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ON NICHOLS ALGEBRAS OF DIAGONAL TYPE

IVÁN ANGIONO

Abstract. We give an explicit and essentially minimal list of defining relations of a
Nichols algebra of diagonal type with finite root system. This list contains the well-
known quantum Serre relations but also many new variations. A conjecture by An-
druskiewitsch and Schneider states that any finite-dimensional pointed Hopf algebra
over an algebraically closed field of characteristic zero is generated as an algebra by its
group-like and skew-primitive elements. As an application of our main result, we prove
the conjecture when the group of group-like elements is abelian.

Introduction

1. Let k be an algebraically closed field fo characteristic zero and let θ be a natural
number. Let q = (qij)1≤i,j≤θ be a matrix with invertible entries on k and let V be a
vector space of dimension θ. The Nichols algebra associated to q is a graded connected
algebra B(V ) = ⊕n≥0Bn(V ) with many favourable properties. It plays a fundamental
role in the classification of finite-dimensional (or finite growth) pointed Hopf algebras.
Precisely, a basic question in the classification Program [AS1] is the following:

Question 1. [An, Question 5.9]: Given (V,q), determine if the associated Nichols algebra
B(V ) is finite-dimensional. In such case, compute the dimension of B(V ) and give a
presentation by generators and relations.

The first part of this question has been answered by Heckenberger [H3], who obtained
the list of all matrices q whose associated Nichols algebra has a finite root system. Roughly,
this list contains three classes of matrices:

• Standard matrices [AA]: they are associated with finite Weyl groups. Their root
systems coincide with root systems of finite Cartan matrices. This family includes
properly the so-called braidings of Cartan type, in particular the matrices related
with the positive part of the small quantum groups.
• Matrices of super type [AAY], related with the positive part of quantized envelop-

ing algebras of contragradient Lie superalgebras. Their root systems become from
the corresponding Lie superalgebras.
• A finite list of exceptional matrices, whose associated diagram has connected com-

ponents with at most 7 vertices, and the scalars defining these braidings are roots
of unity of low order.

There are several answers to the second part of Question 1 under particular assumptions:
B [L] for the positive part of quantized enveloping algebras of semisimple Lie algebras

and small quantum groups, using the full representation theory of quantum groups;
B [AS2] for braidings of Cartan type;
B [A1] for braidings of standard type;
B [Y] for the positive part of quantized enveloping algebras of contragradient Lie

superalgebras;
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1



2 IVÁN ANGIONO

B [AAY] for braidings of super type;
B [H1], giving a general form of relations for matrices of rank two;
B [He] for some examples of rank two matrices, but giving explicit relations.

In [A2] we gave general formulae for defining relations of Nichols algebras of diagonal
type, see Theorem 1.25 below. The expression of those relations and the proof that they
generate the defining ideal are independent of Heckenberger’s classification; they rely in
Kharchenko’s and Rosso’s PBW bases [Kh, R] and a detailed study of convex orders in
generalized root systems [A2], through the classification of coideal subalgebras [HS]. In
this paper we refine the main result of [A2] and prove:

Theorem 1. A minimal set of relations of B(V ) is obtained by considering relations of
the following type:

(1) Quantum Serre relations, and powers of generators xi corresponding to non-Cartan
vertices; they are needed to introduce Lusztig’s isomorphisms at the level of doubles
of tensor algebras.

(2) Relations in the image of the previous ones by the Lusztig’s isomorphisms, and
correspond to relations (23) in Theorem 1.25.

(3) Relations that guarantee that the ideal generated by the previous relations is a
braided biideal: they appear in the coproduct of relations of the item (2) in the
tensor algebra T (V ).

(4) Powers of root vectors (generators of the PBW basis) corresponding to roots in the
orbit of Cartan vertices.

See Theorem 3.1 for a complete and explicit set of relations. In this set we distinguish
relations appearing in [A2] for standard braidings, and relations in [Y] related with braid-
ings of super type. There exists also a large list of new relations, related with the set of
exceptional braidings or with braidings of super type evaluated in roots of unity of small
order.

2. The knowledge of the explicit relations of a Nichols algebra has several potential ap-
plications to the theory of pointed Hopf algebras, that we discuss now:

• One of the basic question in the Lifting Method [AS1, AS3] for the classification
of Hopf algebras is the following:

Conjecture 1. [AS2, Conjecture 1.4] Let Γ be a finite group and k an algebraically closed
field of characteristic 0. If H is a finite-dimensional pointed Hopf algebra over k such that
G(H) = Γ, then H is generated as an algebra by Γ and its skew-primitive elements.

This question was answered in [AS4] for braidings of Cartan type under some mild con-
ditions. This result was extended to the case of standard braidings in [AGI]. In Section 4
we obtain as a consequence of Theorem 3.1:

Theorem 2. Let H be a finite dimensional pointed Hopf algebra over an abelian group Γ.
Then H is generated as an algebra by Γ and its skew primitive elements.

That is, we answer positively Conjecture 1 in a general context: when G(H) is any
abelian group. This Theorem is also applied to the known cases of finite-dimensional
Nichols algebras over non-abelian groups

• Another crucial step of the Lifting Method is to obtain all deformations of the
pointed Hopf algebras B(V )#kΓ; that is, all the pointed Hopf algebras such that
their associated coradically graded algebras are isomorphic to B(V )#kΓ.

This problem was solved for Γ abelian in [AS4] – under the restriction that the order is
not divisible by 2,3,5,7. We believe that the explicit presentation in this paper would be
substancial to solve the question for any abelian group.
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• The explicit relations would be also useful in the study of various elements in the
representation theory of pointed Hopf algebras. In this direction, the theory of
Nichols algebras of diagonal type provides an uniform approach to the study of
quantum groups and quantum supergroups.

3. The plan of this paper is the following. We introduce the notion of Nichols algebras in
Section 1. We give a PBW basis of any Nichols algebra and some properties of this basis
following [Kh, R]. Next we recall the notions of Weyl groupoid and its associated root
system following [CH2, HS], and make a connection with the theory of Nichols algebras
of diagonal type. We present the needed material from [A2], in particular Theorem 1.25,
a key result for our purposes.

Section 2 is devoted to Lusztig’s isomorphisms in the general context of braidings of
diagonal type [H4], extending analogous isomorphisms from [L].

In Section 3 we give the mentioned presentation by generators and relations, based in
the classification of braidings of diagonal type with finite root system [H3]. The strategy of
proof consists first to define Lusztig isomorphisms for the Drinfeld doubles of the braided
Hopf algebras U+ obtained by quotient by the relations in Theorem 1, except the group
in (4). This quotient is analogous to the algebra U+

q (g); the Drinfeld double uq(g) of the
Nichols algebra is a quotient of the previous algebra, as it was considered by Lusztig and
Andruskiewitsch-Schneider. We denote these two algebras by U+ and u+, respectively, so
u+ = B(V ). The existence of the Lusztig’s isomorphisms prove that the PBW generators
corresponding to the algebras U+ and their quotients u+ are the same, but the heigths of
some generators are not the order of the associated scalar in U+. Therefore we obtain u+

after to quotient U+ by some powers of root vectors as in (4).
Theorem 3.1 extends the presentation obtained in [A1] for standard braidings, and in

[AAY] for braidings of super type, and gives a new proof in the case of braidings of Cartan
type, in particular quantized enveloping algebras Uq(g) and small quantum groups uq(g).

Finally, Section 4 is devoted to the proof of Theorem 2. We prove first that any finite
dimensional braided graded Hopf algebra of diagonal type

S = ⊕n≥0Sn, S0 = k1, S1
∼= V,

generated as an algebra by V is isomorphic to the Nichols algebra B(V ); this result extends
[AS4, Thm. 5.5], [AGI, Thm. 2.5], but the proof follows the same scheme.

Acknowledges. This work is part of the author’s PhD Thesis. I want to thank specially
to my advisor Nicolás Andruskiewitsch for his inspiring guidance, patience and supervision
during these years. I want to thank also to my family for all their support, and to Antonela
for all her love.

1. Preliminaries

In this Section we recall results from different works needed in the sequel. First we
consider the existence of PBW bases for Nichols algebras of diagonal type [Kh, R], and
the rich combinatoric related to them. Next we recall the definitions of Weyl groupoid,
the associated root systems and some properties thereof [HS, HY]. We close this Section
stating a general presentation of Nichols algebras coming from [A2].

1.1. Lyndon words and PBW bases for Nichols algebras of diagonal type. To
begin with, we recall the definition of a Nichols algebras and show a characterization in
the case of a diagonal braiding.
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Definition 1.1. [AS3] Given V ∈HH YD, the tensor algebra T (V ) admits a unique struc-
ture of graded braided Hopf algebra in H

HYD such that V ⊆ P(V ). Consider the family S
of all the homogeneous Hopf ideals of I ⊆ T (V ) such that

• I is generated by homogeneous elements of degree ≥ 2,
• I is a Yetter-Drinfeld submodule of T (V ).

The Nichols algebra B(V ) associated to V is the quotient of T (V ) by the biggest ideal
I(V ) of S.

Let (V, c) be a braided vector space of diagonal type such that qij = qji for any i, j. Let
Γ = Zθ, and α1, . . . , αθ be the canonical basis. We set the characters χ1, . . . , χθ of Γ given
by χj(αi) = qij , 1 ≤ i, j ≤ θ.

Consider V as a Yetter-Drinfeld module over kΓ such that xi ∈ V χi
αi . In this context we

can characterize the Nichols algebra as a quotient that admits a certain non-degenerate
bilinear form.

Proposition 1.2. [L, Prop. 1.2.3], [AS3, Prop. 2.10] There exists a unique bilinear form
(·|·) : T (V )× T (V )→ k such that (1|1) = 1, and:

(xi|xj) = δij , for any i, j;(1)
(x|yy′) = (x1|y)(x2|y′), for any x, y, y′ ∈ T (V );(2)
(xx′|y) = (x|y1)(x′|y2), for any x, x′, y ∈ T (V ).(3)

This is a symmetric form, for which we have:

(4) (x|y) = 0, for any x ∈ T (V )g, y ∈ T (V )h, g, h ∈ Γ, g 6= h.

The radical of this form {x ∈ T (V ) : (x|y) = 0, ∀y ∈ T (V )} coincides with I(V ), so (·|·)
induces a non-degenerate bilinear form on B(V ) = T (V )/I(V ), denoted also by (·|·). �

Therefore I(V ) is a Zθ-homogeneous ideal, and then B(V ) is Zθ-graded.

Let A be an algebra, P, S ⊂ A and h : S 7→ N ∪ {∞}. We fix a linear order < on S.
B(P, S,<, h) will denote the set{

p se11 . . . sett : t ∈ N0, s1 > · · · > st, si ∈ S, 0 < ei < h(si), p ∈ P
}
.

If B(P, S,<, h) is a k-linear basis, we say that (P, S,<, h) is a set of PBW generators,
whose height is h, and B(P, S,<, h) is a PBW basis of A.

We will describe a particular PBW basis for any graded braided Hopf algebra B =
⊕n∈NBn generated by B1 ∼= V as an algebra, where V is a braided vector space; we will
follow the results in [Kh].

Fix θ ∈ N, and a set X = {x1, . . . , xθ}. Let X be the set of words with letters in X
and consider the lexicographical order on X.

Definition 1.3. An element u ∈ X, u 6= 1 is a Lyndon word if for any decomposition
u = vw, v, w ∈ X−{1}, we have u < w. We will denote the set of all Lyndon words by L.

Remark 1.4. • Each Lyndon word begin with its smaller letter.
• Each u ∈ X−X is a Lyndon word if and only if for each decomposition u = u1u2

with u1, u2 ∈ X \ 1, we have u1u2 = u < u2u1.
• If u1, u2 ∈ L and u1 < u2, then u1u2 ∈ L.



ON NICHOLS ALGEBRAS OF DIAGONAL TYPE 5

A basic Lyndon’s result says that any word u ∈ X admits a unique decomposition as
non-increasing product of Lyndon words:

(5) u = l1l2 . . . lr, li ∈ L, lr ≤ · · · ≤ l1.
It is called the Lyndon decomposition of u ∈ X, and the li ∈ L in (5) are called the Lyndon
letters of u.

Another characterization of Lyndon words is the following:

Lemma 1.5. [Kh, p.6] Let u ∈ X −X. Then u ∈ L if and only if there exist u1, u2 ∈ L
such that u1 < u2 and u = u1u2. �

Definition 1.6. For each u ∈ L−X, the Shirshov decomposition of u is the decomposition
u = u1u2, u1, u2 ∈ L, such that u2 is the smallest end of u between all the possible
decompositions with these conditions.

Given a finite-dimensional vector space V , fix a basis X = {x1, . . . , xθ} de V ; we can
identify kX with T (V ). In what follows we consider two graduations for the algebra T (V ):
the usual N0-graduation T (V ) = ⊕n≥0T

n(V ), and Zθ-graduation of T (V ), determined by
the condition deg xi = αi, 1 ≤ i ≤ θ, where {α1, . . . , αθ} is the canonical basis of Zθ.

Consider a braiding c for V . The braided bracket of x, y ∈ T (V ) is defined by

(6) [x, y]c := multiplication ◦ (id−c) (x⊗ y) .

Assume that (V, c) is of diagonal type, and let χ : Zθ × Zθ → k× by the bicharacter
determined by the condition

(7) χ(αi, αj) = qij , for each pair 1 ≤ i, j ≤ θ.
Then, for each pair of Zθ-homogeneous elements u, v ∈ X,

(8) c(u⊗ v) = qu,vv ⊗ u, qu,v = χ(deg u,deg v) ∈ k×.

In such case, the braided vector satisfies a “braided Jacobi identity” and determines skew-
derivations as follows:

[[u, v]c , w]c = [u, [v, w]c]c − χ(α, β)v [u,w]c + χ(β, γ) [u,w]c v,(9)

[u, v w]c = [u, v]cw + χ(α, β)v [u,w]c ,(10)

[u v,w]c = χ(β, γ) [u,w]c v + u [v, w]c ,(11)

where u, v, w ∈ T (V ) are homogeneous of degree α, β, γ ∈ Nθ, respectively.
Using the previous decompositions, we can define the k-linear endormorphism [−]c of

kX as follows:

[u]c :=


u, if u = 1 or u ∈ X;
[[v]c , [w]c]c, if u ∈ L, `(u) > 1, u = vw is the Shirshov decomposition;
[u1]c . . . [ut]c , if u ∈ X− L and its Lyndon decomposition is u = u1 . . . ut.

Definition 1.7. The hyperletter corresponding to l ∈ L is [l]c. An hyperword is a
word whose letters are hyperletters, and a monotone hyperword is an hyperword W =
[u1]k1c . . . [um]kmc such that u1 > · · · > um.

Remark 1.8. For any u ∈ L, [u]c is a Z [qij ]-linear combination of words with the same
Zθ-graduation than u, such that [u]c ∈ u+ kX`(u)

>u .

Theorem 1.9. [R, Thm. 10] Let u, v ∈ L, u < v. Then [[u]c , [v]c]c is a Z [qij ]-linear
combination of monotone hyperwords [l1]c . . . [lr]c, li ∈ L, such that the corresponding
hyperletters satisfy v > li ≥ uv. Moreover, [uv]c appears in such combination with non-
zero coefficient and each hyperword has the same Zθ-graduation than uv. �
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The comultiplication of hyperwords in T (V ) has a nice expression, as we can see in the
following result.

Lemma 1.10. [R, Thm.13] Let u1, . . . , ur, v ∈ L, whit v < ur ≤ · · · ≤ u1. Then,

∆ ([u1]c · · · [ur]c[v]mc ) = 1⊗ [u1]c · · · [ur]c[v]mc +
m∑
i=0

(
m

i

)
qv,v

[u1]c . . . [ur]c [v]ic ⊗ [v]m−ic

+
∑

l1≥···≥lp>v, li∈L
0≤j≤m

x
(j)
l1,...,lp

⊗ [l1]c · · · [lp]c [v]jc ;

Where x(j)
l1,...,lp

is Zθ-homogeneous, and deg(x(j)
l1,...,lp

) + deg(l1 . . . lpvj) = deg(u). �

Another useful result from [R] is the following one.

