2]) Let \(\tau \) be an irreducible unitary representation of \(K \). Let \(\Gamma_1 \) and \(\Gamma_2 \) be two discrete subgroups of \(G \) acting freely on \(G/K \). Then \(\Gamma_1 \) and \(\Gamma_2 \) are said to be \(\tau \)-equivalent if the representations \(R_{\Gamma_1,\tau} \) and \(R_{\Gamma_2,\tau} \) are equivalent, that is, if \(n_{\Gamma_1}(\pi) = n_{\Gamma_2}(\pi) \) for every \(\pi \in \hat{G}_\tau \).

Proposition 2.4. If \(\lambda \in \mathbb{R} \), the multiplicity \(d_\lambda(\tau,\Gamma) \) of the eigenvalue \(\lambda \) of \(\Delta_{\tau,\Gamma} \) is given by

\[
d_\lambda(\tau,\Gamma) = \sum_{\pi \in \hat{G}: \lambda(C,\pi) = \lambda} n_{\Gamma}(\pi) \dim \left(\text{Hom}_K(V^*_\pi, H) \right).
\]

Proof. This result is well-known. We sketch the proof for completeness. One has a map \(\phi: C^\infty(\Gamma\backslash G) \times V \rightarrow C^\infty(\Gamma\backslash G, V) \) given by \(\phi(f, v) = f(g)v \). Thus \(\phi \) induces a homomorphism \(\overline{\phi}: C^\infty(\Gamma\backslash G) \otimes V \rightarrow C^\infty(\Gamma\backslash G, V) \) that is actually an isomorphism and preserves the \(K \)-action. Indeed

\[
\phi(R_k f, \tau(k)v)(g) = f(gk)\tau(k)(v) = \tau(k)f(gk)v
\]

\[
= \tau(k)\phi(f, v)(gk) = (k \cdot \phi(f, v))(g).
\]

Hence \(\overline{\phi} \) sends \(K \)-invariants isomorphically onto \(K \)-invariants, thus

\[
(C^\infty(\Gamma\backslash G) \times V)^K \simeq C^\infty(\Gamma\backslash G, V)^K = C^\infty(\Gamma\backslash G/K; \tau) \simeq \Gamma_{\Gamma}(\Gamma\backslash E)
\]

Now

\[
(C^\infty(\Gamma\backslash G) \times V)^K \simeq \sum_{\pi \in \hat{G}} n_{\Gamma}(\pi) (H^\infty_{\pi} \otimes V)^K \simeq \sum_{\pi \in \hat{G}} n_{\Gamma}(\pi) \text{Hom}_K(V^*_\pi, H^\infty).
\]

Thus

\[
L^2(\Gamma\backslash E)_\lambda \simeq \sum_{\pi \in \hat{G}: \lambda(C,\pi) = \lambda} n_{\Gamma}(\pi) \left(\text{Hom}_K(V^*_\pi, H) \right).
\]

\[\square \]

From formula (2.3) one sees that the only representations in \(\hat{G} \) that can contribute to the multiplicity of the eigenvalue \(\lambda \) are those in \(\hat{G}_\tau \). As a direct consequence we have that:

Proposition 2.5. Let \(\Gamma_1 \) and \(\Gamma_2 \) be discrete cocompact subgroups of \(G \) acting freely on \(X \). If \(\Gamma_1 \) and \(\Gamma_2 \) are \(\tau \)-equivalent then \(\Gamma_1 \backslash X \) and \(\Gamma_2 \backslash X \) are \(\tau \)-isospectral.

2.2. Unitary dual group of the orthogonal group. If \(X \) is a symmetric space of constant curvature, then either \(X = S^n \), \(X = \mathbb{R}^n \) or \(X = \mathbb{H}^n \). In all three cases we have \(K \simeq O(n) \). We will need some well known facts about the irreducible representations of \(O(n) \).

We first recall the root system of the complex simple Lie algebra \(\mathfrak{so}(n, \mathbb{C}) \). Let

\[
\mathfrak{h} = \left\{ H = \sum_{j=1}^m i h_j (E_{2j-1,2j} - E_{2j,2j-1}) : h_j \in \mathbb{C} \right\}.
\]

Then \(\mathfrak{h} \) is a Cartan subalgebra of \(\mathfrak{so}(2m, \mathbb{C}) \) and also of \(\mathfrak{so}(2m+1, \mathbb{C}) \) if we add a zero row and a zero column at the end. For \(H \in \mathfrak{h} \), set \(\varepsilon_j(H) = h_j \) for \(1 \leq j \leq m \).

We consider the inner product \((\cdot, \cdot) \) on \(\mathfrak{h} \) obtained by \(\frac{1}{2(n-1)} \) times the restriction of the Killing form on \(\mathfrak{g} \), and its dual form on \(\mathfrak{h}_\mathbb{C}^* \). The root systems of \(\mathfrak{so}(2m+1, \mathbb{C}) \) and \(\mathfrak{so}(2m, \mathbb{C}) \) with respect to \(\mathfrak{h} \) and \((\cdot, \cdot) \) are of type \(B_m \) and \(D_m \) respectively. We list the roots in Table 1.
The finite-dimensional irreducible representations of a complex simple Lie algebra are characterized by their corresponding highest weights. We will denote them by \(\mathcal{P}(g)\).

We have

$$\mathcal{P}(\mathfrak{so}(2m)) = \left\{ \sum_{i=1}^{m} c_i \epsilon_i : c_i \in \mathbb{Z} \forall i \text{ or } c_i \in \frac{1}{2} + \mathbb{Z} \forall i, \text{ and } c_1 \geq c_2 \geq \cdots \geq c_{m-1} \geq |c_m| \right\},$$

$$\mathcal{P}(\mathfrak{so}(2m+1)) = \left\{ \sum_{i=1}^{m} c_i \epsilon_i : c_i \in \mathbb{Z} \forall i \text{ or } c_i \in \frac{1}{2} + \mathbb{Z} \forall i, \text{ and } c_1 \geq c_2 \geq \cdots \geq c_{m-1} \geq c_m \geq 0 \right\}.$$

The irreducible representations of \(\mathfrak{so}(n)\) are in a one to one correspondence with those of the simply connected Lie group \(\text{Spin}(n)\). In the case of \(\text{SO}(n)\), the highest weights of the irreducible representations are given by

$$\mathcal{P}(\text{SO}(n)) = \left\{ \sum_{i=1}^{m} c_i \epsilon_i \in \mathcal{P}(\mathfrak{so}(n)) : c_i \in \mathbb{Z} \forall i \right\}.$$

Example 2.6. Set \(\Lambda_p = \sum_{j=1}^{p} \epsilon_j \in \mathcal{P}(\text{SO}(n))\) for \(0 \leq p \leq n\). If \(p \neq \frac{n}{2}\), then \(\Lambda_p\) is the highest weight of the \(p\)-exterior representation on \(\bigwedge^p \mathbb{C}^n\) of \(\text{SO}(n)\). These representations are irreducible. The \(m\)-exterior power representation \(\bigwedge^m (\mathbb{C}^{2m})\) of \(\text{SO}(2m)\) decomposes as \(\bigwedge^m (\mathbb{C}^{2m}) \oplus \bigwedge^m (\mathbb{C}^{2m})\), where \(\bigwedge^m (\mathbb{C}^{2m})\) are irreducible and have highest weights \(\sum_{j=1}^{m-1} \epsilon_j \mp \epsilon_m\).

We now describe the irreducible regular representations of the full orthogonal group \(O(n)\) in terms of the irreducible representations of the special orthogonal group \(\text{SO}(n)\). Let

$$g_0 = \begin{cases} -\text{Id}_n & \text{if } n \text{ is odd,} \\ \text{Id}_{n-1} & \text{if } n \text{ is even.} \end{cases}$$

Then \(O(n) = \text{SO}(n) \cup g_0 \text{SO}(n)\), thus we will define the representations of \(O(n)\) on each component, \(\text{SO}(n)\) and \(g_0 \text{SO}(n)\).

For \(\Lambda \in \mathcal{P}(\text{SO}(2m+1))\) and \(\delta = \pm 1\), let \((\pi_\Lambda, V)\) be the representation of \(\text{SO}(2m+1)\) with highest weight \(\Lambda\). Then we may define a representation \((\pi_{\Lambda, \delta}, V)\) of \(O(2m+1)\) on \(V\) by setting, for \(g \in O(2m+1)\),

$$\pi_{\Lambda, \delta}(g)(v) = \begin{cases} \pi_\Lambda(g)(v) & \text{if } g \in \text{SO}(2m+1), \\
\delta \pi_\Lambda(g_0 g)(v) & \text{if } g \in g_0 \text{SO}(2m+1). \end{cases}$$

Table 1. Root systems for \(\mathfrak{so}(n)\).

<table>
<thead>
<tr>
<th>(\mathfrak{so}(2m+1))</th>
<th>(\mathfrak{so}(2m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>roots</td>
<td>roots</td>
</tr>
<tr>
<td>(\pm \epsilon_i \pm \epsilon_j) ((i \neq j))</td>
<td>(\pm \epsilon_i \pm \epsilon_j) ((i \neq j))</td>
</tr>
<tr>
<td>(\pm \epsilon_i)</td>
<td>(\epsilon_i \mp \epsilon_j) ((i \neq j))</td>
</tr>
<tr>
<td>positive roots</td>
<td>simple roots</td>
</tr>
<tr>
<td>(\epsilon_i \pm \epsilon_j) ((i < j))</td>
<td>(\epsilon_i - \epsilon_{i+1}) ((1 \leq i < m))</td>
</tr>
<tr>
<td>(\epsilon_i)</td>
<td>(\epsilon_i - \epsilon_{i+1}) ((1 \leq i < m))</td>
</tr>
<tr>
<td>simple roots</td>
<td></td>
</tr>
<tr>
<td>(\epsilon_m)</td>
<td>(\epsilon_m - \epsilon_{m-1}) ((1 \leq i < m))</td>
</tr>
</tbody>
</table>
For $\Lambda = \sum_{j=1}^{m} c_j \varepsilon_j \in \mathcal{P}(SO(2m))$ ($c_j \in \mathbb{Z}$ for all j and $c_1 \geq \cdots \geq c_{m-1} \geq |c_m|$), we denote by $\overline{\Lambda} = \sum_{j=1}^{m-1} c_j \varepsilon_j - c_m \varepsilon_m \in \mathcal{P}(SO(2m))$. Let $(\pi_{\Lambda}, V_{\Lambda})$ be the irreducible representation of $SO(2m)$ with highest weight Λ. If $I_{g_0}(g) = g_0 g_{g_0}$, then I_{g_0} defines an automorphism of $SO(2m)$ and one can see that $(\pi_{\Lambda} \circ I_{g_0}, V_{\Lambda})$ has highest weight $\overline{\Lambda}$. Thus, there exists a unitary operator $T_\Lambda : V_{\Lambda} \to V_{\overline{\Lambda}}$ such that $T_\Lambda \circ (\pi_{\Lambda} \circ I_{g_0})(g) = \pi_{\overline{\Lambda}}(g) \circ T_\Lambda$ for every $g \in SO(m)$. Furthermore, $(\pi_{\Lambda} \circ I_{g_0}, V_{\Lambda})$ is equivalent to $(\pi_{\overline{\Lambda}}, V_{\Lambda})$ if and only if $c_m = 0$.

