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Abstract

For 1 � j � n; let 
j be open sets of the complex plane and let
'j : 
j ! C be holomorphic functions on 
j such that '00j does not
vanish identically on 
j : Let Dj be bounded open sets with Dj � 
j such
that '00j 6= 0 on @
j : We take ' : 
1 � :::� 
n ! C given by

' (z1; :::; zn) = '1 (z1) + :::+ 'n (zn)

and � the Borel measure on R2n+2 given by

� (E) =

Z
D1�:::�Dn

�E (z; ' (z)) d� (z) :

We characterize the pairs (p; q) such that the convolution operator Tf =
� � f is bounded from Lp

�
R2n+2

�
into Lq

�
R2n+2

�
:

1 Introduction

For 1 � j � n; let 
j be open sets of the complex plane and let 'j : 
j ! C
be holomorphic functions on 
j such that '00j does not vanish identically on 
j :
We take ' : 
1 � :::� 
n ! C given by

' (z1; :::; zn) = '1 (z1) + :::+ 'n (zn) :

Let us consider the canonical identi�cation R2n ' Cn given by (x1; y1; :::; xn; yn)
! (x1 + iy1; :::; xn + iyn) : Let Dj be bounded open sets such that Dj � 
j and
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such that '00j 6= 0 on @Dj : Let D = D1� :::�Dn and let � be the Borel measure
on R2n+2 given by

� (E) =

Z
D

�E (z; ' (z)) d� (z) ; (1)

where z = (x1 + iy1; :::; xn + iyn) and d� (z) = dx1dy1:::dxndyn denotes the
Lebesgue measure on R2n:We consider the convolution operator given by Tf =
� � f; for f 2 S

�
R2n+2

�
; and the type set

E� =

��
1

p
;
1

q

�
2 [0; 1]� [0; 1] : kTkp;q <1

�
;

where the Lp
�
R2n+2

�
spaces are taken with the Lebesgue measure. Our aim

is to determine this set. In the case that E� does not reduce to the diagonal
1
p =

1
q ; we say that the measure � is L

p improving. A well known result asserts
that a necessary condition for a measure � to be Lp improving is that its support
is not contained in any a¢ ne submanifold of R2n+2 (see Proposition 1.1 in [7]),
so we will only consider the case when '00j does not vanish identically on 
j for
all 1 � j � n:
The case of real hypersurfaces in Rn has been widely studied (see for example

[2], [4], [6], [7], [8]). When the codimension of the surface is greater than one,
this matter becomes more complicated.
If for all 1 � j � n; '00j (z) does not vanish on Dj ;with standard tech-

niques we obtain that E� is the closed triangle with vertices (0; 0) (1; 1) and�
n+1
n+2 ;

1
n+2

�
: On the other case, if for some 1 � j � n;

�
z 2 Dj : '

00
j (z) = 0

	
is

a �nite set zj;1; :::; zj;lj ; we will prove that E� is a closed polygonal region whose
vertices depend on the order of each zj;i; 1 � j � n; 1 � i � lj ; as zero of the
function

!j;zj;i (z) = 'j (z)� 'j (zj;i)� (z � zj;i)'0j (zj;i) : (2)

In a �rst step, we study the case 'j (z) = zmjgj (z) ; mj � 2, gj being holo-
morphic in a neighborhood of the origin and gj (0) 6= 0: We obtain that there
exists a neigborhood V of the origin in Cn such that the associated type set is a
closed polygonal region with vertices deppending on m1; :::;mn: Our proof will
be based on a suitable adaptation of the argument due to M. Christ, developed
in [1], where the author studies the type set associated to the two dimensional
measure supported on the parabola. We will derive the general case from this
one, with classical arguments.
Throughout this paper c will denote a positive constant not necessarily the

same at each occurrence.