Lemma 1.11. For each l ∈ L let Wl be the subspace of T (V ) generated by

(12) [l1]c[l2]c · · · [lk]c, k ∈ N0, li ∈ L, l1 ≥ . . . ≥ lk ≥ l.

Then Wl is a left coideal subalgebra of T (V ). �

We consider another order in X as in [U]; it was implicitly used in [Kh]. Let u, v ∈ X.
We say that u � v if `(u) < `(v), or `(u) = `(v) and u > v for the lexicographical order.
This order � is total, and it is called the deg-lex order.

The empty word 1 is the maximal element for �, and this order is invariant by left and
right multiplication.

Let I be an ideal of T (V ), and R = T (V )/I. Let π : T (V ) → R be the canonical
projection. We set:

GI := {u ∈ X : u /∈ kX�u + I} .

Note that if u ∈ GI and u = vw, then v, w ∈ GI . Therefore each u ∈ GI is a non-increasing
product of Lyndon words of GI .

Proposition 1.12. [Kh, R] The set π(GI) is a basis of R. �

In what follows I will denote a Hopf ideal. Consider the set SI := GI ∩ L. Define
hI : SI → {2, 3, . . . } ∪ {∞} according to the following condition:

(13) hI(u) := min
{
t ∈ N : ut ∈ kX�ut + I

}
.

We recall the following result and its corollaries following [Kh].

Theorem 1.13. B′I := B ({1 + I} , [SI ]c + I,<, hI) is a PBW basis of H = T (V )/I. �

Corollary 1.14. A word u belongs to GI if and only if the corresponding hyperletter [u]c is
not a linear combination, modulo I, of greater hyperwords [w]c, w � u, whose hyperletters
are in SI . �

Corollary 1.15. If v ∈ SI is such that hI(v) <∞, then qv,v is a root of unity. Moreover,
if ord qv,v = h, then hI(v) = h, and [v]h is a linear combination of hyperwords [w]c,
w � vh. �
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1.2. Weyl groupoids and root systems. We follow the notation in [CH1]. Fix a non-
empty set X, and a finite set I. For each i ∈ I we fix a bijective function ri : X→ X, and
for each X ∈ X a generalized Cartan matrix AX = (aXij )i,j∈I .

Definition 1.16. [HY, CH1] The 4-uple C := C(I,X, (ri)i∈I , (AX)X∈X) is a Cartan scheme
if it holds:

• for any i ∈ I, r2
i = id, and

• for any X ∈ X and any pair i, j ∈ I: aXij = a
ri(X)
ij .

For each i ∈ I and each X ∈ X we denote by sXi the automorphism of ZI given by

sXi (αj) = αj − aXijαi, j ∈ I.
The Weyl groupoid of C is the groupoid W(C) whose set of objects is X and whose mor-
phisms are generated by sXi , considered as elements sXi ∈ Hom(X, ri(X)), i ∈ I, X ∈ X.

In general we denote W(C) simply by W, and for each X ∈ X:

Hom(W, X) := ∪Y ∈X Hom(Y,X),(14)

∆X re := {w(αi) : i ∈ I, w ∈ Hom(W, X)}.(15)

∆X re is the set of real roots of X. Each w ∈ Hom(W, X1) is written as a product
sX1
i1
sX2
i2
· · · sXmim , where Xj = rij−1 · · · ri1(X1), i ≥ 2. We denote it by w = idX1 si1 · · · sim :

it means that w ∈ Hom(W, X1), because each Xj ∈ X is univocally determined by this
condition. The length of w is defined by

`(w) = min{n ∈ N0 : ∃i1, . . . , in ∈ I tales que w = idX si1 · · · sin}.
We assume that W is connnected : that is, Hom(Y,X) 6= ∅, for any pair X,Y ∈ X.

Definition 1.17. [HY, CH1] Given a Cartan scheme C, consider for each X ∈ X a set
∆X ⊂ ZI . We say that R := R(C, (∆X)X∈X) is a root system of type C if

(1) for any X ∈ X, ∆X = (∆X ∩ NI
0) ∪ −(∆X ∩ NI

0),
(2) for any i ∈ I and any X ∈ X, ∆X ∩ Zαi = {±αi},
(3) for any i ∈ I and any X ∈ X, sXi (∆X) = ∆ri(X),
(4) if mX

ij := |∆X ∩ (N0αi + N0αj)|, then (rirj)m
X
ij (X) = (X) for any pair i 6= j ∈ I

and any X ∈ X.
∆X

+ := ∆X ⊂ NI
0 is called the set of positive roots, and ∆X

− := −∆X
+ is the set of negative

roots.

Remark 1.18. From (2) and (3) we deduce that ∆X re ⊂ ∆X , for any X ∈ X.

For each positive root α =
∑

i niαi, the support of α is the set

suppα := {i : 1 ≤ i ≤ θ, ni 6= 0}.
By (3) we have that w(∆X) = ∆Y for any w ∈ Hom(Y,X). We say that R is finite if

∆X is finite for some X ∈ X. By [CH1, Lemma 2.11], it is equivalent to the fact that all
the sets ∆X are finite, X ∈ X, and also that W is finite. Moreover, for any pair i 6= j ∈ I
and any X ∈ X, we have that kαi + αj ∈ ∆X if and only if 0 ≤ k ≤ −aXij . Therefore,

(16) aXij = −max{k ∈ N0 : kαi + αj ∈ ∆X}.
A fundamental result involving root systems is the following one:

Theorem 1.19. [CH2, Thm. 2.10] For every α ∈ ∆X
+ \ {αi : i = 1, . . . θ}, there exist

β, γ ∈ ∆X
+ such that α = β + γ. �

We give now some results about real roots and the length of elements.
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Lemma 1.20. [HY, Cor. 3] Let m ∈ N, X,Y ∈ X, i1, . . . , im, j ∈ I, w = idX si1 · · · sim ∈
Hom(Y,X), where `(w) = m. Then,

• `(wsj) = m+ 1 if and only if w(αj) ∈ ∆X
+ ,

• `(wsj) = m− 1 if and only if w(αj) ∈ ∆X
− . �

Proposition 1.21. [CH1, Prop. 2.12] For any w = idX si1 · · · sim ∈ W such that `(w) =
m, the roots βj = si1 · · · sij−1(αij ) ∈ ∆X are positive and all different. If R is finite and
w is an element of maximal length, then {βj} = ∆X

+ . Therefore all the roots are different:
that is, for each α ∈ ∆X

+ there exist i1, . . . , ik, j ∈ I such that α = sik · · · si1(xj). �

Call ∆V
+ the set of degrees of a PBW basis of B(V ), counted with their multiplicities,

as in [H2]. It does not depend on the PBW basis, see [H2, AA]. We can attach a Cartan
scheme C, a Weyl groupoid W and a root system R, see [HS, Thms. 6.2, 6.9]. To do this,
define for each 1 ≤ i 6= j ≤ θ,

(17) −aij := min {n ∈ N0 : (n+ 1)qii(1− qniiq̃ij) = 0} ,

and set aii = 2, si ∈ Aut(Zθ) such that si(αj) = αj − aijαi.
Set q̃rs = χ(si(αr), si(αs)). Let Vi be another vector space of dimension θ, and attach

to it the matrix q̃ = (q̃rs). By [H2],

∆Vi
+ = si

(
∆V

+ \ {αi}
)
∪ {αi}.

If we consider ∆V = ∆V
+ ∪ (−∆V

+), last equation lets us to define the Weyl groupoid of V ,
whose root system is defined by the sets ∆V ′ , V ′ obtained after to apply some reflections
to the matrix of V .

1.3. Defining relations of Nichols algebras of diagonal type.

Proposition 1.22. [A2, Prop. 3.1] Assume that the braiding matrix is symmetric. Then
a PBW basis of Lyndon hyperwords of B(V ) is orthogonal with respect to the bilinear form
in Proposition 1.2. �

Corollary 1.23. [A2, Cor. 3.2] If u = xnMβM · · ·x
n1
β1

, where 0 ≤ nj < Nβj , then

(18) cu := (u|u) =
M∏
j=1

nj !qβj c
nj
xβj
6= 0.

�

Remark 1.24. Notice that:

(xβixβj |u) = (xβi |u(1))(xβj |u(2)) = di,jcxβi cxβj ,

where di,j is the coefficient xβi ⊗xβj for the expression of ∆(u) in terms of the PBW basis
(both factors of the tensor product).

For each pair 1 ≤ i ≤ j ≤ θ, we denote

Bij :=
{
x
nj
βj
· · ·xniβi : 0 ≤ nk < Nβk

}
;

that is, the set of hyperwords whose hyperletters are between xβi and xβj
Let (W,d) be a braided vector space of diagonal type that admits a basis x̂1, . . . , x̂θ

such that, for some q̂ij ∈ k×, d(x̂i ⊗ x̂j) = q̂ij x̂j ⊗ x̂i, where q̂ij = q̂ji , and (V, c), (W,d)
are twist equivalent:

q̃ij = q̂ij q̂ji, qii = q̂ii, 1 ≤ i 6= j ≤ θ.
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Call x̂β = [lβ]d, the hyperletter corresponding to lβ for the briading d. If u = xnMβM · · ·x
n1
β1

,
call also

û = x̂nMβM · · · x̂
n1
β1
.

Let σ : Zθ × Zθ → k× be the bicharacter determined by the condition

(19) σ(gi, gj) =
{
q̂ijq

−1
ij , i ≤ j

1, i > j

Define tαi = 1 for any 1 ≤ i ≤ θ, and inductively,

tβ = σ(β1, β2)tβ1tβ2 , Sh(lβ) = (lβ1 , lβ2).

For each u = xnMβM · · ·x
n1
β1

call

(20) f(u) :=
∏

1≤i<j≤M
σ(βj , βi)ninj

∏
1≤i≤M

σ(βi, βi)(
ni
2 )tniβi .

Finally, for each pair 1 ≤ i < j ≤ θ and u = xnMβM · · ·x
n1
β1

, let

(21) cui,j :=
f(u) (x̂βi x̂βj |û)
σ(βi, βj)tβitβjcû

,

where (·|·) is the bilinear form corresponding to (W,d), and cû is the scalar in Corollary
1.23. Such scalars let us to give a presentation by generators and relations as follows.

Theorem 1.25. [A2, Thm. 3.9] Let (V, c) be a finite-dimensional braided vector space of
diagonal type such that ∆V

+ is finite. Let x1, · · · , xθ be a basis of V such that c(xi⊗ xj) =
qijxj ⊗ xi, where (qij) ∈ (k×)θ×θ is the braiding matrix, and let {xβk}βk∈∆V

+
be the set of

hyperletters corresponding to the fixed order of the basis of V .
Then B(V ) is presented by generators x1, . . . , xθ, and relations

x
Nβ
β = 0, β ∈ ∆V

+, ord(qβ) = Nβ <∞,(22) [
xβi , xβj

]
c

=
∑

u∈Bij−{xβjxβi}: deg u=βi+βj

cui,j u,(23)

1 ≤ i < j ≤M, Sh(lβi lβj ) = (lβi , lβj ), lβi lβj 6= lβk ,∀k,

where cui,j are as in (21). Moreover, {xnMβM · · ·x
n1
β1

: 0 ≤ nj < Nβj} is a basis of B(V ). �

2. Lusztig Isomorphisms of Nichols algebras of diagonal type

In this Section we recall the Lusztig isomorphisms [H4] of Nichols algebras of diagonal
type, which are a generalization of the isomorphisms of quantized enveloping algebras in
[L]. We shall consider different quotients of the tensor algebra of a braided vector space
of diagonal type and the Drinfeld doubles of their bosonizations by a free abelian group.

Notation: Let χ : Zθ ×Zθ → k× be a bicharacter, qij = χ(αi, αj). Then χop and χ−1

will denote the bicharacters:

χop(α, β) := χ(β, α), χ−1(α, β) := χ(α, β)−1, α, β ∈ Zθ.

Also, for any automorphism s : Zθ → Zθ, s∗χ will denote the bicharacter defined by

(24) (s∗χ)(α, β) := χ
(
s−1(α), s−1(β)

)
, α, β ∈ Zθ.



10 IVÁN ANGIONO

Let (V, c) a braided vector space of diagonal type, whose braiding matrix is (qij). We
consider T (V ) as an algebra in the category of Yetter-Drinfeld modules over kZθ as above.
We follow the results in [H4, Section 4.1].

Definition 2.1. The Drinfeld double U(χ) of the Hopf algebra T (V )#kZθ is the algebra
generated by elements Ei, Fi, K±i , L±i , 1 ≤ i ≤ θ, and relations

XY = Y X, X, Y ∈ {K±i , L
±
i : 1 ≤ i ≤ θ},

KiK
−1
i = LiL

−1
i = 1,

KiEjK
−1
i = qijEj , LiEjL

−1
i = q−1

ji Ej ,

KiFjK
−1
i = q−1

ij Fj , LiFjL
−1
i = qjiFj ,

EiFj − FjEi = δi,j(Ki − Li).
It admits a Hopf algebra structure, where the comultiplication satisfies

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei,
∆(Li) = Li ⊗ Li, ∆(Fi) = Fi ⊗ Li + 1⊗ Ei,

and then ε(Ki) = ε(Li) = 1, ε(Ei) = ε(Fi) = 0.

Notice that U(χ) is a Zθ-graded Hopf algebra, where the graduation is characterized
by the following conditions:

deg(Ki) = deg(Li) = 0, deg(Ei) = αi, deg(Fi) = −αi.
U+(χ) (respectively, U−(χ)) denotes the subalgebra generated by Ei (respectively, Fi),

1 ≤ i ≤ θ, U+0(χ) (respectively, U−0(χ)) is the subalgebra generated by Ki (respectively,
Li), 1 ≤ i ≤ θ, and finally U0(χ) is the subalgebra generated by Ki and Li. Note that
U0(χ) is isomorphic to kZ2θ as Hopf algebras. Moreover, the subalgebra generated by
U+(χ) and Ki, 1 ≤ i ≤ θ, is isomorphic to T (V )#kZθ, so U+(χ) is isomorphic to T (V ) as
braided graded Hopf algebras in the category of Yetter-Drinfeld modules over kZθ, where
we consider the actions and coactions:

Ki · Ei = qijEi, δ(Ei) = Ki ⊗ Ei.

We will consider a family of useful isomorphisms as in [H4, Section 4.1].

Proposition 2.2. (a) For any a = (a1, . . . , aθ) ∈ (k×)θ there exists a unique algebra
automorphism ϕa of U(χ) such that

(25) ϕa(Ki) = Ki, ϕa(Li) = Li, ϕa(Ei) = aiEi, ϕa(Fi) = a−1
i Fi.

(b) There exists a unique algebra automorphism φ1 of U(χ) such that

(26) φ1(Ki) = K−1
i , φ1(Li) = L−1

i , φ1(Ei) = FiL
−1
i , φ1(Fi) = K−1

i Ei.

(c) There exists a unique algebra isomorphism φ2 : U(χ)→ U(χ−1) such that

(27) φ2(Ki) = Ki, φ2(Li) = Li, φ2(Ei) = Fi, φ2(Fi) = −Ei.
(d) There exists a unique Hopf algebra isomorphism φ3 : U(χ)→ U(χop)cop such that

(28) φ3(Ki) = Li, φ3(Li) = Ki, φ3(Ei) = Fi, φ3(Fi) = Ei.

(e) There exists a unique algebra antiautomorphism φ4 de U(χ) such that

(29) φ4(Ki) = Ki, φ4(Li) = Li, φ4(Ei) = Fi, φ(Fi) = Ei.