If $\Lambda \in \mathcal{P}(SO(2m))$ is such that $c_m = 0$ and $\delta \in \{\pm 1\}$, we define a representation $\pi_{\Lambda,\delta}$ of $O(2m)$ on V_{Λ} as

\begin{equation}
\pi_{\Lambda,\delta}(g)(v) = \begin{cases}
\pi_{\Lambda}(g)(v), & \text{if } g \in SO(2m), \\
\delta T_{\Lambda}(\pi_{\Lambda}(g_{g_0})(v)), & \text{if } g \in g_0 SO(2m).
\end{cases}
\end{equation}

Note that this definition depends on the choice of T_Λ since $-T_\Lambda$ is another intertwining operator between π_{Λ} and $\overline{\pi}_{\Lambda}$. However, we have $\pi_{\Lambda,\delta} \simeq \pi_{\Lambda,-\delta} \otimes \text{det}$. If $\Lambda \in \mathcal{P}(SO(2m))$ is such that $c_m > 0$, we set $\delta = 0$ and define the representation $\pi_{\Lambda,0}$ of $O(2m)$ on $V_{\Lambda} \oplus V_{\overline{\Lambda}}$ as follows

\begin{equation}
\pi_{\Lambda,0}(g)(v, v') = \begin{cases}
(\pi_{\Lambda}(g)(v), \overline{\pi}_{\Lambda}(g)(v')), & \text{if } g \in SO(2m) \\
(\pi_{\Lambda}(g_{g_0})(v), \pi_{\Lambda}(g_{g_0})(v')) & \text{if } g \in g_0 SO(2m).
\end{cases}
\end{equation}

In particular $\pi_{\Lambda,0}(g_0)(v, v') = (v', v)$, thus $(V_{\Lambda} \oplus V_{\overline{\Lambda}}, \pi_{\Lambda,0})$ is irreducible.

In the next theorem we describe the unitary dual of $G = O(n)$.

Theorem 2.7. We have

\[
O(2m + 1) = \{ \pi_{\Lambda,\delta} \text{ as in (2.6)} : \Lambda \in \mathcal{P}(SO(2m + 1)), \delta = \pm 1 \},
\]

\[
O(2m) = \{ \pi_{\Lambda,\delta} \text{ as in (2.7)} : \Lambda \in \mathcal{P}(SO(2m)), c_m = 0, \delta = \pm 1 \} \\
\cup \{ \pi_{\Lambda,0} \text{ as in (2.8)} : \Lambda \in \mathcal{P}(SO(2m)), c_m > 0 \}.
\]

Example 2.8. We denote by $(\tau_p, \Lambda^p(C^n))$ the complexification of the p-exterior representation of the canonical representation of $O(n)$ on \mathbb{R}^n. We have that τ_p is irreducible for every value of p. Furthermore, $\tau_p \simeq \tau_{n-p} \otimes \text{det}$ for any $0 \leq p \leq n$, where the intertwining operator is given by the Hodge star operator.

Recall that $\Lambda_p = \sum_{i=1}^{\max(p,n-p)} \varepsilon_i \in \mathcal{P}(SO(n))$. In the notation of Theorem 2.7, if n is odd we have $\tau_p \simeq \pi_{\Lambda_p,(-1)p}$ and, for n even, $\tau_p \simeq \pi_{\Lambda_p,0}$. To write $\tau_p \in SO(2m)$ as (2.7) for $p \neq m$, we must fix an intertwining operator T_{Λ_p}. For $0 \leq p < m$, we write $\Lambda^p(C^{2m}) = W_0 \oplus W_1$, where W_0 (resp. W_1) is the subspace of $\Lambda^p(C^{2m})$ generated by $\varepsilon_{i_1} \wedge \cdots \varepsilon_{i_p}$ where $\{i_1, \ldots, i_p\} \subset \{2m \notin \{i_1, \ldots, i_p\} \text{ (resp. } 2m \in \{i_1, \ldots, i_p\}\}$. It is not hard to check that $T_{\Lambda_p} := I_{W_0} \oplus (-I_{W_1})$ satisfies $T_{\Lambda_p} \circ (\pi_{\Lambda_p} \circ I_{g_0})(g) = \overline{\pi}_{\Lambda_p}(g) \circ T_{\Lambda_p}$ for every $g \in SO(2m)$. Finally, one has that $\tau_p \simeq \pi_{\Lambda_p,1}$ for $0 \leq p < m$ and $\tau_p \simeq \pi_{\Lambda_p,-1}$ for $m < p \leq n$.

We conclude this section by stating two branching laws for orthogonal groups that will be needed in the following sections.

Proposition 2.9. Let τ_p and σ_p be the p-exterior representations of $O(n)$ and $O(n-1)$ respectively. Then, for any $0 \leq p \leq n$, we have

\begin{equation}
\tau_p|_{O(n-1)} = \sigma_p \oplus \sigma_{p-1},
\end{equation}

with the understanding that σ_{-1}, σ_0 are the zero representations of $O(n-1)$. That is, $\tau_0|_{O(n-1)} = \sigma_0$ and $\tau_{n-1}|_{O(n-1)} = \sigma_{n-1}$.
\textbf{Lemma 2.10.} Let τ_p be the p-exterior representation of $O(2m - 1)$ and let $\pi_{\Lambda, \delta} \in \hat{O}(2m)$ in the notation of Theorem 2.7. Then $[\tau_p : \pi_{\Lambda, \delta}] > 0$ if and only if

\begin{equation}
\Lambda = k \varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_p + c_{p+1} \varepsilon_{p+1}
\end{equation}

with $k \in \mathbb{N}$, $c_{p+1} \in \{0,1\}$, and where $\delta \in \{0, \pm 1\}$ has a specific value. More precisely, if $p = m - 1, m$ and $c_m > 0$ then $\delta = 0$ while if $p \neq m - 1, m$ or $p = m - 1, m$ and $c_m = 0$, then $\delta = \pm 1$ and the sign depends on p and on the choice of the intertwining operator T_Λ. Moreover $[\tau_p : \pi_{\Lambda, \delta}] | K] = 1$.

3. Compact case

In this section we shall prove the assertions in Theorem 1.1 and Corollary 1.2 for constant curvature spaces of compact type, that is, for spherical space forms. We fix the following notation for this section:

$G = O(n+1) \simeq \text{Iso}(S^n)$,

$K = O(n) = \{ g \in G : g.e_n+1 = e_{n+1} \}$,

$X = G/K \simeq S^n$.

Note that, in all three cases, G and K have two connected components. Since even dimensional spheres S^n cover only S^n and $\mathbb{R}P^n$, and their spectra are well-known, we will look only at odd dimensional spheres. Thus, we assume throughout this section that $n = 2m - 1$, then $G = O(2m)$ and $K = O(2m - 1)$. We first describe the set \hat{G}_{τ_p}, in the notation of Theorem 2.7. Set, for $2 \leq p \leq n - 2$ and $k \in \mathbb{N}$,

\begin{equation}
\Lambda_{k,p} = k \varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_{\min(p,n-p)}
\end{equation}

and $\Lambda_{k,p} = k \varepsilon_1$ for $p = 1, n - 1$ and $k \in \mathbb{N}_0$. In particular, $\Lambda_{1,p} = \Lambda_p$, as in Example 2.6.

\textbf{Proposition 3.1.} Let τ_p be the p-exterior representation of K. If $0 < p < m - 1$, then

\begin{align*}
\hat{G}_{\tau_0} &= \{ \pi_{\Lambda_{n,0}, \delta} : k \in \mathbb{N} \text{ with } \delta \in \{ \pm 1 \} \}, \\
\hat{G}_{\tau_p} &= \{ \pi_{\Lambda_{k,p}, \delta} : k \in \mathbb{N} \text{ with } \delta \in \{ \pm 1 \} \}, \\
\hat{G}_{\tau_{m-1}} &= \{ \pi_{\Lambda_{k,m-1}, \delta} : k \in \mathbb{N} \text{ with } \delta \in \{ \pm 1 \} \}.
\end{align*}

Furthermore, if $m \leq p \leq 2m - 1 = n$, then $\hat{G}_{\tau_p} = \{ \pi_{\Lambda, \delta} : \pi_{\Lambda_{n-p}, \delta} \in \hat{G}_{\tau_{n-p}} \}$. In the sets above, δ is uniquely determined by k, p and T_Λ. Moreover, for any $0 \leq p < n$ and $k \in \mathbb{N}$, $\pi_{\Lambda_{k,p+1}, \delta} \in \hat{G}_{\tau_p} \cap \hat{G}_{\tau_{p+1}}$.

\textbf{Proof.} From Theorem 2.7 we see that $\hat{O}(2m)$ is the set of all representations $\pi_{\Lambda, \delta}$ where $\Lambda = \sum_{i=1}^{n} c_i \varepsilon_i \in P(\text{SO}(2m))$ (see (2.4)), $c_m \in \mathbb{N}_0$ and either $\delta = \pm 1$ if $c_m = 0$, or $\delta = 0$ if $c_m \in \mathbb{N}$. Also, from Example 2.8 we see that, if $p > 0$, $\tau_p = \tau_{\Lambda_p, \kappa} \in \hat{K}$ as in (2.6), where $\Lambda_p = \sum_{j=1}^{p} \varepsilon_j$ and $\kappa = (-1)^p$.

Taking this into account, by using the branching law in Lemma 2.10 one checks that the description of \hat{G}_{τ_p} is as stated in the proposition. \hfill \Box

Now we prove that, for a spherical space form, the multiplicity of each eigenvalue of the Hodge-Laplace operator on p-forms involves only one specific $n_G(\pi)$, that is
to say, the sum in (2.3) has only one term. We set $\mathcal{E}_0 = \mathcal{E}_{n+1} = \emptyset$,

\begin{equation}
\mathcal{E}_1 = \mathcal{E}_n = \{ k + k(n - 1) : k \in \mathbb{N}_0 \}, \quad \text{and} \quad
\mathcal{E}_p = \{ k + k(n - 1) + (p - 1)(n - p) : k \in \mathbb{N} \}
\end{equation}

for $1 < p < n$. Note that $\mathcal{E}_p = \mathcal{E}_{n+1-p}$ for every $0 \leq p \leq n + 1$.

