REPRESENTATIONS OF FINITE DIMENSIONAL
POINTED HOPF ALGEBRAS OVER S;

GARCIA IGLESIAS, AGUSTIN

ABSTRACT. The classification of finite-dimensional pointed Hopf alge-
bras with group Sz was finished in [AHS]: there are exactly two of them,
the bosonization of a Nichols algebra of dimension 12 and a non-trivial
lifting. Here we determine all simple modules over any of these Hopf
algebras. We also find the Gabriel quivers, the projective covers of the
simple modules, and prove that they are not of finite representation type.
To this end, we first investigate the modules over some complex pointed
Hopf algebras defined in the papers [AG1, GG], whose restriction to the
group of group-likes is a direct sum of 1-dimensional modules.

1. INTRODUCTION

In [AG1], a pointed Hopf algebra H,, was defined for each n > 3. It was
shown there that Hs and H4 are non-trivial pointed Hopf algebras over S3
and Sy, respectively. We showed in [GG] that this holds for every n, by
different methods. We started by defining generic families of pointed Hopf
algebras associated to certain data, which includes a finite non-abelian group
G. Under certain conditions, these algebras are liftings of (possibly infinite
dimensional) quadratic Nichols algebras over G. In particular, this was
proven to hold for G = S,,. Moreover, the classification of finite dimensional
pointed Hopf algebras over S4 was finished. We review some of these facts in
Section 2. We investigate, in Section 3, modules over these algebras whose G-
isotypic components are 1-dimensional and classify indecomposable modules
of this kind. We find conditions on a given (GG-character under which it can
be extended to a representation of the algebra. We apply these results to
the representation theory of two families of pointed Hopf algebras over S,,.
In Section 4 we comment on some known facts about simple modules over
bosonizations. We also prove general facts about projective modules over the
algebras defined in [AG1, GG], and recall a few facts about representation
type of finite dimensional algebras. In Section 5 we use some of the previous
results to classify simple modules over pointed Hopf algebras over S3. In
addition, we find their projective covers and compute their fusion rules,
which lead to show that the non-trivial lifting is not quasitriangular. We
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also write down the Gabriel quivers and show that these algebras are not of
finite representation type.

2. PRELIMINARIES

We work over an algebraically closed field k of characteristic zero. We
fix i = +/—1. For n € N, let [5] denote the biggest integer lesser or equal
than §. If V' is a vector space and {z;};cs is a family of elements in V, we
denote by k{x;},cr the vector subspace generated by it. Let G be a finite
group, G the set of its irreducible representations. Let Gn, = G/[G,G],
é; = Hom(G,k*) C G. We denote by € € é;) the trivial representation.
If x € @, and W is a G-module, we denote by Wy] the isotypic component
of type x, and by W, the corresponding simple G-module.

A rack is a pair (X, >), where X is a non-empty set and > : X x X — X
is a function, such that ¢; =i (-) : X — X is a bijection for all i € X
and i> (j> k) = (i>j)> (i > k), Vi,j,k € X. A rack (X,>>) is said to
be indecomposable if it cannot be decomposed as the disjoint union of two
sub-racks. We shall always work with racks that are in fact quandles, that
is that ¢ > ¢ =14 V¢ € X. In practice, we are interested in the case in which
the rack X is a conjugacy class in a group; hence this assumption always
holds. We will denote by OF the conjugacy class of transpositions in S,.

A 2-cocycle ¢ : X x X — k*, (i,7) — g;; is a function such that ¢; jrqjr =
Qisj,iski ks Vi,7,k € X. See [AG1] for a detailed exposition on this matter.

Let H be a Hopf algebra over k, with antipode &. Let Z)}D be the
category of (left-left) Yetter-Drinfeld modules over H. That is, M is an
object of YD if and only if there exists an action - such that (M,-) is a
(left) H-module and a coaction ¢ such that (M,d) is a (left) H-comodule,
subject to the following compatibility condition:

(5(hm) = hlm_lS(hg) ® ho-mg, Vm e M,h € H,

where §(m) = m_1 ® mg. If G is a finite group and H = kG, we write 8321)
instead of g)}D.

Recall from [AG2, Def. 3.2] that a principal YD-realization of (X, q) over
a finite group G is a collection (-, g, (xi)icx) Where

e - is an action of G on X
e g: X — G is a function such that gy.; = hg;h™' and ¢; - j =i > j;
e the family (x;)iex, with x; : G — k*, is a 1-cocycle, i. e. x;(ht) =
Xi(t)xei(h), for all i € X, h,t € G, satistying x;(g;) = ¢ji-
In words, a principal YD-realization over GG is a way to realize the braided
vector space (kX ¢?) as a YD-module over G. See [AG2] for details.

2.1. Quadratic lifting data.
Let X be a rack, ¢ a 2-cocycle. Let R be the set of equivalence classes in
X x X for the relation generated by (i,j) ~ (it>j,i). Let C € R, (i,j) € C.
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Take i1 = j, io = i, and recursively, i,19 = ip41 > ip. Set n(C) = #C and
n(C)
R ={CeR| I Ginrin = (-1)"}.
h=1

Let F be the free associative algebra in the variables {T}}cx. If C € R/,
consider the quadratic polynomial

n(C)
(1) ¢c = Z Uh(C) Tih+1Tih Sy
h=1

where 171 (C) = 1 and 7,(C) = (—=1)" 1 qiyi, Gisis - o Gipip_qs > 2.

A quadratic lifting datum Q = (X, q,G, (-,9, (X1)iex), (Ac)cer’), or gl-

datum, [GG, Def. 3.5], is a collection consisting of
e arack X;

a 2-cocycle ¢;
a finite group G;
a principal YD-realization (-, g, (x1)iex) of (X, q) over G such that
Gi 7& 959k, Vi, j, k€ X;
a collection (A¢)cers € k such that, if C' = {(i2,41),. .., (in,in—1)},

and k € X,
(2) )\C = 07 if 9i59i1 — 17
(3) AC = Qhio Qhiy Mer>C

where k> C = {(k>i2, k> i1),...,(k>in, k> in_1)}.

In [GG], we attached a pointed Hopf algebra H(Q) to each ql-datum Q. It
is generated by {a;, H; : | € X, t € G} with relations:

(4) H, = 1, H:H, = Htsa t,s € G,
(5) Hia; = Xl(t)at-lHta t e G, l e X;
(6) ¢C({al}l€X) - >‘C(1 - ng‘gj)’ Ce R/v (7"]) eC.

Here ¢¢ is as in (1) above. We denote by ac the left-hand side of (6). H(Q)
is a pointed Hopf algebra, setting A(H;) = H; ® Hy, A(a;) = giQa;+a; 1,
t € G,1 € X. See [GG] for further details on this construction and for
unexplained terminology.

Notice that by definition of the Hopf algebras H(Q), the group of group-
likes G(H(Q)) is a quotient of the group G. Thus, any H(Q)-module M is
a G-module, using the corresponding projection. WeAdenote this module by
M. For simplicity, we denote M[p] = M|g[p], p € G.

3. MODULES THAT ARE SUMS OF 1-DIMENSIONAL REPRESENTATIONS

In this Section, we study H(Q)-modules whose underlying G-module is a

-

direct sum of representations in Gp.
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We begin by fixing the following notation. Given a pair (X, q), let

NI

1
h_ .
(—1)2 ! i Qi _1415in—2 if 2|h,
(7) Cn(C) = -

3
(=)= ll_Il Qip,—2141,in—21 if 2[h + 1.

Note that ¢1(C) = (2(C) =1, (4+1(C)Cr(C) = nu(C), see (1).

3.1. Modules whose underlying G-module is isotypical.
We first study extensions of multiplicative characters from G to H(Q).

Proposition 3.1. Let p € Ggy. There exists p € homg;s(H(Q), k) such that
pic = p if and only if

(5) 0= Xo(1 - pligy)) if (i) € C and 2In(C),
and there exists a family {~;}iex of scalars such that
(9) Yi = Xj(t)’yt.j Vte G,j € X,
(10) vivi = Ac(1 — p(gigj)) if (i,7) € C and 2|n(C) + 1.