(f) Let a = (−1, · · · ,−1). The antipode S of U(χ) is given by the composition S =
φ1φ4ϕa. Also, φ2

4 = id. �



ON NICHOLS ALGEBRAS OF DIAGONAL TYPE 11

As in [H4] we will consider some skew-derivations. ∆ will denote the braided comul-
tiplication of U+(χ), which is N-graded: if E ∈ U+(χ) is homogeneous of degree n, and
k ∈ {0, 1, . . . , n}, ∆n−k,k(E) will denote the component of ∆(E) in U+(χ)n−k ⊗ U+(χ)k.

Proposition 2.3. For any i ∈ {1, . . . , θ} there exist linear endomorphisms ∂Ki , ∂Li of
U+(χ) such that

EFi − FiE = ∂Ki (E)Ki − Li∂Li (E) for all E ∈ U+(χ).

Such endomorphisms are given by:

∆n−1,1(E) =
θ∑
i=1

∂Ki (E)⊗ Ei, ∆1,n−1(E) =
θ∑
i=1

Ei ⊗ ∂Li (E), E ∈ U+(χ)n,

and satisfy the following conditions:

∂Ki (1) = ∂Li (1) = 0,

∂Ki (Ej) = ∂Li (Ej) = δi,j ,

∂Ki (EE′) = ∂Ki (E)(Ki · E′) + E∂Ki (E′),

∂Li (EE′) = ∂Li (E)E′ + (L−1
i · E)∂Li (E′),

for all j ∈ {1, . . . , θ}, and all pair of elements E,E′ ∈ U+(χ). �

We recall now a characterization of quotients of the algebra U(χ) with a triangular
decomposition [H4, Section 4.1]. According to [H4, Prop. 4.14], the multiplication

(30) m : U+(χ)⊗ U0(χ)⊗ U−(χ)→ U(χ)

is an isomorphism of Zθ-graded vector spaces.

Proposition 2.4. Let I+ ⊂ U+ ∩ ker ε (respectively, I− ⊂ U− ∩ ker ε) be an ideal of
U+(χ) (respectively, U−(χ)). The following conditions are equivalent:

• The multiplication (30) induces an isomorphism

m : U+(χ)/I+ ⊗ U0(χ)⊗ U−(χ)/I− → U(χ)/(I+ + I−).

• The vector spaces I+U0(χ)U−(χ) y U+(χ)U0(χ)I− are ideals of U(χ).
• For all X ∈ U0(χ) and all i ∈ {1, . . . , θ} we have

X · I+ ⊂ I+, ∂Ki (I+) ⊂ I+, ∂Ki (φ4(I−)) ⊂ φ4(I−),
X · I− ⊂ I−, ∂Li (I+) ⊂ I+, ∂Li (φ4(I−)) ⊂ φ4(I−).

�

Lemma 2.5. [H4, Cor. 4.20] Let I+ be an braided biideal of U+(χ), which is also a
Yetter-Drinfeld U0(χ)-submodule and satisfies I+ ⊂ ⊕n≥2U+(χ)n. Then I+U0(χ)U−(χ)
is a Hopf ideal of U(χ). �

We will assume that all the integers −aij of (17) associated with the braiding matrices
(qij) are defined. Then we consider the automorphisms sp,χ : Zθ → Zθ. We define also the
scalars

(31) λi(χ) := (−api)qpp
−api−1∏
s=0

(qsppqpiqip − 1), i 6= p.

Denote by Ei, F i, Ki, Li the generators corresponding to U(s∗pχ), and by q
ij

= s∗pχ(αi, αj)
the coefficients of the braiding matrix corresponding to s∗pχ.
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Definition 2.6. We say that p ∈ {1, . . . , θ} is a Cartan vertex if it satisfies

q
mpj
pp qpjqjp = 1, for every j 6= p.

In such case, note that the existence of the integers mpj implies that ord qpp ≥ mpj + 1.

We denote by O(χ) the union of the orbits of the simple roots αp by the action of the
Weyl groupoid, where p is a Cartan vertex.

Fix p ∈ {1, . . . , θ}. For any i 6= p we define as in [H4],

E+
i,0(p), E

−
i,0(p) := Ei, F+

i,0(p), F
−
i,0(p) := Fi,

and recursively,

E+
i,m+1(p) := EpE

+
i,m(p) − (Kp · E+

i,m(p))Ep = (adcEp)m+1Ei,(32)

E−i,m+1(p) := EpE
−
i,m(p) − (Lp · E−i,m(p))Ep,(33)

F+
i,m+1(p) := FpF

+
i,m(p) − (Lp · F+

i,m(p))Fp,(34)

F−i,m+1(p) := FpF
−
i,m(p) − (Kp · F−i,m(p))Fp.(35)

When p is explicit, we simply denote E±i,m(p) by E±i,m. By [H4, Cor. 5.4] the following
identity holds for any m ∈ N0:

(36) E+
i,mFi − FiE

+
i,m = (m)qpp(q

m−1
pp qpiqip − 1)LpE+

i,m−1.

Fix a braided graded Hopf algebra B ∼= T (V )/I, where I is a graded Hopf ideal
generated by homogeneous elements of degree ≥ 2. For each 1 ≤ j ≤ θ, p 6= j, we define

(37) M±p,j(B) :=
{
E±j,m : m ∈ N0

}
.

In what follows we consider ord(1) = 1.

Remark 2.7. If xNi = 0 in B, with N minimal (it is called the nilpotency order of xi), then
qii is a root of unity of order N . Moreover, (adcxi)Nxj = 0.

We recall a result from [A1] extending [H2, Prop. 1, Eqn. (18)].

Lemma 2.8. For each p ∈ {1, . . . , θ}, let B±p be the subalgebra generated by ∪j 6=pM±p,j(B),
and denote np = ord(qpp). There exist isomorphisms of graded vector spaces:

• ker(∂Kp ) ∼= B+p ⊗ k
[
E
np
p

]
, ker(∂Lp ) ∼= B−p ⊗ k

[
E
np
p

]
, if 1 < ord(qpp) < ∞ but Ep

is not nilpotent, or
• ker(∂Kp ) ∼= B+p, ker(∂Lp ) ∼= B−p, if ord(qpp) is the nilpotency order of Ep or qpp = 1.

Moreover, the multiplication induces an isomorphism of graded vector spaces B ∼= B±p ⊗
k [xp]. �

Set Np = ord qpp. We call, following [H4], I+
p (χ) (respectively, I−p (χ)) to the ideal of

U+(χ) (respectively, U−(χ)) generated by

(a) ENpp (respectively, FNpp ), if p is not a Cartan vertex,
(b) E+

i,mpi+1 (respectively, F+
i,mpi+1), for each i such that Np > mpi + 1.

Notice that E+
i,mpi+1 ∈ I+

p (χ) for any i such that Np = mpi + 1. We denote:

Up(χ) := U(χ)/
(
I+
p (χ) + I−p (χ)

)
, U+

p (χ) := U+(χ)/I+
p (χ), U−p (χ) := U−(χ)/I−p (χ).
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I+(χ) will denote the ideal of U+(χ) such that the quotient U+(χ)/I+(χ) is isomorphic
to the Nichols algebra of V ; that is, the greatest braided Hopf ideal of U+(χ) generated
by elements of degree ≥ 2. Call I−(χ) = φ4(I+(χ)), where φ4 is defined by (29), and

u±(χ) := U±(χ)/I±(χ), u(χ) := U(χ)/(I−(χ) + I+(χ)).

In such case, u(χ) is the Drinfeld double of the algebra u+(χ)#kZθ, where kZθ = U+0(χ).
The Lusztig isomorphisms can be defined in this general context.

Theorem 2.9. [H4, Lemma 6.5, Theorem 6.12] There exist algebra morphisms

(38) Tp, T
−
p : Up(χ)→ Up(s∗pχ)

univocally determined by the following conditions:

Tp(Kp) = T−p (Kp) = K−1
p , Tp(Ki) = T−p (Ki) = K

mpi
p Ki,

Tp(Lp) = T−p (Lp) = L−1
p , Tp(Li) = T−p (Li) = L

mpi
p Li,

Tp(Ep) = F pL
−1
p , Tp(Ei) = E+

i,mpi
,

Tp(Fp) = K−1
p Ep, Tp(Fi) = λ(s∗pχ)−1F+

i,mpi
,

T−p (Ep) = K−1
p F p, T−p (Ei) = λ(s∗pχ

−1)−1E−i,mpi ,

T−p (Fp) = EpL
−1
p , T−p (Fi) = F−i,mpi .

for every i 6= p. Both are isomorphisms satisfying

TpT
−
p = T−p Tp = id, Tp(U+

+p(χ)) = U+
−p(s

∗
pχ).

Moreover, there exists λ ∈ (k×)θ such that

(39) Tp ◦ φ4 = φ4 ◦ T−p ◦ ϕλ.
Such isomorphisms induce algebra isomorphisms (denoted by the same name):

Tp, T
−
p : u(χ)→ u(s∗pχ).

�

Remark 2.10. If the homogeneous elements X,Y ∈ U+
p (χ) are such that Tp(X), Tp(Y ) ∈

U+
p (s∗pχ), as deg Tp(X) = sp(degX), it follows that

Tp ([X,Y ]c) = [Tp(X), Tp(y)]c .

3. An explicit presentation by generators and relations of Nichols
algebras of diagonal type

We shall obtain a family of isomorphisms induced by the ones in the previous Section.
In this case we shall consider a quotient of U(χ) by an ideal which is smaller than (I−(χ)+
I+(χ)). Such ideal will be generated by some of the relations in Theorem 1.25, and will
be the smallest one such that it is possible to define all the family of isomorphisms over
the Weyl groupoid. It will give us a relation between the Hilbert series of these algebras,
and new sets of roots. We shall use at the end the uniqueness of the root system, when
the Weyl groupoid is finite.

We introduce some notation. We denote q̃ij = qijqji. Also,

xi1i2···ik = (adc xi1) · · · (adc xik−1
)xik , ij ∈ {1, . . . , θ}.

For each m ∈ N, we define the elements x(m+1)αi+mαj ∈ U(χ) recursively:

• if m = 1, x2αi+αj := (adc xi)2xj = xiij ,
• x(m+2)αi+(m+1)αj := [x(m+1)αi+mαj , xij ]c.
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We give now the main result of this section, which is Theorem 3.1: it gives an explicit
presentation by generators and relations of any Nichols algebra of diagonal type with
finite root system. We begin by proving several Lemmata to show the existence of Lusztig
isomorphisms for some Hopf algebras. These Hopf algebras are intermediate between the
tensor algebra and the Nichols algebras of a given braided vector space. Finally we use
those Lusztig isomorphisms to prove the Theorem.

Theorem 3.1. Let (V, c) be a finite-dimensional braided vector space of diagonal type,
with braiding matrix (qij)1≤i,j≤θ, θ = dimV , and fix a basis x1, . . . , xθ of V such that
c(xi ⊗ xj) = qijxj ⊗ xi. Let χ be the bicharacter associated to (qij). Assume that the root
system ∆χ is finite. Then B(V ) is presented by generators x1, . . . , xθ and relations:

xNαα , α ∈ O(χ);(40)

(adc xi)mij+1xj , q
mij+1
ii 6= 1;(41)

xNii , i is not a Cartan vertex;(42)

� if i, j ∈ {1, . . . , θ} satisfy qii = q̃ij = qjj = −1, and there exists k 6= i, j such that q̃ik
2 6= 1

or q̃jk
2 6= 1,

(43) x2
ij ;

� if i, j, k ∈ {1, . . . , θ} satisfy qjj = −1, q̃ik = q̃ij q̃kj = 1,

(44) [xijk, xj ]c ;

� if i, j ∈ {1, . . . , θ} satisfy qjj = −1, qiiq̃ij ∈ G6, and also qii ∈ G3 or mij ≥ 3,

(45) [xiij , xij ]c ;

� if i, j, k ∈ {1, . . . , θ} satisfy qii = ±q̃ij ∈ G3, q̃ik = 1, and also −qjj = q̃ij q̃jk = 1 or
q−1
jj = q̃ij = q̃jk 6= −1,

(46) [xiijk, xij ]c ;

� if i, j, k ∈ {1, . . . , θ} satisfy q̃ik, q̃ij , q̃jk 6= 1,

(47) xijk −
1− q̃jk

qkj(1− q̃ik)
[xik, xj ]c − qij(1− q̃jk) xjxik;

� if i, j, k ∈ {1, . . . , θ} satisfy one of the following situations
◦ qii = qjj = −1, q̃ij

2 = q̃jk
−1, q̃ik = 1, or

◦ q̃ij = qjj = −1, qii = −q̃jk2 ∈ G3, q̃ik = 1, or
◦ qkk = q̃jk = qjj = −1, qii = −q̃ij ∈ G3, q̃ik = 1, or
◦ qjj = −1, q̃ij = q−2

ii , q̃jk = −q−3
ii , q̃ik = 1, or

◦ qii = qjj = qkk = −1, ±q̃ij = q̃jk ∈ G3, q̃ik = 1,

(48)
[
[xij , xijk]c , xj

]
c
;

� if i, j, k ∈ {1, . . . , θ} satisfy qii = qjj = −1, q̃ij
3 = q̃jk

−1, q̃ik = 1,

(49)
[[
xij , [xij , xijk]c

]
c
, xj
]
c
;

� if i, j, k, l ∈ {1, . . . , θ} satisfy qjj q̃ij = qjj q̃jk = 1, q̃jk
2 = q̃lk

−1 = qll, qkk = −1,
q̃ik = q̃il = q̃jl = 1,

(50)
[[

[xijkl, xk]c , xj
]
c
, xk
]
c
;

� if i, j, k ∈ {1, . . . , θ} satisfy qjj = q̃ij
2 = q̃jk ∈ G3, q̃ik = 1,

(51)
[
[xijk, xj ]c xj

]
c
;
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� if i, j, k ∈ {1, . . . , θ} satisfy qjj = q̃ij
3 = q̃jk ∈ G4, q̃ik = 1,

(52)
[[

[xijk, xj ]c , xj
]
c
, xj
]
c
;

� if i, j, k ∈ {1, . . . , θ} satisfy qii = q̃ij = −1, qjj = q̃jk
−1 6= −1, q̃ik = 1,

(53) [xij , xijk]c ;

� if i, j, k ∈ {1, . . . , θ} satisfy qii = qkk = −1, q̃ik = 1, q̃ij ∈ G3, qjj = −q̃jk = ±q̃ij,

(54) [xi, xjjk]c − (1 + q2
jj)q

−1
kj [xijk, xj ]c − (1 + q2

jj)(1 + qjj)qijxjxijk;

� if i, j, k ∈ {1, . . . , θ} satisfy q̃jk = 1, qii = q̃ij = −q̃ik ∈ G3,

(55)
[
xi, [xij , xik]c

]
c

+ qjkqikqji [xiik, xij ]c + qij xijxiik;

� if i, j, k ∈ {1, . . . , θ} satisfy qjj = qkk = q̃jk = −1, qii = −q̃ij ∈ G3, q̃ik = 1,

(56) [xiijk, xijk]c ;

� if i, j ∈ {1, . . . , θ} satisfy −qii,−qjj , qiiq̃ij , qjj q̃ij 6= 1,

(57) (1− q̃ij)qjjqji
[
xi, [xij , xj ]c

]
c
− (1 + qjj)(1− qjj q̃ij)x2

ij ;

� if i, j ∈ {1, . . . , θ} satisfy qjj = −1, qiiq̃ij /∈ G6, and also mij ∈ {4, 5}, or mij = 3,
qii ∈ G4,

(58)
[
xi, x3αi+2αj

]
c
− 1− qiiq̃ij − q2

iiq̃ij
2qjj

(1− qiiq̃ij)qji
x2
iij ;

� if i, j ∈ {1, . . . , θ} satisfy 4αi + 3αj /∈ ∆χ
+, qjj = −1 or mji ≥ 2, and also mij ≥ 3, or

mij = 2, qii ∈ G3,

(59) x4αi+3αj = [x3αi+2αj , xij ]c;

� if i, j ∈ {1, . . . , θ} satisfy 3αi + 2αj ∈ ∆χ
+, 5αi + 3αj /∈ ∆χ

+, and q3
iiq̃ij , q

4
iiq̃ij 6= 1,

(60) [xiij , x3αi+2αj ]c;

� if i, j ∈ {1, . . . , θ} satisfy 4αi + 3αj ∈ ∆χ
+, 5αi + 4αj /∈ ∆χ

+,

(61) x5αi+4αj = [x4αi+3αj , xij ]c;

� if i, j ∈ {1, . . . , θ} satisfy 5αi + 2αj ∈ ∆χ
+, 7αi + 3αj /∈ ∆χ

+,

(62) [[xiiij , xiij ], xiij ]c;

� if i, j ∈ {1, . . . , θ} satisfy qjj = −1, 5αi + 4αj ∈ ∆χ
+,

(63) [xiij , x4αi+3αj ]c −
b− (1 + qii)(1− qiiζ)(1 + ζ + qiiζ

2)q6
iiζ

4

a q3
iiq

2
ijq

3
ji

x2
3αi+2αj ,

where ζ = q̃ij, a = (1− ζ)(1− q4
iiζ

3)− (1− qiiζ)(1 + qii)qiiζ, b = (1− ζ)(1− q6
iiζ

5)− a qiiζ.

