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Abstract

For 1 < j < n, let Q; be open sets of the complex plane and let
@; : @ — C be holomorphic functions on Q; such that ¢} does not

vanish identically on Q. Let D; be bounded open sets with D; C €; such
that @7 # 0 on 99;. We take ¢ : Q1 x ... x Q, — C given by

¢(zl7 7271) =¥1 (21) + .+ Pn (Zn)
and p the Borel measure on R?"*2 given by
wE = [ xle@)io.
Dy X...XDp

We characterize the pairs (p, q) such that the convolution operator T'f =
w* f is bounded from L? (RQ’H’Z) into LY (R2”+2) .

1 Introduction

For 1 <j <mn, let {; be open sets of the complex plane and let ¢; : ©; — C
be holomorphic functions on §2; such that cp;-’ does not vanish identically on €2;.
We take ¢ : 1 x ... x ©Q,, — C given by

0 (215 2n) =01 (21) + . + 0, (20) -

Let us consider the canonical identification R*" ~ C" given by (21, Y1, -, T, Yn)
— (@1 + Y1, ..., Tn, + 1Yp) . Let D; be bounded open sets such that D; C €, and
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such that ¢ # 0 on 9D;. Let D = Dy x ... X D,, and let pu be the Borel measure
on R?"+2 given by

u(E) = / X (20 (2)) do (z). (1)
D

where z = (z1 + iy1,..., Tn + 1yn) and do (z) = dz1dy;...dz,dy, denotes the
Lebesgue measure on R?". We consider the convolution operator given by T'f =
p* f, for f €S (R?*2)  and the type set

Bo={(52) € 0.1 x 113 171, < o0}

where the L? (R?"2) spaces are taken with the Lebesgue measure. Our aim
is to determine this set. In the case that F,, does not reduce to the diagonal
% = %, we say that the measure p is LP improving. A well known result asserts
that a necessary condition for a measure p to be LP improving is that its support
is not contained in any affine submanifold of R?"*2 (see Proposition 1.1 in [7]),
so we will only consider the case when ¢/ does not vanish identically on €2; for
all1 <j<n.

The case of real hypersurfaces in R™ has been widely studied (see for example
[2], [4], [6], [7], [8]). When the codimension of the surface is greater than one,
this matter becomes more complicated.

If for all 1 < j < n, ¢} (z) does not vanish on Dj;, with standard tech-
niques we obtain that E, is the closed triangle with vertices (0,0) (1,1) and

(gi;, ﬁ) . On the other case, if for some 1 < j <n, {z € D, : oY (2) = 0} is
a finite set 2;1, ..., z;,1;, we will prove that E,, is a closed polygonal region whose
vertices depend on the order of each z;;, 1 < j <n, 1 <17 <, as zero of the

function

Wjz;: (2) = 0; (2) = 5 (250) = (2 = 25.0) @ (25.4) - (2)
In a first step, we study the case ¢; (z) = 2™ig; (2), m; > 2, g; being holo-
morphic in a neighborhood of the origin and g; (0) # 0. We obtain that there
exists a neighorhood V of the origin in C” such that the associated type set is a
closed polygonal region with vertices deppending on mq, ..., m,. Our proof will
be based on a suitable adaptation of the argument due to M. Christ, developed
in [1], where the author studies the type set associated to the two dimensional
measure supported on the parabola. We will derive the general case from this
one, with classical arguments.
Throughout this paper ¢ will denote a positive constant not necessarily the
same at each occurrence.

2 The case ¢, (2) = 2Mig;(2), 1 < j <n.

For 7 >0, we set B, ={z € C: [z| <r}. Let ¢ (21,...,2,) = > »; (2j), where
j=1

@j(z) = 2Migj(2), 2 <my < ... < my, and g; are holomorphic functions in



B, for some r; > 0, with g; (0) # 0. We also assume that ¢;, ¢’ ..., <p§-mj) are

different from zero on B,; — {0} . Let u be defined by (1) with D = 1<H< B,,.
<j<n