Proof of Theorem 1.1. By Schur’s lemma, the Casimir element C acts on any irreducible representation $\pi_{\Lambda, \delta}$ with $\Lambda = \sum_{i=1}^{m} c_i \varepsilon_i$ by multiplication by a scalar $\lambda(C, \pi)$ given by

\begin{equation}
\lambda(C, \pi_{\Lambda, \delta}) = \langle \Lambda + \rho, \Lambda + \rho \rangle - \langle \rho, \rho \rangle = \langle \Lambda, \Lambda \rangle + 2\langle \Lambda, \rho \rangle,
\end{equation}

where $\rho = \sum_{i=1}^{m} (m - i) \varepsilon_i$. Note that the scalar $\lambda(C, \pi_{\Lambda, \delta})$ does not depend on δ.

We first assume that $p = 0$. By Proposition 3.1, the highest weights of representations in \hat{G}_m have the form $\Lambda = k\varepsilon_1$ with $k \in \mathbb{N}_0$ and

\begin{equation}
\lambda(C, \pi_{k,1,\delta}) = k^2 + 2k(m - 1) = k(k + n - 1).
\end{equation}

Proposition 2.4 now implies that if $\Lambda \notin \mathcal{E}_1$ then λ is not in Spec$_{\emptyset}(\Gamma \setminus S^n)$, that is, $d_{\lambda}(\tau_p, \Gamma) = 0$. Moreover, since $k \mapsto k(k-n+1)$ is increasing for $k \geq 0$ hence $k = k_\Lambda$ is clearly determined by $\lambda \in \mathcal{E}_1$. Actually

\begin{equation}
k_\Lambda = -\frac{n-1}{2} + \sqrt{\left(\frac{n-1}{2}\right)^2 + \lambda} = -(m-1) + \sqrt{(m-1)^2 + \lambda}.
\end{equation}

Thus, in this case $d_{\lambda}(\tau_0, \Gamma) = n\tau(\pi_{\Lambda_{k_\Lambda},1,\delta})$.

Now assume $0 < p < m$. By Proposition 3.1, if $\pi_{\Lambda, \delta} \in \hat{G}_{\tau_p}$ then $\Lambda = \Lambda_{k,p}$ or $\Lambda = \Lambda_{k,p+1}$ and by (2.3), for each λ, we must consider $\pi_{\Lambda_{k,p},\delta}, \pi_{\Lambda_{k,p+1},\delta} \in \hat{G}_{\tau_p}$ with $\lambda(C, \pi_{\Lambda_{k,p},\delta}) = \lambda$ or $\lambda(C, \pi_{\Lambda_{k,p+1},\delta}) = \lambda$. Since

\begin{equation}
\lambda(C, \pi_{\Lambda_{k,p},\delta}) = \langle \Lambda_{k,p}, \Lambda_{k,p} \rangle + 2\langle \Lambda_{k,p}, \rho \rangle
\end{equation}

\begin{equation}
= k^2 + p - 1 + 2k(m - 1) + \sum_{i=2}^{p} (m - i) \varepsilon_i
\end{equation}

\begin{equation}
= k^2 + k(n - 1) + (p - 1)(n - p)
\end{equation}

lies in \mathcal{E}_p and $\lambda(C, \pi_{\Lambda_{k,p+1},\delta}) = k^2 + k(n - 1) + p(n - p - 1) \in \mathcal{E}_{p+1}$, it follows that λ is not an eigenvalue of Δ_{m-p} if $\Lambda \notin \mathcal{E}_p \cup \mathcal{E}_{p+1}$.

It is clear that for $\Lambda \in \mathcal{E}_p$ or $\Lambda \in \mathcal{E}_{p+1}$, k is uniquely determined by λ. Indeed, we have

\begin{equation}
k_\Lambda = \begin{cases}
-(m-1) + \sqrt{(m-1)^2 + \lambda - (p-1)(n-p)} & \text{if } \lambda \in \mathcal{E}_p, \\
-(m-1) + \sqrt{(m-1)^2 + \lambda - p(n-p-1)} & \text{if } \lambda \in \mathcal{E}_{p+1}.
\end{cases}
\end{equation}

It remains only to check that \mathcal{E}_p and \mathcal{E}_{p+1} are disjoint. Thus, let us assume that $\lambda(C, \pi_{\Lambda_{k,h},\delta}) = \lambda(C, \pi_{\Lambda_{h,k+1},\delta})$ for some $h, k \in \mathbb{N}$. Then

\begin{equation}k^2 + k(n - 1) + (p - 1)(n - p) = h^2 + h(n - 1) + p(n - p - 1),\end{equation}

which implies that

\begin{equation}(k-h)(k+h+n-1) = n-2p.
\end{equation}

Now since $n > 2p$, then $k > h$, thus the left-hand side is at least $n + 1 > n - 2p$, hence (3.6) cannot hold. Thus, $\mathcal{E}_p \cap \mathcal{E}_{p+1} = \emptyset$ for $0 \leq p \leq n + 1$.

It follows from this that for each $\lambda \in \mathcal{E}_p \cup \mathcal{E}_{p+1}$, the sum in Proposition 3.1 has only one term, indeed

$$d_\lambda(\tau_p, \Gamma) = \begin{cases} n_\Gamma(\pi_{\Lambda_\delta, p, \delta}) & \text{if } \lambda \in \mathcal{E}_p, \\ n_\Gamma(\pi_{\Lambda_\delta, p+1, \delta}) & \text{if } \lambda \in \mathcal{E}_{p+1}. \end{cases}$$

The case when $m \leq p \leq 2m - 1$ follows in the same way since $\pi_{\Lambda, \delta} \in \hat{G}_{\tau_p}$ if and only if $\pi_{\Lambda, \delta} \in \hat{G}_{\tau_{n-p}}$ by Proposition 3.1 and C acts by the same scalar on both representations. \hfill \square

We can now prove Corollary 1.2, as an application of Theorem 1.1.

Proof of Corollary 1.2. (i) For each p, Theorem 1.1 yields that the multiplicities of the eigenvalues of the Hodge-Laplace operator on p-forms determine the multiplicity $n_\Gamma(\pi)$ of every $\pi \in \hat{G}_{\tau_p}$, hence Γ_1 and Γ_2 are τ_p-equivalent. The converse follows from Proposition 2.5.

(ii) Given Γ_1 and Γ_2, assume that $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are $p - 1$-isospectral and $p + 1$-isospectral. Then, by (i), Γ_1 and Γ_2 are τ_{p-1} and τ_{p+1}-equivalent.

For $0 < p < n$, since $\hat{G}_{\tau_p} \subset \hat{G}_{\tau_{p-1}} \cup \hat{G}_{\tau_{p+1}}$, by Proposition 3.1, it follows that $n_{\tau_p}(\pi) = n_{\tau_{p-1}}(\pi)$ for every $\pi \in \hat{G}_{\tau_p}$ hence Γ_1 and Γ_2 are τ_{p}-equivalent, and as a consequence $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are p-isospectral.

For $p = 0$ (resp. $p = n$) we have $\hat{G}_{\tau_0} \subset \hat{G}_{\tau_1} \cup \{\pi_{0,0}\}$ (resp. $\hat{G}_{\tau_n} \subset \hat{G}_{\tau_{n-1}} \cup \{\pi_{0,0}\}$), hence Γ_1 and Γ_2 are n-equivalent (resp. τ_n-equivalent) since $n_{\tau_0}(\pi_{0,0}) = \beta_0(\Gamma_1 \backslash S^n) = 1$ (resp. $n_{\tau_0}(\pi_{0,0}) = \beta_n(\Gamma_1 \backslash S^n) = 1$). Hence $\Gamma_1 \backslash X$ and $\Gamma_2 \backslash X$ are 0-isospectral (resp. n-isospectral). \hfill \square

Remark 3.2. The p-spectrum of spherical space forms has been investigated by many authors. For instance, in [IT], Ikeda and Taniguchi studied the p-spectrum of homogeneous spaces G/K from the point of view of representation theory, determining the eigenvalues and the eigenspaces in the case of S^n and $\mathbb{C}P^n$. Later, Ikeda [Ik], for every $0 \leq p < \frac{n-1}{2}$, found lens spaces that are q-isospectral for every $0 \leq q \leq p$ but are not $p + 1$-isospectral. In [Pe2], Pesce considered the notion of τ-equivalent discrete subgroups and showed that τ-isospectral spherical space forms give τ-equivalent groups, in the case when the real-eigenspaces in $L^2(S^n; \tau)$ are irreducible. Finally we mention [GM], where Gornet and Mcgowan gave a rich family of examples of lens spaces that are τ_p-equivalent for some values of p only.

As mentioned in the Introduction, Corollary 1.2 (i) can be extended to $\tau = \tau_{\mu, \kappa} \in \hat{K}$, for more general choices of the highest weight μ.

Proposition 3.3. Let Γ_1, Γ_2 be finite subgroups of $G = O(n+1)$ acting freely on S^n. Let $\mu = \sum_{i=1}^{m-1} b_i \varepsilon_i \in \mathcal{P}(\text{SO}(2m))$ be such that

$$2 = b_1 \geq b_2 \geq \cdots \geq b_{m-1} \geq 0$$

and let $\kappa \in \{\pm 1\}$. If $\Gamma_1 \backslash S^n$ and $\Gamma_2 \backslash S^n$ are $\tau_{\mu, \kappa}$-isospectral, then Γ_1 and Γ_2 are $\tau_{\mu, \kappa}$-equivalent.

Proof. As we noted in the proof of Corollary 1.2 (i), it is sufficient to show that different representations of $\hat{G}_{\tau_{\mu, \kappa}}$ have different Casimir eigenvalues. The proof will be divided into two cases:

(a) $\mu_p := 2\varepsilon_1 + \cdots + 2\varepsilon_p$ for some $1 \leq p \leq m - 1$,
Case (a). By the branching law (see for example [Pe1, Prop. I.5]) we have that $\tau_{\mu,\kappa} : \pi_{\lambda,\delta} | K | > 0$ if and only if

$$\Lambda = \Lambda_{(k,a),p} := k \varepsilon_1 + 2 \varepsilon_2 + \cdots + 2 \varepsilon_p + a \varepsilon_{p+1},$$

where $k \geq 2$, $0 \leq a \leq 2$ and $\delta \in \{0, \pm 1\}$ has a specific value. Hence, the highest weights involved in $\hat{G}_{\tau_{\mu,\kappa}}$ have the form $\Lambda_{(k,a),p}$ with $0 \leq a \leq 2$, for every p. We have

$$\lambda(C, \pi_{\Lambda_{(k,a),p},\delta}) = k(k + 2m - 2) + \sum_{i=2}^{p} 2(2 + 2m - 2i) + a(a + 2m - 2p - 2).$$

It remains to prove that $\pi_{\Lambda_{(k,a),p},\delta} = \pi_{\Lambda_{(h,b),p},\delta}$ if and only if $(k,a) = (h,b)$. Suppose $0 \leq a < b \leq 2$. Then

$$k(k + 2m - 2) + a(a + 2m - 2p - 2) = h(h + 2m - 2) + b(b + 2m - 2p - 2)$$

$$(k-h)(k + h + 2m - 2) = (b-a)(b + a + 2m - 2p - 2).$$

If $k > h$, $b > a$, since $k + h + 2m - 2 > b + a + 2m - 2p - 2$ then $0 < k - h < b - a$. Hence $b - a = 2$ and $k - h = 1$, thus we have a contradiction since the left-hand side is odd and the right-hand side is even. Therefore, necessarily, $k = h$ and $b = a$, as asserted.

