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ON RATIONAL FORMS OF NILPOTENT LIE ALGEBRAS

JORGE LAURET

1. Introduction

When a simply connected nilpotent Lie group N admits a lattice Γ (i.e. a co-
compact discrete subgroup), then one can study dynamics on the compact quotient
N/Γ (nilmanifold), or geometry if one equips N with a left invariant Riemannian
metric, complex structure, symplectic structure, etc. Dynamical and geometric
properties of N/Γ often depend only on the commensurability class of the lattice
Γ. It is then when one runs into the following problem:

(∗) To find all rational forms up to isomorphism of a given real nilpotent Lie
algebra n.

There is not much on this question in the literature, and a complete answer
seems quite difficult to obtain in explicit examples, even in low dimensional or 2-
step nilpotent cases. In [GS, Theorem 3.1], the set of isomorphism classes of rational
forms of n is described by using Galois cohomology of the group Gal(Q/Q) with
values in Aut(n). The problem can also be described in terms of rational points in
the orbit space of an algebraic variety (see [E, Section 5] and (4)).

We recall that a rational form of n is a rational subspace nQ of n such that
nQ ⊗ R = n and [X,Y ] ∈ nQ for all X,Y ∈ nQ. Two rational forms nQ1 , nQ2 of
n are said to be isomorphic if there exists A ∈ Aut(n) such that AnQ1 = nQ2 , or
equivalently, if they are isomorphic as Lie algebras over Q. Not every real nilpotent
Lie algebra admits a rational form. By a result due to Malcev, the existence of a
rational form of n is equivalent to the corresponding Lie group N admits a lattice
(see [R]). Another difference with the semisimple case is that sometimes n has only
one rational form up to isomorphism.

For n 2-step nilpotent and with 2-dimensional center, F. Grunewald, D. Segal
and L. Sterling [GSS, GS] gave an answer to (∗) in terms of isomorphism classes of
binary forms. Such a binary form is the Pfaffian form of n, which is a homogeneous
polynomial of degree m in k variables attached to any 2-step nilpotent Lie algebra
n of dimension 2m + k and dim [n, n] = k (see Definition 2.2). The projective
equivalence class of this form is an isomorphism invariant of n (see also [S]).

In Section 4, we show how one can apply Pfaffian forms (Section 2), the results
from [GSS, GS] and Scheuneman duality (Section 3), to solve problem (∗). We
compute explicitly the set of isomorphism classes of rational forms for many 2-step
nilpotent Lie algebras over R and C. We finally consider in Section 5 a 3-step
nilpotent example, for which the above techniques do not apply. We refer to Tables
1 and 2 for a quick look at the results obtained.
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The choice of these particular examples was motivated by the question from
dynamical systems of which nilmanifolds admit an Anosov diffeomorphism. The
information on rational forms provided in this paper is very useful in the classifi-
cation of such nilmanifolds in dimension ≤ 8 carried out in [LW].

2. Pfaffian form

Let n be a Lie algebra over the field K, which is assumed from now on to be
of characteristic zero. We are mainly interested in the cases K = C,R,Q. Fix a
non-degenerate symmetric K-bilinear form 〈·, ·〉 on n (i.e. an inner product). For
each Z ∈ n consider the K-linear transformation JZ : n −→ n defined by

(1) 〈JZX,Y 〉 = 〈[X,Y ], Z〉, ∀ X,Y ∈ n.

Recall that JZ is skew symmetric with respect to 〈·, ·〉 and the map J : n −→
so(n,K) is K-linear, where n is the dimension of n. Equivalently, we may define
these maps by fixing a basis β = {X1, ..., Xn} of n rather than an inner product in
the following way: JZ is the K-linear transformation whose matrix in terms of β
has entry ij given by

n∑

k=1

ckijxk, where [Xi, Xj ] =
n∑

k=1

ckijXk, Z =
n∑

k=1

xkXk.

It is easy to see that this definition coincides with the first one if we let 〈Xi, Xj〉 =
δij .

If n and n′ are two Lie algebras over K and J , J ′ are the corresponding maps,
relative to the inner products 〈·, ·〉 and 〈·, ·〉′ respectively, then it is easy to see that
a linear map A : n −→ n′ is a Lie algebra isomorphism if and only if

(2) AtJ ′ZA = JAtZ , ∀ Z ∈ n′,

where At : n′ −→ n is given by 〈AtX,Y 〉 = 〈X,AY 〉′ for all X ∈ n′, Y ∈ n.

Definition 2.1. Consider the central descendent series of n defined by C0(n) = n,
Ci(n) = [n, Ci−1(n)]. When Cr(n) = 0 and Cr−1(n) 6= 0, n is said to be r-step
nilpotent, and we denote by (n1, ..., nr) the type of n, where

ni = dimCi−1(n)/Ci(n).