To study FE,,, without loss of generality we suppose r; = 1 for all 1 < j < n,

so we take D = B7. The Riesz Thorin interpolation theorem implies that F,

is a convex subset of [0,1] x [0,1]. It is well known that if (%, %) € E, then
p < ¢. (See [10] p.33). Also, by duality, E, is symmetric with respect to the
non principal diagonal.

n
For1<J<n,weset S;y= > mj_l. Also we set Sp41 =0.
j=J

> J+14+Sy411  J+Ss4

Lemma 1 If (1,1) € B, and 0 < J <n then tltSon 1 TS

11 1
p’q q
Proof. Weset z = (z1, ..., 2,) . For 0 < § < 1, we set f = x, where Q5 C crtt

is given by

Qs ={(zw) : ] <6,1 << T; |z <6Y™, T+ 1<) <n; |w] < bs}

n

with b= Y (sup |<p’7| + 2sup |gj|> . We define A; C C"*! by As =
B4 : B4

j=1

{(zw) : |2] <1, 1< < J; 2] <8Y™, J+1 <5 <n; | w—gp (21, ..., 2n) |< 6}
We first show that there exists a constant ¢ > 0 such that for (z,w) € As

(% 1) (2, w)] > 6>7H250, 3)

To see (3) we take a fix (z,w) € As. If ¢ = (S1,...,5n) € z+(H3-Ile(; X H?:JHB&l/mj)
then

(s,0(s)) — (z,w) € Qs,

indeed, we have |g; — z;| < ¢, for 1 < j < J, and |g; — 2;| < §Ymi for J4+1 <
7 < n. We also have

lp(s) —w| <[¢(s) —¢(2z) | +]p(z) —wl.

The mean value theorem gives us, for 1 < j < J,
|05 () = 95 (55) |< dsup 5]
and for J+1<j<n
| @i (2) = @5 () <[5 (25) [+ 1 @5 (55) |< 258;1110 |91 -

So .
(s —wl <83 (sup|<p§| +2sup|gj|) .
S\B B



Then (3) follows. Now,

1
q
s £ll, > ( /A s f|q) > 2725 | gyt =
)

— 652J+25J+1+(2+25J+1)% )

But (%, %) € E, implies || * fll, < c[lfl, = 52255405 8o, for all § > 0
small enough,

6J+SJ+1+(1+SJ+1)% < C(S(J+1+SJ+1)%

then
1 S J+14+5411 T+ 554
q 1+S511 p 1+8m
and the lemma follows. m

We denote by Ly, 0 < J < n, the lines given by

1 B J+1+SJ+11_J+SJ+1

q_ 1+SJ+1 D 1+SJ+1.

Also we denote by Ay, 0 < J <n, and by By, 1 < J < n the intersection of L
with the non principal diagonal {(%, 1-— %) :0< % < 1} and the intersection
of Ly_1 with Lj respectively. A computation shows that, for 0 < J < n,

A (J+1+25J+1 1 ) (4)
T\ T 24281 T 2425,

and for 1 < J <n

B_(1+SJ+1+(J—1)m;1 1—m;* )
g L+Jm; + S0 1+Jm; 4S54/

()

Let ¢ be a C§° (R) function supported in the interval [%7 4} such that ¢ =1 on

[1,2], and 0 < ¢ < 1. We observe that 1 < Y ¢ (2Fz) < 3 for z € (0,2).
keNU{0}
For each ky, ..., k, € NU{0} we set

[ (E):/DXE (2,0 (2)) 9 (2 |21]) ..t (27 |2]) do(2).

So p < > By oo ko We also denote by T, ...k, the convolution operator
ki,....kn€N

given, for f € S(R?"+2), by

Thy,oohn | = Ky, kn * I (6)

Proposition 2 If &€ = (s1,t1, ., Snt1,tntr1) € RZ"F2 then



] 2ks(msi—2)