Case (b). The proof is very similar to the previous one, so we only give the main ingredients. The highest weights involved in $\hat{G}_{\tau_{\mu,\kappa}}$ have the form

$$\Lambda_{(k,a_1,a_2),p} := k \varepsilon_1 + 2 \varepsilon_2 + \cdots + 2 \varepsilon_p + a_1 \varepsilon_{p+1} + \varepsilon_{p+2} + \cdots + \varepsilon_q + a_2 \varepsilon_{q+1},$$

where $k \geq 2$ and $0 \leq a_1 \leq 1 \leq a_2 \leq 2$. In this case,

$$\lambda(C, \pi_{\Lambda_{(k,a_1,a_2),p},\delta}) = k(k + 2m - 2) + \sum_{i=2}^{p} 2(2 + 2m - 2i)$$

$$+ a_1(a_1 + 2m - 2p - 2) + \sum_{i=p+2}^{q} (1 + 2m - 2i) + a_2(a_2 + 2m - 2q - 2).$$

Suppose $\lambda(C, \pi_{\Lambda_{(k,a_1,a_2),p},\delta}) = \lambda(C, \pi_{\Lambda_{(b_1,b_2),p},\delta})$ with $a_2 < b_2$, i.e. $a_2 = 0$ and $b_2 = 1$. One can check that

$$(k-h)(k + h + 2m - 2) = (b_1 - a_1)(b_1 + a_1 + 2m - 2p - 2) + 1 + 2m - 2q - 2.$$

In case $b_1 = a_1$ we arrive at a contradiction as above. If $a_1 = 1$ and $b_1 = 2$, then the right-hand side is equal to $4m - 2(p+q)$, hence $k - h$ is an even positive integer, thus the right-hand side is greater than the left-hand side. If $a_1 = 2$ and $b_1 = 1$, the right-hand side is equal to $-2(q-p+1)$ and again we arrive at a contradiction as before. \(\square\)

Remark 3.4. Note that Proposition 3.3 follows again from the fact that, for any $\lambda \in \mathbb{R}$, in formula (2.3) at most one irreducible representation in $\hat{G}_{\tau_{\mu,\kappa}}$ gives a contribution. This is not true generically for $\tau \in \hat{K}$. For instance, for $\tau = \tau_{\mu,\kappa}$ with...
for a single value of μ and $\kappa = \pm 1$, set $\Lambda = 2m \epsilon_1$ and $\Lambda' = (2m - 1) \epsilon_1 + 3 \epsilon_2$, thus $\pi_{\Lambda,\delta}, \pi_{\Lambda',\delta} \in \hat{G}_\tau$ for a single value of δ and we have
\[
\lambda(C, \pi_{\Lambda,\delta}) = (\Lambda, \Lambda + 2 \rho) = 2m(2m + 2(m - 1)) = 2n(n + 1),
\]
\[
\lambda(C, \pi_{\Lambda',\delta}) = (2m - 1)(2m - 1 + 2(m - 1)) + 3(3 + 2(m - 2)) = n(n + n - 1) + 3n = 2n(n + 1).
\]
Therefore the eigenspace of $\Delta_{\tau,\Gamma}$ for the eigenvalue $\lambda = 2n(n + 1)$ is equal to $\pi_{\Lambda,\delta} \oplus \pi_{\Lambda',\delta}$, which is not irreducible.

Remark 3.5. Let $\Omega_p(M)$ denote the space of differential forms of degree p on a Riemannian compact manifolds M. By the Hodge decomposition at degree p
(3.7) $\Omega_p(M) = \mathcal{H}_p(M) \oplus \Omega^p_\delta(M) \oplus \Omega^p_\mu(M)$,
where $\mathcal{H}_p(M)$ denotes the p-harmonic forms and $\Omega^p_\delta(M)$ and $\Omega^p_\mu(M)$ denote the subspace of closed (resp. coclosed p-forms) of representations as follows: $\Omega^p_\delta(M) = \mathcal{H}_p(M)$ and $\Omega^p_\mu(M) = \mathcal{H}_p(M) \oplus \Omega^p_\mu(M)$ for any $\mu \neq 0$.

In this case, Theorem 1.1 ensures that the sets $\Omega^p_\mu(M)\lambda$ and $\Omega^p_\mu(M)\lambda$ cannot both be nonempty. Moreover, the p-eigenspace associated to $\lambda \in \mathcal{E}_p$ (resp. \mathcal{E}_{p+1}) is contained in $\Omega^p_\mu(M)\lambda$ (resp. $\Omega^p_\mu(M)\lambda$).

Gornet and McGowan introduced the notion of *half-isospectrality* (see [GM, Rmk. 4.5]) meaning isospectrality with respect to $\Delta_{\tau,\Gamma}$ restricted to closed or coclosed p-forms. They also showed several examples of half-isospectral lens spaces. In this case, Theorem 1.1 ensures that two spherical space forms are $p+1$-isospectral on closed forms if and only if they are p-isospectral on coclosed forms. In particular, the examples of p-isospectral and not $p+1$-isospectral lens spaces given in [Ik] and [GM], are examples of manifolds $p+1$-isospectral on closed forms but not on coclosed forms.

4. Flat case

We now consider the flat case $X = \mathbb{R}^n$. Then
(4.1) $G = O(n) \ltimes \mathbb{R}^n \simeq \text{Iso}(\mathbb{R}^n),$
and $K = O(n)$. Let Γ be a discrete cocompact subgroup of G acting freely on \mathbb{R}^n, i.e. a *Bieberbach group*. Any element $\gamma \in \Gamma \subset G$ decomposes uniquely as $\gamma = BL_b$, with $B \in K$ and $b \in \mathbb{R}^n$. The matrix B is called the rotational part of γ and L_b is called the translational part. The subgroup L_Λ of pure translations in Γ is called the translation lattice of Γ and $F := \Lambda\backslash \Gamma$ is the point group (or the holonomy group) of Γ.

We need a description of the unitary dual of G. We will use Mackey’s method (see [Wa, §5.4]). We identify $\hat{\mathbb{R}}^n$ with \mathbb{R}^n via the correspondence $\alpha \mapsto \xi_\alpha(\cdot) = e^{2\pi i \langle \alpha, \cdot \rangle}$
for $\alpha \in \mathbb{R}^n$. The group G acts on \mathbb{R}^n by $(g \cdot \xi_n)(b) = \xi_n(g^{-1}b)$. For $\alpha \in \mathbb{R}^n$ we consider $K_\alpha = \{ k \in K : k \cdot \xi_n = \xi_n \}$, the stabilizer of ξ_n in K.

For $\alpha \in \mathbb{R}^n$ and $(\sigma, V_\sigma) \in \hat{K}_\alpha$, we consider the induced representation of G given by

$$
(\pi_{\sigma, \alpha}, W_{\sigma, \alpha}) := \text{Ind}_{K_\alpha \ltimes \mathbb{R}^n}^{K \ltimes \mathbb{R}^n}(\sigma \otimes \xi_\alpha).
$$

Here, the space $W_{\sigma, \alpha}$ is the completion of the space

$$
C_{\sigma, \alpha} = \{ f : G \to V_\sigma \text{ cont. : } f((k, b)g) = \sigma(k)\xi_n(b)f(g), \ \forall k \in K_\alpha, b \in \mathbb{R}^n \}
$$

with respect to a canonical inner product. The action of G on $W_{\sigma, \alpha}$ is by right translations. Since $(\sigma \otimes \xi_n, V_\sigma)$ is unitary, $(\pi_{\sigma, \alpha}, W_{\sigma, \alpha})$ is a unitary representation of G. It is well-known that $\pi_{\sigma, \alpha}$ is irreducible and, furthermore, every unitary representation of G is unitarily equivalent to one of this form.

Note that if $\alpha = 0$, then $K_\alpha = K = O(n)$. Furthermore, for $(\tau, V) \in \hat{K}$, we have $\hat{\tau} := \pi_{\tau, 0} \simeq \tau \otimes \text{Id}$, i.e. $\hat{\tau}(v) = \tau(v)$ for $v \in V$, therefore $(\hat{\tau}, V) \in \hat{G}$ is finite dimensional.

On the other hand, if $\alpha \neq 0$ and $\sigma \in \hat{K}_\alpha$, then $\pi_{\sigma, \alpha} \simeq \pi_{\sigma, r\alpha}$, where $r = \|\alpha\|$. We shall abbreviate $\pi_{\sigma, r\alpha}$ by writing $\pi_{\sigma, r}$ for $r \geq 0$. In this case, $K_\alpha = [O(n-1)] \simeq O(n-1)$, when $r > 0$.

Summing up, a full set of representatives of \hat{G} is given by

$$
\hat{G} = \{ \pi_{\sigma, r} : \sigma \in O(n-1), r > 0 \} \cup \{ \hat{\tau} : \tau \in O(n) \}
$$

Now we determine \hat{G}_{τ_p}, that is, the representations in \hat{G} such that its restriction to $O(n)$ contains the p-exterior representations τ_p of $O(n)$. Recall that σ_p denotes the complexified p-exterior representations of $O(n-1)$.

Lemma 4.1. We have

$$
\hat{G}_{\tau_p} = \{ \pi_{\sigma, r}, \pi_{\sigma, -r} : r > 0 \} \cup \{ \hat{\tau} \}
$$

for all p. Moreover $[\tau_p : \pi]|_K = 1$ for every $\pi \in \hat{G}_{\tau_p}$.

Proof. Let $\pi_{\sigma, r} \in \hat{G}$ with $\sigma \in O(n-1)$ and $r > 0$. Since $\pi_{\sigma, r}|_K = \text{Ind}_{K_\alpha}^{K}(\sigma)$ and $[\tau_p : \pi_{\sigma, r}|_K]$ by Frobenius reciprocity, we have that $[\tau_p : \pi_{\sigma, r}|_K] > 0$ if and only if $\sigma = \sigma_p, \sigma_{p-1}$ by Proposition 2.9.