We also take a decomposition n = n1 ⊕ ...⊕ nr, a direct sum of vector spaces, such
that Ci(n) = ni+1 ⊕ ...⊕ nr for all i.

Assume now that n is 2-step nilpotent, or equivalently of type (n1, n2). Consider
any direct sum decomposition of the form n = V ⊕ [n, n], that is, n1 = V . If the
inner product satisfies 〈V, [n, n]〉 = 0 then V is JZ-invariant for any Z and JZ = 0
if and only if Z ∈ V . We define f : [n, n] −→ K by

f(Z) = Pf(JZ |V ), Z ∈ [n, n],

where Pf : so(V,K) −→ K is the Pfaffian, that is, the only polynomial function
satisfying Pf(B)2 = detB for all B ∈ so(V,K) and Pf(J) = 1 for

J =
[

0 I
−I 0

]
.

Roughly speaking, f(Z) = (det JZ |V )
1
2 , and so we need dimV to be even in order

to get f 6= 0. For any A ∈ gl(V,K), B ∈ so(V,K) we have that Pf(ABAt) =
(detA) Pf(B).
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Definition 2.2. We call f the Pfaffian form of the 2-step nilpotent Lie algebra n.

If dimV = 2m and dim [n, n] = k then f = f(x1, ..., xk) is a homogeneous
polynomial of degree m in k variables with coefficients in K, where Z =

∑k
i=1 xiZi

and {Z1, ..., Zk} is a fixed basis of [n, n]. f is also called a form of degree m, when
k = 2 or 3 one uses the words binary or ternary and for m = 2 and 3, quadratic
and cubic, respectively.

Let Pk,m(K) denote the set of all homogeneous polynomials of degree m in k
variables with coefficients in K. The group GLk(K) acts naturally on Pk,m(K) by

(A.f)(x1, ..., xk) = f(A−1(x1, ..., xk)),

that is, by linear substitution of variables, and thus the action determines the usual
equivalence relation between forms, denoted by f ' g. In the present paper, we
need to consider the following wider equivalence relation.

Definition 2.3. For f, g ∈ Pk,m(K), we say that f is projectively equivalent to g,
and denote it by f 'K g, if there exists A ∈ GLk(K) and c ∈ K∗ such that

f(x1, ..., xk) = cg(A(x1, ..., xk)).

In other words, we are interested in projective equivalence classes of forms.

Proposition 2.4. Let n, n′ be two-step nilpotent Lie algebras over the field K. If
n and n′ are isomorphic then f 'K f ′, where f and f ′ are the Pfaffian forms of n
and n′, respectively.

Proof. Since n and n′ are isomorphic we can assume that n = n′ and [n, n] = [n′, n′]
as vector spaces, and then the decomposition n = V ⊕ [n, n] is valid for both Lie
brackets [ , ] and [ , ]′. Any isomorphism satisfies A[n, n] = [n′, n′]′, and it is easy
to see that there is always an isomorphism A between them satisfying AV = V . It
follows from (2) that

AtJ ′ZA = JAtZ , ∀ Z ∈ [n, n],

and since the subspaces V and [n, n] are preserved by A and At we have that

f ′(Z) = cf(At2Z),

where A2 = A|[n,n] and c−1 = detA|V . This shows that f 'K f ′. �

The above proposition says that the projective equivalence class of the form
f(x1, ..., xk) is an isomorphism invariant of the Lie algebra n. We note that this
invariant was actually introduced by J. Scheuneman in [S], from a different point
of view.

What is known about the classification of forms? Unfortunately, much less than
one could naively expect. The case K = C is as usual the most developed one, and
in such a case the understanding of the ring of invariant polynomials C[Pk,m]SLk(C)

is crucial. A set of generators and their relations for such a ring is known only for
small values of k and m, for instance for k = 2 and m ≤ 8, or k = 3 and m ≤ 3.
We refer to [D] and the references therein for several explicit classification results.

The following well known result will help us to distinguish between projective
equivalence classes of forms, and in view of Proposition 2.4, to recognize non-
isomorphic two-step nilpotent Lie algebras.
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Proposition 2.5. If f, g ∈ Pk,m(K) satisfy

f(x1, ..., xk) = cg(A(x1, ..., xk))

for some A ∈ GLk(K) and c ∈ K∗, then

Hf(x1, ..., xk) = ck(detA)2Hg(A(x1, ..., xk)),

where the Hessian Hf of the form f is defined by

Hf(x1, ..., xk) = det
[

∂2f

∂xi∂xj

]
.

3. Rational forms

Let n be a nilpotent Lie algebra over R of dimension n.