2 The case 'j (z) = zmjgj (z) ; 1 � j � n:

For r > 0; we set Br = fz 2 C : jzj � rg : Let ' (z1; :::; zn) =
nP
j=1

'j (zj) ; where

'j (z) = zmjgj (z) ; 2 � m1 � ::: � mn; and gj are holomorphic functions in
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Brj for some rj > 0, with gj (0) 6= 0: We also assume that 'j ; '0j ; :::; '
(mj)
j are

di¤erent from zero on Brj � f0g : Let � be de�ned by (1) with D =
Q

1�j�n
Brj :

To study E�; without loss of generality we suppose rj = 1 for all 1 � j � n;
so we take D = Bn1 : The Riesz Thorin interpolation theorem implies that E�
is a convex subset of [0; 1] � [0; 1] : It is well known that if

�
1
p ;

1
q

�
2 E� then

p � q: (See [10] p.33). Also, by duality, E� is symmetric with respect to the
non principal diagonal.

For 1 � J � n; we set SJ =
nP
j=J

m�1
j : Also we set Sn+1 = 0:

Lemma 1 If
�
1
p ;

1
q

�
2 E� and 0 � J � n then 1

q �
J+1+SJ+1
1+SJ+1

1
p �

J+SJ+1
1+SJ+1

.

Proof. We set z = (z1; :::; zn) : For 0 < � < 1; we set f = �Q�
where Q� � Cn+1

is given by

Q� = f(z; w) : jzj j � �; 1 � j � J ; jzj j � �1=mj ; J + 1 � j � n; jwj � b�g

with b =
nP
j=1

�
sup
B1

��'0j��+ 2 sup
B1

jgj j
�
: We de�ne A� � Cn+1 by A� =

f(z; w) : jzj j � 1; 1 � j � J ; jzj j � �1=mj ; J+1 � j � n; j w�' (z1; :::; zn) j� �g:

We �rst show that there exists a constant c > 0 such that for (z; w) 2 A�

j(� � f) (z; w)j � c�2J+2SJ+1 : (3)

To see (3) we take a �x (z; w) 2 A�: If & = (&1; :::; &n) 2 z+
�
�Jj=1B� ��nj=J+1B�1=mj

�
then

(&; ' (&))� (z; w) 2 Q�;

indeed, we have j&j � zj j � �, for 1 � j � J; and j&j � zj j � �1=mj ; for J + 1 �
j � n: We also have

j' (&)� wj �j ' (&)� ' (z) j + j' (z)� wj :

The mean value theorem gives us, for 1 � j � J;

j 'j (zj)� 'j (&j) j� � sup
B1

��'0j��
and for J + 1 � j � n

j 'j (zj)� 'j (&j) j�j 'j (zj) j + j 'j (&j) j� 2� sup
B1

jgj j :

So

j' (&)� wj � �

nX
j=1

�
sup
B1

��'0j��+ 2 sup
B1

jgj j
�
:
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Then (3) follows. Now,

k� � fkq �
�Z

A�

j� � f jq
� 1

q

� c�2J+2SJ+1 jA�j
1
q =

= c�2J+2SJ+1+(2+2SJ+1)
1
q :

But
�
1
p ;

1
q

�
2 E� implies k� � fkq � c kfkp = c�(2J+2+2SJ+1)

1
p : So, for all � > 0

small enough,
�J+SJ+1+(1+SJ+1)

1
q � c�(J+1+SJ+1)

1
p

then
1

q
� J + 1 + SJ+1

1 + SJ+1

1

p
� J + SJ+1
1 + SJ+1

and the lemma follows.
We denote by LJ , 0 � J � n; the lines given by

1

q
=
J + 1 + SJ+1
1 + SJ+1

1

p
� J + SJ+1
1 + SJ+1

:

Also we denote by AJ ; 0 � J � n; and by BJ ; 1 � J � n the intersection of LJ
with the non principal diagonal

n�
1
p ; 1�

1
p

�
: 0 � 1

p � 1
o
and the intersection

of LJ�1 with LJ respectively. A computation shows that, for 0 � J � n;

AJ =

�
J + 1 + 2SJ+1
J + 2 + 2SJ+1

;
1

J + 2 + 2SJ+1

�
(4)

and for 1 � J � n

BJ =

�
1 + SJ+1 + (J � 1)m�1

J

1 + Jm�1
J + SJ+1

;
1�m�1

J

1 + Jm�1
J + SJ+1

�
: (5)

Let  be a C10 (R) function supported in the interval
�
1
2 ; 4
�
such that  � 1 on

[1; 2] ; and 0 �  � 1: We observe that 1 �
P

k2N[f0g
 
�
2kx
�
� 3 for x 2 (0; 2).