Now if $\hat{\tau} \in \hat{G}$ with $\tau \in \hat{K}$, then $\hat{\tau}|_K = \tau$, it follows that $[\tau_p, \hat{\tau}|_K] > 0$ if and only if $\tau = \tau_p$. \square

If e_1, \ldots, e_n is the canonical basis of \mathbb{R}^n, the operator $C = \sum_{i=1}^{n} e_i^2 \in U(\mathfrak{g})$ descends to the Hodge-Laplace operator $\Delta_{\tau, \Gamma}$ on p-forms of $\Gamma \setminus \mathbb{R}^n \simeq \Gamma \setminus \text{Iso}(\mathbb{R}^n)/O(n)$ (see Subsection 2.1). The following lemma tells us how $\Delta_{\tau, \Gamma}$ operates on any $\pi \in \hat{G}$.

Lemma 4.2. The element $C \in U(\mathfrak{g})$ acts on $\pi \in \hat{G}$ by multiplication by a scalar $\lambda(C, \pi)$ given as follows:

$$
\lambda(C, \pi) = \begin{cases} 0 & \text{for } \pi = \hat{\tau}, \\ -4\pi^2\|\alpha\|^2 & \text{for } \pi = \pi_{\sigma, \alpha}, \ \alpha \neq 0. \end{cases}
$$

Proof. In the first case $\tau(k, v) = \tau(k)$, for any $k \in K, v \in \mathbb{R}^n$. If $X \in \mathbb{R}^n$,

$$
\tau(X)(k, v) = \frac{d}{dt} \bigg|_0 \tau(k, v + tX) = \frac{d}{dt} \bigg|_0 \tau(k) = 0.
$$
If $\pi = \pi_{\sigma, \alpha}$ with $\alpha \neq 0$ and $f \in C_{\sigma, \alpha}$, then

$$\pi_{\sigma, \alpha}(X)f(k, v) = \frac{d}{dt} \bigg|_{0} f(k, v + tX) = \frac{d}{dt} \bigg|_{0} f((1, tk \cdot X) \cdot (k, v))$$

$$= \frac{d}{dt} \bigg|_{0} e^{2\pi it(\alpha \cdot kX)} f(k, v) = 2\pi i \langle k^{-1} \cdot \alpha, X \rangle f(k, v).$$

Thus $\pi_{\sigma, \alpha}(C)f(k, v) = -4\pi^2 \sum_{i=1}^{n} (k^{-1}\alpha, e_i)^2 f(k, v) = -4\pi^2 \|\alpha\|^2 f(k, v).$

Now we are in a condition to prove the results in the Introduction in the flat case.

Proof of Theorem 1.3. By Proposition 2.4, given an eigenvalue $\lambda \in \mathbb{R}$ of the Hodge-Laplace operator on p-forms $\Delta_{\tau, \Gamma}$ on $\Gamma \backslash \mathbb{R}^n$, the multiplicity $d_{\lambda}(\tau_p, \Gamma)$ is given by $\sum n_q(\pi) [\tau_p : \pi|_{\mathcal{K}}]$, where the sum is over every $\pi \in \mathcal{G}_{\tau_p}$ such that $-\lambda(C, \pi) = \lambda$. Now, by using Lemma 4.1 and Lemma 4.2 we obtain that

$$d_{\lambda}(\tau_p, \Gamma) = \begin{cases} n_{\Gamma}(\tau_p) & \text{if } \lambda = 0, \\ n_{\Gamma}(\pi_{\sigma, \alpha, \sqrt{\lambda}/2\pi}) + n_{\Gamma}(\pi_{\sigma_{p-1}, \sqrt{\lambda}/2\pi}) & \text{if } \lambda > 0, \end{cases}$$

and thus Theorem 1.3 follows.

We will use the following Lemma to prove Theorem 1.5 in the flat case and other consequences in Corollary 4.6.

Lemma 4.3. If Γ_1 and Γ_2 are τ_{p-1}-equivalent (or τ_{p+1}-equivalent) and $\Gamma_1 \backslash \mathbb{R}^n$ and $\Gamma_2 \backslash \mathbb{R}^n$ are p-isospectral, then Γ_1 and Γ_2 are τ_p-equivalent.

Proof. Since Γ_1 and Γ_2 are τ_{p-1}-equivalent we have that $n_{\Gamma_1}(\pi_{\sigma_{p-1}, r}) = n_{\Gamma_2}(\pi_{\sigma_{p-1}, r})$ for every $r > 0$ by Proposition 3.1. On the other hand, since $\Gamma_1 \backslash \mathbb{R}^n$ and $\Gamma_2 \backslash \mathbb{R}^n$ are p-isospectral we have that $n_{\Gamma_1}(\tau_p) = n_{\Gamma_2}(\tau_p)$ and

$$n_{\Gamma_1}(\pi_{\sigma_p, r}) + n_{\Gamma_2}(\pi_{\sigma_p, r}) = n_{\Gamma_2}(\pi_{\sigma_p, r}) + n_{\Gamma_2}(\pi_{\sigma_p, r})$$

for any $r > 0$, by (4.4). These three facts taken together, clearly imply τ_p-equivalence. The assertion assuming τ_{p+1}-equivalence follows in a similar way.

Proof of Theorem 1.5 (flat case). The fact that τ_p-equivalence implies p-isospectrality is clear in light of Proposition 2.5. For the converse assertion, we proceed by induction. Lemma 4.3 for $p = 0$ says that 0-isospectrality implies γ_p-equivalence. Now assume that the manifolds are q-isospectral for every $0 \leq q \leq p$, thus we have that the groups are τ_q-equivalent for every $0 \leq q \leq p - 1$ by the induction hypothesis. In particular we have τ_{p-1}-equivalence and p-isospectrality, hence Lemma 4.3 implies τ_{p-1}-equivalence, which completes the proof.

Remark 4.4. One can also prove the above result for intervals decreasing from n, that is: q-isospectrality for every $p \leq q \leq n$ is equivalent to τ_q-equivalence for every $p \leq q \leq n$.

We can also obtain from Theorem 1.3 several other consequences relating p-isospectrality and τ_p-equivalence. Given a compact n-manifold M, $\beta_p(M)$ denotes the p^{th}-Betti number of M and one has that $\beta_p(M) = d_0(\tau_p, M)$, the multiplicity of the eigenvalue 0 of the Hodge-Laplace operator on p-forms of M.
Proposition 4.5. Let Γ_1 and Γ_2 be Bieberbach groups and let $\Gamma_1 \setminus \mathbb{R}^n$ and $\Gamma_2 \setminus \mathbb{R}^n$ be the corresponding flat Riemannian manifolds. Then the following assertions hold.

(i) If Γ_1 and Γ_2 are τ_1-equivalent, then $\Gamma_1 \setminus \mathbb{R}^n$ and $\Gamma_2 \setminus \mathbb{R}^n$ are 0 and 1-isospectral.

(ii) If Γ_1 and Γ_2 are τ_{n-1}-equivalent and $\beta_n(\Gamma_1 \setminus \mathbb{R}^n) = \beta_n(\Gamma_2 \setminus \mathbb{R}^n)$, then $\Gamma_1 \setminus \mathbb{R}^n$ and $\Gamma_2 \setminus \mathbb{R}^n$ are n and $n-1$-isospectral.

(iii) If Γ_1 and Γ_2 are τ_{p-1} and τ_{p+1}-equivalent and $\beta_\ast(\Gamma_1 \setminus \mathbb{R}^n) = \beta_\ast(\Gamma_2 \setminus \mathbb{R}^n)$, then Γ_1 and Γ_2 are also τ_p-equivalent, hence $\Gamma_1 \setminus \mathbb{R}^n$ and $\Gamma_2 \setminus \mathbb{R}^n$ are $p-1$, p and $p+1$-isospectral.

Proof. We will use repeatedly the facts

\[G_{\tau_r} = \{ \pi_{\sigma, r}, \pi_{\sigma_\ast, r} : r > 0 \} \cup \{ \tilde{\tau}_p \}, \]

\[d_\lambda(\pi_{\sigma, r}, \tau) = \begin{cases} nr_\ast(\pi_{\sigma, \tau}) + nr_\ast(\pi_{\sigma_\ast, \tau}) & \text{if } \lambda = 0, \\ nr_\ast(\pi_{\sigma, \tau}) + nr_\ast(\pi_{\sigma_\ast, \tau}) & \text{if } \lambda > 0. \end{cases} \]

from Lemma 4.1 and Theorem 1.3.

We first prove (i). Suppose that Γ_1 and Γ_2 are τ_1-equivalent, then $\Gamma_1 \setminus \mathbb{R}^n$ and $\Gamma_2 \setminus \mathbb{R}^n$ are 1-isospectral by Proposition 2.5. Since $\pi_{\sigma_\ast, r} \in G_{\tau_r}$ for $r > 0$, (1) and (3) imply that $d_\lambda(\tau_0, \Gamma_1) = d_\lambda(\tau_0, \Gamma_2)$ for every $\lambda > 0$, hence $\Gamma_1 \setminus \mathbb{R}^n$ and $\Gamma_2 \setminus \mathbb{R}^n$ are also 0-isospectral, since $d_0(\tau_0, \Gamma_1) = d_0(\tau_0, \Gamma_2) = 1$.

Assertion (ii) follows in a similar way by using that $d_0(\tau_n, \Gamma_1) = \beta_n(\Gamma_1 \setminus \mathbb{R}^n)$.

Relative to (iii) if Γ_1 and Γ_2 are τ_{p-1} and τ_{p+1} equivalent, then on the one hand, $nr_\ast(\pi_{\sigma_\ast, \tau}) = nr_\ast(\pi_{\sigma_\ast, \tau})$ for every $r > 0$ since $\pi_{\sigma_\ast, \tau} \in G_{\tau_{p+1}}$, and, on the other hand, since $\pi_{\sigma_\ast, \tau} \in G_{\tau_{p+1}}$, then $nr_\ast(\pi_{\sigma_\ast, \tau}) = nr_\ast(\pi_{\sigma_\ast, \tau})$ for every $r > 0$. Finally, the equality of the p^{th} Betti numbers implies that $nr_\ast(\tilde{\tau}_p) = nr_\ast(\tilde{\tau}_p)$ by (3), thus Γ_1 and Γ_2 are τ_p-equivalent.

Note that the condition $\beta_n(\Gamma_1 \setminus \mathbb{R}^n) = \beta_n(\Gamma_2 \setminus \mathbb{R}^n)$ in Proposition 4.5 (ii) is equivalent to $\Gamma_1 \setminus \mathbb{R}^n$ and $\Gamma_2 \setminus \mathbb{R}^n$ being both orientable or both non-orientable. A flat manifold $\Gamma \setminus \mathbb{R}^n$ is orientable if and only if $\Gamma \subset SO(n) \times \mathbb{R}^n$.