Definition 3.1. A rational form of n is an n-dimensional rational subspace nQ of
n such that

[X,Y ] ∈ nQ, ∀ X,Y ∈ nQ.

Two rational forms nQ1 , nQ2 of n are said to be isomorphic if there exists A ∈ Aut(n)
such that AnQ1 = nQ2 , or equivalently, if they are isomorphic as Lie algebras over
Q (recall that nQ ⊗ R = n). In an analogous way, by considering R and C (resp.
Q and C) instead of Q and R, one defines a real form (resp. a rational form) of a
complex Lie algebra.

The problem of finding all isomorphism classes of rational forms for a given real
nilpotent Lie algebra is a very difficult one, even in the low dimensional or two-step
cases. Very little is known about this problem in the literature (see [E, Section 5]
and [Se]).

We now give a first example on how to use Pfaffian forms to study rational forms
of 2-step nilpotent Lie algebras. Let nQ be a rational nilpotent Lie algebra of type
(4, 2). If nQ = n1 ⊕ n2 is the decomposition such that dim n1 = 4, dim n2 = 2
and [nQ, nQ] = n2, then we consider the Pfaffian form f of nQ. Thus f is a binary
quadratic form, say f(x, y) = ax2 +bxy+cy2, with a, b, c ∈ Q. It is proved in [GSS]
that the converse of Proposition 2.4 is valid in this case, that is, there is a one-
to-one correspondence between isomorphism classes of non-degenerate (i.e. with
center equal to n2) rational Lie algebras of type (4, 2) and projective equivalence
classes of binary quadratic forms with coefficients in Q. It is well known that these
last classes can be parametrized by

{fk(x, y) = x2 − ky2 : k is a square free integer number}.
Recall that an integer number is called square free if p2 - k for any prime p. The set
of all square free numbers parametrizes the equivalence classes of the relation in Q
defined by r ≡ s if and only if r = q2s for some q ∈ Q∗. We are considering k = 0
a square free number too. If fk 'K fk′ then it follows from Proposition 2.5 that
−4k = −4q2k′ for some q ∈ Q∗, which implies that k = k′ if k and k′ are square
free.

It is easy to check that the Pfaffian form of the Lie algebra nQk = n1⊕ n2 defined
by

(3) [X1, X3] = Z1, [X1, X4] = Z2, [X2, X3] = kZ2, [X2, X4] = Z1

is fk. For K = R, these Lie algebras can be distinguished only by the sign of
the discriminant of fk, which says that there are only three real Lie algebras of
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type (4, 2), namely, those of the form nQk ⊗ R with k > 0, k = 0 and k < 0,
respectively. It is easy to check that nQ1 ⊗ R ' h3 ⊕ h3, where h3 denotes the real
3-dimensional Heisenberg algebra and nQ−1 ⊗ R ' hC3 , the complex 3-dimensional
Heisenberg algebra viewed as real. On the other hand, we obtain that there are
only two complexifications nQk ⊗ C, those with k 6= 0 and the one with k = 0.

Proposition 3.2. The set of isomorphism classes of rational forms of the Lie
algebras h3 ⊕ h3, hC3 and nQ0 ⊗ R is respectively parametrized by

{nQk : k > 0 is square free}, {nQ−k : k > 0 is square free}, {nQ0 }.
Proof. The Lie bracket of h3 ⊕ h3 is

[X1, X2] = Z1, [X3, X4] = Z2,

and one can easily check that the rational subspace generated by the set
{
X1 +X3,

√
k(X1 −X3),

√
k(X2 +X4), X2 −X4,

√
k(Z1 + Z2), Z1 − Z2

}
,

is a rational subalgebra of h3⊕h3 isomorphic to nQk . For hC3 , we argue in an analogous
way by using

{√−kX1, X2, X3,
√−kX4,

√−kZ1,−kZ2

}
. �

We now describe the results in [GS] for the general case (see also [Ga]). Consider
n = n1 ⊕ n2 a vector space over K such that n1 and n2 are subspaces of dimension
n and 2 respectively. Every 2-step nilpotent Lie algebra of dimension n + 2 with
a 2-dimensional center can be represented by a bilinear form µ : n1 × n1 −→ n2

which is non-degenerate in the following way: for any nonzero X ∈ n1 there exists
Y ∈ n1 such that µ(X,Y ) 6= 0. If we fix basis {X1, ..., Xn} and {Z1, Z2} of n1 and
n2 respectively, then each µ has an associated Pfaffian binary form fµ defined by

fµ(x, y) = Pf(JµxZ1+yZ2
)

(see Definition 2.2). A central decomposition of µ is given by a decomposition of n1

in a direct sum of subspaces n1 = V1 ⊕ ...⊕ Vr such that µ(Vi, Vj) = 0 for all i 6= j.
We say that µ is indecomposable when the only possible central decomposition has
r = 1. Every µ has a central decomposition into indecomposables constituents and
such a decomposition is unique up to an automorphism of µ; in particular, the
constituents Vi ⊕ n2 are unique up to isomorphism.