In what follows we will use implicitly the isomorphism B(V ) ∼= u+(χ) determined by
xi 7→ Ei; in this way, we identify B(V ) as a subalgebra of u(χ).

For any bicharacter χ whose root system is finite, J +(χ) denotes the ideal of U+(χ)
generated by all the relations in Theorem 3.1, except (40), plus the quantum Serre relations
(adc xi)1−aijxj for those vertices such that qaijii = qijqji = q−1

ii . The last ingredient is to
obtain a quotient of all the algebras Up(χ), 1 ≤ p ≤ θ.

Call also J −(χ) := φ4(J +(χ)), J (χ) := (J +(χ) + J −(χ)),

U(χ) := U(χ)/J (χ), U±(χ) := U±(χ)/J ±(χ).
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We prove first that J +(χ) is contained in the ideal defining the corresponding Nichols
algebra. The following Lemma was proved with Agust́ın Garćıa Iglesias and is implicit in
other papers.

Lemma 3.2. Let I ⊂ T (V ) be a braided homogeneous biideal of T (V ), so there exists
a surjective morphism of braided graded Hopf algebras π : R := T (V )/I → B(V ). Let
x ∈ kerπ, x 6= 0 of minimal degree k ≥ 2. Then x is primitive.

Proof. As π is a morphism of graded braided bialgebras, kerπ is a graded biideal:

∆(x) = x⊗ 1 + 1⊗ x +
n∑
j=1

bj ⊗ cj ∈ kerπ ⊗R+R⊗ kerπ,

for some homogeneous elements bj , cj ∈
k−1⊕
i=1

Ri, such that deg(bj)+deg(cj) = k. For each j

we may assume either bj ∈ kerπ or cj ∈ kerπ. If bj ∈ kerπ, then bj = 0 by the minimality
condition on k. Similarly, if cj ∈ kerπ, then cj = 0. Hence x is primitive in R. �

We will work with Nθ
0-graded ideals, so the following notation will be useful: given

β =
∑

i biαi, γ =
∑

i ciαi, for some bi, ci ∈ N0, we say that β ≥ γ (respectively, β > γ) if
bi ≥ ci (respectively, bi > ci) for all i ∈ {1, . . . , θ}.

Proposition 3.3. J +(χ) is a braided biideal of U+(χ), and there exist a canonical pro-
jecction of Hopf algebras πχ : U(χ)� u(χ) such that π (U±(χ)) = u±(χ).

Moreover, the multiplication m : U+(χ)⊗ U0(χ)⊗ U−(χ) → U(χ) is an isomorphism
of graded vector spaces.

Proof. We can order order the relations according to their N-graduation. When we quo-
tient by the relations of degree n − 1, the relations of degree n are primitive by Lemma
3.2, because for any of them we can see that the relations in Theorem 1.25 of degree at
most n − 1 are verified. Moreover, for a relation of degree α ∈ Nθ

0, it is enough to verify
that the relations of Nθ-degree lower than α hold in this partial quotient. For example,
each quantum Serre relation is primitive, and the same holds for xNii ; therefore, when we
quotient by these relation we have that x =

[
(adc xi)2xj , (adc xi)xj

]
c

is primitive under
the conditions for (45), because we have quotiented by x3

i , x
2
j , so it also holds that

(adc xi)3xj = (adc xj)2xi = 0.

We work in a similar way with the other relations so each partial quotient is a braided
bialgebra (and then a Hopf algebra with the induced antipode); finally, U+(χ) is a braided
bialgebra, because J +(χ) is a braided biideal.

By the definition of Nichols algebra we conclude that J +(χ) ⊆ I+(χ). By Lemma
2.5, J +(χ)U0(χ)U−(χ) is a Hopf ideal of U(χ), and then the equivalent conditions in
Proposition 2.4 hold. Therefore there exists a projection of Hopf algebras and a triangular
descomposition as in the Proposition. �

Now we prove that the isomorphisms at the beginning of Theorem 2.9 induce iso-
morphisms between the corresponding algebras U(χ). The first step is to prove that
Tp(J (χ)) ⊂ J (s∗pχ), which will be proved considering each relation generating the ideal.
The following two Lemmata help us to reduce the number of explicit computations.

Lemma 3.4. Let l be a Lyndon word such that [l]c ∼=
∑

w∈SI+(χ),w�l
aww (mod I+(χ)), for

some aw ∈ k. Let I be a braided Hopf ideal Nθ-graded of U+(χ) such that the set of good
words SI+(χ), SI coincide for those terms w � l, and assume that l is written as a linear
combination of words greater than l modulo I. Then [l]c ∼=

∑
w∈SI+(χ),w�l

aww (mod I).
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Proof. It is a direct consequence of Corollary 1.14: by this result, [l]c is written as a linear
combination of good hyperwords greater than [l]c modulo I. Such hyperwords coincide
with the corresponding good hyperwords for I+(χ) by hypothesis, and also I ⊆ I+(χ).
Hence the linear combination should be the same, because the good hyperwords generate
a linear complement of the ideal in U+(χ). �

Lemma 3.5. Let I be an ideal Nθ
0-homogeneous of T (V ), θ = dimV . Let S, T be two

minimal sets of homogeneous generators of I. Assume that por each α ∈ Nθ there exists at
most one generator in S (respectively in T ) of degree α, and denote by I(S, α) (respectively,
I(T, α)) the ideal generated by the elements of S (respectively, T ) of degree β < α.

For each s ∈ S of degree α ∈ Nθ
0, there exists t ∈ T of the same degree, and c ∈ k×

such that s ∼= c t (mod (I(S, α)), and then I(S, α) = I(T, α).

Proof. We prove it by induction on the degree of the generators. Let s be of degree α,
minimal for the partial order defined on Nθ

0. Therefore dim Iα = 1, so there exists an
element of T which belongs to this subspace of I of dimension 1.

If the degree of s is not minimal, we apply inductive hypothesis for all the generators
in lower degree, so for each s′ of lower degree there exists a corresponding t′ ∈ T of the
same degree which satisfies the conditions above, and I(S, α) = I(T, α). Therefore

dim I(S, α)α = dim I(T, α)α = dim Iα − 1,

because S is a minimal set of generators, and by hypothesis there exists a unique generator
of degree α. As T is also a set of generators of I, there exists t ∈ I− I(T, α) = I− I(S, α),
of degree α, so the statement follows. �

Remark 3.6. This Lemma lets us to identify relations of the same degree for two sets of
minimal generators of an ideal, up to relations of lower degree and scalars. In this way
we can consider relations from Theorem 1.25 for a fixed order on the letters, and consider
relations for another order. If we have a minimal set and this set contains relations all in
different degrees (as we will have for the set of relations of the Nichols algebra or some
partial quotients), then we can find a correspondence as above between the relations of
the same Zθ-degree.

For example, if qmij+1
ii 6= 1 for some pair of vertices i, j, then the quantum Serre relation

(adc xi)mij+1xj is a generator for the minimal set of generators corresponding to the order
xi < xj , so for the order xi > xj we have:

[xjx
mij+1
i ]c =

[
· · ·
[
[(adc xj)xi, xi]c , · · · ,

]
c
, xi
]
c

= a(adc xi)mij+1xj ,

for some scalar a ∈ k×.
Also, if qii ∈ G3, q̃ij ∈ {±qii,−1}, qjj = −1, we notice that[

(adc xi)2xj , (adc xi)xj
]
c
∼= b

[
(adc xj)xi, [(adc xj)xi, xi]c

]
c

(mod I),

for some b ∈ k×, where I is the ideal generated by x3
i and x2

j , because such relations
correspond to different minimal sets of generators of the ideal of relations of the Nichols
algebra, and these are the generators of degree 3αi + 2αj for each set.

Lemma 3.7. Let I be a Zθ-graded ideal of U+
p (χ). Let Y, Z ∈ U+

p (χ)/I be homogeneous
elements of degree β, γ ∈ Nθ

0, respectively, such that (adcEp)Y = 0. Then,

(64) [(adcEp)Z, Y ]c = (adcEp) [Z, Y ]c .

If also χ(αp, β)χ(β, αp) = 1, then

(65) χ(αp, β) [Y, (adcEp)Z]c = (adcEp) [Y, Z]c .
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Proof. Both identities follow from (9). For example, for the second one,

(adcEp) [Y,Z]c = [Ep, [Y,Z]c]c =
[
[Ep, Y ]c , Z

]
c

+ χ(αp, β)Y [Ep, Z]c − χ(β, γ) [Ep, Z]c Y

= χ(αp, β) (Y (adcEp)Z − χ(β, γ)χ(β, αp)(adcEp)ZY )

= χ(αp, β) [Y, (adcEp)Z]c ,

where we use the condition χ(αp, β)χ(β, αp) = 1. �

Lemma 3.8. Let i, p ∈ {1, . . . , θ} be such that mpi ≥ 2 and mip = 1. Then, in U(s∗pχ),[
E+
i,mpi

, E+
i,mpi−1

]
c

=
[
(adcEp)

mpiEi, (adcEp)
mpi−1Ei

]
c

= 0.

Remark 3.9. Such relation belongs to the ideal I+(s∗pχ). In fact, as 2αi + αp /∈ ∆χ
+, we

have sp(2αi +αp) = 2αi + (2mpi− 1)αp /∈ ∆χ
+, so such relation holds in the corresponding

Nichols algebra u+(s∗pχ).
On the other hand, some of these relations are generators of the ideal J (s∗pχ) by

definition, for example (45). We prove here that the other relations not in the definition
of this ideal are redundant; that is, they are generated by relations of lower degree.

Proof. We consider the different possible values of mpi; we begin with mpi = 2. Therefore
qpp ∈ G3 or q2

ppqipqpi = 1, and also qii = −1 or qiiqipqpi = 1. If mip = 1 for s∗pχ, then
p, i determine a subdiagram of standard type. If q3

pp 6= 1 or qii 6= −1 then E2
pEiEpEi is

written as a linear combination of words greater than E2
pEiEpEi, modulo J (s∗pχ), using

the quantum Serre relations, because in the first case E2
pEiEp appears with non-zero

coefficient in (adcEp)3Ei, so E2
pEiEpEi is a linear combination of greater words and E3

pE
2
i ,

but this last word is in the ideal if qii = −1, or EpE2
i appears in (adcEi)2Ep with non-

zero coefficient, so in both cases we obtain E2
pEiEpEi as a combination of greater words.

Using Lemma 3.4, we conclude that
[
E+
i,2, E

+
i,1

]
c

= 0. A similar proof in the case q3
pp = 1,

qii 6= −1 gives us the same conclusion. If q3
pp = 1, qii = −1, the relation corresponds to

(45), which is by definition a generator of J (s∗pχ).
If mpi = 2 and mip > 1 for s∗pχ, then (57) is a generator of J (s∗pχ), and then EpEiEpEi

is a linear combination of E2
pE

2
i and greater words. Therefore

[
E+
i,2, E

+
i,1

]
c
∈ J (s∗pχ), by

a similar argument.
If mpi = 3, then mip = 1 for s∗pχ, or there exists ζ ∈ G24 such that qpp = ζ6, q−1

ii =
qpiqip = ζ. For the first case, we notice that (58) holds also if qpp /∈ G4, because E3

pEiEp
can be written as a linear combination of other words from the quantum Serre relation
(adcEp)4Ei = 0, and then E3

pEiEpEi is a linear combination of greater words multiplying
by Ei, so we apply Lemma 3.4; from this relation we work as above, so we write E2

pEiE
2
pEi

as a linear combination of other words and deduce that E3
pEiE

2
pEi is a linear combination

of greater words, and we can apply Lemma 3.4 again. For the second case, we write
E3
pEiE

2
pEi as a linear combination of greater words using the quantum Serre relations or

the relation (58), with the same conclusion.
If mpi = 4, 5, then mip = 1 for s∗pχ. Therefore we work as before and we obtain the

desired relation from (58) or (45), according to 3αp + 2αi belongs to ∆
s∗pχ
+ or not. In both

situations, we can write E4
pEiE

3
pEi or E5

pEiE
4
pEi as a linear combination of greater words,

so we apply Lemma 3.4 again. �

We will prove now that Tp(x) ∈ J (s∗pχ) for any generator x of the ideal J +(χ) so we
will have a family of morphisms between the elements the algebras U(χ).
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Lemma 3.10. Let i be a non-Cartan vertex. Then Tp(ENii ) ∈ J (s∗pχ).
If i, j satisfy qii = q̃ij = qjj = −1, and there exists k such that q̃ik

2 6= −1 or q̃jk
2 6= −1,

then Tp

(
E2
ij

)
∈ J (s∗pχ).

Proof. Consider the first relation. If i = p, then p is not Cartan for χ, so p is not Cartan
for s∗pχ too. Therefore, by the definition of the ideal J (s∗pχ),

Tp(E
Np
p ) = F

Np
p = φ4(ENpp ) ∈ J (s∗pχ).

We consider then i 6= p. In such case, Tp(ENii ) =
(
E+
i,mpi

)Ni
.

If mpi = 0, then E+
i,0 = Ei and qipqpi = 1, so for each j 6= p we have q

ij
q
ji

= q̃ij .

Therefore i is not Cartan for s∗pχ, and Tp(ENii ) = ENii ∈ J (s∗pχ).
Consider mpi 6= 0. As i is not Cartan, there exists j 6= i such that qmijii q̃ij 6= 1.
Assume first that mip + 1 = Ni. If mip = 1, that is qii = −1, there are two possibil-

ities. If qipqpi 6= −1, using Lemma 3.8, the identity (9) and the quantum Serre relation
(adcEp)mpi+1Ei = 0, we compute in U(s∗pχ),

0 =
[
Ep,

[
E+
i,mpi

, E+
i,mpi−1

]
c

]
c

=
(
s∗pχ(αp,mpiαp + αi)− s∗pχ(mpiαp + αi, (mpi − 1)αp + αi)

) (
E+
i,mpi

)2

= (χ(−αp, αi)− χ(αi, αp + αi))
(
E+
i,mpi

)2
= q−1

pi (1 + qipqpi)
(
E+
i,mpi

)2
,

so Tp(E2
i ) =

(
E+
i,mpi

)2
∈ J (s∗pχ). If qpiqip = −1, there are 3 possible subdiagrams

determined by i, p: it is standard with q = −1, or it is Cartan of type B2 with q ∈ G4,
or it is Cartan of type G2 with q ∈ G6. For the first case, if the diagram is of type A2

associated to q = −1, it follows by definition of the ideal J (s∗pχ); for the other cases, we
write Empip EiE

mpi
p Ei as a linear combination of greater words using (45) or the quantum

Serre relations, and also the previous Lemmata.
If mip > 1 and mpi = 1, we compute, using (9) and the relation (adcEp)2Ei = 0,

adcEp
[
E+
i,1, Ei

]
c

=
(
s∗pχ(αp, αi + αp)− s∗pχ(αi + αp, αi)

) (
E+
i,1

)2

= q−1
pi (1− qiiqipqpi)

(
E+
i,1

)2
.