The next result follows immediately from Lemma 4.3 and will be applied in explicit examples.

Corollary 4.6. Let Γ_1 and Γ_2 be Bieberbach groups. If $\Gamma_1 \setminus \mathbb{R}^n$ and $\Gamma_2 \setminus \mathbb{R}^n$ are p-isospectral for every $p \in \{1, 2, \ldots, k\}$ and are not 0-isospectral, then Γ_1 and Γ_2 are not τ_p-equivalent for any $p \in \{0, 1, 2, \ldots, k + 1\}$. Similarly, if $\beta_n(\Gamma_1 \setminus \mathbb{R}^n) = \beta_n(\Gamma_2 \setminus \mathbb{R}^n)$ and $\Gamma_1 \setminus \mathbb{R}^n, \Gamma_2 \setminus \mathbb{R}^n$ are p-isospectral for every $p \in \{n-k, \ldots, n-2, n-1\}$ and are not n-isospectral, then Γ_1 and Γ_2 are not τ_p-equivalent for any $p \in \{n-k, n-k-1, \ldots, n\}$.

Remark 4.7. We now study the Hodge decomposition of a compact flat manifold as in Remark 3.5. In this case, Theorem 1.3 implies that $\mathcal{H}_p(M)$ is the 0-eigenspace associated to $\tilde{\tau}_p$ and for $\lambda \neq 0$, again we have $\Omega_\ast(M)_\lambda = \Omega_\ast(M)_\lambda \oplus \Pi_\ast(M)_\lambda$, where both can be nonempty at the same time.

Unlike the notion of p-isospectrality, we have an equivalent definition of compact flat manifolds p-isospectral on closed forms (resp. coclosed forms) in terms of representations. Namely from Lemma 4.1 one can see that
\[\Gamma_1 \setminus \mathbb{R}^n \text{ and } \Gamma_2 \setminus \mathbb{R}^n \text{ are isospectral on closed (resp. coclosed) } p\text{-forms if and only if } n_{\Gamma_1}(\pi_{\sigma_p,r}) = n_{\Gamma_2}(\pi_{\sigma_p,r}) \text{ (resp. } n_{\Gamma_1}(\pi_{\sigma_p-1,r}) = n_{\Gamma_2}(\pi_{\sigma_p-1,r})) \text{ for every } r > 0. \]

In this way we can find many examples of compact flat manifolds that are half-isospectral but not isospectral. For instance, if they are 0-isospectral and not 1-isospectral, then they are 1-isospectral on closed forms but not on coclosed forms. Examples of this type can be found in [MR1, Examples 5.1, 5.5, 5.9].

In the rest of this section we give several examples of compact flat manifolds satisfying some \(p \)-isospectralties or \(\tau_p \)-equivalences for some values of \(p \) only. We denote by \(\{e_1, \ldots, e_n\} \) the canonical basis of \(\mathbb{R}^n \).

We recall from [MR1, Thm. 3.1] that the multiplicity of the eigenvalue 4\(\pi^2 \mu \) of \(\Delta_{\tau_p,r} \) is given by

\[
(4.5) \quad d_{4\pi^2 \mu}(\tau_p, \Gamma) = |F|^{-1} \sum_{\gamma = BL_b \in \Lambda \setminus \Gamma} \text{tr}(B) e_{\mu, \gamma}(\Gamma),
\]

where \(e_{\mu, \gamma}(\Gamma) := \sum_{v \in \Lambda^*_B, v = v} e^{-2\pi i v - b} \), \(\Lambda^*_B := \{ v \in \Lambda^* : \|v\|^2 = \mu \} \) (\(\Lambda^* \) the dual lattice of \(\Lambda \)) and \(\text{tr}(B) := \text{tr}(\tau_p(B)) \). If \(p = 0 \), (4.5) reads

\[
(4.6) \quad d_{4\pi^2 \mu}(0, \Gamma) = |F|^{-1} \sum_{\gamma = BL_b \in \Lambda \setminus \Gamma} \sum_{v \in \Lambda^*_B, v = v} e^{-2\pi i v - b}.
\]

Example 4.8. We first show a pair of non isometric Klein bottles that are 1-isospectral but not 0-isospectral, hence the corresponding Bieberbach groups cannot be \(\tau_1 \)-equivalent by Proposition 4.5 (i).

Let \(\Gamma = (\gamma, L_\Lambda) \) and \(\Gamma' = (\gamma', L_\Lambda) \), where \(\Lambda = \mathbb{Z}e_1 \oplus \mathbb{Z}ce_2 \) with \(c > 1 \) and in column notation

\[
(4.7) \quad \begin{bmatrix} \gamma \\ \frac{1}{c} \\ -1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \gamma' \\ -1 \\ \frac{1}{c} \end{bmatrix}.
\]

That means that \(\gamma = BL_b \) and \(\gamma' = B'L_{b'} \) where \(B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \), \(B' = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \), \(b = \frac{1}{2}e_1 \) and \(b' = \frac{1}{2}ce_2 \), i.e. the column in (4.7) gives the rotation part of \(\gamma \), \(\gamma' \) and the subindices indicate their translation vectors.

The manifolds \(\Gamma \setminus \mathbb{R}^n \) and \(\Gamma' \setminus \mathbb{R}^n \) are 1-isospectral in light of (4.5) since \(\text{tr}_1(B) = \text{tr}_1(B') = 0 \). However, they are not 0-isospectral since, by using (4.6), one can see that the smallest eigenvalue for \(\Gamma \setminus \mathbb{R}^n \), \(\lambda = 4\pi^2 c^{-2} \), has multiplicity 2 while \(\lambda \) is not an eigenvalue for \(\Gamma' \setminus \mathbb{R}^n \).

The Klein bottles just defined are homeomorphic. However, it is not hard to give a pair of non homeomorphic compact flat 4-manifolds that are 1-isospectral but not 0-isospectral. We define \(\Gamma = (\gamma, L_{Z^4}) \) and \(\Gamma' = (\gamma', L_{Z^4}) \) where, in column notation,

\[
\begin{bmatrix} \gamma \\ \frac{1}{2} \\ 1 \\ -1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \gamma' \\ 1 \\ J \\ -1 \end{bmatrix}.
\]

Here \(J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \) and \(\gamma' = B'L_{b'} \) with \(B' = \text{diag}(1, J, -1) \in \text{GL}(4, \mathbb{R}) \) and \(b' = (1/2, 0, 0, 0)^t \in \mathbb{R}^4 \).
These manifolds are 1-isospectral because, again, \(\text{tr}_1(B) = \text{tr}_1(B') = 0 \). They are not 0-isospectral. Indeed, it follows easily from (4.6) that the smallest nonzero eigenvalue is \(4\pi^2 \) for both manifolds, but it has multiplicity \(\frac{1}{2}(8 + 0) = 2 \) for the first one and \(\frac{1}{2}(8 - 2) = 3 \) for the second one.

One can show, by using the theory of Bieberbach groups, that these manifolds cannot be homeomorphic since the holonomy representations are not semi-equivalent.

Example 4.9. We now give a pair of 4-dimensional compact flat manifolds that are \(p \)-isospectral for \(p = 1, 3 \) and they are not \(p \)-isospectral for \(p = 0, 2, 4 \). The corresponding Bieberbach groups cannot be \(\tau_p \)-equivalent for any \(p \), by Proposition 2.5, for \(p \) even and by Proposition 4.5 (i)-(ii), for \(p \) odd.

The manifolds mentioned are called \(M_{24} \) and \(M_{25} \) in the notation in [CMR, Example 4.8], and can be described as \(\Gamma = \langle \gamma_1, \gamma_2, L_{\mathbb{Z}^2} \rangle \) and \(\Gamma' = \langle \gamma'_1, \gamma'_2, L_{\mathbb{Z}^2} \rangle \) where

\[
\begin{array}{c|cc|c|cc}
\gamma_1 & \gamma_2 & & \gamma'_1 & \gamma'_2 & \\
-1 & 1 & & -1 & 1 \\
-1 & -1 & 1 & -1 & -1 & 1 \\
1 & -1 & -1 & 1 & -1 & -1 \\
\end{array}
\]

The manifolds \(\Gamma \setminus \mathbb{R}^n \) and \(\Gamma' \setminus \mathbb{R}^n \) are non homeomorphic since they have different homology over \(\mathbb{Z}_2 \). Indeed, one has that \(\beta_1^{\mathbb{Z}_2}(M_{24}) = 4 \neq \beta_1^{\mathbb{Z}_2}(M_{25}) = 3 \) and \(\beta_2^{\mathbb{Z}_2}(M_{24}) = 0 \neq \beta_2^{\mathbb{Z}_2}(M_{25}) = 4 \).

Example 4.10. This is a curious example of two 8-dimensional flat manifolds which are \(p \)-isospectral for every \(p \in \{1, 2, 3, 5, 6, 7\} \) but not for \(p \in \{0, 4, 8\} \). According to Corollary 4.6, the corresponding Bieberbach groups cannot be \(\tau_p \)-equivalent for any \(p \).

We define \(\Gamma = \langle \gamma, L_{\mathbb{Z}^8} \rangle \) and \(\Gamma' = \langle \gamma', L_{\mathbb{Z}^8} \rangle \) where

\[
\begin{array}{c|ccc|c|ccc}
\gamma & \gamma^2 & \gamma^3 & & \gamma' & \gamma'^2 & \gamma'^3 \\
\tilde{J} & -1 & -\tilde{J} & & \tilde{J} & -1 & -\tilde{J} \\
\tilde{J} & -1 & -\tilde{J} & & \tilde{J} & -1 & -\tilde{J} \\
\frac{1}{2} & 1 & \frac{1}{2} & 1 & \frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} & 1 & \frac{1}{2} & 1 & \frac{1}{2} \\
-1 & 1 & -1 & -1 & 1 & -1 & 1 \\
-1 & 1 & -1 & -1 & 1 & -1 & 1 \\
\end{array}
\]

Here \(\tilde{J} = \left[\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right] \) and \(I \) is the \(2 \times 2 \) identity matrix. The elements \(\gamma \) and \(\gamma' \) have order 4, thus the manifolds \(\Gamma \setminus \mathbb{R}^n \) and \(\Gamma' \setminus \mathbb{R}^n \) have holonomy group isomorphic to \(\mathbb{Z}_4 \). We include also the elements \(\gamma^2, \gamma^3, \gamma'^2 \) and \(\gamma'^3 \) to facilitate the computation of the multiplicities of the eigenvalues. Note that the only difference between their generators lies only in the sixth coordinate of the translational part, in particular we have \(B = B' \) and \(\gamma^2 = \gamma'^2 \).