If (8) holds, then the set of all extensions p of p is in bijective correspondence
with the set of families {v;}icx that satisfy (9) and (10). In particular, if

(11) Ao #0=plgig)) =1, CEeR,(i,j) € C.

then v = 0, Vi € X defines an H(Q)-module. Moreover, this is the only
possible extension if, in addition,

(12) xilgi) #1, VieX.

Remark 3.2. (a) Mainly, we will deal with Nichols algebras for which the
following is satisfied:

(13) xi(gi) = -1, VieX.

In this case, obviously (12) holds and the class C; = {(i,i)} belongs to R'.

(b) If X is indecomposable, using (9) and the fact that Vi € X 3t € G
such that ¢ =t - j, we may replace (10) by

(10°) v = Ae(1 = p(g;)%)x;(t) if (i,j) € C and 2|n(C) + 1.

Proof. Assume that such p exists and let v; = p(a;). Then (9) follows from
(5). In particular, for p, ¢ € X, we have p(apsq) = Xq(9p) 1p(aq). Then, for
C eTR, (i2,i1) = (i,7) € C, it follows that

{(_1)’121Ch(0)_1p(aj) if 2| + 1

e R R R
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cf. (7). Consequently,

(15) plai, ai,) = (=1)" 0 (C) " plai) play)

and thus (10) and (8) follow from (6). Conversely, if (8) holds and {7; }iex
is a family that satisfies (9) and (10), then we define p : H(Q) — k as the
unique algebra morphism such that p(H;) = p(t) and p(a;) = ;. If (12)
holds, it follows from (9) for ¢ = g; that p(a;) = 0Vi € X is a necessary
condition. g

Definition 3.3. Let p be an extension of p € é;, and v; = pla;), v =
(7i)iex € k. Then we denote the corresponding H(Q)-module by Sj. If
v =0, we set Sj =S5,,.

We now determine all H(Q)-modules whose underlying G-module is iso-
typical of type p € Ggp, provided that X is indecomposable and (12) holds.

Proposition 3.4. Assume X is indecomposable. Let M be an H(Q)-module

such that M = M]|p] for a unique p € Gap, dim M = n. Then M is simple
if and only if n = 1. If, in addition, (12) holds, M = SF™.

Proof. Let p : H(Q) — End M be the corresponding representation and
I'; € k™™ be the matrix associated to p(a;) in some (fixed) basis. As in
the proof of Prop. 3.1, {I'; };cx satisfies (9). Thus, if we fix j € X, then for
each i € X there exists t € G such that I'; = x;(¢)7'T';. Thus, there exists

a basis {z1,...,2,} in which all of these matrices are upper triangular and
so k{z1} generates a submodule M’ C M. If (12) holds, then it follows that
I;=0,Vie X and thus M = @7, 5, 0

3.2. Modules whose underlying G-module is a sum of two isotypical
components.

Let p,u € Gab fulfilling (8), 7,6 € k¥ satisfying (9) and (10) for p and
1, respectively. We begin this Subsection by describing indecomposable
modules that are extensions of S; by 5’2. For simplicity of the statement
of (17) in the following Lemma, we introduce the following notation. Let
CeR,jeC and let

[7L(26’)]_1 [n(%)+l]_1
a;(C) = Xi(g)s BiC) = D xlg)"
r=0 r=0

n(C)+1 ]_1

Note that if 2|n(C), then a; = f3;; otherwise, 3; = a; + x;(g;)l 2

Lemma 3.5. Let V be the space of solutions {fi}icx € kX of the following
system

(16) fin(t) = xi(t) frap(t), i€ X, teG and
(A7) (a;(C); = Bi(C)vi) fi = —xi(9i) (i (C)0i — Bi(C)vi) f
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CeR,(ij) e C. Then Ext%{(g)(bW S%) =2V and the set of isomorphism

PO~
classes of indecomposable H(Q)-modules such that
(18) ()—>Si—>M—>SX%Ois exact

is in bijective correspondence with Py(V).

Proof. Let M = k{z,w} be as in (18), with z € M[p|, w € M[u]. Then
there exists { f;}iex such that

(19) a;z = vz + fiw.
Then (16) follows from (5) and this implies
h .
f _{«wanflgan*ﬁ if 2[5,
in — -1 )
" l(xale) TGO if 2l

since, for 7 = p or 7 = p,

T(gi2z+1) = T(gi2lgi21719i_211) =T7(Gin,_,) =+ =7(9,) = 7(95),
T(gi21+2) = T(gi2l+1gi2zgz‘;1+1) = T(gim) = =7(9i,) = 7(9),
and % = Xk(gx). Therefore, if (i,j) € C and n = n(C), (6) holds if and
only if

Znh(c) (fih(s’ih+1 + fihﬂ’}/ih) - O,VC S R/,
h=1

that is, using (14), (6) holds if and only if (17) follows.

Conversely, if { f; }icx fulfills (16) and (17), then (19) together with a;w =
d;w define an H(Q)-module which is an extension of S) by Si.

M is indecomposable if and only if f; # 0 for some i € X. Assume
M is indecomposable and let M’ = k{z',w'} be another indecomposable
H(Q)-module fitting in (18), with 2’ € M'[p], w' € M'[p]. Let {gi}iex €V
be the corresponding solution of (16) and (17). Assume ¢ : M — M’ is an
isomorphism of H(Q)-modules. In particular, ¢ is a G-isomorphism and thus
there exist o, 7 € k* such that ¢(w) = ow’, ¢(z) = 72’. But then it is readily
seen that o, 7 must satisfy g; = o7 f;, i € X. That is, [filiex = [gi]iex in
P (V). The converse is clear.

Remark 3.6. If X is indecomposable, then, up to isomorphism, there is at
most one indecomposable H(Q)-module M as in the Lemma. In fact, if

there is one, let {fi}icx € kX be the corresponding solution of (16) and
(17). Then, if we fix j € X and let t; € G be such that i = ¢;-j, i € X, then

(i
(20) (fidiex = [; (Xj(tz‘) ( Z)> € k¥,

p(t:) i€X
and thus M is uniquely determined. In this case, the existence of a solution
is equivalent to (16) and

ar) mm—@w(

p(ts)
p(ti)

+Xj(9j)> fi =0;
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if (i,j)eC,CeR,i=t;j.
Definition 3.7. Assume X is indecomposable and Ext%_[(g)(SZ,Sﬁ) # 0.
We denote the corresponding unique indecomposable H(Q)-module by M, ’3.
If y =6 =0, then (17’) is a tautology. We set M, , := ng’g.
Assume that X is indecomposable and that G = ({gi}iex). Let j be a
fixed element in X. Define ¢ : G — Z, resp. ¥ : G — k*, as
t)=min{n : t =gi, ... Gi,, i1,...,in € X},
resp. ¥(t) = x;(g;)"®, t € G. Notice that 7(g;) = 7(g;), Vi € X, hence
7(t) = 7(g;)!®, for any 7 € G, t € G.
Lemma 3.8. Keep the above hypotheses. If Ext%{(g)(SZ, S’/‘i) £ 0, then

(21) p(s) =¢(s)p(s),  VseG.

Therefore p determines u (and vice versa), and v is a group homomorphism.
Conversely, if (21) holds, we may replace (16) and (17) by

(16") fixi(g;)" ™ = xi(t) fua, ie X, teG and
(17) 0= fia0; = B) (x5 () 07 4+ 1)

if(i,j)eC, CeR, i=t].

Proof. Setting i = j and t = g; in (16), and taking the ¢(s)-th power, we
get (21). The rest is straightforward. O

We will show next that there are no simple modules M of dimension 2
such that Mg is sum of two (necessarily different) components of dimension
1, provided that the following holds:

(22) JCeR with n(C)>1.