From this relation and (9) again, we calculate

adcEp

[
E+
i,1,
[
E+
i,1, Ei

]
c

]
c

=
(
s∗pχ(αp, αi + αp)− s∗pχ(αi + αp, 2αi + αp)

)
(q−1
pi − qiiqip)

(
E+
i,1

)3

=q−2
pi (1− qiiqipqpi)(1− q2

iiqipqpi)
(
E+
i,1

)3
.

So if mip = 2 and mpi = 1, it follows that αp + 3αi /∈ ∆χ
+, and

sp(αp + 3αi) = 3αi + 2αp /∈ ∆
s∗pχ
+ .

Using the previus Lemma,
[
(adcEi)2Ep, (adcEi)Ep

]
c
∈ J +(s∗pχ), so[

E+
i,1,
[
E+
i,1, Ei

]
c

]
c

∈ J (s∗pχ),
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because we apply Lemma 3.5 if the relation belongs to a minimal set of generators
(q2
iiqipqpi 6= 1, so qii ∈ G3), or we compute it directly for the cases in which it is Car-

tan of type B2 or standard with qpp = −1. Then, by a similar argument,

Tp(E3
i ) =

(
E+
i,1

)3
∈ J (s∗pχ).

If mip = 3, mpi = 1, we have that sp(αp + 4αi) = 4αi + 3αp /∈ ∆
s∗pχ
+ , so[

E+
i,1,

[
E+
i,1,
[
E+
i,1, Ei

]
c

]
c

]
c

∈ J (s∗pχ),

by a similar argument, using (59). In this case we deduce that
(
E+
i,1

)4
∈ J (s∗pχ).

If mip = 4, then q4
iiqipqpi 6= 1, so

(
E+
i,1

)5
∈ J (s∗pχ) in a similar way, using (61). We

notice that there are no diagrams such that qmip+1
ii = 1 and mip ≥ 5.

Now we consider mip,mpi > 1, so there are 3 possibilities:
• mip = mpi = 2, so (59) is a generator of J (s∗pχ), and qpp ∈ G3. Therefore we

write EiE
2
pEiE

2
pEi as a linear combination of other words, which begin with Ep

or they contain E3
p as a factor. If we multiply by E2

p on the left, E2
pEiE

2
pEiE

2
pEi

is a linear combination of greater words modulo J (s∗pχ), because E3
p ∈ J (s∗pχ), so

Tp(E3
i ) = ((adcEp)2Ei)3 ∈ J (s∗pχ).

• mip = 3, mpi = 2, so qii = ζ6, qpp = ζ8, qipqpi = ζ11 for some ζ ∈ G24, and (63) is
a generator of the ideal J (s∗pχ). Using this relation we write EiE

2
pEiE

2
pEiE

2
pEi

as a linear combination of words beginning with Ep or words containing E3
p as

a factor. Multiplying by E2
p on the left, we write (E2

pEi)
4 as a linear com-

bination of greater words modulo J (s∗pχ), because E3
p ∈ J (s∗pχ), so Tp(E4

i ) =
((adcEp)2Ei)4 ∈ J (s∗pχ).
• mip = 2, mpi = 3, so there are two possible diagrams; in both cases (62) is a

generator of J (s∗pχ). From this relation we write EiE
3
pEiE

3
pEi as a combina-

tion of words beginning with Ep o containing E4
p. Multiplying on the left by E3

p,
E3
pEiE

3
pEiE

3
pEi can be written as a linear combination of greater words, mod-

ulo J (s∗pχ), because E4
p ∈ J (s∗pχ) or (adcEp)4Ei ∈ J (s∗pχ), so, in both cases,

Tp(E3
i ) = ((adcEp)3Ei)3 ∈ J (s∗pχ).

Finally we consider qmipii qipqpi = 1, mip < Ni − 1, so there exists j 6= p such that
1 ≤ mip < mij = Ni − 1. In this case, i, j, p determine a connected diagram, where i is
not Cartan, connected with j and p, and also qii is a root of unity of order Ni > 2. We
have the following possible diagrams under the previous conditions:

• qii ∈ G3, qpp ∈ {qii,−1}, mip = mpi = 1, mij = 2, mpj = mjp = 0, or
• qii ∈ G4, qpp = −1, qipqpiqii = 1, q̃ij = qii, mpj = mjp = 0, mij = 3 (a diagram of

type super G(3), with q ∈ G4).
Both possibilities follow in a similar way to the case mpi = 1.

We analize now the second relation. As q̃ij = −1,

((adcEj)Ei)
2 = q2

ji ((adcEi)Ej)
2 + 2qji(EiE2

jEi + EjE
2
i Ej).

By the first part Tp(E2
i ), Tp(E2

j ) ∈ J (s∗pχ), and as Tp is an algebra morphism, it is enough

to prove that Tp
(

((adcEi)Ej)
2
)
∈ J (s∗pχ), to conclude that also Tp

(
((adcEj)Ei)

2
)
∈



ON NICHOLS ALGEBRAS OF DIAGONAL TYPE 21

J (s∗pχ), and vice versa. Moreover we need just one of these two relations in order to have
a minimal set of relations.

If p = j, we have

Tp

(
((adcEi)Ep)

2
)

=
(
E+
i,1F pL

−1
p − qipF pL−1

p E+
i,1

)2

=
((
F pE

−
i,12LpEi

)
L−1
p − qipqppqipF pE

+
i,1L

−1
p

)2

=
(
−2q−1

ip
Ei

)2
= 4q2

ipE
2
i ∈ J (s∗pχ),

because q
pp

= q
pi
q
ip

= q
ii

= −1.
Now we consider p 6= i, j. If mpi,mpj 6= 0, we have two possibilities:
• qpp = −1, qipqpiqjpqpj = −1 so it is a diagram of type super D(2, 1;α)), or
• qpp = q−1

ip q
−1
pi = −qjpqpj ∈ G3 ∪G4 ∪G6.

For the first case, or the second when qpp ∈ G4,

Tp

(
((adcEi)Ej)

2
)

=
[
(adcEp)Ei, (adcEp)Ej

]2
c
.

Using (47) and E2
p if q

pp
= −1, or the quantum Serre relations

(adcEp)
2Ei = (adcEp)

2Ej = 0

if qpp ∈ G4, EiEpEjEp is a linear combination of greater words, so (EpEiEpEj)2 is also
a linear combination of greater words. Then,[

(adcEp)Ei, (adcEp)Ej
]2
c
∈ J +(s∗pχ),

by an analogous statement to Lemma 3.4 but for powers of hyperwords, and such relation
is in I+(s∗pχ).

For the remaining cases, qpp ∈ G3 ∪G6 and

Tp

(
((adcEi)Ej)

2
)

=
[
(adcEp)Ei, (adcEp)

2Ej
]2
c
.

We write (EpEiE
2
pEj)

2 as a linear combination of greater words using the quantum Serre
relations or (47), so

Tp

(
((adcEi)Ej)

2
)
∈ J +(s∗pχ)

by an analogous argument.
If mpi = 1, mpj = 0, we have two possibilities. If qpp = −1, then q̃pi 6= −1 and

q
ii

= q̃pi = q̃
pi
−1, so (53) is a generator of J (s∗pχ), as well as E2

p and Epj . By (9), we have
that

qpiqpj(1 + q̃pi)E2
pij = [Eppij , Eij ]c − [Ep, [Epij , Eij ]c]c ∈ J (s∗pχ),

so Tp(E2
ij) = E2

pij ∈ J (s∗pχ). If not, then q−1
pp = q̃pi 6= −1, and we write EpEiEjEpEiEj as

a linear combination of greater words modulo J (s∗pχ), using the quantum Serre relations
(observe that (q

ij
) is twist equivalent to the original braiding). Therefore Tp(E2

ij) = E2
pij ∈

J (s∗pχ).
If mpi > 1, mpj = 0, then qpp = −q̃pi ∈ G3, and the proof follows in a similar way to

the case qpp = −1, but using the relation (56).
If mpi = mpj = 0, the proof follows easily, because q

ii
= q

ij
q
ji

= q
jj

= −1, and

Tp

(
E2
ij

)
= E2

ij ∈ J (s∗pχ) by definition of the ideal. �



22 IVÁN ANGIONO

Lemma 3.11. Let i, j ∈ {1, . . . , θ} be such that qmijii q̃ij = 1. Then

Tp
(
(adcEi)mij+1Ej

)
∈ J (s∗pχ).

Proof. (i) The case p = i was considered in the first part of Theorem 2.9.

(ii) Let p = j: we analyze all the possible values of mip. If mip = 0, then qipqpi = 1, and

Tp ((adcEi)Ep) = EiF pL
−1
p − qipF pL−1

p Ei = (EiF p − F pEi)L−1
p ∈ J (s∗pχ).

Consider mip = 1; by (36) we have

Tp ((adcEi)Ep) =E+
i,mpi

F pL
−1
p − qipF pL−1

p E+
i,mpi

=
(
F pE

+
i,mpi

+ (mpi)q
pp

(qmpi−1
pp

q
pi
q
ip
− 1)LpE

+
i,mpi−1

)
L−1
p

− qips+
p χ(mpiαp + αi, αp)F pE

+
i,mpi

L−1
p

=(mpi)q
pp

(qmpi−1
pp

q
pi
q
ip
− 1)s∗pχ ((mpi − 1)αp + αi, αp)

−1E+
i,mpi−1

+ F pE
+
i,mpi

L−1
p − qipχ(αi,−αp)F pE+

i,mpi
L−1
p

=(mpi)qpp(q
−1−mpi
pp q−1

pi q
−1
ip − 1)qipqppE+

i,mpi−1.(66)

If mpi = 1, we have by this identity and Remark 2.10:

Tp
(
(adcEi)2Ep

)
= Tp

(
[Ei, (adcEi)Ep]c

)
=
[
(adcEp)Ei, a1Ei

]
c
,

where ampi := (mpi)qpp(q
−1−mpi
pp q−1

pi q
−1
ip −1)qipqpp ∈ k×. This element is in J (s∗pχ) because

mip = 1, so (adcEi)2Ep ∈ J (s∗pχ). We consider now mpi ≥ 2; by Lemma 3.8,

Tp
(
(adcEi)2Ep

)
=
[
E+
i,mpi

, ampiE
+
i,mpi−1

]
c
∈ J (s∗pχ).

Consider now mip = 2. We look at all the possible diagrams with two vertices and
note that mpi = 1, or there exists ζ ∈ G9 such that qii = −ζ, qipqpi = ζ7, qpp = ζ3. In
the first case, qpp ∈ {−1, q2

ii}, so this diagram is standard of type B2, and (45) belongs to
J (s∗pχ) by Lemma 3.8. Therefore

Tp
(
(adcEi)3Ep

)
= a1

[
(adcEp)Ei,

[
(adcEp)Ei, Ei

]
c

]
c
∈ J (s∗pχ).

For the second case, the braiding matrix of s∗pχ is q
ii

= −1, q
ip
q
pi

= ζ8, q
pp

= ζ3. Then

Tp
(
(adcEi)3Ep

)
=
[
(adcEp)

2Ei,
[
(adcEp)

2Ei, (adcEp)Ei
]
c

]
c
∈ J (s∗pχ),

because (60) is a generator of this ideal.
It remains to consider mip ∈ {3, 4, 5}. The unique diagram with mpi > 1 is

◦−ζ
−ζ12

◦ζ5 ,

where ζ ∈ G15, qii = −ζ and mip = 3, mpi = 2; applying sp we obtain

◦−1
−ζ13

◦ζ5 .

By (61) we write EiE
2
pEiE

2
pEiEpEi as a linear combination of words beginning with Ep,

or containing E3
p as a factor, or greater than this word for the order p < i. Multiplying
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on the left by E2
p and using that E3

p ∈ J (s∗pχ), (E2
pEi)

3EpEi can be written as a linear
combination of greater words, modulo J (s∗pχ). By Lemma 3.4 we conclude that

Tp
(
(adcEi)4Ep

)
=

[
E+
i,2,

[
E+
i,2,
[
E+
i,2, E

+
i,1

]
c

]
c

]
c

= [(E2
pEi)

3EpEi]c ∈ J (s∗pχ).

Finally we consider mpi = 1, so we have

sp (mipαi + αp) = mipαi + (mpi − 1)αp ∈ ∆
s∗pχ
+ ,

sp ((mip + 1)αi + αp) = (mip + 1)αi +mpiαp /∈ ∆
s∗pχ
+ .

If qpp = q
pp
6= −1 then mpi = 3 and (EpEi)2EpE

2
i is a linear combination of greater words

modulo J (s∗pχ), where we use first the quantum Serre relation (adcEp)2Ei = 0 to write
EpEiEp as a combination of the words E2

pEi, EiE
2
p and then (58), which also holds in

U(s∗pχ). By this relation,

Tp
(
(adcEi)4Ep

)
=

[
E+
i,1,

[
E+
i,1,
[
E+
i,1, Ei

]
c

]
c

]
c

∈ J (s∗pχ).

In other case, qpp = −1 and mip ∈ {3, 4, 5}, so we also have that

Tp
(
(adcEi)mip+1Ep

)
= [Empiαi+(mpi−1)αp , (adcEp)Ei]c ∈ J (s∗pχ),

by (59), (61) or (63), depending on the value of mip.

(iii) Let p 6= j: if mpi = 0 (i.e. q̃ip = 1), then q
ii

= qii, qijqji = q̃ij , so mij = mij , and
(adcEi)mij+1Ej = 0 holds in U(s∗pχ). Moreover, in U(s∗pχ) we have EpEi = q

pi
EpEi, so

(adcEi)(adcEp)X = q
ip

(adcEp)(adcEi)X,

for any X ∈ U(s∗pχ), by the second part of Lemma 3.7. By Remark 2.10 and the previous
results, in U(s∗pχ) we have

Tp
(
(adcEi)mij+1Ej

)
= (adcEi)

mij+1(adcEp)
mpjEj

= q
mpj(mij+1)
ip (adcEp)

mpj (adcEi)
mij+1Ej = 0.

Consider now mpi 6= 0. If mij = mpj = 0, we apply Lemma 3.7 to obtain

Tp ((adcEi)Ej) =
[
(adcEp)

mpiEi, Ej
]
c

= (adcEp)
mpi
([
Ei, Ej

]
c

)
= 0.

where we use that q
ij
q
ji

= q̃ij = 1, so in U(s∗pχ) it holds that
[
Ei, Ej

]
c

= 0. It remains to
consider the case in which i, j and p determine a connected diagram, and mpi 6= 0.

First we analize the case mij = 0, mpj 6= 0. If qpp = −1 it follows that mpi =
mpj = 1. Then q

ij
q
ji

= qipqpiqjpqpj , and EpEiEpEj is a linear combination of greater
words for the order p < i < j, modulo J (s∗pχ):

• if q
ij
q
ji

= 1, it follows from (44),
• if q

ij
q
ji
6= 1, we write EiEpEj as a linear combination of other words by (47),

where those words are greater than EiEpEj or begin with Ep, so we multiply on
the left by Ep and use that E2

p ∈ J (s∗pχ).

In this way, Tp ((adcEi)Ej) =
[
(adcEp)Ei, (adcEp)Ej

]
c
∈ J (s∗pχ). If mpi = mpj = 1 and

qpp 6= −1, then (adcbEp)2Ei, (adcbEp)2Ej ∈ J (s∗pχ); by these relations and (adcEi)Ej ,
EpEiEpEj can be written as a linear combination of greater words for the order p < i < j,
modulo J (s∗pχ), and also Tp ((adcEi)Ej) ∈ J (s∗pχ) in this case.
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If mpj = 1 and mpi > 1 (or analogously, mpj > 1, mpi = 1), then qppqpjqjp = 1, and
qpp 6= −1. Note that

q̃ij = s∗pχ(αi, αj)s∗pχ(αj , αi) = q
mpi
pp qpiqip.