We shall compare the spectra of \(\Gamma \setminus \mathbb{R}^n \) and \(\Gamma' \setminus \mathbb{R}^n \) by using the formula (4.5) for the multiplicities of the eigenvalues of the Hodge-Laplace operator on \(p \)-forms. The manifolds are 1-isospectral since \(\text{tr}_1(B^k) = 0 \) for \(k = 1, 2, 3 \). One can check that \(\text{tr}_2(B) = \text{tr}_2(B') = 0 \) (resp. \(\text{tr}_3(B) = \text{tr}_3(B') = 0 \)), hence the manifolds
are 2-isospectral (resp. 3-isospectral) since the equality in (4.5) follows from the fact that $\gamma^2 = \gamma'$. The manifolds cannot be 0-isospectral since the first nonzero eigenvalue $\lambda = 4\pi^2$ has different multiplicities in both cases. Indeed, $d_\lambda(\tau_0, \Gamma) = 6 \neq 4 = d_\lambda(\tau_0, \Gamma')$. Since $\det(B) = 1$ the manifolds are orientable and then the previous reasoning is valid for $p = 5, 6, 7, 8$. Finally, they cannot be 4-isospectral since one checks that $\text{tr}_4(B) = \text{tr}_4(B^2) = -2$, $\text{tr}_4(B^2) = 6$ and then, by (4.5), we obtain that the first nonzero eigenvalue $\lambda = 4\pi^2$ has multiplicities $d_\lambda(\tau_0, \Gamma) = 284 \neq 288 = d_\lambda(\tau_0, \Gamma')$.

These two compact flat manifolds are homeomorphic to each other, but it is not difficult to obtain a similar example with non homeomorphic groups. Namely we take

$$
\begin{array}{cccc}
\gamma & \gamma^2 & \gamma^3 & \gamma' \\
\gamma & -I & -\gamma & \gamma' \\
\gamma & -I & -\gamma' & \gamma' \\
1_\gamma & 1_\frac{1}{2} & 1_\frac{1}{4} & 1_\frac{1}{4} \\
1_\gamma & 1_\frac{1}{2} & 1_\frac{1}{4} & 1_\frac{1}{4} \\
-1 & 1 & -1 & 1 \\
-1 & 1 & -1 & 1 \\
\end{array}
$$

and

$$
\begin{array}{cccc}
\gamma & \gamma^2 & \gamma^3 & \gamma' \\
\gamma & -I & -\gamma & \gamma' \\
\gamma' & -I & -\gamma' & \gamma' \\
\gamma & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\gamma' & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
1 & 1 & 1 & 1 \\
-1 & 1 & -1 & -1 \\
\end{array}
$$

5. Negative curvature case

The goal of this section is to consider the p-spectrum of compact hyperbolic manifolds in connection with γ-isospectrality. We set $G = \text{SO}(n, 1)$, $K = \text{O}(n)$, $X \simeq \mathbb{H}^n$ and $X_\Gamma \simeq \Gamma\backslash \text{SO}(n, 1)/K$ thus $X = \mathbb{H}^n$ the n-dimensional hyperbolic space. Let $\Gamma \subset \text{SO}(n, 1)$ be a discrete cocompact subgroup acting without fixed points on X. We recall that $\text{SO}(n, 1)$ is the group of linear transformations on \mathbb{R}^{n+1}_1 preserving the Lorentzian form of signature $(n, 1)$ and determinant one.

We will need a description of \hat{G}. We will first introduce the principal series representation of G. The group G has an Iwasawa decomposition $G = MAN$, with a corresponding decomposition $g = \mathfrak{t} \oplus \mathfrak{a} \oplus \mathfrak{n}$ at the Lie algebra level, where N is nilpotent and A is abelian of dimension one. Let M be the centralizer of A in K. One has $M \simeq O(n-1)$. The Lie subgroup $F = MAN$ of G is a minimal parabolic subgroup of G.

If $\nu \in \mathfrak{a}_\mathbb{C}^*$, then $\xi_\nu(a) = a^\nu$ defines a character of A. We set $\rho_a = \frac{1}{2}(\dim \mathfrak{g}_a)\alpha = \frac{n-1}{2} a$ where a is the simple root of the pair $(\mathfrak{g}, \mathfrak{a})$. If $(\sigma, V_\sigma) \in \hat{M}$ and $\nu \in \mathfrak{a}_\mathbb{C}^*$, then we let $C_{\sigma,\nu}$ be the space

$$
\{ f \text{ cont. : } G \to V_\sigma : f(m\gamma a) = a^{\nu + \rho_a} \sigma(m)f(g), \forall m \in M, a \in A, n \in N \}.
$$

If \langle , \rangle is an M-invariant inner product on V_σ, for $f_1, f_2 \in C_{\sigma,\nu}$ set

$$
\langle f_1, f_2 \rangle = \int_{M\backslash K} \langle f_1(k), f_2(k) \rangle dk.
$$

Then $(C_{\sigma,\nu}, \langle , \rangle)$ is a prehilbert space and the Hilbert space completion is denoted by $H_{\sigma,\nu}$. The action of G by right translations on $C_{\sigma,\nu}$ extends to $H_{\sigma,\nu}$ defining a continuous series of representations of G, $(\pi_{\sigma,\nu}, H_{\sigma,\nu})$, that is unitary if $\nu \in i\mathfrak{a}^*$. It is called the \textit{principal series representations} of G. They are generically irreducible and play a main role in the description of the irreducible representations of G.
One usually identifies a_n^σ with C via the map $\nu \to \nu(H_0)$, where $H_0 \in a$ satisfies $\alpha(H_0) = 1$, in such a way that $\alpha \to 1$ and $\rho_\alpha \to \frac{n-1}{2}$. In this way, $\pi_{\sigma,\nu}$ is unitary if $\nu \in i\mathbb{R}$, as mentioned above.

A Hilbert representation (π, H) of G is said to be square integrable if any K-finite matrix coefficient lies in $L^2(G)$. These representations were classified by Harish-Chandra and form the so called discrete series representations of G, denoted \hat{G}_d.

The determination of the irreducible unitary representations of a general non-compact semisimple Lie group is an open problem, but is known in the particular case of Lie groups of real rank one (see [BB] and also [KS]). In the case at hand of $G = SO(n,1)$ one has:

Theorem 5.1. The unitary dual of $G = SO(n,1)$ consists of

(i) the unitary principal series $\pi_{\sigma,\nu}$ for $\nu \in i\mathbb{R}_{>0}$, $\sigma \in \hat{M}$,
(ii) the complementary series $\pi_{\sigma,\nu}$ for $0 \leq \nu < \rho_\sigma$,
(iii) unitarizable Langlands quotients J_{σ,ρ_σ},
(iv) \hat{G}_d, the discrete series representations of G. For ν odd one has $\hat{G}_d = \emptyset$.

The number ρ_σ in (ii) has the form $\rho - q$ with $q \in \mathbb{N}_0$, $q \leq \rho$, where q depends on the highest weight of σ.

The following theorem gives a description of the subset \hat{G}_{τ_p} of \hat{G}, that is all we need for the purpose of this paper.

Proposition 5.2. Let τ_p and σ_p be the complexified p-exterior representations of $K \simeq O(n)$ and $M \simeq O(n-1)$ respectively. If $0 \leq p \leq n$ and $p \neq \frac{n}{2}$, then

$$\hat{G}_{\tau_p} = \{ \pi_{\sigma,\nu} : \nu \in i\mathbb{R}_{>0} \cup (0,\rho_p) \} \cup \{ \pi_{\sigma_{p-1},\nu} : \nu \in i\mathbb{R}_{>0} \cup (0,\rho_{p-1}) \} \cup \{ J_{\sigma,\rho_\sigma}, J_{\sigma_{p-1},\rho_{p-1}} \}.$$
Here $\rho_p = \rho_q - \min(p,n-1-p)$ and $\rho_q = \frac{n-1}{2}$. In particular,

$$\hat{G}_{\tau_0} = \hat{G}_1 = \{ \pi_{1,\nu} : \nu \in i\mathbb{R}_{>0} \cup (0,\rho_1) \} \cup \{ 1 \}.$$

In the case $n = 2m$ and $p = m$, one has

$$\hat{G}_{\tau_m} = \{ \pi_{\sigma_m,\nu} : \nu \in i\mathbb{R}_{>0} \cup (0,\frac{1}{2}) \} \cup \{ \pi_{\sigma_m,\nu} : \nu \in i\mathbb{R}_{>0} \cup (0,\frac{1}{2}) \} \cup \{ J_{\sigma_m,\rho_{m-1}} \}.$$
Here $D_{\frac{n}{2}}^+ \oplus D_{\frac{n}{2}}^-$ is the sum of the two discrete series $D_{\frac{n}{2}}^\pm$ of $SO(n,1)_0$ having lowest K-types $\tau_{\frac{n}{2}}^\pm$.

Proof. The spherical case, $p = 0$ is well-known, so we assume $p > 0$. As mentioned, the unitarizable Langlands quotients $J_{\sigma,\nu}$ occur only at the endpoints of complementary series $\nu = \rho_\sigma$.

Since $\tau_p|_M = \sigma_p \oplus \sigma_{p-1}$ by Proposition 2.9, Frobenius reciprocity implies that $\pi_{\sigma,\nu}|_K$ contains τ_p if and only if $\sigma = \sigma_p$ or $\sigma = \sigma_{p-1}$.

Now for $n = 2m + 1$ and $0 \leq p \leq m$ we have complementary series $\pi_{\sigma_{p},\nu}$ for $0 < \nu < \rho_p = m - p$ (see [KS, Prop. 49]) and a Langlands quotient $J_{\sigma_{p},\rho_{p}}$ containing τ_p. For the M-type σ_{p-1} we have the same description.

We note that in the extreme cases $p = 0$ and $p = n$, one gets $J_{\sigma_0,\rho_0} = 1$ and $J_{\sigma_n,\rho_n} = \det$.

For $p > m$, $\pi_{\sigma,\nu}$ has complementary series for $0 < \nu < \rho_p = p - m$ and a Langlands quotient J_{σ,ρ_p} at the endpoint, with lowest K-type τ_p. Since $\hat{G}_d = \emptyset$, the description of \hat{G}_τ for n odd is complete.

We now assume $n = 2m$. If $0 \leq p \leq m - 1$ we have complementary series $\pi_{\sigma,\nu}$ again for $0 < \nu < \rho_p = m - \frac{1}{2}$ and p (see [KS, Prop. 50]) and a Langlands quotient J_{σ,ρ_p}, both containing τ_p, with a similar description for σ_{p-1} in place of σ_p. For $p \geq m + 1$, again $\pi_{\sigma,\nu}$ has complementary series for $0 < \nu < \rho_p = p - (m - \frac{1}{2})$ and a Langlands quotient at the endpoint. Furthermore, $\hat{G}_\tau \cap \hat{G}_d = \emptyset$ if $p \neq m$, hence the description of \hat{G}_τ is complete in this case.