There is only one indecomposable µ for n odd and it can be defined by

JµxZ1+yZ2
=




0

−x −y 0
0 −x −y

. . . . . .
0 −x −y

x 0 0
y x

0 y
. . .
. . . x

0 y

0




.

Recall that fµ = 0 in this case. When n is even the situation is much more
abundant: two indecomposables µ and λ are isomorphic if and only if fµ 'K fλ. If
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n = 2m and fµ(x, y) = xm − a1x
m−1y − ...− amym, then

JµxZ1+yZ2
=
[

0 −Bt
B 0

]
,

where

B =




x y 0 · · · 0

0 x y
...

...
. . . . . . 0

0 · · · 0 x y
amy am−1y · · · a2y a1y + x



.

We note that here fµ is always nonzero, and in order to get µ indecomposable
one needs the form fµ to be primitive (i.e. a power of an irreducible one). For
decomposable µ and λ with respective central decompositions n1 = V1 ⊕ ... ⊕ Vr
and n1 = W1 ⊕ ... ⊕ Ws into indecomposables constituents, we have that µ is
isomorphic to λ if and only if r = s and after a suitable reordering one has that

(i) for some t ≤ r, dimVi = dimWi for all i = 1, ..., t and they are all even
numbers;

(ii) if µi = µ|Vi×Vi , λi = λ|Wi×Wi then there exist A ∈ GL2(K) and c1, ..., ct ∈
K∗ such that

fµi(x, y) = cifλi(A(x, y)) ∀ i = 1, ..., t;

(iii) dimVi = dimWi is odd for all i = t+ 1, ..., r.
Concerning our search for all rational forms up to isomorphism of a given real

nilpotent Lie algebra, these results say that the picture in the 2-step nilpotent with
2-dimensional center case is as follows. Let (nQ = n1 ⊕ n2, µ) be one of such Lie
algebras over Q, and consider the corresponding Pfaffian form fµ ∈ P2,m(Q). The
isomorphism classes of rational forms of nQ ⊗ R are then parametrized by

(4)
(

(R∗ ×GL2(R)).fµ ∩ P2,m(Q)
)
/(Q∗ ×GL2(Q)).

In other words, the rational points of the orbit (R∗ ×GL2(R)).fµ (fµ viewed as
an element of P2,m(R)) is a (Q∗ × GL2(Q))-invariant set and we have to consider
the orbit space for this action. Such a description shows the high difficulty of the
problem. Recall that we have to consider the action of R∗×GL2(R) instead of just
that of GL2(R) only when m is even.

We now describe a duality for 2-step nilpotent Lie algebras over any field of char-
acteristic zero introduced by J. Scheuneman [S] (see also [Ga] and [GSS, Section 8]),
which assigns to each Lie algebra of type (n, k) another one of type

(
n, n(n−1)

2 − k
)

.
The dual of a Lie algebra n = n1 ⊕ n2 of type (n, k) can be defined as follows: con-
sider the maps {JZ : Z ∈ n2} ⊂ so(n) corresponding to a fixed inner product 〈·, ·〉
on n (see (1)). Let ñ2 ⊂ so(n) be the orthogonal complement of the k-dimensional
subspace {JZ : Z ∈ n2} in so(n) relative to the inner product (A,B) = − trAB.
Now, we define the 2-step nilpotent Lie algebra ñ = n1 ⊕ ñ2 whose Lie bracket is
determined by

([X,Y ], Z) = 〈Z(X), Y 〉, Z ∈ ñ2.

In other words, the maps J̃Z ’s for this Lie algebra are the Z’s themselves. Recall
that dim ñ2 = n(n−1)

2 − k, and so the dual ñ of n is of type
(
n, n(n−1)

2 − k
)

. It
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Notation Type Lie brackets

h2k+1 (2k, 1) [X1, X2] = Z1, ..., [X2k−1, X2k] = Z1

f3 (3, 3) [X1, X2] = Z1, [X1, X3] = Z2, [X2,X3] = Z3

g (6, 2) [X1,X2] = Z1, [X1, X3] = Z2, [X4, X5] = Z1, [X4, X6] = Z2

h (4, 4) [X1,X3] = Z1, [X1, X4] = Z2, [X2, X3] = Z3, [X2, X4] = Z4

l4 (2, 1, 1) [X1, X2] = X3, [X1, X3] = X4

Table 1. Notation for some real nilpotent Lie algebras.

is proved in [S] that n1 is isomorphic to n2 if and only if ñ1 is isomorphic to ñ2,
so that any classification for algebras of type (n, k) simultaneously determines the
algebras of type

(
n, n(n−1)

2 − k
)

.