Notice that if (22) does not hold and gr H(Q) = B(X, q)tkG, then it follows
that dim H(Q) = oo, provided that | X| > 1, since {(a;a;)" }nen is a linearly
independent set in H(Q).

Lemma 3.9. Assume X is indecomposable, and that (13) and (22) hold.
Let p, pu € Gap, and let M be an H(Q)-module such that M = MIp] & M|u],
dim M [p] = dim M|[u| = 1. Then M is not simple.

Proof. Assume that there exists M simple as in the hypothesis. We first
claim that p # p and that, if z € M|p], then a;z € M[u]. In fact, let
a;z = u+w with u € M[p], w € M[p], then

Hiaiz = p(t)u + p(t)w,  xi(t)ariHiz = x:i(t)p(t)at.iz
and taking t = g;, we get

p(gi)u + p(gi)w = xi(gi)p(gi) (u + w) = —p(gi)u — p(gi)w.
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Thus v = 0; hence w # 0 because M is simple. Also,

(23) plgi) = —p(gi), i€ X.
By a symmetric argument, a;(M[u]) = M|p].

Now, fix 0 # z € M|[p], 0 # w € M[u]; let f;, i € X, such that a;z = fiw.
Then (f;)iex satisfies (16), by (5). As X is indecomposable and M is simple,
we have f; # 0, Vi € X. We necessarily have
(24) aw =piz, for p; = £ (1 — p(gi)?).

Note that p; # 0 or otherwise a;w = 0, Vi € X. As stated for {f;}, the
family {p;} also satisfies (16), with the roles of p and u interchanged.

Assume that there is C € R’, with n(C) > 1. We now show that this
contradicts the existence of M. Let (i2,i1) = (i,7) € C, then

n(C)

n(C)
\s
acz = Z N fi, Qi W = Z N fi, f%hh (1- p(gih+1)2)z'
h=1 h=1 R

Let t € GG such that i = t-j and recall that i, = i,_1 > ip_9. Since
sk = gsgrgs ', then

p(9in1)° = plg;)?s Vh
NOW, by (3)7 Aih = Aih,1>1h72 = Xip_o (gihfl)_z)‘ihfga then

a0 it 2dh,
(O if 2/h + 1.

Additionally, by (16), we have

<h(C)_1Xj(t)_1@fj if 21,

(25) fin = p(t)
Ch(O)1f; if 2/ +1,
for every h =1,...,n(C). Therefore, we have that:
@Xj(t)_lAj if Q‘h,
f; p(t)
(26) nh(c))\ih+1f7h =
| p)

SN if 2]+ 1.
,u(t) ]() J |

Analogously, if we analyze the element acw, we get
(p(t
MXj(t)_l)\j if 2“1,
5 p(t)
(27) Wh(C))\ih+1 7’1 =
P ()

PG if 2lh 4 1.
kp(t) J() J ’
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However, notice that, if A > 1,

Pi Ai, (1 — (gh) ) fin
nh(c))‘ih-;-l,ih = nh(C)Aih-H \ } : v

Pipyq ih+1(1 (glh+1) )th
finia (16) finy p(t)
= —np—1(C i ) )\z - C )\z o
Nh—1( )Xh 1(9h) h fi —1h-1(C) h fir (t)
p(t)? —1 ;
——=xi ()TN if2lh—1
(2_6) p(t)2 X]( ) g1 ’ )
—Xj(t)fl)\j if 2’h.
And from this equality together with (27), we get
But, as i > ¢ = i, we have that u(g;t) = —p(g;t) and also
(23)
n(git) = plgi)p(t) =" —p(gi)pu(t) = p(gi)p(t) = p(git),
which is a contradiction.
U

Assume X is indecomposable. Next, we describe indecomposable modules
which are sums of two different isotypical components, provided that (13)
and (22) hold.

Theorem 3.9. Let p # ju € Gop. Assume X is indecomposable and both (13)
and (22) hold. Let M = M|[p] ® M[u] be an H(Q)-module, with dim M [p],
dim M{[u] > 0. Then M is not simple.

Moreover, M is a direct sum of modules of the form S}, Sg, M,ll,fsl and

6// 1

M, ;) for various v,6, v, 8, v",8".

Proof. Take 0 # z € M[p|. As in the first part of the proof of Lemma 3.2,
it follows from (13) that p # p and that, if 0 # z € M|p], then a;z € M|ul.
Now, a;w = a?z = N\i(1 — p(g;)?)z, and thus the space k{z,w} is a;-stable.
As X is indecomposable, it follows that this is a submodule. Let K = ker a;.
Here we see a; as an operator in End M. This subspace is G-stable: if u € K,
u=z+w, with z € M[p|, w € M[u], then 0 = a;u = a;z+a,w = z,w € K,
since a;w € M|p|, a;z € M[u]. Thus p(t)z = Hyz and p(t)w = Hw € K,
Vt € (. Therefore G -u C K. The same holds for I = ima;. Let T be a
G-submodule such that M = K & T (recall kG is semisimple). Let

K =kera;, =K[p]® Klu], T=Tpl®T[p], I=ima;=I[p]®I[u].

Notice that K # 0. In fact, if K = 0, then the space k{z,w} would be a
simple 2-dimensional H(Q)-module, contradicting Lemma 3.2. Thus K # 0.
Then v; = 0, Vi € X and a? - M = 0. Notice that in this case I[¢)] C K[],
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for ¢» = p or p, and thus we have K[| = I[¢)] ® J[¢]. As G-modules, we
have
M= P Myl = P 1lvle I e T,
b=p,p Y=p,p
and this induces the following decomposition of H(Q)-modules:

M = Jlpl & Jlp] @ (I[p] + T(ul) & (Iu] + Tp]).

Let v = p or p. If J[Y)] # 0, then (8) holds for ¢, and J[¢] is a sum of
1-dimensional H(Q)-modules, by Prop. 3.4. Let {wy,...,w;} be a basis of
Tlu]. Then {a;w1,...,a;w} is a basis of I[p]|. In fact, if z € I[p], z = a;w,

w € Ty, there are oy, ..., 0} € k such that w = S2%_ ojw; and then z =

j=1
Z§:1 oja;w;. If, on the other hand, {aj}é‘?:l € k satisfy 0 = Z§:1 TjawW;
then Z?Zlajwj € Klp], and as KNT =0, 05 =0Vj =1,...,k. Thus

Ip] + Tu] = EB;?:l(wj) as H(Q)-modules. By Lemma 3.5, for each j =
1,...,k there exists §;,v; € k** such that (w;) = Mif,’;”. A similar state-
ment follows for I[u] + T'[p]. Therefore, there are m,, my,, m,,, m, , € No,

(&3 Ay 0 v by, {og } s {2 € kX such that

mp ¢ my Mp,p 5 My, p
o~ j j 3,73 05,7
M= e DS oD My e D ML,
Jj=1 Jj=1 Jj=1 Jj=1

where m, (resp. my) is non-zero only if (8) holds for p (resp. p), &, m; and
satisfy (9) and (10) for p, i respectively. On the other hand, m, , # 0 only
if (16) holds for p, i and 05, ; satisfy (17). Similarly for m,, ,, o, 7;. O

3.3. The case G =S,,, n > 3.
Let A, T A ek, t = (AT), ¢: Of — S, the inclusion, - : S, x X — X

the action given by conjugation, —1 the constant cocycle ¢ = —1 and x the
cocycle given by, if 7,0 € OF, 7 = (ij) and ¢ < j:
1 if o(2) < o(j
x(o,7)=<"" : U(Z,) U(j,) see [MS, Ex. 5.3].
-1, ifo(i) > o(j),

Then the gl-data:
© Q.M [t] = (Sn, 08,1, 1,{0,A,T}), n > 4;
o QA = (Sn, OF,x,,1,{0,0,A}), n > 4;
o Q'[N = (83,08, 1,1, {0, A});
define pointed Hopf algebras over S, for n as appropriate, [AG2, GG].