A J=1
‘(Mkl,.“,kn) (5)‘ < C(l + (841, tng1) )"

it) for0<J<n-1

J

AN H 2kj(mj—2)
j=1
Py g | () Sc T
k’J+lv-Zv:kn€N ' (14 [ (Sns1, tngr)) 2001

iii) for 1 < J <mn

J—1 n

2jmj7 2jmJ7
[1 2802 [ 2k
j=1 j=J+1

<c .
)‘>J71+2m;1+m‘751+1

‘(Z 127 kn> (&)] <
kseEN

Proof. We set,

(1 + ‘(S’I’L+17 tn+1

Lk, (5,8, 8p41,tnt1) = /efi(mﬂy%(s"“’t"“)w"my»)w (2kj (2, y)|) dady,

thus .
A
(o) €)= T Tiks (555855 $nt1s tgr)
j=1

and
A

Z Hiy ...k (5)

kjy1,-.,kn€N

HE&

S]atjuanrh n+1 H § Ijk Sjatjaanrlvthrl)
j=J+1k;eN

Since ¢, is a holomorphic function a computation shows that for (z,y) such
that 2%/ |(z,y)| € supp ¢

|H635my (5$+ty+ <(5n+1atn+1) 90] z,y >)| = |90 ZZ/)|2 |(5n+17tn+1)|2

Z CQ_ij(mj_2) |(3n+17 tn+1)|2 )

then using the method of the stationary phase (see proposition 6, p. 344 in [9])
we obtain

c2ki (m;—2)
Lk (5,8, $np1,tngn)| < T

(7)

Snt1,tng1)]’



thus 4) follows. Now a change of variables shows that
Ij7kj (Sa ta Sp+41, tn+1) = 2_2kj I]kiJU (Z_kj57 2_kjta 2—k_7'm_7' Sn+41; Q_kjmj t’ﬂ‘i‘l) 5
where

i (5,6,5,7) = /efi(sx+ty+<(§,i),(r+iy)’"jgj(Z’ka,T’“fy))w(|(x’y)|)dmdy,

We note that for (x,y) such that |(z,y)| € supp v

|Hessay (so+ty+ ((5,2), (x +iy)™ g; (272,27 7y)))|

(G ze|GAN

with ¢ independent of k;. Indeed, since g; (0) # 0, there exists ko such that for
k > kOu

‘ m] gJ

‘ mJ g] —k; Z)

_ mjmjflzmj_2gj (2—kj z)—|—2mj2_k7 ij—lg; (2—kj Z)+2_2kj ijg;‘/ (2—ka Z) > ¢,

and since ¢” does not vanish on By — {0}, if & < ko,

2 2
@ijgj (Q*kj z) - ‘dz22kjmj<p (Q*ka) - ‘ij(mf?)(p” (2*’?;‘2)‘ > c.
Then
1 (59| < Ty ®)

Now, as in the proof of Lemma 1 in [5]

E Ij,kj (S,t,sn+1,tn+1)
kjEN

_ - ks k. I ) RS Y A
§ 2 2R (27 Mg 2Rt 2 R s, g 27 R, )
k?jGN

SR R >

23 %3 <1+ (snt1,tn1)] 27355 214 |41t

To estimate the first sum we use (8) to obtain that the sum is bounded by

c kej(mj—2) ¢
> s -
L [(sns1,tns)] 2% <14 (spp1,tnt1)] (L + [(Snt1,tns1)]) ™




and in the second sum, we use that
’Ij’ﬁg (2*’%3,2*’%,2*’%’"13“1,2*’ffmftn+1)‘ < /|1/;| —c

and we obtain

3 < ° -

2% 314 onsntsn)]| (L (Snatstngn) )™
SO
C
Z I_]kj (Svtas’n-i-l?t’n'f'l) S 2 - (9)
kjEN (L4 [(snt1,tns1)]) ™

Thus #3) follows from (7) and (9). To prove #ii) we use (7) and the estimate
|Ij,kj (57 ta Sn+41, tn+1)| < CQ_ij 5

to obtain

90;k;(m;—2)

|Ij7kj (S,t, 3n+17tn+1)| <c 9—2(1=0;)k;

9.
(I + [(sns1, tny1)])™

A
To estimate ( > Hkyk, | ()|, we use this last estimate for j > J with

k;eEN
@»z%, (7)for j < Jand (9) forj=J m
For B = (%, %) €[0,1] x [0,1) and T : LP — L7 we write, to simplify the

notation, |75 instead of ||T[, ,. We also set, for 1 < J <n,

om;t+J S 1
J:< m; +J+mySi ) (10)