4. Applications

In this section, we determine the set of all rational forms up to isomorphism for
some 2-step 8-dimensional nilpotent Lie algebras, as an application of the results
described in Sections 2 and 3. We refer to Tables 1 and 2 for a summary of the
results obtained.

Let g be the 8-dimensional 2-step nilpotent Lie algebra of type (6, 2) defined by

(5) [X1, X2] = Z1, [X1, X3] = Z2, [X4, X5] = Z1, [X4, X6] = Z2.

It is easy to see that its Pfaffian form f is zero. Let gQ be a rational form of g,
for which we can assume that gQ = 〈X1, ..., X6〉Q ⊕ 〈Z1, Z2〉Q. Since the Pfaffian
form g of gQ satisfies g 'R f = 0 we obtain that g = 0. It follows that gQ can not
be indecomposable, and so 〈X1, ..., X6〉Q = V1 ⊕ ... ⊕ Vr with [Vi, Vj ] = 0 for all
i 6= j. Now, 〈X1, ..., X6〉R = V1 ⊗ R ⊕ ... ⊕ Vr ⊗ R is also a central decomposition
for g, proving that r = 2 and dimV1 = dimV2 = 3 by the uniqueness of such a
decomposition. But 3 is odd, and hence we obtain the following result.

Proposition 4.1. The Lie algebra g of type (6, 2) given in (5) has only one rational
form up to isomorphism, denoted by gQ.

Remark 4.2. Clearly, the same proof is valid if one need to find all real forms of
the complex Lie algebra gC = g ⊗ C. Thus g is the only real form of gC up to
isomorphism.

As another application of the correspondence with binary forms given above,
we now study rational forms of the real Lie algebra h3 ⊕ h5 of type (6, 2). It has
central decomposition n1 = V1 ⊕ V2 ⊕ V3 with dimVi = 2 for all i as a real Lie
algebra and its Pfaffian form is f(x, y) = xy2. Let µ : n1 × n1 −→ n2 be a rational
form of h3 ⊕ h5 with Pfaffian form fµ. If µ is decomposable then n1 = W1 ⊕W2,
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dimW1 = 2, dimW2 = 4; or n1 = W1⊕W2⊕W3, dimWi = 2 for all i. In any case,
fµi 'Q x, y or y2 proving that µ must be isomorphic to the canonical rational form

µ0(X1, X2) = Z1, µ0(X3, X4) = Z2, µ0(X5, X6) = Z2,

for which fµ0 = f . We then assume that µ is indecomposable. We shall prove that
there is only one GL2(Q)-orbit of rational points in GL2(R).f , and so µ will have
to be isomorphic to µ0. There exists A ∈ GL2(R) such that fµ = A−1.f , that is,

fµ(x, y) = ac2x3 + c(2ad+ bc)x2y + d(ad+ 2bc)xy2 + bd2y3, A =
[
a b
c d

]
.

Since µ is rational we have that

q := ac2, r := c(2ad+ bc), s := d(ad+ 2bc), t := bd2

are all in Q. If c = 0 then q = r = 0 and s = ad2, t = bd2, which implies that s 6= 0
and hence

fµ = B−1.f, for B = [ s t0 1 ] ∈ GL2(Q).

If c 6= 0 then one can check by a straightforward computation that

d

c
=

9qst+ rs2 − 6r2t

6qs2 − r2s− 9qrt
∈ Q.

There must be a simpler formula for d
c in terms of q, r, s, t, but unfortunately we

were not able to find it. By putting u := d
c we have that

fµ = B−1.f, for B =
[
q t/u2

1 u

]
∈ GL2(Q).

Recall that detB = qu − t
u2 = c(ad − bc) = cdetA 6= 0. We then obtain that in

any case fµ 'Q f and so µ is isomorphic to µ0.

Proposition 4.3. Up to isomorphism, the real Lie algebra h3 ⊕ h5 of type (6, 2)
has only one rational form, which will be denoted by (h3 ⊕ h5)Q.

Remark 4.4. It is easy to check that the above proof is also valid if we replace Q
and R by R and C, obtaining in this way that the only real form of (h3 ⊕ h5)C is
h3 ⊕ h5.

Let h be the Lie algebra of type (4, 4) which is dual to h3 ⊕ h3 (of type (4, 2)).
The Lie bracket of h3 ⊕ h3 is

[X1, X2] = Z1, [X3, X4] = Z2,

and hence

JZ1 =
[

0 −1
1 0

0 0
0 0

]
, JZ2 =

[
0 0
0 0

0 −1
1 0

]
.