Remark 3.10. Notice that the racks Of, n > 3 are indecomposable and that

(13) is satisfied for both cocycles. In this case, éa\b = {¢,sgn}, where e,
resp. sgn, stands for the trivial, resp. sign, representation. In any case,
(11) holds. Bear also in mind that S, = (Of). In this case, the function
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¢ : G — Z is well-known and ¢ : G — {£1} C k* coincides with the sign
function, by (13). Moreover, (22) holds in all of these gl-data.

Proposition 3.11. Let A = H(Q;'[t]) or H(Q3'[\]). Let M be an A-
module such that Mg, = Mle] ® M[sgn|, dim M[e] = p, dim M|[sgn] = q.
Then
(i) M is simple if and only if M = Se or M = Segn.
(ii) M is indecomposable if and only if M is simple orp = q = 1. In this
last case, there are two non-isomorphic indecomposable modules,
namely Mesgn and Mg c.

Proof. 1t follows by Props. 3.1 and 3.4, and by Lemma 3.2 that S, and Sggn
are the unique two simple modules. The second item follows by Thm. 3.9
and Lemma 3.8. O

Proposition 3.12. Let n > 4. Let M be a H(QX[\])-module such that
Mis, = M[e] © M|[sgn], with dim M[e] = p, dim M[e] = q, p,q > 0. Then
M is indecomposable if and only if it is simple if and only if M = S, or
M = Segn.

Proof. The determination of the simple modules follows from Props. 3.1
and 3.4 and Lemma 3.2. By Lemma 3.8 there are no extensions between
1-dimensional modules. Hence, the Prop. follows from Thm. 3.9. U

4. GENERAL FACTS

Let H be a Hopf algebra, V € ZYD. The Nichols algebra B(V) =
@n>0B"(V) is a graded braided Hopf algebra in gyD generated by V, in
such a way that V = B1(V) = P(B(V)), that is, it is generated in degree
one by its primitive elements which in turn coincide with the module V. This
algebra is uniquely determined, up to isomorphism. See [AS] for details.

Let G be a finite group. Let X be a rack, ¢ a 2-cocycle and assume that
there exists a YD-realization of (X, q) over G. We denote by B(X,q) the
corresponding Nichols algebra.

4.1. Simple modules over bosonizations.

Consider the bosonization A = B(X, ¢)tkG. As an algebra, A is gener-
ated by B(X,q) and kG; the product is defined by (afit)(bts) = a(t - b)fts,
here - stands for the action in $9D. See [AS, 2.5] for details. In what fol-
lows, we shall assume that B(X, ¢), and thus A, is finite dimensional. The
following proposition is well-known. We state it and prove it here for the
sake of completeness.

Proposition 4.1. The simple modules for A are in bijective correspondence
with the simple modules over G: Given p € G, S, is the A-module such that

S, =W, as G-modules, and a;S, =0, VieclX.

This correspondence preserves tensor products and duals.
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Proof. With the action stated above, it is clear that for each p € @, S, is
an A-module. If B(X,q)" denotes the maximal graded ideal of B(X,q),
then the Jacobson radical J = J(A) is given by J = B(X, ¢)T4kG. In fact
J is a maximal nilpotent ideal (since A is graded and finite dimensional)
and A/J = kG is semisimple. This also shows that the list {S, : p € G}
is an exhaustive list of B(X, ¢)-modules, which are obviously pairwise non-
isomorphic. The last assertion follows since a; (S, ® S,) = 0 and S(a;) =
—H,'a;. O

4.2. Projective covers of modules over quadratic liftings.

Let B be a ring, M a left B-module. A projective cover of M is a pair
(P(M), f) with P = P(M) a projective B-module and f : P — M an
essential map, that is f is surjective and for every N C M proper submodule,
f(N) # M. We will not explicit the map f when it is obvious. Projective
covers are unique up to isomorphism and always exist for finite-dimensional
k-algebras, see [CR, Sect. 6]. Moreover,

(29) sB =  P(s)Tm”.
SeB

Fix G a finite group and H a pointed Hopf algebra over G. Let {e;}}¥, be
a complete set of orthogonal primitive idempotents for G and set I; = He;,
for1<j < N.

Lemma 4.2. [; = Indu{ijGej. In particular, if kGe; = kGey as G-
modules, then I; = Ij, as H-modules.

Moreover, H = ®p€é I,?im” as H-modules, where I, = Indﬁc W,, and

thus 1, is a projective H-module.

Proof. Let v : Indﬂ?G kGe; — H be the composition of the multiplication
m : H ®yg kG — H with the inclusion H ®yg kGe; — H @pq kG. It
follows that im¢ = I;. Then I; = Indfl, kGe; and I; does not depend on
the idempotent e; but on the simple module W, = kGe;. Therefore, as

kG = @;NzlkGei, we have that H = EBpEé I;limp' -

Let {H,}nen be the coradical filtration of H,
grnH = Hn/anla grH = ©Sn>0 grn H.

We know that there exists R € gyD such that gr H = RkG, see [AS,
2.7]. Let m, : H, — gr" H be the canonical projection. As every H, is
ad(G)-stable, it follows that m, is a morphism of G-modules. Therefore
there exists a section gr" H — H, and H, = gr'"" H & H,,_1 as G-modules.
By an inductive argument we have that H,, = gt" H®gr" ' H@--- &g’ H.
And thus it follows that H = gr H as G-modules. Moreover, it follows that,
if we consider the adjoint action on kG, gr H =2 R ® kG as G-modules, via
the diagonal action. Thus, H =2 R ® kG as G-modules.

Proposition 4.3. Let gr H = RikG.
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(i) Ic =2 R as G-modules.

(ii) Assume there exists a simple H-module M such that Myg is a
simple G-module W,. Then P(M) is a direct summand of I,. In
particular, if I, is indecomposable, then I, = P(M).

(iii) If H = RikG, 1, is the projective cover of S,, see Prop. 4.1.

Proof. Let W, be the trivial G-module. Since I, = Indﬂ{fG W, and H =
R ® kG, we have
(1) = (ROKG) @kg We)ja = Rig-

Thus the first item follows. Let now M be an H-module such that Mg =
W,. If (P(M), f) is the projective cover of M, we have the commutative
diagram:

T/// iﬂ_
e 7
P(M) M

where 7 : I, — M is the factorization of the action - : H @ M — M through
H®M — I, =H kg W, As f(r(I,)) = n(l,) = M and f is essential,
we have an epimorphism I, - P(M) and P(M) is a direct summand of I,.
Thus I, = P(M), if I, is assumed to be indecomposable.

Finally, assume H = RfkG. If P(S,) is the projective cover of S,, we
must have dim P(S,) < dim [, = dim Rdim W,. But we see that this is in
fact an equality from the formulas:

dim H = dim R ) dim W, =) _(dim Rdim W,) dim W,

pG@ peé
dim H = Y dim P(S,)dim S, = > _ dim P(S,) dim W),
peé peé

O

4.3. Representation type.

We comment on some general facts about the representation type of a
finite dimensional algebra, that will be employed in 5.2.2 and 5.3.6. Let B
be a finite dimensional k-algebra, B= {S1,...,5,} a complete list of non-
isomorphic simple B-modules. The Ext-Quiver (also Gabriel quiver) of B
is the quiver ExtQ(B) with vertices {1,...,n} and dim Ext}(S;,S;) arrows
from the vertex i to the vertex j. Then B is Morita equivalent to the basic
algebra kExtQ(B)/I(B), where kExtQ(B) is the path algebra of the quiver
ExtQ(B) and I(B) is an ideal contained in the bi-ideal of paths of length
greater than one. Recall that for any two B modules M, Ms there is an
isomorphism of abelian groups

Exth (M, Ms) = {equivalence classes of extensions of M; by Ms},

where the element 0 is given by the trivial extension M; & Ma.
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Given a quiver @) with vertices V' = {1,...,n}, its separation diagram is
the unoriented graph with vertices {1’,...,n/,1”,...,n"”} and with an edge
1'—7" for each arrow 7 — j in Q. If B is algebra, we speak of the separation
diagram of B referring to the separation diagram of its Ext-Quiver.