If qmpipp qpiqip 6= 1, then (47) holds in U(s∗pχ), so we can write EiEpEj as a linear combi-
nation of other words, greater than EiEpEj for the order p < i < j, or beginning with
Ep. Multiplying on the left by Empip , we express Emijp EiEpEj as a linear combination of
greater words, using that Empi+1

p ∈ J (s∗pχ), or (adcEp)mpi+1Ei ∈ J (s∗pχ), so

Tp ((adcEi)Ej) =
[
(adcEp)

mpiEi, (adcEp)Ej
]
c
∈ J (s∗pχ).

If qmpipp qpiqip = 1 and qmpi+1
pp 6= 1, Emijp EiEpEj is written as a linear combination of greater

words for the same order using (adcEp)mpi+1Ei, (adcEp)2Ej and (adcEi)Ej , so we obtain
the same conclusion. If qmpipp qpiqip = 1 and q

mpi+1
pp = 1, then mpi = 2 or mpi = 3, and the

conclusion follows from (51) or (52), respectively.
If mpi,mpj > 1, there is only one possibility: mpi = mpj = 2. The proof is as above,

expressing E2
pEiE

2
pEj as a linear combination of greater words in the two possible cases:

if qpp /∈ G3, using the quantum Serre relations; if qpp ∈ G3, by (55) and E3
p.

We consider now mpj = 0, mij 6= 0. Note that mij ≤ 3, because we have a
connected diagram with three vertices and qii 6= −1: qmij+1

ii 6= 1. If mij = 3, it corresponds
to a diagram of type super G(3):

χ : ◦−1
q−1

◦q
q−3

◦q3 !sp s∗pχ : ◦−1
q
◦−1

q−3

◦q3 .

Using (49), Ei(EpEi)3Ej can be written as a linear combination of other words modulo
J (s∗pχ), which are greater than this word for the order p < i < j, or begin with Ep (recall
that E2

i ∈ J (s∗pχ)). Multiplying on the left by Ep, (EpEi)4Ej is expressed as a linear
combination of greater words, modulo J (s∗pχ), using that E2

p ∈ J (s∗pχ). By Lemma 3.4,

Tp
(
(adcEi)4Ej

)
=
[
(adcEp)Ei,

[
(adcEp)Ei,

[
(adcEp)Ei, (adcEp)(adcEi)Ej

]
c

]
c

]
c

=[(EpEi)
4Ej ]c ∈ J (s∗pχ).

If mij = 2, then mpi = 2 for the diagram

χ : ◦ζ6
ζ4

◦ζ5
ζ8

◦ζ !sp s∗pχ : ◦ζ6
ζ8

◦ζ
ζ8

◦ζ ,

where ζ ∈ G9, or mpi = 1. In the first case, using that E3
p ∈ J (s∗pχ) and the quantum Serre

relations we write E2
pEiE

2
pEiEjEpEi as a linear combination of greater words modulo

J (s∗pχ), for the order p < i < j, so

[E2
pEiE

2
pEiEjEpEi]c =

[[
(adcEp)

2Ei, (adcEp)
2(adcEi)Ej

]
c
, (adcEp)Ei

]
c
∈ J (s∗pχ).

If we call c = s∗pχ(4αp + 2αi + αj , αp + αi) = χ(2αi + αj , αp + αi), we have

Tp
(
(adcEi)3Ej

)
=
[
(adcEp)

2Ei,
[
(adcEp)

2Ei, (adcEp)
2(adcEi)Ej

]
c

]
c

= (adcEp)
([

(adcEp)Ei,
[
(adcEp)

2Ei, (adcEp)
2(adcEi)Ej

]
c

]
c

)
= −c (adcEp)

(
[E2

pEiE
2
pEiEjEpEi]c

)
∈ J (s∗pχ).
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If mpi = 1 and qpp 6= −1, using (adcEp)2Ei we write EpEiEpEiEjEi as a linear com-
bination of greater words and E2

pE
2
iEjEi, for the order induced by p < i < j, modulo

J (s∗pχ). Using now (adcEp)Ej , and (adcEi)3Ej when q̃ip
3 6= 1, or (51) in other case,

EpEiEpEiEjEi is expressed as a linear combination of greater words modulo J (s∗pχ). If
mpi = 1 and qpp = −1, then (48) is a generator of J (s∗pχ), so[[

(adcEp)Ei, (adcEp)(adcEi)Ej
]
c
, Ei

]
c
∈ J (s∗pχ),

or (45) (considered for the pair p, i) is a generator of the ideal. In any case we have that

Tp
(
(adcEi)3Ej

)
=
[
(adcEp)Ei,

[
(adcEp)Ei, (adcEp)(adcEi)Ej

]
c

]
c

= (adcEp)
[
Ei,
[
(adcEp)Ei, (adcEp)(adcEi)Ej

]
c

]
c
∈ J (s∗pχ).

Now we fix mij = 1. If mpi = 1, we analize each different possible diagram.
• If qpp 6= −1, then s∗pχ is twist equivalent to χ (restricted to the vertices p, i, j), and
EpEiEpEiEj can be expressed as a linear combination of greater words modulo
J (s∗pχ), using the quantum Serre relations

(adcEp)
2Ei = (adcEi)

2Ej = (adcEp)Ej = 0.

• If qpp = −1 and qiiqipqpi = 1, then q
ii

= −1 and q
ip
q
pi
q
ij
q
ji

= 1. In this way (44)
is a generator of the ideal, and by Lemma 3.7,

Tp
(
(adcEi)2Ej

)
=
[
(adcEp)Ei, (adcEp)(adcEi)Ej

]
c

= (adcEp)
([
Ei, (adcEp)(adcEi)Ej

]
c

)
∈ J (s∗pχ).

• If qpp = −1 and qiiqipqpi 6= 1, then q
pj
q
jp

= qpjqjp = 1, q
ij
q
ji

= q̃ij 6= −1 and

q−1
ii

= q−1
pp q

−1
ip q

−1
pi q

−1
ii = −q

ip
q
pi
q
ij
q
ji
6= −1,

so (53) or (54) are generators of J (s∗pχ), and then Tp
(
(adcEi)2Ej

)
∈ J (s∗pχ).

Now we fix mpi 6= 1. The possible connected diagrams of rank three with these condi-
tions must verify mpi = 2, mip = 1. Using the quantum Serre relations (adcEp)Ej =
(adcEp)3Ei = 0 if q3

pp 6= −1, or (46) in other case, E2
pEiEjEpEi can be expressed as a

linear combination of greater words for the order p < i < j, and by Lemma 3.4,[
(adcEp)

2(adcEi)Ej , (adcEp)Ei
]
c
∈ J (s∗pχ).

By Lemma (3.7) we conclude that

Tp
(
(adcEi)2Ej

)
=
[
(adcEp)

2Ei, (adcEp)
2(adcEi)Ej

]
c

= (adcEp)
([

(adcEp)Ei, (adcEp)
2(adcEi)Ej

]
c

)
∈ J (s∗pχ).

Finally we consider mij ,mpj 6= 0, so each pair of vertices is connected. If mij = 2,
there is just one possibility,

χ : ◦−1

q3

DD
DD

DD
DD

◦q

q−1 |||||||| q−2

◦−1

!sp s∗pχ : ◦−1
q
◦−1

q−3

◦q3



26 IVÁN ANGIONO

which is a diagram of type super G(3). By (49) and Lemma 3.5 we have that

Tp
(
(adcEi)3Ej

)
=
[
(adcEp)Ei,

[
(adcEp)Ei,

[
(adcEp)Ei, (adcEp)Ej

]
c

]
c

]
c

∈ J (s∗pχ).

The remaining case is mij = 1. If mpi = mpj = 1, there are two possible cases:
• qpp = −1; in this case (48) is a generator of the ideal J (s∗pχ) by definition, and by

Lemma 3.5 we have that

Tp
(
(adcEi)2Ej

)
=
[
(adcEp)Ei,

[
(adcEp)Ei, (adcEp)Ej

]
c

]
c
∈ J (s∗pχ).

• qpp 6= −1, qppqpiqip = qppqpjqjp = 1; s∗pχ is twist equivalent to χ, so (47) is a gener-
ator of J (s∗pχ). Using also the quantum Serre relations (adcEp)2Ei, (adcEp)2Ej ,
(adcEi)2Ej , EpEiEpEiEpEj is written as a linear combination of greater words,
modulo J (s∗pχ), so as before Tp

(
(adcEi)2Ej

)
∈ J (s∗pχ).

It remains to consider the following braiding:

◦ζ
ζ−1

BB
BB

BB
BB

◦−ζ
−ζ−1

−ζ−1 ||||||||
◦−1

, qpp = ζ ∈ G3, mij = mpj = 1, mpi = 2.

The diagram of s∗pχ is ◦−1
−1

◦ζ
ζ−1

◦−1 . Then (45) holds for p, i, and so EiE
2
pEiEp

is expressed as a linear combination of other words of the same Zθ-degree. Multiplying on
the left by E2

p, on the right by Ej , and using that E3
p = 0, E2

pEiE
2
pEiEpEj can be written

as a linear combination of greater words, so

Tp
(
(adcEi)2Ej

)
=
[
(adcEp)

2Ei,
[
(adcEp)

2Ei, (adcEp)Ej
]
c

]
c
∈ J (s∗pχ).

Therefore we analyze all the cases and the proof is completed. �

Lemma 3.12. Let i, j, k ∈ {1, . . . , θ} be such that qjj = −1, q̃ik = q̃ij q̃jk = 1. Then,

Tp
(
[Eijk, Ej ]c

)
∈ J (s∗pχ).

Proof. Note that in U(χ) we have the following identity, using the condition on the scalars,
(9) and (adcEi)Ek = E2

j = 0:

[Eijk, Ej ]c = qijqkj [Ej , Eijk]c = qijqkj [Eji, Ejk]c ,

so it is enough to prove that one of these relations is applied in J (s∗pχ) by Tp for each
possible diagram. Let p = j. Note that q

pp
= −1, q

ip
q
pi
q
pk
q
kp

= q
ik
q
ki

= 1, so (adcEi)Ek
and (44) are generators of J (s∗pχ). By (36) we have:

Tp
(
[Eipk, Ep]c

)
=
[
a1Ei, (adcEp)Ek

]
c
F pL

−1
p + qipqkpF pL

−1
p

[
a1Ei, (adcEp)Ek

]
c

=a1

(
q−1
ip
q−1
pp
q−1
kp

+ qipqkp

)
F pL

−1
p

[
Ei, (adcEp)Ek

]
c

+ a1q
−1
pk (1− qpkqkp) (EiEk + qipqpkqikEkEi)

=a1q
−1
pk (1− qpkqkp)

(
adcEi

)
Ek ∈ J (s∗pχ).

Let p = i, which is analogous to the case p = k. By (64) and (66),

Tp
(
[Ejp, Ejk]c

)
=
[
ampj (adcEp)

mpj−1Ej , (adcEp)
mpj (adcEj)Ek

]
c
.
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Note that mpj = 1, 2. If mpj = 1, qpp 6= −1 or mpj = 2, qpp /∈ G3, then q
mpj
pp qpjqjp = 1. In

this case, −q
jj

= q
pk
q
kp

= q
pj
q
jp
q
kj
q
jk

= 1, so (adcEp)mpj+1Ej = 0 = (adcEp)Ek. Note
also that (44) is a generator of J (s∗pχ), hence Tp

(
[(adcEj)Ei, (adcEj)Ek]c

)
∈ J (s∗pχ). If

qpp = −1, then
q
jj
q
jp
q
pj

= q
jj
q
jk
q
kj

= 1, q
pk
q
kp

= 1,

hence in U(s∗pχ), (adcEj)2Ep = (adcEj)2Ek = 0 if q
jj
6= −1, or (44) if q

jj
= −1: in this

way,
Tp
(
[Ejp, Ejk]c

)
= a1

[
Ej , (adcEp)(adcEj)Ek

]
c
∈ J (s∗pχ).

The remaining case is qpp ∈ G3: by (46) we obtain that

Tp
(
[Ejp, Ejk]c

)
= a2

[
(adcEp)Ej , (adcEp)

2(adcEj)Ek
]
c
∈ J (s∗pχ).

Finally take p 6= i, j, k. First, the proof is trivial if p is not connected with i, j, k,
because in such case s∗pχ is twist equivalent to χ, and then

Tp
(
[Eijk, Ej ]c

)
=
[
Eijk, Ej

]
c
∈ J (s∗pχ).

Now, if p is connected just with i (or analogously, just with k), we have

q
jj

= −1, q
ji
q
ij
q
jk
q
kj

= 1, q
ik
q
ip

= 1,

and by Lemma 3.7:

Tp
(
[Eijk, Ej ]c

)
=
[
(adcEp)

mpi(Eijk), Ej
]
c

= (adcEp)
mpi
([
Eijk, Ej

]
c

)
∈ J (s∗pχ).

If p is connected just with j, then q̃pj ∈ {q̃ij , q̃jk}, and mpj = 1. We assume that q̃pj =
q̃ij = q̃kj

−1. If qppq̃ip = 1, s∗pχ is twist equivalent to χ; in other case, qpp = −1, and then

q
jj

= qpjqjp, q
pj
q
jp

= q−1
pj q

−1
jp = qkjqjk = q

kj
q
jk
,

so in both cases
[
(adcEp)(adcEj)Ek, Ej

]
c
∈ J (s∗pχ). Therefore EpEjEkEpEjEi is a

linear combination of greater words (for the order p < j < k < i), so we have that

Tp
(
[(adcEj)Ek, (adcEj)Ei]c

)
=
[
(adcEp)(adcEj)Ek, (adcEp)(adcEj)Ei

]
c
∈ J (s∗pχ).

The remaining case is that p is connected with two consecutive vertices. We can assume
that p is connected with i and j. There exist three diagrams satisfying these conditions
(we write also the diagram corresponding to s∗pχ for each case):

◦−1
q−1

q2 DD
DD

DD
DD

◦−1
q

q−1

◦qkk
sp ///o/o/o/o/o/o/o ◦q2

q−2 DD
DD

DD
DD

◦q−1
q

q

◦qkk

◦−1 ◦−1

,

◦−1
q

−q−1 DD
DD

DD
DD

◦−1
q−1

−1

◦qkk
sp ///o/o/o/o/o/o/o ◦−q−1

−q FFFFFFFF ◦−1
q−1

−1

◦qkk

◦−1 ◦−1

,

◦−1
q2

q−1 EE
EE

EE
EE

◦−1
q−2

q−1

◦qkk
sp ///o/o/o/o/o/o/o ◦−1

q2

q−1 EE
EE

EE
EE

◦−1
q−2

q−1

◦qkk

◦q ◦q

.
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Here q 6= −1. For the three diagrams, mpi = mpj = 1. Consider the order p < j < i < k:

Tp
(
[Eji, Ejk]c

)
=
[[
Epj , Epi

]
c
,
[
Epj , Ek

]
c

]
c

= [EpEjEpEiEpEjEk].

We can write EpEjEpEiEpEjEk as a linear combination of greater words modulo J (s∗pχ):
in the first case, using (48); for the second one, we write EjEpEiEpEj as a linear com-
bination of other words of the same degree by (53), where those words are greater than
EjEpEiEpEj or begin with Ep, and then we use the quantum Serre relations; in the last
case, EjEpEi is a linear combination of other words of the same degree by (47), where
those words are greater than EjEpEi or begin with Ep. In all the cases we conclude that
Tp
(
[Eji, Ejk]c

)
∈ J (s∗pχ). �

Lemma 3.13. Let i, j ∈ {1, . . . , θ} be such that qjj = −1, and also qii = ±q̃ij ∈ G3, or
qiiq̃ij ∈ G6. Then, Tp

(
[(Eiij , Eij ]c

)
∈ J (s∗pχ), for any p ∈ {1, . . . , θ}.

Proof. We denote x := [(Eiij , Eij ]c. We begin with the case p = j. Note that mpi = 1
(because qpp = −1, q̃pi 6= 1), 3αi + 2αp /∈ ∆χ

+, so

sp(3αi + 2αp) = 3αi + αp /∈ ∆
s∗pχ
+ .