For each k1; :::; kn 2 N[f0g we set

�k1;:::;kn (E) =

Z
D

�E (z; ' (z)) 
�
2k1 jz1j

�
::: 

�
2kn jznj

�
d�(z):

So � �
P

k1;:::;kn2N
�k1;:::;kn : We also denote by Tk1;:::;kn the convolution operator

given, for f 2 S(R2n+2); by

Tk1;:::;knf = �k1;:::;kn � f: (6)

Proposition 2 If � = (s1; t1; :::; sn+1; tn+1) 2 R2n+2 then
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i)

�����k1;:::;kn�^ (�)��� � c

nQ
j=1

2kj(mj�2)

(1 + j(sn+1; tn+1)j)n
;

ii) for 0 � J � n� 1

������
0@ X
kJ+1;:::;kn2N

�k1;:::;kn

1A^

(�)

������ � c

JQ
j=1

2kj(mj�2)

(1 + j(sn+1; tn+1)j)J+2SJ+1
;

iii) for 1 � J � n

�����
 X
kJ2N

�k1;:::;kn

!^
(�)

����� � c

J�1Q
j=1

2kj(mj�2)
nQ

j=J+1

2kj(mJ�2)

(1 + j(sn+1; tn+1)j)J�1+2m
�1
J +mJSJ+1

:

Proof. We set

Ij;kj (s; t; sn+1; tn+1) =

Z
e�i(sx+ty+h(sn+1;tn+1);'j(x;y)i) 

�
2kj j(x; y)j

�
dxdy;

thus �
�k1;:::;kn

�^
(�) =

nY
j=1

Ij;kj (sj ; tj ; sn+1; tn+1)

and 0@ X
kJ+1;:::;kn2N

�k1;:::;kn

1A^

(�)

=

JY
j=1

Ij;kj (sj ; tj ; sn+1; tn+1)

nY
j=J+1

X
kj2N

Ij;kj (sj ; tj ; sn+1; tn+1) :

Since 'j is a holomorphic function a computation shows that for (x; y) such
that 2kj j(x; y)j 2 supp ��Hessx;y �sx+ ty + 
(sn+1; tn+1) ; 'j (x; y)���� = ��'00j (x+ iy)��2 j(sn+1; tn+1)j2

� c2�2kj(mj�2) j(sn+1; tn+1)j2 ;

then using the method of the stationary phase (see proposition 6, p. 344 in [9])
we obtain

��Ij;kj (s; t; sn+1; tn+1)�� � c2kj(mj�2)

1 + j(sn+1; tn+1)j
; (7)
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thus i) follows. Now a change of variables shows that

Ij;kj (s; t; sn+1; tn+1) = 2
�2kjI

kj
j;0

�
2�kjs; 2�kj t; 2�kjmjsn+1; 2

�kjmj tn+1
�
;

where

I
kj
j;0

�
s; t; es;et� = Z e�i(sx+ty+h(es;et);(x+iy)mj gj(2�kjx;2�kj y)i) (j(x; y)j) dxdy:

We note that for (x; y) such that j(x; y)j 2 supp ��Hessx;y �sx+ ty + 
�es;et� ; (x+ iy)mj gj
�
2�kjx; 2�kjy

�����
=

���� d2dz2 zmjgj
�
2�kjz

�����2 ���es;et���2 � c
���es;et���2

with c independent of kj : Indeed, since gj (0) 6= 0; there exists k0 such that for
k � k0; ���� d2dz2 zmjgj