Theorem 4.4. [ARS, Th. 2.6] Let B be an Artin algebra with radical
square zero. Then B is of finite (tame) representation type if and only if its
separated diagram is a disjoint union of finite (affine) Dynkin diagrams. O

Next lemma is well-known by mathematicians working on representation
theory of algebras.

Lemma 4.5. Let J be the radical of B. Then ExtQ(B) = ExtQ(B/J?).

Proof. First, it is immediate that B = B/J2. Let S,T € B. As any B/.J>
module is a B-module, we have Ext}B/JQ(S, T) C ExtL(S,T). Now, let
0—T—V — S — 0 be an exact sequence of B-modules and let z € V,
aj,a2, € J. If x € T C V, then ajz = 0 = agayx = 0. If z ¢ T, then
0 # 2z € V/T = S and thus a1z = 0, that is ajz € T, and therefore
asair = 0. Thus, the above exact sequence in B — mod gives rise to an
exact sequence in B/.J? — mod, proving the lemma. [l

5. REPRESENTATION THEORY OF POINTED HOPF ALGEBRAS OVER Sg3

In this Section we investigate the representations of the finite dimensional
pointed Hopf algebras over S3. We will denote by Ay, A € k, the algebra
H((Q3'[\])). This algebra was introduced in [AG1]. Explicitly, it is gener-
ated by elements Hy, a;, t,i € O3; with relations

H,H,H, = H,H,H,, H> =1, s#te 03
Hia; = —ayoiHy, t,i € O3;
G;%Q = 0,

ai2a23 + agza13 + ajzarz = A(1 — HigHas).

A, is a Hopf algebra of dimension 72. If H is a finite-dimensional pointed
Hopf algebra with G(H) = S3, then either H = kS3, H = Ay or H = A
[AHS, Theorem 4.5], together with [MS, AG1, AZ].

We will determine all simple modules over Ag and A;, along with their
projective covers and fusion rules. We will also show that these algebras
are not of finite representation type and classify indecomposable modules
satisfying certain restrictions.

Remark 5.1. Notice that to describe an Ay-module supported on a given G-
module, it is enough to describe the action of a2, since a3, ags € ad(G)(a12).

5.1. Simple kSs-modules. We will need some facts about the represen-
tation theory of S3, which we state next. Besides the modules W, and
Wien associated to the characters e and sgn, respectively, there is one more
simple kS3-module, namely the standard representation Wyg. This module
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has dimension 2. We fix {v,w} as its canonical basis. In this basis the
representation is given by the following matrices:

[H12] = <(1) (1)> . [Haes) = (_11 _01) . [Hiz) = <_01 _11) .

Given a kS3-module W, we denote by W(st] the isotypical component cor-
responding to this representation.

5.2. Representation theory of Aj.

Proposition 5.2. There are exactly three simple Ag-modules, namely the
extensions Se, Ssgn and Ssy of the simple kSz-modules.

Proof. Follows from Prop. 4.1. O

5.2.1. Some indecomposable Ag-modules.
Fix <$>Sg =W, <y>S3 = ngna <'an>83 = Wt

Lemma 5.3. There are exactly four non-isomorphic non-simple indecom-
posable Ag-modules of dimension 3:

(i) Mgt e = k{z,v,w}, with  ap-v =, a2 - x = 0;
(ii) Mt son = k{y, v, w}, with aip v =1y, a1z -y = 0;
(iii) Mo = k{z,v,w}, with a2 -x=v—w, a1z - v = 0;
(iv) Mggn st = k{y, v, w}, with a1z -y = v+ w, ap-v =0.

In particular, dim ExthO(SSt, Ss) = dim Exth0 (S5, Ss) =1, 0 € {¢,sgn}.

Proof. By Prop. 3.11, we know that such an A4p-module M must contain a
copy of Wy. Thus Mg, = W@ Wyt or Mg, = Wegn © Wit The lemma now
follows by straightforward computations. O

Proposition 5.4. The non-isomorphic indecomposable modules which are
extensions of Sgt by itself are indexed by }P’Hﬁ. In particular, it follows that
dim ExthO(SSt, Sst) = 1.

Proof. If {v1, v, w1, w2} is basis of such a module, with {ve, w2}s, = Wi,
{v1, w1} = Mg, then a necessary condition is that ajave = avy + bwy, a # 0
or b # 0. It is easy to see that this formula defines in fact an indecomposable
Ao module M,y for each (a,b) and that two of these modules, M, ;) and
Mgy, are isomorphic if and only if 3 # 0 such that (a,b) = y(a’,0'). O

5.2.2. Representation type of Ag.
Proposition 5.5. Ag is of wild representation type.

Proof. From Lemmas 3.8 and 5.3 together with Prop. 5.4, we see that the
Ext-Quiver of Ay is
. \O/“ 50
o2
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where we have ordered the simple modules as {Sc, Ssgn, Sst} = {1,2,3}.
Thus, the separation diagram of Ag is

ol o2 o3
.3/ ./2.1/
which implies that Ag is wild. O

5.3. Representation theory of A;.
We investigate now the simple modules of A1, their fusion rules and pro-
jective covers, and also the representation type of this algebra.

5.3.1. Modules that are sums of 2-dimensional representations. We first fo-
cus our attention on those A;-modules supported on sums of standard rep-
resentations of kSs.

Lemma 5.6. Let My = k{v,w}. Then, the following formulas define four
non-isomorphic Ay-modules supported on Mg :

(i) ajov =i(v — w), ajpw = i(v — w);
(ii) ajov = —i(v — w), ajpw = —i(v — w);
(iii) a1V = %(v + w), ajpw = —%(v + w);
(iv) a1V = —%(v + w), ajpw = %(v + w).

They are simple modules, and we denote them by Sg (i), Sst(—1), Set(3),
Ss (—%), respectively.

Proof. Straightforward. ([l

Proposition 5.7. Let p € N and let M be an Ai-module such that M =
M]st], dim M = 2p. Then M is completely reducible.
M s simple if only iof p=1. In this case, it is isomorphic to one of the

modules Sg; (1), St (—1), Sst(%), Sst(—3)-

Proof. Let {v;,w;}t_; be copies of the canonical basis of Wy such that
{vi,wi}_; is a linear basis of M. Let v = (v1,...,vp), w = (w1,...,wp).
Now, there must exist matrices «, 8 € kP*P such that ai2-v = av + Sw and
thus a9 - w = —fv — aw, by acting with Hys. By acting with the rest of the
elements H; we get:

ai3-v=—(a+ v+ 2(a+ pflw, aiz-w=—PFv+ (a+ [w,
asz v =—(a+ fBv+ Pw az - w = —2(a+ B+ (a+ fw.
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Now, 0 = a%yv = aaz - v + Barz - w = (a? — B?)v + (aff — Ba)w, and this
implies that o? = 32, af = Ba. Hence,
(a12a13 + a13a93 + a23a12) -V = (—5042 — 406/8) (U + w),
while (1 — H12H13) V=V +w,

and thus —5a? — 4af = id.
Now, we have that, in particular, —5a — 43 = o~ ! and therefore § =

—%a — ia‘l. Thus,
1
2 _ g2 + ~1y2 _ L 2 -2 1 10;
a“=0 16(5a+a ) 16(2504 +a”*+10id),
from where it follows (a?)~! = —9a2 — 10id and id = —9a* — 10a?, which
is equivalent to
1
(30) (a® + gid)2 = g id.

This gives, in particular, that if € k is an eigenvalue of «, then 6 € L(a) :=
{+i, :I:%} Now, let a € kP*P be a matrix satisfying equation (30). A simple
analysis of the possible Jordan forms J(«) of cv gives J(a) = diag(f,...,0,),
for some 0; € L(a), i =1,...,p. Ilf p > 1, we get that there is a basis of M in
which a (and consequently f3) is a diagonal matrix, and so M is completely
reducible.