The orthogonal complement ñ2 of {JZ : Z ∈ n2} is then linearly generated by
[ −1 0

0 0
1 0
0 0

]
,

[
0 −1
0 0

0 0
1 0

]
,

[
0 0
−1 0

0 1
0 0

]
,

[
0 0
0 −1

0 0
0 1

]
,

which determines the Lie bracket for h given by

(6) [X1, X3] = Z1, [X1, X4] = Z2, [X2, X3] = Z3, [X2, X4] = Z4.

Scheuneman duality allows us to find all the rational forms of h; namely, the
dual of the rational form of h3 ⊕ h3, already computed in Proposition 3.2.
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Proposition 4.5. For any k ∈ Z let hQk be the rational Lie algebra of type (4, 4)
defined by

[X1, X2] = Z1, [X2, X3] = −Z3,
[X1, X3] = Z2, [X2, X4] = −Z2,
[X1, X4] = kZ3, [X3, X4] = Z4.

Then the set of isomorphism classes of rational forms of the Lie algebra h defined
in (6) is parametrized by

{hQk : k is a square free natural number}.

Proof. For the rational form nQk of h3 ⊕ h3 (see (3)) we have that

JZ1 =
[ −1 0

0 −1
1 0
0 1

]
, JZ2 =

[
0 −1
−k 0

0 k
1 0

]
.

A basis of the orthogonal complement of 〈JZ1 , JZ2〉Q is then given by
[

0 −1
1 0

0 0
0 0

]
,

[ −1 0
0 1

1 0
0 −1

]
,

[
0 −k
1 0

0 −1
k 0

]
,

[
0 0
0 0

0 −1
1 0

]
,

which determines the Lie bracket for hQk . To conclude the proof, one can easily
check that the rational subspace generated by

{√
k(X1 −X3), X1 +X3, X2 +X4,

√
k(X2 −X4),

2
√
kZ1,

√
k(Z2 + Z3), Z3 − Z2,−2

√
kZ4

}
,

is closed under the Lie bracket of h and isomorphic to hQk . �

An alternative proof of the non-isomorphism between the hQk ’s without using
Scheuneman duality may be given as follows: from the form of JZ1 , ..., JZ4 for hQk
in the above proof it follows that

JxZ1+yZ2+zZ3+wZ4 =

[
0 −x −y −kz
x 0 z y
y −z 0 −w
kz −y w 0

]
,

and so the Pfaffian form of hQk is given by fk(x, y, z, w) = xw + y2 − kz2. Now, if
hQk is isomorphic to hQk′ then fk 'Q fk′ (see Proposition 2.4), which implies that
k = q2k′ for some q ∈ Q∗ by applying Proposition 2.5 (recall that Hfk = 4k). Thus
k = k′ since they are square free.

5. A 3-step nilpotent case

We compute in this section the rational forms of l4 ⊕ l4, where l4 is the 4-
dimensional real Lie algebra with Lie bracket

[Y1, Y2] = Y3, [Y1, Y3] = Y4.

Notice that l4 ⊕ l4 is 3-step nilpotent, and therefore Pfaffian forms and dual-
ity can not be used as tools to distinguish or classify rational forms. For each
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Real Lie algebra Type Rational forms Reference

h3 ⊕ h3 (4, 2) nQk , k ≥ 1 Prop. 3.2

f3 (3, 3) fQ3 −−

g (6, 2) gQ Prop. 4.1

h3 ⊕ h5 (6, 2) (h3 ⊕ h5)Q Prop. 4.3

h (4, 4) hQk , k ≥ 1 Prop. 4.5

l4 ⊕ l4 (4, 2, 2) lQk , k ≥ 1 Prop. 5.1

Table 2. Set of rational forms up to isomorphism for some real
nilpotent Lie algebras. In all cases k runs over all square-free nat-
ural numbers.

k ∈ Z, consider the 8-dimensional rational nilpotent Lie algebra lQk with basis
{X1, X2, X3, X4, Z1, Z2, Z3, Z4} and Lie bracket defined by

(7)

[X1, X3] = Z1, [X2, X3] = Z2,
[X1, X4] = Z2, [X2, X4] = kZ1,
[X1, Z1] = Z3, [X2, Z2] = kZ3,
[X1, Z2] = Z4, [X2, Z1] = Z4.

Proposition 5.1. Let {X1, X2, X3, X4, Z1, Z2, Z3, Z4} be a basis of the Lie algebra
l4 ⊕ l4 of type (4, 2, 2) with structure coefficients

[X1, X3] = Z1, [X2, X4] = Z2,
[X1, Z1] = Z3, [X2, Z2] = Z4.