�
2�kjz

�����
= mjmj�1z

mj�2gj
�
2�kjz

�
+2mj2

�kjzmj�1g0j
�
2�kjz

�
+2�2kjzmjg00j

�
2�kjz

�
� c;

and since '00 does not vanish on B1 � f0g ; if k � k0;���� d2dz2 zmjgj
�
2�kjz

����� = ���� d2dz2 2kjmj'
�
2�kjz

����� = ���2kj(mj�2)'00
�
2�kjz

���� � c:

Then ���Ikjj;0 �s; t; es;et���� � c

1 +
���es;et��� : (8)

Now, as in the proof of Lemma 1 in [5]������
X
kj2N

Ij;kj (s; t; sn+1; tn+1)

������
=

������
X
kj2N

2�2kjI
kj
j;0

�
2�kjs; 2�kj t; 2�kjmjsn+1; 2

�kjmj tn+1
�������

=

������
X

2mjkj�1+j(sn+1;tn+1)j

������+
������

X
2mjkj�1+j(sn+1;tn+1)j

������ :
To estimate the �rst sum we use (8) to obtain that the sum is bounded by

c

1 + j(sn+1; tn+1)j
X

2mjkj�1+j(sn+1;tn+1)j

2kj(mj�2) � c

(1 + j(sn+1; tn+1)j)
2
mj

;
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and in the second sum, we use that���Ikjj;0 �2�kjs; 2�kj t; 2�kjmjsn+1; 2
�kjmj tn+1

���� � Z j j = c

and we obtain ������
X

2mjkj�1+j(sn+1;tn+1)j

������ � c

(1 + j(sn+1; tn+1)j)
2
mj

;

so ������
X
kj2N

Ij;kj (s; t; sn+1; tn+1)

������ � c

(1 + j(sn+1; tn+1)j)
2
mj

: (9)

Thus ii) follows from (7) and (9). To prove iii) we use (7) and the estimate��Ij;kj (s; t; sn+1; tn+1)�� � c2�2kj ;

to obtain ��Ij;kj (s; t; sn+1; tn+1)�� � c
2�jkj(mj�2)

(1 + j(sn+1; tn+1)j)�j
2�2(1��j)kj :

To estimate

�����
 P
kJ2N

�k1;:::;kn

!^
(�)

����� ; we use this last estimate for j > J with

�j =
mJ

mj
; (7) for j < J and (9) for j = J:

For B =
�
1
p ;

1
q

�
2 [0; 1] � [0; 1] and T : Lp ! Lq we write, to simplify the

notation, kTkB instead of kTkp;q : We also set, for 1 � J � n,

CJ =

�
2m�1

J + J +mJSJ+1

1 + J + 2m�1
J +mJSJ+1

;
1

1 + J + 2m�1
J +mJSJ+1

�
: (10)

Lemma 3 Let Tk1;:::;kn be de�ned by (6) and let AJ and CJ be de�ned by (4)
and (10) respectively. Then

i)

kTk1;:::;knkAn
� c

nY
j=1

22kj
(mj�2)
n+2 ;

ii) for 0 � J � n� 1






X

kJ+1;:::;kn2N
Tk1;:::;kn








AJ

� c
JY
j=1

2
2kj

mj�2
J+2+2SJ+1
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iii) for 1 � J � n






X
kJ2N

Tk1;:::;kn







CJ

�

0@J�1Y
j=1

2kj(mj�2)
nY

j=J+1

2kj(mJ�2)

1A 2

J+1+2m
�1
J

+mJSJ+1

Proof. To prove i) we use the complex interpolation theorem. For Re (z) > 0
and (s; t) 2 R2 we consider the fractional integration kernel