On the other hand, if p = 1, @ € L(«) and § = £« give the module
structures defined in Lemma 5.6. (]

5.3.2. Classification of simple modules over A;. Now, we present the clas-
sification of all simple A;-modules.

Theorem 5.8. Let M be a simple Ai-module. Then M is isomorphic to
one and only one of the following:

o S;
L4 Ssgl’l;. ) .
o St(i), Set(—i), Se(§) or Sse(—3).

Proof. We know that the listed modules are all simple. In view of Props.
3.11 and 5.7, we are left to deal with the case in which Mg, = Ml[e] @
M sgn] @ M][st], with dim M|[e] = n, dim M[sgn] = m, dim M|[st] = p, n +
m,p > 0. Let {x1,...,2n,Y1,...,Ym,V1,...,0p} be a basis of M such that
kfx;} =W, i=1,...,n, K{y;} = Ween, 7 = 1,...,m, k{vg, wi} = W,
k = 1,...,p. Using the action of His, we find that there are matrices
a € kmo g e KPPy € K™ e KM*P g € kP b € kP*™ and
¢,d € kPP such that, if v = (z1,...,2n), y = (Y1, -, Ym), v = (v1,...,0p),
w = (wi,...,wp), the action of a;2 is determined by the following equations:

a1z - * = ay + B(v — w), a1z -y =yx +n(v +w)
a2 - v = ax + by + cv + dw, ajo - w = —ax + by — dv — cw.
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We deduce as in Prop. 5.7 the action of every a,:
a1z - = ay — P, a1z - v = —2azx — (c+ d)v + 2(c + d)w,
a1z -y =yx +n(v — 2w) a1z - w = —ax — by — dv + (¢ + d)w,
as3 - T = ay + Bw, ass - v =ax —by — (¢ + d)v + dw,
ass -y =vyr+n(w—2v), ag-w=2ar—2(c+dv+ (c+d)w.

Recall that it is enough to find a subspace stable under the action of ao
and the elements H;, by Rem. 5.1. Now,

0 = ajyr = (ay + 2Ba)x + (an + Bc + d)) (v + w);
0= ajpy = (ya + 2nb)y + (V8 + n(c — d)) (v — w);
0 =alyv = (by + (c — d)a)z + (ac + (c + d)b)y

+ (aB+ by + ¢ — d*)v + (—af + by + cd — dc)w;

0 = (a12a13 + a13a3 + agzai2) - v = (3ay — 3pa)x — 33by;
0 = (a12a13 + a13a23 + agzai2) - y = Inaz + 3(ya — nb)y;
v 4w = (a12013 + a13a23 + ag3a2) - v

(—=3afB — 3bn — ¢* — 4d* — 2dc — 2cd)v

+ (3aB + 3bn — 4c* — d* — 2dc — 2cd)w.

Then we have the following equalities:
(

0 =~va=ay=pFa=pFb=mna=nb,
Blc+d)+an=0=n(c—d)+5,
by + (¢ —d)a=0=aa+ (c+ d)b,
d>—c=af+by, cd—dc=af—bn
3af + 3bn = —c? — 4d?> — 2dc — 2cd — id
3aB + 3bn = 4c% + d? + 2dc + 2cd + id .
From the last two equations:
& —d*=2(aB+bn), 5(c+d?) +4(de+ cd) = —2id,

and thus a8 + bn =0, ¢? = d?. Notice that the matrix of aj2 in the chosen
basis is:

0 t tg —ta

)

lars] = a0 b
12] = tg ty te _td
_tg oty td _te

Now we make the following

Claim. If « or «v have a null row, then M is not simple.
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In fact, assume (aq1,...,a1,) = 0. We have a2 - 21 = Zj Brj(vj —wj), if
this is zero, then (x; ) & S, C M and M is not simple. If not, let

Zﬁl]vp wy = Z/Bljw]

Thus, a12-x1 =v; —w; and as 0 = a12x1 we have that a1277 = a12w;. But,
moreover, we also have that

alﬁhZZﬁamﬁﬂrZ Blc+d))ik(ve +wi) =0,

since fa = 0 and (ﬁ(c +d))k = —(om)lk = —> oy = 0. Then v, =0,
S. C M and M is not simple.
The claim when a row of v is null follows analogously, or just tensoring
with the representation Sggy,, since it interchanges the roles of o and 7.
Then we see that, for M to be simple, we necessarily must have ‘o, 'y
injective. But 0 = ‘(ay) = ‘vy!'a = a = 0. Thus M cannot be simple if
n,m > 0. Therefore, we are left with the (equivalent) cases

Mg, = Mle] © M[st], with dim M[e] =n, dim M[st]=p, n,p > 0;
Mg, = M|sgn] © M][st], with dim M[sgn] =m, dim M|st] = p, m,p > 0.

Assume we are in the first case. Thus, the equations above become:

{ af =pa=0, [lc+d) =0, (c—da=0,

32
(32) d?>=c? cd=dc, c(—5c—4d)=id.

Now, in particular, if {3 is injective, we have ‘a = 0 and thus A; - M[st] ¢
M st]. But if 3 is not injective, we may find a non-trivial linear combination
x of the elements {z;}" ; making S. = (z) into an A;-submodule of M. O

5.3.3. Some indecomposable Ai-modules.

We start by studying the 3-dimensional indecomposable modules. As
said in Lemma 5.3, it follows that for such a module M, it holds either
that Mg, = We ® Wy or Mg, = Wegn @ W Take z,y,v,w such that
<x>|83 = WE7 <y>‘83 = ngna <U,w>|§3 = Wst-

Lemma 5.9. There are exactly eight non-isomorphic non-simple indecom-
posable A1-modules of dimension 3:

(i) Mst75[i§] =k{z,v,w}, ap2-v= i%(v +w)+z, ap-z=0
(i) Mgsen[ti] =k{y,v,w}, ap-v==4i(v—w)+y, a2-y=0;
(i) Meg[ti] = k{z,v,w}, ajz - v = +i(v — w), a2 T =v— w;
(iv) Mggnst[£ 3] k{y,v,w}, alg‘v:i%(zw—w), ap -y = v+ w.

Proof. It is straightforward to check that the listed objects are in fact A;-
modules and that they are not isomorphic to each other. Now, assume
Mg, = We @ Wy, the other case being analogous. If M is not simple, then
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there is N C M and necessarily [V S5 = Wt or N|S3 = W,. Then, the lemma
follows specializing the equations in (31) to this case. O

Proposition 5.10. Let M be an indecomposable non-simple Aq-module
such that Mg, = Mle] © M[st], with dim M[e] = p, dim M[st] = ¢ or
Ms, = M(sgn| & M|st], with dim M[sgn] = p, dim M|st] = q for p,q > 0.
Then p = q =1 and M is isomorphic to one and only one of the modules
defined in Lemma 5.9.

Proof. We work with the case Mg, = M[e] © M|[st], with dim M[e] = p,
dim M |st] = ¢, p,q > 1, the other resulting from this one by tensoring with
Ssgn- Let a, 3, c,d be as in the proof of Th. 5.8. Recall that they satisfy the
system of equations (32). The last three conditions from that system imply,
as in the proof of Prop. 5.7, that ¢,d may be chosen as

(5 0y (50
c= O 5/ ) - O 5/ i

for 6 € k>0, §' € k22%% diagonal matrices with eigenvalues in {+i} and

i
{ig}» respectively, g1 + g2 = q. Consequently,

B:<51 8)) a=<0 £2>,Witha151+a252207

B2 ap
0 0 0 tal 0 — tal
0 0 0 tag 0 — tCLQ
Gy — By By 5 0 4 0
2=1 9 0 0o & 0 =4

0 0 o ¢ 0 =0

Assume ¢ > 0. In this case, a = ( ZZ;) must be injective. Otherwise, we

may change the basic elements {vg,41,...,Vq, Wg 41, - - -, Wq} in such a way
that, for some ¢1 +1 < r < ¢, the last ¢ — r columns of a are null and in
that case
M = (Vg —rt1,--,0g) ® (zs,v5 i =1,...,p;5=1,...,q—7).
Thus a is injective. Change the basis {z; : ¢ =1,...,p} in such a way that
i .
a12 - Vg +i = i + g(vqri-i twg i), i=1,...,q.