Using (66) and (adcEi)3Ep ∈ J (s∗pχ), we obtain that

Tp(x) = a2a1

[[
Epi, Ei

]
c
, Ei

]
c
∈ J (s∗pχ).

Now let p = i. By Lemma 3.4 it is equivalent to prove that

Tp(x′) ∈ J (s∗pχ), where x′ :=
[
Ejp,

[
Ejp, Ep

]
c

]
c
,

because we have proved that Tp apply the generating relations of degree less than x in
elements of J (s∗pχ). By (36),

Tp(x′) = a2
1a2

[
(adcEp)Ej , Ej

]
c
∈ J (s∗pχ),

because it holds that q
jj

= −1, or q
jj
q
jp
q
pj

= 1.
Finally, let p 6= i, j; the case mpi = mpj = 0 follows easily as in the previous Lemmata,

so consider the case in which p, i, j determine a connected subdiagram of rank three. We
note that qii ∈ G3.

We take first mpi 6= 0, mpj = 0. The possible braidings verify that mpi = 1, so for the
order p < i < j,

Tp(x) =
[[
Epi,

[
Epi, Ej

]
c

]
c
,
[
Epi, Ej

]
c

]
c

=
[
EpEi(EpEiEj)

2
]
c
,

where we use that (adcEp)Ej = 0 in U(s∗pχ). As qpiqipqii = 1 or qpiqip = ±qii, we have that
q
ii

= −1, or q
ii
q
ip
q
pi

= 1, or q2
ii
q
ip
q
pi

= 1, or q
ii

= −q
ip
q
pi
∈ G3, so EpEiEpEiEjEpEiEj

can be expressed as a linear combination of greater words modulo J (s∗pχ), using the
quantum Serre relations or (45). We deduce that Tp(x) ∈ J (s∗pχ), using the Lemma 3.4.
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Now let mpi = 0, mpj 6= 0. We note that mpj = 1 for any possible diagram, and in
U(s∗pχ) we have that:

Tp(x) =
[
(adcEi)

2(adcEp)Ej , (adcEi)(adcEp)Ej
]
c

= q3
ip

[
(adcEp)(adcEi)

2Ej , (adcEp)(adcEi)Ej
]
c

= q3
ip

(adcEp)
[
(adcEi)

2Ej , (adcEp)(adcEi)Ej
]
c

= q3
ip

(adcEp)
[
(adcEi)

2(adcEj)Ep, (adcEi)Ej
]
c

= 0,

where we apply (64) (because (adcEp)Ei = 0), (9), and finally that (46) is a generator of
J (s∗pχ), because q

ii
= qii ∈ G3, mji = mjp = 1, and (45) is also a generator by Lemma

3.8.
Finally, consider mpi,mpj 6= 0. There exists just one possible braiding: qpp = −1 =

qpjqjp, qii = −q̃ij = q−1
pi q

−1
ip . The diagram of s∗pχ is ◦−1

−1
◦−1

qii
◦−1 , and the

solution is analogous to the previous case, but now we use (48). �

Lemma 3.14. Let i, j, k ∈ {1, . . . , θ} be such that qii = ±q̃ij ∈ G3, q̃ik = 1, and qjj q̃ij =
qjj q̃jk = 1 or qjj = −1, q̃ij q̃jk = 1. Then, for any p ∈ {1, . . . , θ},

Tp
(
[Eiijk, Eij ]c

)
∈ J (s∗pχ).

Proof. We denote x = [Eiijk, Eij ]c. We begin with the case p = k. In all the cases we
have that mkj = 1, and s∗pχ satisfies the same conditions, so (46) is a generator of J (s∗pχ).
Then,

Tp(x) ∼=
[
(adcEi)

2(a1Ej), (adcEi)(adcEk)Ej
]
c
∼= a1qik

[
Eiij , Ekij

]
c

∼= a1qik
[
Eiijk, Eij

]
c
∼= 0 (mod J (s∗pχ)),

where we apply first (66), then (64), (adcbEk)Ei = 0 for the second line, y finally (9) plus
the fact that (45) is a generator of J (s∗pχ). The cases p = i, p = j are proved in a similar
way to the case p = i of previous Lemma.

Finally take p 6= i, j, k, and assume that p is connected with at least one of the other
vertices; in other case the proof is easy as above. We have two possible cases: mpi = 1,
mpj = mpk = 0, or mpk = 1, mpj = mpi = 0. For the first one,

Tp(x) =
[[
Epi,

[
Epi, Ejk

]
c

]
c
, [Epi, Ej ]c

]
c

,

and we have two possibilities:
• if qpp = −1, then qiiq̃ip = 1, and q

ii
= −1, so (48) is a generator of J (s∗pχ) for the

subdiagram determined by p, i, j. Therefore Tp(x) ∈ J (s∗pχ).
• if qpp 6= −1, then qpp = q−1

ip q
−1
pi = qii, so s∗pχ is twist equivalent to χ and (46)

is a generator of J (s∗pχ). Then Tp(x) ∈ J (s∗pχ), because it is obtained after to
apply (adcpEp)3 to (46) and multiply by a non-zero scalar, where we use also the
quantum Serre relations involving Ep.

For the second case, we use (adcEp)Ei, (adcEp)Ej ∈ J (s∗pχ) to obtain that

Tp(x) ∼=
[
(adcEi)

2(adcEj)(adcEp)Ek, (adcEi)Ej
]
c

∼= q2
ip
q
jp

[
(adcEp)(adcEi)

2(adcEj)Ek, (adcEi)Ej
]
c

∼= q2
ip
q
jp

(adcEp)
([

(adcEi)
2(adcEj)Ek, (adcEi)Ej

]
c

)
∼= 0 (mod J (s∗pχ)),
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by (64) and the fact that (46) is a generator of J (s∗pχ). �

Lemma 3.15. Let i, j, k ∈ {1, . . . , θ} be such that q̃ik, q̃ij , q̃jk 6= 1. Then, for any p,

Tp

(
Eijk −

1− q̃jk
qkj(1− q̃ik)

[Eik, Ej ]c − qij(1− q̃jk)EjEik
)
∈ J (s∗pχ).

Proof. Let x = Eijk−
1−q̃jk

qkj(1−q̃ik) [Eik, Ej ]c− qij(1− q̃jk)EjEik. By a direct computation we
obtain the same relation, up to an scalar, if we permute the vertices i, j, k, where we use
that q̃ikq̃ij q̃jk = 1, so it is enough to consider one of these permutations for each p.

Consider then p = k, which is analogous to take p = i or p = j. Note that {mpi,mpj} =
{1, 1}, or {mpi,mpj} = {1, 2}, so we fix mpj = 1, mpi ∈ {1, 2}. By (66),

Tp (Eijk) = (q−1
pp q

−1
pj q

−1
jp − 1)qjpqpp

[
(adcEp)

mpiEi, Ej
]
c
,

Tp
(
[Eik, Ej ]c

)
= (q−1−mpi

pp q−1
pi q

−1
ip − 1)qipqpp

[
(adcEp)

mpi−1Ei, (adcEp)Ej
]
c
,

Tp (EjEik) = (q−1−mpi
pp q−1

pi q
−1
ip − 1)qipqpp(adcEp)Ej(adcEp)

mpi−1Ei.

If mpi = 2, or mpi = 1, qpp 6= −1, then q
ik
q
ki
, q
ij
q
ji
, q
jk
q
kj
6= 1 and we deduce that

Tp(x) ∈ J (s∗pχ) from the fact that (47) is a generator of J (s∗pχ), because we can write
then E

mpi
p EiEj as a linear combination of greater words (for the order on the letters

p < i < j), modulo J (s∗pχ), y apply then Lemma 3.4. If qpp = −1 then q
ij
q
ji

= 1, so
(adcEi)Ej ∈ J (s∗pχ). By a direct computation, there exists a ∈ k× such that

Tp(x) = a(adcEp)(adcEi)Ej ∈ J (s∗pχ).

Let p 6= i, j, k. We note that p is not connected with any of the other vertices (so
the proof follows easily as in the previous Lemmata), or p is connected just with one of
these vertices. For the last case we can assume that mpi 6= 0, so the unique possibility is
mpi = mip = 1. Then q̃ik = q

ik
q
ki

, q̃ij = q
ij
q
ji

, q̃jk = q
kj
q
jk
6= 1, so (47) is a generator of

J (s∗pχ). By Lemma 3.7 and the relations (adcEp)Ej = (adcEp)Ek = 0, we deduce that
Tp(x) is obtained, up to a non-zero scalar, after to apply (adcEp) to (47), modulo J (s∗pχ),
so Tp(x) ∈ J (s∗pχ). �

Lemma 3.16. Let i, j, k ∈ {1, . . . , θ} be such that
(i) qii = qjj = −1, q̃ij

2 = q̃jk
−1, q̃ik = 1, or

(ii) q̃ij = qjj = −1, qii = −q̃jk2 ∈ G3, q̃ik = 1, or
(iii) qkk = q̃jk = qjj = −1, qii = −q̃ijk ∈ G3, q̃ik = 1, or
(iv) qjj = −1, q̃ij = q−2

ii , q̃jk = −q−ii 3, q̃ik = 1, or
(v) qii = qjj = qkk = −1, ±q̃ij = q̃jk ∈ G3, q̃ik = 1,

Then, for any p, Tp
([

[Eij , Eijk]c , Ej
]
c

)
∈ J (s∗pχ).

Proof. Denote x =
[
[Eij , Eijk]c , Ej

]
c
; we analyze each case.

(i) We begin with the case p = k; by (66) and as E2
i , E

2
j , (adcEi)Ep are generators of

J (s∗pχ) (note that s∗pχ is twist equivalent to χ), we have that

Tp(x) ∼=a1

[[
Eipj , Eij

]
c
, Epj

]
c

∼= a1qip

[[
Epij , Eij

]
c
, Epj

]
c

∼=a
[[
Epji, Eji

]
c
, Epj

]
c

∼= a
[
EpEjEiEjEiEpEj

]
c

(
mod J (s∗pχ)

)
,

for some a ∈ k×, where we use the order on the letters p < j < i. As (48) is also
a generator of J (s∗pχ), we can write EjEiEjEiEpEj as a linear combination of other
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words, greater than this word or beginning with Ep. Multiplying on the left by Ep and
using the quantum Serre relations EpEjEiEjEiEpEj is expressed as a linear combination
of greater words modulo J (s∗pχ), so by Lemma 3.4, Tp(x) ∈ J (s∗pχ).

Let p = j; note that mpi = mpk = 1. Also, q−1
ii

= q
ik
q
ki

, so (adcEi)2Ek ∈ J (s∗pχ); use
(66) and work as in the case p = i of Lemma 3.13 to obtain that

Tp(x) =a2
1

[
Ei, Eipk

]
c
F pL

−1
p − a2

1q
2
ipqkpF pL

−1
p

[
Ei, Eipk

]
c

= b (adcEi)
2Ek ∈ J (s∗pχ),

for some b ∈ k×.
Let now p = i. As in the previous Lemmata, it is enough to prove the statement for

x′ :=
[
[Ekjp, Ejp]c , Ej

]
c
.

We apply (66) to obtain, for the order on the letters k < i < j,

Tp(x′) =
[[[

Ek, a1Ej
]
c
, Ej

]
c
, (adcEp)Ej

]
c

= a2
1

[
EkE

2
jEpEj

]
c
.

As q
jj
q
ji
q
ij

= q2
jj
q
jk
q
kj

= 1, we deduce by (51) if q
jj
∈ G3, or by (adcEj)2Ep =

(adcEj)3Ek = 0, if q
jj
/∈ G3, that EkE

2
jEpEj is a linear combination of greater words, so

Tp(x′) ∈ J (s∗pχ), and then Tp(x) ∈ J (s∗pχ).
If p 6= i, j, k, then p is not connected with these three vertices, or p is connected just

with i, satisfying also qppq̃pi = 1, or qpp = −1, q̃ipq̃ij = 1. For the last case we have:

Tp(x) ∼=
[[
Epij , Epijk

]
c
, Ej

]
c

∼= (adcEp)
([[

Epij , Eijk
]
c
, Ej

]
c

)
∼=(adcEp)

([
EpEiEjEiEjEkEj

]
c

)
mod J (s∗pχ)

by using first Lemma 3.7, then (adcEp)Ej , (adcEp)Ej , (adcEp)Ej ∈ J (s∗pχ), and fixing
the order p < i < j < k. We conclude that Tp(x) ∈ J (s∗pχ) by using (50) if qpp = −1, or
using the quantum Serre relations corresponding to adcEp to write EpEiEjEiEjEkEj as
a linear combination of greater words and apply Lemma 3.4 to deduce that[

EpEiEjEiEjEkEj
]
c
∈ J (s∗pχ).

(ii) , (iii) , (iv) , (v) If p ∈ {i, j, k} the proof is completely analogous to the previous case.
Let p 6= i, j, k, so p is not connected with any of these vertices, or it connected only

with i, or only with k. The first case is easy. For the second case, mpi = 1, because qpp = 1
or q−1

pp = q̃ip 6= −1, and the solution follows as in the previous case. For the last case,
mpk = 1 and the proof is also analogous, considering the previous x′. �

Lemma 3.17. (i) Let i, j, k, l ∈ {1, . . . , θ} be such that qkk = −1, q̃jk
2 = q̃lk

−1 = qll,

qjj q̃ij = qjj q̃jk = q̃ik = q̃il = q̃jl = 1. Then, for all p, Tp
([[

[Eijkl, Ek]c , Ej
]
c
, Ek

]
c

)
∈

J (s∗pχ).
(ii) Let i, j, k ∈ {1, . . . , θ} be such that qii = qjj = −1, q̃ij

3 = q̃jk
−1 = qkk 6= ±1, q̃ik = 1.

Then, for all p, Tp
([[

Eij , [Eij , Eijk]c
]
c
, Ej

]
c

)
∈ J (s∗pχ).

Proof. (i) The proof is analogous to (i) of the previous Lemma, because if p 6= i, j, k, l is
connected with some of them, then p is connected only with i with the same conditions.

(ii) If p ∈ {i, j, k} the proof is completely analogous to the previous Lemma. If p 6= i, j, k is
connected with some of them, then p is connected only with i and qpp = −1, q̃pi = −q̃ij ∈
G4. Anyway, the proof is analogous to the previous Lemma. �
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Lemma 3.18. (i) Let i, j, k ∈ {1, . . . , θ} be such that qjj = q̃ij
2 = q̃jk ∈ G3, q̃ik = 1.

Then, for all p, Tp
([

[Eijk, Ej ]c , Ej
]
c

)
∈ J (s∗pχ).

(ii) Let i, j, k ∈ {1, . . . , θ} be such that qjj = q̃ij
3 = q̃jk ∈ G4, q̃ik = 1. Then, for all p,

Tp

([[
[Eijk, Ej ]c , Ej

]
c
, Ej

]
c

)
∈ J (s∗pχ).

Proof. (i) Let x =
[
[Eijk, Ej ]c , Ej

]
c
. For the case p = k, note that mpj = 1 in all the

cases, so for the order i < p < j on the letters we have by (66):

Tp(x) = a1

[[
Eij , Epj

]
c
, Epj

]
c

=
[
EiEjEpEjEpEj

]
c
.

As (adcEp)2Ej ∈ J (s∗pχ), or (48) is a generator of J (s∗pχ), and also E3
j , (adcEk)Ei ∈

J (s∗pχ), EiEjEkEjEkEj can be written as a linear combination of greater words modulo
J (s∗pχ), so Tp(x) ∈ J (s∗pχ).

Consider now p = j. By (66) and the relations defining J (s∗pχ),

Tp(x) =
[[[

Ei, (adcEp)
2Ek

]
c
, F pL

−1
p

]
c
, F pL

−1
p

]
c

= a(adcEi)Ek,

for some a ∈ k×, so Tp(x) ∈ J (s∗pχ).
Let p = i. It is equivalent to prove that Tp(x′) ∈ J (s∗pχ), where x′ =

[
[Ekjp, Ej ]c , Ej

]
c
.