Iz (s; t) =
2�

z
2

�
�
z
2

� j(s; t)jz�2
and its analytic extension to z 2 C: In particular we have bIz = cI2�z; also
I0 = c� where � denotes the Dirac distribution at the origin. We also de�ne Jz
as the distribution on R2n+2 given by the tensor product Jz = � 
 :::
 � 
 Iz:
For z such that �n � Re (z) � 2 we consider the analytic family of operators

Uzf = ez
2

�k1;:::;kn � Jz � f:

Taking account of Proposition 2 i) we obtain that

kU�n+i
k2;2 � c

nY
j=1

2kj(mj�2);

also it is easy to check that

kU2+i
k1;1 � ce�

2

������2 + i
2
������1 � c

so by interpolation,

kTk1;:::;knkAn
= c kU0kn+2

n+1 ;n+2
� c

nY
j=1

22kj
(mj�2)
n+2 :

Now ii) follows similarly, applying the complex interpolation theorem to the
operators Uzf = ez

2 P
kJ+1;:::;kn2N

�k1;:::;kn � Jz � f; on the strip �J � 2SJ+1 �

Re (z) � 2 and using Proposition 2 ii). Also, iii) follows in analogous way,
applying the complex interpolation theorem to the family of operators Uzf =
ez

2 P
kJ2N

�k1;:::;kn �Jz�f; on the strip �
�
J � 1 + 2m�1

J +mJSJ+1
�
� Re (z) � 2

and then using Proposition 2 iii).
Following the approach in [1], we recall that for kJ 2 N

IkJJ;0
�
s; t; es;et� = Z e�i(sx+ty+h(es;et);(x+iy)mJ gJ(2�kJ x;2�kJ y)i) (j(x; y)j) dxdy:

8



If (x+ iy)mJ gJ
�
2�kJx; 2�kJ y

�
= u (x; y) + iv (x; y) ;

@

@x

�
sx+ ty +


�es;et� ; (x+ iy)mJ gJ
�
2�kJx; 2�kJ y

���
= s+ esux (x; y) + etvx (x; y)

and
@

@y

�
sx+ ty +


�es;et� ; (x+ iy)mJ gJ
�
2�kJx; 2�kJ y

���
= t+ esuy (x; y) + etvy (x; y)

and so if the gradient of the phase function vanishes at some (x; y) with j(x; y)j 2
supp then

s+ it = �
�es+ iet� (u+ iv)0 (x+ iy):

Now,

(u+ iv)
0
(z) = mJz

mJ�1gJ
�
2�kJ z

�
+zmJ2�kJ g0J

�
2�kJ z

�
= 2kJ (mJ�1)'0J

�
2�kJ z

�
:

so from the �rst equality we obtain that there exists k0 such that for kJ � k0,��(u+ iv)0�� is bounded from above and from below uniformly on kJ ; also, since
'0J does not vanish on B1 � f0g ; from the second equality we obtain the same
assertion for 1 � kJ < k0 and so there exist constants cJ1 ; c

J
2 > 0 such that�

s; t; es;et� belongs to the cone
�J0 =

��
s; t; es;et� : cJ1 j(s; t)j � ��(es;et)�� � cJ2 j(s; t)j

	
:

We de�ne
�0 =

��
s; t; es;et� : c1 j(s; t)j � ��(es;et)�� � c2 j(s; t)j

	
with c1 = min1�J�n

�
cJ1
	
and c2 = max1�J�n

�
cJ2 ; 2c1

	
:

Let M be a function belonging to C1
�
R4�f0g

�
homogeneous of degreee

zero with respect to the euclidean dilations on R4 such that suppM � �0 and for
1 � J � n and k 2 Z letMJ;k (z; w) =M

�
2�kz; 2�kmJw

�
:Moreover, we choose

M such that fMJ;kgk2Z is a C1 partition of unity in
�
(z; w) 2 R4 : z 6= 0 and w 6= 0

	
.