L+ J+2m;  +mySy 1+ J+2m;" +mySy

Lemma 3 Let Ty, .., be defined by (6) and let Ay and Cy be defined by (4)
and (10) respectively. Then
i)

('mj 72)

n
HTk‘1 ..... kn ||A S c H 22kj n+2
j=1

i) for0< J<n-1

T B
E Ty, ke < CH 27 IFIIS

kjy1,ekn€N j=1

Ay



iti) for 1 < J <n

2

J—1 n JHitem i em s g
> Towka| < | [[2%9072 I 2802
ks€EN o, j=1 j=J+1

Proof. To prove i) we use the complex interpolation theorem. For Re(z) > 0
and (s,t) € R? we consider the fractional integration kernel

(MY

o
I (

L (S,t) = |(57t)|z_2

)

and its analytic extension to z € C. In particular we have fz = cly_,, also
Iy = ¢d where ¢ denotes the Dirac distribution at the origin. We also define J,
as the distribution on R?”*2 given by the tensor product J, =6 ® ... ® § @ I,.
For z such that —n < Re (z) < 2 we consider the analytic family of operators

ol

2
U.f =¢€” Py, ky * Jox f.

Taking account of Proposition 2 i) we obtain that

n
||U—n+i'y||272 < CH2kj(mj*2)7
j=1

2

also it is easy to check that

[U24iv ]l oo < ce™

so by interpolation,
n
(m;—2)
k .
1T L2, = €00l 32 0 < € [J 2%

Now i) follows similarly, applying the complex interpolation theorem to the

operators U, f = e > Py ...k % Jz % f, on the strip —J — 25,41 <
kjyi,ekn€N

Re(z) < 2 and using Proposition 2 ). Also, iii) follows in analogous way,

applymg the complex interpolation theorem to the famlly of operators U, f =

> ks .k, *Jz% f, on the strip — (J— 1+2mJ —|—mJSJ+1) < Re(z) <2
kjeEN
and then using Proposition 2 i7). =

Following the approach in [1], we recall that for ky € N

&Mm&ﬂ=/(WWHWﬁWMWMTWJMWWM%MMMU



If (z+iy)"™ g5 (272,277 y) = u(z,y) + v (z,y),

c% (sz+ty+ ((51), (@ +iy)™ gs (27Fz,27%7y)))
=S+ gur (x,y) +;Ur (’I’,y)

and
0 — N _ _
5o szt ey (D) (o i)™ g (2740274y)

=t + Suy (z,y) + tv, (z,9)

and so if the gradient of the phase function vanishes at some (x,y) with |(z, y)| €
supp ¢ then

s+it=— (5+it) (u+ i) (z+iy).

Now,
(u+iv) (2) = myz™" "tg; (Z_sz)—l—szQ_ngf] (2"“2’) = gks(ms=1) 1, (2"“3’) .

so from the first equality we obtain that there exists kg such that for k; > ko,
|(u+ iv)’] is bounded from above and from below uniformly on k;, also, since
¢'; does not vanish on By — {0}, from the second equality we obtain the same
assertion for 1 < k; < ko and so there exist constants ¢f,c§ > 0 such that
(s, tﬁ,f) belongs to the cone

FEJ] = {(S,t,g,%) :ClJ|(5,t)| < |(§,t~)| < cé]\(s,t)|}.

We define N
To={(s,t,5,%) tc1|(s,1)] < |(5,0)] < c2l(s,1)[}

with ¢; = mini<j<n, {cl‘]} and co = maxji<j<n {cg, 201} .

Let M be a function belonging to C'*° (R4— {0}) homogeneous of degreee
zero with respect to the euclidean dilations on R* such that supp M C I'y and for
1<J<nandkeZlet My (z,w) =M (Z’kz, 2*’“””10) . Moreover, we choose
M such that {Mjx}, , is a C* partition of unity in {(z,w) € R* : z # 0 and w # 0}.
Let ¢y be a constant such that MJJC = >. My, be identically one on

li—k|<co
supp My j,. Also, for &€ = (&y,...,&,41) € C" weset Myi (€) = Mk (€7,641)
and MJJC & = MJJC (§J, £n+1) . Let @JJC be the operator with multiplier .//\/le7k.
We take H € C2° (R*) such that H is identically one in a neighborhood of the
origin, Hyy (€) = H (27%¢;,27%m7¢ 1) and Py be the Fourier multiplier
operator with symbol H j .