Notice that, as a12(vg, +i+wq +:) = 0 for every ¢ and a3y = 0, then ajp-x; = 0,
i1=1,...,q2. But then

a2
M = @(xi,vq1+i> D (Tgot1s-- s Tps ULy envy, Ugp)-
i=1

Therefore, if g2 > 0 and M is indecomposable, then g; =0, p = g2 =1, and
this gives us the modules in the first item of Lemma 5.9.
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Analogously, if ¢; > 0, 3 = (61 B2 ) must be injective, and g = 0. If
v1,...,Up are chosen in such a way that a2 - z; = v; —w;, i = 1,...,p,
then M = @i_ (zi,vi) ® DL, (vi) and therefore p = g1 = 1, giving the
modules in the third item of the lemma. The modules in the other two items
result from these ones by tensoring with Sggn. O

5.3.4. Tensor product of simple Aj-modules. Here we compute the tensor
product of two given simple A;-modules, and show that it turns out to be
an indecomposable module.

First, we list all of the indecomposable A;-modules of dimension 4. Notice
that if M is such an indecomposable module, then we necessarily must have
]\4|S3 = We @ Wggn ® Wy, by Props. 5.7 and 5.10. In the canonical basis,
the matrix of a12 is given by

0 v a —a
lars] = a 0 b b
12] — ﬁ n c —d\|’
-6 n d —c
for some a,’y,a,bekandc:d::t% or c = —d =1. For every ¢ =0 €

{#i, i%} and for each collection («, 3, 7,7, a,b) which defines representation,
we denote by M («, 3,7,n,a,b)[d] the corresponding module.

Proposition 5.11.

o Leth = :I:%. There are exactly four non-isomorphic indecomposable

modules M (c, 3,7,m, a, b)[:t%] They are defined for (a, 3,v,m,a,b)
in the following list:

(i) (0,0,1,0,1,0),

(ii) (0,0,1,1,0,0),

(i) (1,0,0,0,F%,1),

(iv) (1,1,0,¥%,0,0).

o Let @ = +i. There are exactly four non-isomorphic indecomposable

modules M (o, 3,7,m,a,b)[£i]. They are defined for («, 3,7,n,a,b)
in the following list:
(i) (1,0,0,0,0,1),
(i) (1,1,0,0,0,0),
(iii) (0,¥2i,1,1,0,0),
(iv) (0,0,1,0,1, F2i).
The next proof is essentially interpreting the equations (31) in this case.
Proof. We have the following identities
(33) ay=va =0, fa=pb=na=nb=0.
Assume ¢ =d = :t%, then to the equations listed above we must add:

0=28c+an=aa+2ch, 0=~6=0by.
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We compute the solutions. Notice that a =0==0=0=0= na = 0.
Then according to n = 0 or a = 0 we have:

aig-x =0, ajz - x =0,
ayp -y = vy, or qaz-y="yz+nv+w),
aiz - v =ax + c(v + w) aiz - v = c(v+ w).

Notice that, in any case, we cannot have v = 0, otherwise the module would
decompose. We may thus assume v = 1, changing y by %y For the same
reason, we cannot have a = n = 0. In the first case, we may take a = 1,
changing v by %fu and in the second case, changing v by nv we may take

n=1.
On the other hand, v = 0 = « # 0; and, according to 8 =0 or § # 0,
a2 - T = Qy,
ﬁ:0:> a12-y20
a2 v = ax + by + c(v +w), fora= —2cha~"

aiz - =ay+ (v —w),
B#0=< a2 -y=n-+w),

aiz v =c(v+w), for n = —2Bca!.
In the first case we may assume a = b = 1, and thus a = —2c¢ and, in the
second, a = =1, and thus n = —2c.
Assume now ¢ = —d = =i, then to the identities (33) we had we must

add:
0= 2by + 2ca =8+ 2cn
0 =aa = an.
We find the solutions:

a2 - r =y, a1z - = ay + v — w),
(i) Qa2-y=0, (ii)  a12 -y =0,
aiz v =by+ c(v—w). a2 - v = c(v—w).
a2 -z = B(v —w), a2 - =0,
. J a2y =y +nv+w), .\ Jazy =z,
(iii) (iv)
ajz - v =c(v—w), a2 - v = ax + by + c¢(v — w),
B = —2ncy L. b= —2cay~!.
Therefore, changing conveniently the basis on each case (by scalar multiple
of its components), we have the four modules from the second item. O

Let sgn : iR — {£1}, sgn(it) = sgn(t).

Proposition 5.12. The following isomorphisms hold:
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(i) Se®S = S=S®S, for every simple Ai-module S;
(ii) Ssgn ® Sst(0) = St (), for 0,9 € {£i,£5} with sgn(f) = sgn(v)),

0] # 9], ,
(iif) %‘t(z)‘ ;957 Ssgn =2 Sst(0), for 0,9 € {£i, £} with sgn(f) = —sgn(d),
(iv) o S(i) @ Set(i) = Se(—3) ® See(3) = M(0,2i,1,1,0,0)[—i],
o Sit(i) ® Sst(—1) = Sit(—1) ® S (—1) = M(1,0,0,0,—24, 1)[1],
o Sit(i) ® Sse(5) = Set(—15) ® Set(i) = M(0,0,1,0, 1, 2i)[—i],
o Su(i) ® Set(—3) = Su(—1) @ Se(—i) = M(1,1,0,-24,0,0)[3],
o Sit(—1) ® Set(i) = St (3) ® Ser(3) = M(1,0,0,0,24, 1)[—1],
o Sut(—1) ® Ser(—1) = Set () ® St (—1) = M(0,—2i1,1,1,0,0)[],
o Sit(—1) ® Set(3) = Se(£) ® Se(i) = M(1,1,0,24,0,0)[—1],
o Sit(—1) ® Set(—1) = Set(3) ® See(—1) = M(0,0,1,0,1, —2i)[i].

Proof. Ttem (i) is immediate. .

We check item (ii): let 0 € {&i, 3}, Ssgn = k{z}; Sst(0) = k{v,w},
a1+ v = cv + dw. Then (Ssgn & Sst)‘s3 = Wy with the canonical basis given
by

U=2QRv—22Qw, t=22Q0v—2zQw,

and then
5c+4d 4c + 5dt
u— .
3 3
Thus, the claim follows according to ¢ = +i or ¢ = i%.
Item (iii) follows analogously: in this case

alpu =

4d 4 d
u=v®z—2w®z and algu:—SC; U+ 025 t.
Now, we have to compute Sy (6)® S (0), for 6,9 € {+i,£1}. Let S () =
k{v,w}, Sst(¥) = k{v,w'},a =v @, b=v@uw,c=wxv,d=waw.
First,

Wyt @ Wyt = W ® Wegn @ Wy = k{z} & k{y} ® k{v, w},

fore =2a—b—c+2d,y=b—c,v=a—-b—c,w=d—>b—c. Now, if
a2 -v = v+ fw and aiz - v = o'V + B'w’, then
ap-a=aa+ (B+a)e+p'd, ap-b=ab—Fc+ (8-a)d,
ag-c= (o' = Bla+Gb—ac, ap-d=-Fa—(a+p)b—ad;
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and thus
ajg v =(—a—28-2d - 3)y+ 2a+8—-a —28) (v—w),

aiz -y = 1(04—1—25—20/—6')%—1—(—204—ﬁ+o/—i—2ﬂ')(v—i—w),

3
1 1
aps v = 6(2(1 + 8+ +26)x + 5(—2(1 - B—a =28y
1 1
+ g(a +28—4d' — 28 v + g(—2oz — 4B+ 2d + f)w.
For each 0,9 € {£+i+ %}, we get the identities in item (iv) by inserting the
corresponding values of o, o/, 3, 3. O

Corollary 5.13. A is not quasitriangular.