Let c0 be a constant such that fMJ;k =
P

ji�kj�c0
MJ;i be identically one on

suppMJ;k:Also, for � =
�
�1; :::; �n+1

�
2 Cn+1; we setMJ;k (�) =MJ;k

�
�J ; �n+1

�
and fMJ;k (�) = fMJ;k

�
�J ; �n+1

�
: Let eQJ;k be the operator with multiplier fMJ;k:

We take H 2 C1c
�
R4
�
such that H is identically one in a neighborhood of the

origin, HJ;k (�) = H
�
2�k�J ; 2

�kmJ �n+1
�
and PJ;k be the Fourier multiplier

operator with symbol HJ;k:

The following lemma is the key argument contained in [1], adapted to our
2n dimensional setting. The proof is in [2], p. 37, for the case n dimensional,
but it can be straightforward adapted to this case.
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Lemma 4 Let f�kgk2N be a sequence of positive measures on R2n+2; and let
Tkf = �k �f; for f 2 S

�
R2n+2

�
: Suppose 1 � J � n; 1 < p � 2 and p � q <1:

If there exists A > 0 such that sup
k2N

kTkkp;q � A;






 P
1�k�N

TkPJ;k







p;q

� A and




 P
1�k�N

Tk (I � PJ;k)
�
I � eQJ;k�







p;q

� A for all N 2 N; then there exists c > 0;

c independent of A; N and f�kgk2N, such that






X

1�k�N
Tk








p;q

� cA:

Our next aim is to study the operators
P

1�kJ�N
Tk1;:::;kn (I � PJ;kJ )

�
I � eQJ;kJ�

and
P

1�kJ�N
Tk1;:::;knPJ;kJ : As in [2] we obtain the following result

Lemma 5 For 1 < p; q < 1 and N 2 N there exists c > 0 independent of N
such that

a)






X

1�kJ�N
Tk1;:::;kn (I � PJ;kJ )

�
I � eQJ;kJ�








p;q

� c








X

1�kJ�N
Tk1;:::;kn








p;q

and
b) 







X
1�kJ�N

Tk1;:::;knPJ;kJ








p;q

� c








X

1�kJ�N
Tk1;:::;kn








p;q

:

Lemma 6 If N 2 N, then

a) the kernel of the convolution operatorX
1�kJ�N

Tk1;:::;kn (I � PJ;kJ )
�
I � eQJ;kJ�

belongs to weak- L1+m
�1
J and its norm is less than c2�

P
j 6=J 2kj ; with c indepen-

dent of N;
b) the kernel of the convolution operatorX

1�kJ�N
Tk1;:::;knPJ;kJ

10



belongs to weak- L1+m
�1
J and its norm is less than c2�

P
j 6=J 2kj ; with c indepen-

dent of N:
Proof. a) A computation shows that the kernel Kk1;:::;kn of the convolution

operator Tk1;:::;kn (I � PJ;kJ )
�
I � eQJ;kJ� is the function given by

Kk1;:::;kn (z1; :::; zn+1)

= 2kJmJGJ

0@�2kJ zJ ; 2kJmJ

0@�zn+1 +X
j 6=J

'j (�zj)

1A1AY
j 6=J

 
�
2kj jzj j

�
(11)

where GJ =
�
IkJJ;0 (1�H)

�
1� fMJ;0

��^
: Now, as in the proof of (2:3) in [3]

we obtain that the functions GJ belong to S
�
R4
�
and that they are uniformly

(with respect to kJ) rapidly decreasing at in�nity. So, as in the proof of Lemma
2.6 in [2] we get a). Now b) follows similarly after noting that the kernel of the

operator Tk1;:::;knPJ;kJ is of the form (11) with GJ =
�
IkJJ;0H

�^
:

Let J0 be de�ned by J0 = 0 ifm1 > 2 and J0 = max fj : 1 � j � n; mj = 2g
if m1 = 2: These previous lemmas allows us to prove the following result

Proposition 7 If J > J0 then there exists c > 0; independent of k1; :::; kJ�1;
such that for N 2 N

a) 






X

1�kJ ;:::;kn�N
Tk1;:::;kn (I � PJ;kJ )