The following lemma is the key argument contained in [1], adapted to our
2n dimensional setting. The proof is in [2], p. 37, for the case n dimensional,
but it can be straightforward adapted to this case.



Lemma 4 Let {04}, oy be a sequence of positive measures on R27*2. and let
kazak*ﬁforfGS(Rz"“).Supposenggn,1<p§2andp§q<oo.

If there exists A > 0 such that sup ||Ti|,, < A, || > TwPik
keN '

1<k<N

< A and

p.a
> Tip(I—Pry) (I - @J,k)

1<k<N b

c independent of A, N and {o}},cy, such that

< A for all N € N, then there exists ¢ > 0,

Z Tk S cA.
p.q

1<k<N

Our next aim is to study the operators > Tk, ..k, (I — Prk,) (I - QVJJCJ)
1<k, <N

and > Tk, .k, Pri,. Asin [2] we obtain the following result
1<k, <N

Lemma 5 For 1 < p,q < oo and N € N there exists ¢ > 0 independent of N
such that

a)

Y Thien (L= Prgy) (I— éJ,kJ) el D Thi

1<k ;<N 1<ks;<N

p,q p,q
and
b)
E Tryyookn Pris || <c E T kn
1<k;<N - 1<k;<N o

Lemma 6 If N € N, then

a) the kernel of the convolution operator

Z Ty, (I = Priy) (I - QVJJW)

1<k;<N
belongs to weak- L5 and its norm is less than 2~ Zi#7 2ki with ¢ indepen-

dent of N,
b) the kernel of the convolution operator

E Tyy,.osbon Pty
1<k, <N

10



belongs to weak- LY75" and its norm is less than ¢2~ %7 2’”, with ¢ indepen-
dent of N.
Proof. a) A computation shows that the kernel Ky, . j, of the convolution

operator Ty, ., (I — Prk,) (I - @Jykj) is the function given by

Kktl,...,k‘n (zlv eeey Zn+1)

=28mIGy [ =282y, 28 | g Z @, (—25) H ¥ (2% |z]) (1)
J#J J#J

— A
where G; = (If% (1-H) (1 - MJ7O>) . Now, as in the proof of (2.3) in [3]

we obtain that the functions G; belong to S (R4) and that they are uniformly
(with respect to k) rapidly decreasing at infinity. So, as in the proof of Lemma
2.6 in [2] we get a). Now b) follows similarly after noting that the kernel of the

AN
operator Ty, .k, Py, is of the form (11) with G; = (IL%H) . m

Let Jy be defined by Jo = 0if m; > 2 and Jo =max{j: 1 < j <n, m; =2}
if m; = 2. These previous lemmas allows us to prove the following result

Proposition 7 If J > Jy then there exists ¢ > 0, independent of k1, ...,kj_1,
such that for N € N

a)

Z Thyroo ko (I = Prgey) (I - @J,k,;)
1<ky,..kn<N B,
mi(mit o)

(‘ ",71121% 1)
< o\ = N sy )

and

— S ok mf(mjil*m;l)
j=1 2k; (1+S‘I+1+‘Im;1)
Ty ke Pt <c2 .

1<kj, kn <N B,

Proof. We denote by F; = (1, H%) Since By = tC; + (1 —t) E; with
my

t = my+Jmy+m?%Syiq1+2
= Jmg+mZ+mZ Sy
interpolation theorem imply that

, Lemma 3 i), Lemma 6 a) and the Marcinkiewicz

Z Tiy ook L — Pyiy) (I - @J,kJ)

1<k;<N B,

11



2t
J—1 n J41tem T em Sy

<ec szj(mj—Q) H ok (m—2) 0= Xy (2ks)(1—t)
i=1 J=T41

Now if ¢ is defined as above,

Q(mj—Q)
J+1+2m5t +mySy

—2(1-1)

772(mJ+mL2,—mej—2)

my(J+my+mySyi1)

so a) follows. Analogously, b) follows. m
At this point we have already proved all the results needed to follow straigh-
forward the proof of Theorem 3.12 in [2] to obtain the next

Theorem 8 E, is the closed convex polygonal region with vertices (1,1), By, ...,
Bj,+1, Aj, and the symetric points with respect to the non principal diago-

nal (l, L.