Finally, if $p = m$, then $\hat{G}_\tau \cap \hat{G}_d = \{D^+_m \oplus D^-_m\}$ and the unitary representations that contain τ_m are the unitary principal series and the complementary series $\pi_{\sigma,\nu}$ for $\sigma = \sigma_{m-1}, \sigma_m$ and $\nu \in i\mathbb{R} \cup (0, \frac{1}{2})$. Furthermore, at the endpoint the representations $\pi_{\sigma_m, \frac{1}{2}}$ and $\pi_{\sigma_{m-1}, \frac{1}{2}}$ are reducible and the K-type τ_m is a K-type of the irreducible subrepresentation $D^+_m \oplus D^-_m$ with multiplicity 1. This completes the proof. \hfill \square

Proposition 5.3. For $\nu \in \mathbb{C}$, the Casimir eigenvalue for the representation $\pi_{\sigma,\nu}$ is given by

$$\lambda(C, \pi_{\sigma,\nu}) = -\nu^2 + \rho_p^2 = -\nu^2 + (\rho_n - \min(p, n - 1 - p))^2.$$

In particular $\lambda(C, J_{\sigma,\rho_p}) = 0$ for every p. Furthermore, $\lambda(C, D^\pm_m) = 0$.

Proof. It is well known that the Casimir eigenvalue for the principal series is given by

$$\lambda(C, \pi_{\sigma,\nu}) = -\nu^2 + \rho_n^2 - c_\sigma$$

where $c_\sigma = \langle \Lambda_\sigma + \rho_M, \Lambda_\sigma + \rho_M \rangle - \langle \rho_M, \rho_M \rangle$, Λ_σ is the highest weight of σ and $\rho_M = \sum_{j=1}^{m} (m - j)\epsilon_j$ if $n = 2m + 1$,

$$\rho_M = \begin{cases} \sum_{j=1}^{m} (m - j)\epsilon_j & \text{if } n = 2m + 1, \\ \sum_{j=1}^{m-1} (m - j - \frac{1}{2})\epsilon_j & \text{if } n = 2m. \end{cases}$$

Furthermore, for $\sigma = \sigma_p$, we have $\Lambda_{\sigma_p} = \sum_{j=1}^{\min(p,n-p)} \epsilon_j$ (see Example 2.6).

We assume first that $0 \leq p \leq \lceil \frac{m}{2} \rceil = m$. By a calculation one can see that

$$c_\sigma = \begin{cases} p + 2 \sum_{j=1}^{p} (m - j) = p + 2mp - p(p + 1) & \text{if } n \text{ is odd}, \\ p + 2 \sum_{j=1}^{p} (m - \frac{1}{2} - j) = p + 2(m - \frac{1}{2})p - p(p + 1) & \text{if } n \text{ is even}. \end{cases}$$

Thus, in light of (5.2),

$$\lambda(C, \pi_{\sigma,\nu}) = \begin{cases} -\nu^2 + (m - p)^2 & \text{if } n = 2m + 1, \\ -\nu^2 + (m - p - \frac{1}{2})^2 & \text{if } n = 2m, \end{cases}$$

which establishes the formula.

On the other hand, for $p > \lceil \frac{m}{2} \rceil$, one has that $\lambda(C, \pi_{\sigma,\nu}) = \lambda(C, \pi_{\sigma_{m-1-p},\nu})$ and finally, for $n = 2m$, $\lambda(C, D^\pm_m) = \lambda(C, \pi_{\sigma_{m-1},\nu}) = 0$, as asserted. \hfill \square
After all this preparation, we can prove the results in the Introduction for negatively curved manifolds.

Proofs of Theorem 1.4. For each \(\lambda \), set \(\hat{G}_{\tau_\lambda} = \{ \pi \in G_{\tau_\lambda} : \lambda(C, \pi) = \lambda \} \). If \(p = 0 \), then the representations in \(\hat{G}_{1,\lambda} \) for any fixed \(\lambda \) have the form \(\pi_{1,\nu} \) with \(\nu \in \mathbb{R}_{\geq 0} \cup (0, \rho_0) \) and the equality \(\lambda(C, \pi_{1,\nu}) = -\nu^2 + \rho_0^2 = \lambda \) determines \(\nu = \sqrt{\rho_0^2 - \lambda} \), where \(\nu \in \mathbb{R}_{\geq 0} \) if \(\lambda \geq \rho_0^2 \) and \(\nu \in (0, \rho_0) \) otherwise.

Assume now that \(0 < p \leq \left\lfloor \frac{n}{2} \right\rfloor \). For \(\lambda = 0 \) we have

\[
\hat{G}_{\tau_{p,0}} = \begin{cases} \{ J_{\sigma_p,\rho_p}, J_{\sigma_{p-1},\rho_{p-1}} \} & \text{if } p \neq \frac{n}{2}, \\ \{ D_+^* \oplus D_-^* \} & \text{if } p = \frac{n}{2},
\end{cases}
\]

therefore

\[
d_0(\tau_p, \Gamma) = \begin{cases} n_\Gamma \left(J_{\sigma_p,\rho_p} \right) + n_\Gamma \left(J_{\sigma_{p-1},\rho_{p-1}} \right) & \text{if } p \neq \frac{n}{2}, \\ n_\Gamma \left(D_+^* \oplus D_-^* \right) & \text{if } p = \frac{n}{2}.
\end{cases}
\]

Now, let \(\lambda > 0 \). Since \(\lambda(C, \pi_{\sigma_p,\nu}) = -\nu^2 + \rho_0^2 = \lambda \), then \(\nu = \sqrt{\rho_0^2 - \lambda} \) where \(\nu \in (0, \rho_0) \cup \mathbb{R}_{\geq 0} \) and similarly for \(\lambda(C, \pi_{\sigma_{p-1},\nu}) = \lambda \). Thus, we get

\[
\hat{G}_{\tau_{p,\lambda}} = \left\{ \pi_{\sigma_p,\sqrt{\rho_0^2 - \lambda}}, \pi_{\sigma_{p-1},\sqrt{\rho_0^2 - \lambda}} \right\}
\]

and

\[
d_\lambda(\tau_p, \Gamma) = \begin{cases} n_\Gamma \left(\pi_{\sigma_p,\sqrt{\rho_0^2 - \lambda}} \right) + n_\Gamma \left(\pi_{\sigma_{p-1},\sqrt{\rho_0^2 - \lambda}} \right) & \text{if } p \neq \frac{n}{2}, \\ n_\Gamma \left(\pi_{\sigma_m,\sqrt{1/4 - \lambda}} \right) + n_\Gamma \left(\pi_{\sigma_{m-1},\sqrt{1/4 - \lambda}} \right) & \text{if } p = \frac{n}{2} = m.
\end{cases}
\]

This completes the proof for \(p \leq \left\lfloor \frac{n}{2} \right\rfloor \). The case \(p > \left\lfloor \frac{n}{2} \right\rfloor \) is similar. \(\square\)

The following lemma is the analogue of Lemma 4.3 in the flat case.

Lemma 5.4. Let \(\Gamma_1 \) and \(\Gamma_2 \) be discrete cocompact subgroups of \(\text{SO}(n,1) \) acting freely on \(\mathbb{H}^n \). If \(\Gamma_1 \) and \(\Gamma_2 \) are \(\tau_{p-1} \)-equivalent (or \(\tau_{p+1} \)-equivalent) and the manifolds \(\Gamma_1 \backslash \mathbb{H}^n \) and \(\Gamma_2 \backslash \mathbb{H}^n \) are \(p \)-isospectral, then \(\Gamma_1 \) and \(\Gamma_2 \) are \(\tau_p \)-equivalent. In particular, \(0 \)-isospectrality implies \(\tau_0 \)-equivalence.

Proof. Assume that \(p \notin \left\{ \frac{n}{2}, \frac{n}{2} + 1 \right\} \). Since \(\Gamma_1 \) and \(\Gamma_2 \) are \(\tau_{p-1} \)-equivalent, we have

\[
n_{\Gamma_1} \left(J_{\sigma_{p-1},\rho_{p-1}} \right) = n_{\Gamma_2} \left(J_{\sigma_{p-1},\rho_{p-1}} \right) \\
n_{\Gamma_1} \left(\pi_{\sigma_{p-1},\nu} \right) = n_{\Gamma_2} \left(\pi_{\sigma_{p-1},\nu} \right)
\]

for every \(\nu \in \mathbb{R}_{\geq 0} \cup (0, \rho_0) \) by Proposition 5.2. Now, by \(p \)-isospectrality we have that \(d_\lambda(\tau_p, \Gamma_1) = d_\lambda(\tau_p, \Gamma_2) \) for every \(\lambda \), thus (5.3) implies that \(n_{\Gamma_1} \left(J_{\sigma_p,\rho_p} \right) = n_{\Gamma_2} \left(J_{\sigma_p,\rho_p} \right) \) and (5.4) implies \(n_{\Gamma_1} \left(\pi_{\sigma_p,\nu} \right) = n_{\Gamma_2} \left(\pi_{\sigma_p,\nu} \right) \) for every \(\nu \in \mathbb{R}_{\geq 0} \cup (0, \rho_0) \).

By Proposition 5.2, these equations imply \(\tau_p \)-equivalence.

The remaining cases are proved similarly. \(\square\)

Proof of Theorem 1.5 (noncompact case). The proof is exactly as in the flat case (see page 16), since Lemma 4.3 and Lemma 5.4 have exactly the same statements. \(\square\)
Remark 5.5. One can also prove the above result for intervals decreasing from n, that is: q-isospectrality for every $p \leq q \leq n$ is equivalent to τ_q-equivalence for every $p \leq q \leq n$.

Remark 5.6. We now consider the Hodge decomposition of compact hyperbolic manifolds as in Remark 3.5 and Remark 5.6. One obtains here results that are very similar to those in the flat case. Namely

$$\Gamma_1 \backslash \mathbb{H}^n \text{ and } \Gamma_2 \backslash \mathbb{H}^n \text{ are isospectral on closed (resp. coclosed) } p\text{-forms if and only if } n_{\Gamma_1}(\pi_{p,\nu}) = n_{\Gamma_2}(\pi_{p,\nu}) \text{ (resp. } n_{\Gamma_1}(\pi_{p-1,\nu}) = n_{\Gamma_2}(\pi_{p-1,\nu}) \text{) for every } \nu \in i\mathbb{R}_{\geq 0} \cup (0, \rho_p) \text{ (resp. } \nu \in i\mathbb{R}_{\geq 0} \cup (0, \rho_p-1)).$$

References

FAMAF-CIEM, Universidad Nacional de Córdoba, 5000-Córdoba, Argentina.

E-mail address: elauret@famaf.unc.edu.ar
E-mail address: miatello@famaf.unc.edu.ar
E-mail address: rossetti@famaf.unc.edu.ar