�
I � eQJ;kJ�








BJ

� c2

 
�
PJ�1

j=1 2kj
mj(m�1

j
�m�1

J )
(1+SJ+1+Jm�1

J )

!

and
b) 







X
1�kJ ;:::;kn�N

Tk1;:::;knPJ;kJ








BJ

� c2

 
�
PJ�1

j=1 2kj
mj(m�1

j
�m�1

J )
(1+SJ+1+Jm�1

J )

!
:

Proof. We denote by EJ =
�
1; 1

1+m�1
J

�
: Since BJ = tCJ + (1� t)EJ with

t =
mJ+JmJ+m

2
JSJ+1+2

JmJ+m2
J+m

2
JSJ+1

, Lemma 3 iii); Lemma 6 a) and the Marcinkiewicz
interpolation theorem imply that







X
1�kJ�N

Tk1;:::;kn (I � PJ;kJ )
�
I � eQJ;kJ�








BJ

11



� c

0@J�1Y
j=1

2kj(mj�2)
nY

j=J+1

2kj(mJ�2)

1A 2t

J+1+2m
�1
J

+mJSJ+1

2�
P

j 6=J (2kj)(1�t):

Now if t is de�ned as above,

t
2 (mj � 2)

J + 1 + 2m�1
J +mJSJ+1

� 2 (1� t)

= �
2
�
mJ +m

2
J �mJmj � 2

�
mJ (J +mJ +mJSJ+1)

;

so a) follows. Analogously, b) follows.
At this point we have already proved all the results needed to follow straigh-

forward the proof of Theorem 3.12 in [2] to obtain the next

Theorem 8 E� is the closed convex polygonal region with vertices (1; 1) ; Bn; :::;
BJ0+1; AJ0 and the symetric points with respect to the non principal diago-

nal
�
1
p ;

1
p0

�
.

Remark 9 We observe that E� is the closed convex polygonal region with ver-
tices (1; 1) ; Bn; :::; B1 and the symetric points with respect to the non principal

diagonal
�
1
p ;

1
p0

�
.

3 The general case

For 1 � j � n; let 
j be open sets of the complex plane and let 'j : 
j ! C
be holomorphic functions on 
j such that '00j does not vanish identically on 
j :
We take ' : 
1 � :::� 
n ! C given by

' (z1; :::; zn) = '1 (z1) + :::+ 'n (zn) :

Let Dj be bounded open sets such that Dj � 
j and such that '00j 6= 0 on @Dj :

Let D = D1 � ::: �Dn and let � be the Borel measure on R2n+2 given by (1).
If '00j does not vanish on Dj ; let lj = 0: On the other case, let fzj;ig1�i�lj be
the zeros of '00j in Dj and let mj;i be the order of zj;i as a zero of

!j;i (z) = 'j (z)� 'j (zj;i)� (z � zj;i)'0j (zj;i) :

In any case, let mj;0 = 2. Let

M = fmi=(m1;i1 ; :::;mn;in) : 0 � ij � ljg :

For mi 2 M we take the multiindex � (mi) = (� (m1;i1) ; :::; � (mn;in)) where

� is a permutation of the set fm1;i1 ; :::;mn;ing such that � (m1;i1) � ::: �

12



� (mn;in) :We denote with Emi
the closed convex poligonal region with vertices

(1; 1);

BJ;iJ =

 
1 + SiJ+1 + (J � 1) (� (mJ;iJ ))

�1

1 + J (� (mJ;iJ ))
�1
+ SiJ+1

;
1� (� (mJ;iJ ))

�1

1 + J (� (mJ;iJ ))
�1
+ SiJ+1

!
;

1 � J � n and its symetrics with respect to the non principal diagonal, where

SiJ =
nP
j=J

�
�
�
mj;ij

���1
:

Theorem 10 E� is the closed convex polygonal region given by

E� =
\

mi2M

Emi
:

Proof. For each zj 2 Dj we have a ball Br(zj) (zj) � 
j such that for z 2
Br(zj) (zj) ;