Remark 9 We observe that E,, is the closed convex polygonal region with ver-

tices (1,1), By, ..., By and the symetric points with respect to the non principal
1 1

diagonal 5

3 The general case

For 1 <j < mn, let {; be open sets of the complex plane and let ¢; : ©; — C
be holomorphic functions on €; such that ¢!/ does not vanish identically on €2;.
We take ¢ : 3 x ... x Q,, — C given by

© (21,0 2n) = @1 (21) + . + @, (20) -

Let D; be bounded open sets such that D; C ©; and such that ¢j #0on dD;.
Let D = D; x ... x D,, and let i be the Borel measure on R*"*2 given by (1).
If ¢ does not vanish on Dj, let I; = 0. On the other case, let {z;},,, be
the zeros of ¢/ in D; and let m;; be the order of z;; as a zero of

wji (2) = @, (2) = 9; (2.0) = (2 = 25.0) @5 (254) -
In any case, let m; o = 2. Let
M ={mi=(mi,,..Mmp,;,): 0<4; <Ulj}.
For m; € M we take the multiindex o (m;) = (0 (m1,),...,0 (Mp,;,)) where

o is a permutation of the set {mj;,..., My, } such that o(mqi,;) < ... <

12



0 (My 4, ) . We denote with Ep,, the closed convex poligonal region with vertices
(1,1),

B _ (LSt U= (mi,) " 1 (0 (mgz,)”"
" L+ J (0 (myi,) 48, 1+ J(0(my,)  + S, )

1 < J < n and its symetrics with respect to the non principal diagonal, where

n

i —1
Sy =2 (o(mjs,))
j=J
Theorem 10 FE,, is the closed convex polygonal region given by

E, = ﬂ B,

m;eM

Proof. For each z; € D; we have a ball B,(.,)(z;) C €; such that for z €
Brzy) (%)

wjz; (2) = (2) = 95 () = (2 = 7)) ¥ () = (2 = %))

mj ;.

’ 95,2, (Z)

with 9j,z ('Zj) # 0, Mj,z; > 2 and Wj,zj (wjyzj)l> ~--7(w47‘721)(m]‘12]‘) different from
zero on B,y (2;) — {z;}. We note that if z; = z;,; for some 1 <14 < I; then

m;., = mj; > 2. On the other case m;., = 2. Since D; is a compact set,
there exists a finite set £ C [[ D; such that D can be covered with a finite
1<j<n

collection of sets of the form

Dzl ..... Zn — H BT'(Z]') (Zj)’

1<j<n

(21, .., 2n) € F. Wedenote by Tp., . the operator of convolution with pp.,,
defined by (1) with D replaced by D, . ...

Now,
< >
P, = TDZIT...,zn
(21500,2n)EF

1T

p.q

We note that mj= (m1 ,, ..., My 2, ) € M. After a linear change of variables (if
necessary) we can apply the results of the previous paragraph to obtain that
the type set associated to TDZ1 . is Em;. So

Now we take m; € M. If m;;, > 2 for 1 < j < n we observe that since cp;’
does not vanish on dD;, we can take BT(ZMj) (2“7) C Dj so

D; = BT'(Zl,il) (Zl,il) X oo X BT(Zn,in) (Zn,zn) C D,

13



and then

p,q "

fr.,, <1

p,

Now the type set associated to Dj is E;, s0 I, € Ep,. Finally, if some mji, =
2, we take any point z; € D; and a ball B; with center Z;, contained in D; such

that w; >, W’

iz, and w > be different from zero on B — {Z;} . For the other j's

we take BT(ZN_) (2“7) “Since Em, is the type set associated to the cartesian

i
product of these balls, we proceed as before. m
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