For each k ∈ N the rational subspace generated by the set{
X1 +X2,

√
k(X1 −X2), X3 +X4,

√
k(X3 −X4),

Z1 + Z2,
√
k(Z1 − Z2), Z3 + Z4,

√
k(Z3 − Z4)

}

is a rational form of l4⊕l4 isomorphic to the Lie algebra lQk defined in (7). Moreover,
the set

{lQk : k is a square-free natural number}
parametrizes the set all the rational forms of l4 ⊕ l4 up to isomorphism.

Proof. It is easy to see that the Lie brackets of the basis of the rational subspace
coincides with the one of lQk by renaming the basis as {X1, ..., Z4} with the same
order. In particular, such a subspace is a rational form of l4 ⊕ l4. If k′ = q2k then
one can easily check that A : lQk′ −→ lQk given by the diagonal matrix with entries
(1, q, 1, q, 1, q, 1, q) is an isomorphism of Lie algebras.
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Conversely, assume that A : lQk −→ lQk′ is an isomorphism. We will show that
k′ = q2k for some q ∈ Q∗. Let {J ′Z}, {JZ} be the maps defined at the beginning of
this section corresponding to lQk′ and lQk , respectively. If Z = xZ1 +yZ2 +zZ3 +wZ4

we have that

JZ =




0 0 −x −y −z −w 0 0
0 0 −y −kx −w −kz 0 0
x y 0 · · · 0
y kx

z w
...

...
...

w kz
0 0
0 0 0 · · · 0




,

and J ′Z is obtained just by replacing k with k′. It follows from (2) that AtJ ′ZA =
JAtZ for all Z ∈ 〈Z3, Z4〉Q, and since this subspace is A-invariant we get that the
subspace

⋂

Z∈〈Z3,Z4〉Q
KerJZ =

⋂

Z∈〈Z3,Z4〉Q
KerJ ′Z = 〈X3, X4, Z3, Z4〉Q

is also A-invariant. Thus A has the form

(8) A =




A1 0 0 0
? A2 0 0
? 0 A3 0
? ? ? A4.




(recall that C1(lQk ) = C1(lQk′) = 〈Z1, Z2, Z3, Z4〉Q and C2(lQk ) = C2(lQk′) = 〈Z3, Z4〉Q
are always A-invariant), and now it is easy to prove that

At3

[
z w
w k′z

]
A1 =

[
az + bw cz + dw
cz + dw k′(az + bw)

]
, where At4 =

[
a bw
c d

]
.

We compute the determinant of both sides getting

qf ′(z, w) = f(At4(z, w)), ∀ (z, w) ∈ Q2,

where q = detA3A1 ∈ Q∗ and f(z, w) = kz2 − w2, f ′(z, w) = k′z2 − w2. By
Proposition 2.5 we have that

4k′ = q−2(detA4)24k,

and so k = k′ as long as they are square free numbers, as we wanted to show.
To conclude the proof, it remains to show that these are all the rational forms

up to isomorphism. Let nQ be a rational form of l4⊕ l4. Since nQ/[nQ, [nQ, nQ]] is of
type (4, 2), we can use the classification of rational Lie algebras of this type given
in (3) to get linearly independent vectors X1, ..., Z2 such that

(9) [X1, X3] = Z1, [X1, X4] = Z2, [X2, X3] = Z2, [X2, X4] = kZ1,

where k is a square free integer number. Jacobi condition is equivalent to

(10)
[X1, Z2] = [X2, Z1], [X3, Z2] = [X4, Z1],

k[X1, Z1] = [X2, Z2], k[X3, Z1] = [X4, Z2].

We will consider the following two cases separately:
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(I) Z3 := [X1, Z1] and Z4 := [X1, Z2] are linearly independent,
(II) [X1, Z1], [X1, Z2] ∈ QZ3 for some nonzero Z3 ∈ nQ.

In both cases we will make use of the following isomorphism invariant for real 3-step
nilpotent Lie algebras:

U(n) := {X ∈ n/[n, [n, n]] : dim Im(adX) = 1} ∪ {0}.
Clearly, if A : n −→ n′ is an isomorphism then AU(n) = U(n′). Under the presen-
tation of l4 ⊕ l4 given in the statement of the theorem, it is easy to see that

(11) U(l4 ⊕ l4) = 〈X3, Z1〉R ∪ 〈X4, Z3〉R.
In case (I), it follows from (10) that we also have

[X2, Z1] = Z4, [X2, Z2] = kZ3.