!j;zj (z) = 'j (z)� 'j (zj)� (z � zj)'0j (zj) = (z � zj)
mj;zj gj;zj (z)

with gj;zj (zj) 6= 0; mj;zj � 2 and !j;zj ;
�
!j;zj

�0
; ...,

�
!j;zj

�(mj;zj ) di¤erent from
zero on Br(zj) (zj) � fzjg. We note that if zj = zj;i for some 1 � i � lj then
mj;zj = mj;i > 2: On the other case mj;zj = 2: Since Dj is a compact set,
there exists a �nite set F �

Q
1�j�n

Dj such that D can be covered with a �nite

collection of sets of the form

Dz1;:::;zn =
Q

1�j�n
Br(zj) (zj) ;

(z1; :::; zn) 2 F:We denote by TDz1;:::;zn
the operator of convolution with �Dz1;:::;zn

de�ned by (1) with D replaced by Dz1;:::;zn :
Now,

kTkp;q �
X

(z1;:::;zn)2F




TDz1;:::;zn 


p;q :
We note that mi=(m1;z1 ; :::;mn;zn) 2M: After a linear change of variables (if
necessary) we can apply the results of the previous paragraph to obtain that
the type set associated to TDz1;:::;zn is Emi

: So\
mi2M

Emi
� E�:

Now we take mi 2 M: If mj;ij > 2 for 1 � j � n we observe that since '00j
does not vanish on @Dj ; we can take Br(zj;ij )

�
zj;ij

�
� Dj so

Di = Br(z1;i1)
(z1;i1)� :::�Br(zn;in ) (zn;in) � D;

13



and then 


TDi


p;q � kTkp;q :
Now the type set associated to Di is Emi

; so E� � Emi
: Finally, if some mj;ij =

2; we take any point ezj 2 Dj and a ball Bj with center ezj ; contained in Dj such
that !j;ezj ; !0j;ezj and !00j;ezj be di¤erent from zero on B � fezjg : For the other j0s
we take Br(zj;ij )

�
zj;ij

�
. Since Emi

is the type set associated to the cartesian

product of these balls, we proceed as before.

References

[1] M. Christ, Endpoint Bounds for Singular Fractional Integral Operators,
UCLA Preprint 1988.

[2] E. Ferreyra, T. Godoy, M. Urciuolo, Endpoint bounds for convolution op-
erators with singular measures, Coll Math 76, 1 (1998) 35-47.

[3] E. Ferreyra, T. Godoy, M. Urciuolo, Convolution operators with fractional
measures associated to holomorphic functions, Acta Math. Hungar 92 (1-2)
(2001) 27-38.

[4] E. Ferreyra, T. Godoy, M. Urciuolo, The type set for homogeneous singular
measures on R3 of polynomial type, Colloq. Math. 106 (2006) 161-175.

[5] L. De Carli, A. Iosevich, Some sharp restriction theorems for homogeneous
manifolds, The Journal of Fourier Analysis and Appl. 4, 1 (1996) 105-128.

[6] A. Iosevich, E. Sawyer, Sharp Lp � Lq estimates for a class of averaging
operators, Ann. Inst. Fourier 46, 5 (1996) 1359-1384.

[7] F. Ricci, Limitatezza Lp � Lq per operatori di convoluzione de�niti da
misure singolari in Rn, Bollettino U.M.I. (7) 11-A (1997) 237-252.

[8] F. Ricci, E. M. Stein, Harmonic Analysis on Nilpotent Groups and Singular
integrals. III. Fractional Integration along Manifolds, J. Funct. Anal. 86
(1989) 360-389.

[9] E. M. Stein, Harmonic Analysis. Real Variable Methods, Orthogonality and
Oscillatory Integrals, Princeton University Press, 1993.

[10] Stein E. M., Weiss G, Introduction to Fourier Analysis on Euclidean Spaces,
Princeton University Press, 1975.

14