Proof. If H is a quasitriangular Hopf algebra and M, N are H-modules, then
M®N =2 N® M as H-modules. We see that this does not hold for A,
from, for instance, the second item of Prop. 5.12. O

5.3.5. Projective covers. Recall that a linear basis for A; is given by the set
S ={zH|r € X,t € S3}, where X = {1, a12, a13, ass, a12a13, a12a23, a13a23,
(13012, A12013023, A12013012, 413012023, 412013012023} [AG2].

Proposition 5.14. I, is the projective cover of Sy, x € {€,sgn}.

Proof. In view of Prop 4.3, we only have to check that I, is indecomposable.
We work with y = €, the other case being analogous, or follows by tensoring
with Segn. Let ec = Ztes3 H; € Ay, then it is clear that {ze.|x € X} is a
basis of I.. Moreover, if we change this basis by the following one:
{ec} U {(a12a13a12a23 — a12a23)ec} U {(ai2 + a13 + azs)ec}

U {(a12a13a12 — a12a13a23 — a13a12a23 — 13 — 2a12)e.}

U {(a12 — 2a13 + az3)ec, (2a23 — a1z — a13)ec}

U {(a13a23 — a13a12)ec, (a12a13 — a12a23 + a13a23 — a13a12)ec}

U {(a12a13 + a12a23 + aizaiz)ec, (—ai2a13 + a13a23 — aizaiz)ec}

U {(a12a13a12 + 2a12a13023 — 13012023 + @12 — a13)e.,

(2a12a13a12 + a12a13023 + a13a12a23 — 12 + a13)€c}
then we can see that
(I€)|S3 =W Wed ngn S ngn D Wt @ Wyt @ Wet @ Wt

Now we deal with the action of a15. Notice that in the first basis, the matrix
of a2 is Fo1 + E53 + Eg 4 + E107 + Eg g + K211, where E; ; is the matrix
whose all its entries are zero except for the (i, 7)-th one, which is a 1. It
is possible to change the basis in such a way that the decomposition in
S3-simple modules is preserved and the matrix of a2 becomes:
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o 00 0 0O 0O 0 0 0 0 0 0
o 00 -1 -1 1 -1 1 -1 1 -1 1
$ 00 0 O 0O O 0 0O 0 0 0
0 0 0 0 -2 -2 2 2 0 0 0 0
-0 0 0 i i1 0 0 O 0 0 O
L0 0 0 -1 -1 0 0 0 0 0 0
=1 10 0 0 0o 0 —i -i 0 0 0 0
L0 o0 0o 0o o0 i i 0 0 0 0
5 00— 0 0 0 0 0 & =L 0 0
-5 0 -5 0 0 0 0 0 35 —3 0 0
5 0 ¢ 0 0 0 0 0 0 0 -3 %
-5 0 & 0 o0 o0 0 0 0 0 -1 1]

Let {1, z2,y1, Y2, v1, w1, V2, wa, V3, W3, V4, Wy} be this new basis. Assume
I. = Uy & Us, for Uy,Us Aj-submodules. Thus, there exists ¢ = 1,2, A #
0, € k such that z = Azy + pze € U;. Acting with a12 we have that
y1,v1 + v —v3 —vg € U;. As yy € U;, acting once again with a2 we have
that also vz — vg4 € U; and thus vs + v4 € U; (again by the action of aj2).
Therefore vy, vy € U; and so x2,y2,x1,v1 + v2 € U;. But then vy — vy € U;
and thus U; = I.. O

We are left with finding the projective covers Py (f) of the 2-dimensional
Aj-modules Ssi(£6), 0 € {i, 3}. Since these modules are

Sst (1)7 Sst (1) & Ssgnv Ssgn ® Sst (1)7 and Ssgn & Sst(l) & Ssgna

see Prop. 5.12, and Py (0) = Ajes(0), they will all have the same dimension.
Moreover, we will necessarily have dim Ps:(0) = 6, V0, by (29).

Proposition 5.15. Let P be the kSs-module with basis {x,y,u,t,v,w},

where <.’IJ>|S$ = W€7 <y>|S3 = ngm <u7t>|83 = sty <’U,'LU>|S3 = st
Then P is an Ai-module via

k{z,y,u,t} = M(0,21,1,1,0,0)[—i], a2-v=x—2iy+u+t+i(v—w).
Moreover P = Py (i) is the projective cover of the simple module Sg(1).

As a result, we have PSt(_é) = Pyt (1) ® Ssgn, Pst(%) = Ssgn ® Py (i) and
PSt(_i) = Ssgn ® Pst<1) & Ssgn-

Proof. The matrix of a5 in the given basis is

0O 1 0 0 1 -1
0 O i
[042] = 21. ! . .
=21 1 1 1 1 -1
0 0 . .
0O O
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Via the action of Hi3, Hog we define the matrices of a13, as3 and then it is
easy to check that

[Hio]lar2] = —[a12][Hial,
[a12]2 =0
la12][a13] + [a13][a23] + [a2s][a12] = idexe —[Hi2][H12),

and thus P is an Aj-module.

Now, it is clear that U = k{x,y,u,t} is an A;-submodule and that the
canonical projection 7 : P — P/U gives a surjection over Sg(i). Moreover,
this surjection is essential. In fact, let N C P be an A;-submodule, such that
N/U = S (i). In particular, there exists A # 0 € k such that A\u+ v € P.
Now, aj2(v + Au) = = — 2iy + (1 — M)u + (=1 + Ai)t +i(v — w), and thus
z,y € N. But x € N = u,v € N and therefore N = P. Consequently,
m: P — P/U is essential.

Now, if (Ps(i), f) is the projective cover of Sg (i), we have the following
commutative diagram

PE PIU —=— S4(i).

As 7 is essential and 7(g(Psx(1))) = St (i) we must have g(Ps(i)) = P. But
then dim P = dim Py (i) = 6 and thus g is an isomorphism. Therefore, (P, )
is the projective cover of Sg(i). The claim about the projective covers of
the other Sg;(\)’s is now straightforward. O

5.3.6. Representation type of Aj.

We show that the algebra A; is not of finite representation type. From
Props. 3.11 and 5.7 it follows that Ext}“l(S, S) = 0 for any simple one-
dimensional A;-module S, and that there is an unique non-trivial extension
of Se¢ by Segn, namely the Aj-module Mg, . The same holds for exten-
sions of Sgen by S, considering the Aj-module M, g. Prop. 3.7 shows
that ExtYy (Sst(A), Sst(k)) = 0 for any A, pu € {+i,£1}. Now, a non-trivial
extension of one of the modules Se or Ssg, by a two dimensional A;-module
Sst(A), or vice versa, must come from a three dimensional indecomposable
Ai-module M. We have classified such modules in Lemma 5.9 and we see
then that:

1, if A= i,

dim Exthl(Se, Sst(N)) = dim Exthl(sst(k), Ssgn) = {07 g = :I:%.

dim Extly, (Ssgn, Sst(A)) = dim Extly, (Sit (), Se)

1, if A=+d,
0, if A= +i.
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Let {Se, Ssgn, Sst(1), Sst(—1), Sst(3), Sse(—3)} = {1,2,3,4,5,6} be an order-
ing of the simple A;-modules. Then the Ext-Quiver of A; is:

aan: W e ] 6

Proposition 5.16. A; is not of finite representation type.

Proof. The separation diagram of A; is Dél) 11 Dél), with Dél) the extended
affine Dynkin diagram corresponding to the classical Dynkin diagram Ds.
By Lemma 4.5 we have that A;/J(A;1)? (a quotient of A;) is not of finite
representation type (it is, in fact, tame) by Th. 4.4, and so neither is A;. O
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