Therefore, in order to get that nQ is isomorphic to lQk (see (7)), it is enough to show
that the vectors in 〈Z3, Z4〉R given by

Z := k[X3, Z1] = [X4, Z2], Z ′ := [X3, Z2] = [X4, Z1]

are both zero (see (10)). Let us compute the cone U(n) for n = nQ ⊗ R. Recall
that U(n) has to be the union of two disjoint planes as n ' l4 ⊕ l4 (see (11)). If
X = aX1 + bX2 + cX3 + dX4 + eZ1 + fZ2 then

[X1, X] = cZ1 + dZ2 + eZ3 + fZ4,
[X2, X] = dkZ1 + cZ2 + fkZ3 + eZ4,
[X3, X] = −aZ1 − bZ2 + e

kZ + fZ ′,
[X4, X] = −bkZ1 − aZ2 + fZ + eZ ′,
[Z1, X] = −aZ3 − bZ4 − c

kZ − dZ ′,
[Z2, X] = −bkZ3 − aZ4 − dZ − cZ ′.

Assume that Im(adX) = RX0, X0 6= 0. If k ≤ 0 then it follows easily from
[X1, X] = λ[X2, X] and [X3, X] = µ[X4, X] for some λ, µ ∈ R that a = b = c = d =
e = f = 0, which implies that U(n) = {0}, a contradiction.

Remark 5.2. Since k has to be positive one can also get by an easy adaptation of
this proof that the only real form of (l4 ⊕ l4)C is l4 ⊕ l4.

We then have that k > 0 and a = ±
√
kb, c = ±

√
kd, e = ±

√
kf , where c and e

have the same sign. This implies that

X = b(±
√
kX1 +X2) + d(±

√
kX3 +X4) + f(±

√
kZ1 + Z2)

and
[X1, X] = d(±

√
kZ1 + Z2) + f(±

√
kZ3 + Z4),

[X2, X] =
√
k[X1, X],

[X3, X] = −b(±
√
kZ1 + Z2) + f(± 1√

k
Z + Z ′),

[X4, X] =
√
k[X3, X],

[Z1, X] = −b(±
√
kZ3 + Z4)− d(± 1√

k
Z + Z ′),

[Z2, X] =
√
k[Z1, X].

If b 6= 0 then d 6= 0 and a has the same sign as c and e, and since X0 has a nonzero
component in 〈Z1, Z2〉R we get [Z1, X] = 0, that is, − b

d (±
√
kZ3+Z4) = ± 1√

k
Z+Z ′.

In any case we obtain a subset of U(n) of the form

{b(±
√
kX1 +X2) + d(±

√
kX3 +X4) + f(±

√
kZ1 + Z2) : b, d 6= 0}
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with the same sign in all the terms, which is a contradiction since U(n) is the union
of two planes. Thus b = 0 and so

U(n) = 〈
√
kX3 +X4,

√
kZ1 + Z2〉R ∪ 〈−

√
kX3 +X4,−

√
kZ1 + Z2〉R.

This clearly implies that 1√
k
Z + Z ′ = − 1√

k
Z + Z ′ = 0, that is Z = Z ′ = 0, as was

to be shown.
Concerning case (II), we can assume that

[X1, Z2] = rZ3, k[X1, Z1] = sZ3, [X3, Z2] = tZ4, k[X3, Z1] = uZ4,

where Z3, Z4 are linearly independent and (s, r), (u, t) 6= (0, 0). By using (10), for
X = aX1 + bX2 + cX3 + dX4 + eZ1 + fZ2 we have that

[X1, X] = cZ1 + dZ2 + ( eks+ fr)Z3,
[X2, X] = dkZ1 + cZ2 + (fs+ er)Z3,
[X3, X] = −aZ1 − bZ2 + ( eku+ ft)Z4,
[X4, X] = −bkZ1 − aZ2 + (fu+ et)Z4,
[Z1, X] = −(aks+ br)Z3 − ( cku+ dt)Z4,
[Z2, X] = −( bks+ ar)Z3 − ( dku+ ct)Z4.

If a = 0 then b = c = d = 0. We also obtain that e2 = kf2, since either[
e
k f
f e

] [
s
r

]
= 0 or

[
e
k f
f e

] [
u
t

]
= 0.

We do not get any plane in U(n) in this way and therefore there must be an
X ∈ U(n) with a 6= 0, which implies that b, c, d 6= 0 and a2 = kb2, c2 = kd2. Thus
[Z1, X] = [Z2, X] = 0 and so Im(adX) ⊂ 〈Z1, Z2〉R. This implies that e2 = kf2

and then the 3-dimensional subspace

〈
√
kX1 +X2,

√
kX3 +X4,

√
kZ1 + Z2〉R ⊂ U(n),

which is a contradiction, proving that case (II) is not possible. This concludes the
proof of the proposition. �
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