We note that mij = 1 for all the possible diagrams, so Tp(x) = a1

[[
Ekj , Epj

]
c
, Epj

]
c
, and

a proof similar to the case p = k tells us that Tp(x′) ∈ J (s∗pχ), so Tp(x) ∈ J (s∗pχ).
Finally, if p 6= i, j, k, then p is not connected to any of these vertices, or p is connected

only with i, or it is connected only with k. The proof of the first case is again trivial, and
for the other two cases Tp(x) ∈ J (s∗pχ), using Lemma 3.7 and the fact that s∗pχ is twist
equivalent to χ.

(ii) The proof is analogous to (i) . �

Lemma 3.19. (i) Let i, j, k ∈ {1, . . . , θ} be such that qii = q̃ij = −1, qjj = q̃jk
−1 6= −1,

q̃ik = 1. Then, for all p, Tp
(
[Eij , Eijk]c

)
∈ J (s∗pχ).

(ii) Let i, j, k ∈ {1, . . . , θ} be such that qjj = qkk = q̃jk = −1, qii = −q̃ij ∈ G3, q̃ik = 1.
Then, for all p, Tp

(
[Eiijk, Eijk]c

)
∈ J (s∗pχ).

Proof. (i) Let x = [Eij , Eijk]c. If p = k, mpj = 1 in all the possible diagrams and then:

Tp(x) = a1[Eikj , Eij ]c = a1qip[Ekij , Eij ]c.

We consider the two possible values of qpp. When qpp 6= −1, the diagram is of Cartan
C3 type, associated to a root of order 4, and s∗pχ is twist equivalent to χ. Therefore
Tp(x) ∈ J (s∗pχ), using that (53) is again a generator of J (s∗pχ). If qpp = −1, then
qjj ∈ G3 ∪G4 ∪G6, and q

jj
= q̃

ij
= q

ii
= −1, so (43) is a generator of J (s∗pχ) and

Tp(x) = a1qip[Ekij , Eij ]c = a1qip adcEk
(
E2
ij

)
∈ J (s∗pχ).

If p = j, we consider the different possible orders of qpp. If qpp ∈ G4 ∪G6, then p is a
Cartan vertex and s∗pχ is twist equivalent to s∗pχ, and mpi = 2, 3

Tp(x) = ampi
[
(adcEp)

mpi−1Ei, [(adcEp)
mpi−1Ei, Epk]c

]
c

= [Empi−1
p EiE

mpi−1
p EiEpEj ]c.
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We use the quantum Serre relations and (53) to write Empi−1
p EiE

mpi−1
p EiEpEj as a linear

combination of greater words modulo J (s∗pχ). If qpp ∈ G3, then

◦qii=−1
−1

◦qpp
q2pp
◦qkk=−1 !sp ◦qpp

q2pp

JJJJJJJJJ

◦−qpp

−q2pp wwwwwwwww

−q2pp
◦qkk=−1.

The result follows in a similar way, but using that (45) and (47) are generators of J (s∗pχ)
in this case.

If p = i, by Lemma 3.5, it is equivalent to prove that

Tp(x′) ∈ J (s∗pχ), x′ := [Ekjp, Ejp]c .

Note that (adcEj)2Ek ∈ J (s∗pχ), because for all the possible diagrams q−1
jj

= q
jk
q
kj
6= −1.

By (66), we have

Tp(x′) = a2
1

[
(adcEk)Ej , Ej

]
c
∈ J (s∗pχ).

Finally, if p 6= i, j, k, then p is not connected with any of these vertices, or p is connected
just with i and mpi = 1, or p is connected just with k and mpk = 1. The proof is analogous
to the corresponding case in previous Lemmata.

(ii) If p 6= i, j, k, then p is not connected with them and the result follows easily. In
consequence, we consider the case p ∈ {i, j, k}. If p = k, s∗pχ is twist equivalent to χ and
(45) is a generator of J (s∗pχ). Therefore (66) implies that

Tp
(
[Eiijk, Eijk]c

)
= a2

2

[
Eiij , Eij

]
c
∈ J (s∗pχ).

If p = j, we have that

◦qii −qii ◦
−1

−1 ◦
−1 !sp ◦−1

−1

EE
EE

EE
EE

◦q2ii

−q2ii
{{{{{{{{

qii ◦−1.

By (66) and fixing the order p < i < k, we have that

Tp
(
[Eiijk, Eijk]c

)
= a2

2

[[
Epi, Epik

]
c
, Epik

]
c

= [EpEiEpEiEkEpEiEk]c

We write EpEiEpEiEkEpEiEk as a linear combination of greater words modulo J (s∗pχ)
using that (47), (45), E2

p, E
2
k and Eiik are generators of J (s∗pχ), so Lemma 3.4 implies

that Tp
(
[Eiijk, Eijk]c

)
∈ J (s∗pχ).

Finally let p = i. By Lemma 3.5, it is equivalent to prove that

Tp(x′) ∈ J (s∗pχ), x′ := [Ekjp, Ekjpp]c .

Note that s∗pχ is twist equivalent to χ, so x2
jp is a generator of J (s∗pχ). Applying (66),

Tp(x′) = a2
2a1

[
Ekjp, Ekj

]
c

= a2
2a1

[
E2
kj , Ep

]
c
∈ J (s∗pχ).

Therefore Tp
(
[Eiijk, Eijk]c

)
∈ J (s∗pχ). �
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Lemma 3.20. (i) Let i, j, k ∈ {1, . . . , θ} be such that qii = q̃ij = −q̃ik ∈ G3, q̃jk = 1,
qjj = −1, qkk ∈ {−1, q̃ik

−1}. Then, for all p,

Tp
([
Ei, [Eij , Eik]c

]
c

+ qjkqikqji [Eiik, Eij ]c + qijEijEiik
)
∈ J (s∗pχ).

(ii) Let i, j, k ∈ {1, . . . , θ} be such that qii = qkk = −1, q̃ik = 1, q̃ij ∈ G3, qjj = −q̃jk =
±q̃ij. Then, for all p,

Tp

(
[Ei, Ejjk]c − q

−1
kj (1 + q2

jj) [Eijk, Ej ]c + (1 + qjj)(1 + q2
jj)EjEijk

)
∈ J (s∗pχ).

Proof. If p 6= i, j, k, then p is not connected with these three vertices and the proof follows
easily for both relations. We consider then p ∈ {i, j, k} for each item.

(i) If p = k, EpEiEpEiEjEi is a linear combination of greater words by (45) and the
quantum Serre relations, depending on the value of qkk. In this way, there exist a, b ∈ k
such that

x′ := [EpEiEpEiEjEi]c + a[EpE
2
iEpEiEj ]c + b[EpEiEj ]c[EpE

2
i ]c ∈ J (s∗pχ).

On the other hand, by (66) and for the order on the letters p < i < k,

Tp
([
xi, [(adc xi)xj , (adc xi)xk]c

]
c

)
= a1

[
(adcEp)Ei,

[
(adcEp)(adcEi)Ej , Ei

]
c

]
c

= a1[EpEiEpEiEjEi]c,

Tp
([

(adc xi)2xk, (adc xi)xj
]
c

)
= a1

[[
(adcEp)Ei, Ei

]
c
, (adcEp)(adcEi)Ek

]
c

= a1[EpE
2
iEpEiEj ]c;

Tp
(
(adc xi)xj(adc xi)2xk

)
= a1(adcEp)(adcEi)Ek

[
(adcEp)Ei, Ei

]
c

= a1[EpEiEj ]c[EpE
2
i ]c.

Calculating explicitly the scalars a, b, we notice that Tp (x) = a1x′ ∈ J (s∗pχ). The case
p = j is analogous.

Finally the case p = i follows as the corresponding case in Lemma 3.15.

(ii) The proof is analogous to the previous case. �

Lemma 3.21. (i) Let i, j ∈ {1, . . . , θ} be such that mij ,mji > 1. Then, for all p,

Tp
(
(1− q̃ij)qjjqji

[
Ei, [Eij , Ej ]c

]
c
− (1 + qjj)(1− qjj q̃ij)E2

ij

)
∈ J (s∗pχ).

(ii) Let i, j ∈ {1, . . . , θ} be such that qjj = −1, qiiq̃ij /∈ G6 or mjj = 2, and qii ∈ G4,
mij = 4, or mij ∈ {4, 5}. Then, for all p,

Tp

([
Ei, [Eiij , Eij ]c

]
c
− 1− qiiq̃ij − q2

iiq̃ij
2qjj

(1− qiiq̃ij)qji
E2
iij

)
∈ J (s∗pχ).

(iii) Let i, j ∈ {1, . . . , θ} be such that qjj = −1, 5αi + 4αj ∈ ∆χ
+. Let

υ = q̃ij , a = (1− υ)(1− q4
iiυ

3)− (1− qiiυ)(1 + qii)qiiυ

b = (1− υ)(1− q6
iiυ

5)− a qiiυ,

d =
b− (1 + qii)(1− qiiυ)(1 + υ + qiiυ

2)q6
iiυ

4

a q3
iiq

2
ijq

3
ji

.



ON NICHOLS ALGEBRAS OF DIAGONAL TYPE 35

Then, for all p, Tp
(

[E2αi+αj , E4αi+3αj ]c − d E2
3αi+2αj

)
∈ J (s∗pχ).

Proof. (i) Let x be the relation we are considering here. We note that if p 6= i, j then
mpi = mpj = 0, so the proof follows easily. Moreover the conditions about i, j are the
same but one relation implies the other holds in U(χ) too by Lemma 3.4. Therefore it is
enough to consider one of cases p = i or p = j; consider p = j, in order to apply (66).
Note that mpi = 2, 3.

If mpi = 3, then mip = 2 and we have that

Tp
([
Ei, [Eip, Ep]c

]
c

)
=
[
Epppi, Epi

]
c
.

By (9) we can write Tp(x) as a linear combination of[
Ep,

[
Eppi, Epi

]
c

]
c
, E2

ppi;

note that
[
Ep,

[
Eppi, Epi

]
c

]
c

= [E3
pEiEpEi]c if we consider p < i. Using the quantum Serre

relations or (58), depending on the case (there exist two possible diagrams), E3
pEiEpEi is

expressed as a linear combination of greater words modulo J (s∗pχ), so Tp(x) ∈ J (s∗pχ) by
Lemma 3.4.

If mpi = 2, there exist three diagrams such that mip = 2, and two such that mip = 3.
In all the cases,

Tp
(
E2
ip

)
=a2

2 E
2
pi,

Tp
([
Ei, [Eip, Ep]c

]
c

)
=a2a1

[
Eppi, Ei

]
c

= a2a1

[
Ep,

[
Epi, Ei

]
c

]
c

+ a2a1 qpi(qpp − qii)E
2
pi,

where we use (9) for the last equality. If qpp = −ζ, q̃ip = ζ7, qii = ζ3, for some primitive
root ζ ∈ G9, then s∗pχ is twist equivalent to χ and (57) is a generator of J (s∗pχ), so
Tp(x) ∈ J (s∗pχ) by this relation and Lemma 3.4. For the other braidings q

ii
= −1, so[

Epi, Ei
]
c
∈ J (s∗pχ) and the coefficient of E2

pi in the expression of Tp(x) is zero. Then
Tp(x) ∈ J (s∗pχ).

(ii) Let x be the relation we are considering in this item. First we consider p = j; if
qpp = −1, then mpi = 1, so

sp(3αi + αp) = 3αi + 2αp, sp(3αi + 2αp) = 3αi + αp ∈ ∆
s∗pχ
+ ,

so mip ≥ 3. Applying (66) we have that:

Tp
(
E2
iip

)
= a2

1

[
Epi, Ei

]2
c
,

Tp
([
Ei, [Eiij , Eij ]c

]
c

)
= a2

1

[
Epi,

[[
Epi, Ei

]
c
, Ei

]
c

]
c

.

As mip ≥ 3, (58) is a generator of J (s∗pχ), or mip = 3, q
ii
/∈ G4, so EpEiEpE

3
i can be

written as a linear combination of greater words modulo J (s∗pχ), for the order p < i, using
the corresponding quantum Serre relation and E2

p. In both cases we apply Lemma 3.4 to
deduce that Tp(y) ∈ J (s∗pχ).

If mpi = 2, then mip = 3; in this case,

Tp
(
E2
iip

)
= a2

2

[
Eppi, Epi

]2
c
,

Tp
([
Ei, [Eiip, Eip]c

]
c

)
= a2

2

[
Eppi, E4αp+3αi

]
c
.

We have two possibilities for s∗pχ:
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• ◦ζ8
ζ5

◦−1 , ζ ∈ G24, so (63) is a generator of J (s∗pχ),

• ◦ζ5
−ζ13

◦−1 , ζ ∈ G15, so (61) and E3
p are generators of J (s∗pχ).

Then E2
pEiE

2
pEiEpEiEpEi is written as a linear combination of greater words modulo

J (s∗pχ) in both cases, so by Lemma 3.4 we have that Tp(y) ∈ J (s∗pχ).
Let p = i; by Lemma 3.5, it is equivalent to prove that Tp(y′) ∈ J (s∗pχ), where

y′ :=
[[
Ejp, [Ejp, Ep]c

]
c
, Ep

]
c
− a

(
[Ejp, Ep]c

)2
,

and a ∈ k× is fixed. Note that

Tp

([[
(adcEj)Ep, [(adcEj)Ep, Ep]c

]
c
, Ep

]
c

)
= a2

mpiampi−1

([
(adcEp)

mpi−1Ej , (adcEp)
mpi−2Ej

]
c
F pL

−1
p

−q2
jpq

3
ppF pL

−1
p

[
(adcEp)

mpi−1Ej , (adcEp)
mpi−2Ej

]
c

)
Tp
(
[Ejp, Ep]c

)
= ampiampi−1(adcEp)

mpi−2Ei

In any case, Tp(y′) ∈ kerπs∗pχ is a linear combination of

[Emip−1
p EiE

mip−3
p Ei]c, [Emip−2

p Ei]
2
c ,

so by Lemma 3.4, Tp(y′) ∈ J (s∗pχ), because (57), (respectively, (58), (63)) is a generator
of J (s∗pχ) if mpi = 3, (respectively, mpi = 4, mpi = 5).

Finally we take p 6= i, j, so p is not connected with i and j (and the proof follows easily
by Lemma 3.7), or p is connected only with i, and qii = q̃ij = q−1

pi q
−1
ip ∈ G4, qpp = −1.

Consider the order p < i < j, so

Tp (Eiij) =
[
Epi, Epij

]
c
,

Tp
([
Ei, [Eiij , Eij ]c

]
c

)
=
[
Epi,

[[
Epi, Epij

]
c
, Epij

]
c

]
c

= [EpEiEpEiEpEiEjEpEiEj ]c.

By (52), EiEpEiEpEiEjEpEi can be written as a linear combination of other words
modulo J (s∗pχ), which are greater than it or they begin with Ep; multiplying on the left
by Ep, on the right by Ej , and using that E2

p ∈ J (s∗pχ), EpEiEpEiEpEiEjEpEiEj is
a linear combination of greater words modulo J (s∗pχ), so Tp(y) ∈ J (s∗pχ) by a similar
argument to the previous steps.

(iii) The proof is analogous to the previous items, where we note that in the two possible
cases qjj = −1, and if p 6= i, j, then p is not connected with them. �

Lemma 3.22. (i) Let i, j ∈ {1, . . . , θ} be such that 4αi + 3αj /∈ ∆χ
+, qjj = −1 or mji = 2,

and also mij ≥ 3, or mij = 2, qii ∈ G3. Then, Tp
(
[E3αi+2αj , Eij ]c

)
∈ J (s∗pχ), for all p.

(ii) Let i, j ∈ {1, . . . , θ} be such that 4αi + 3αj ∈ ∆χ
+, 5αi + 4αj /∈ ∆χ

+. Then, for all p,
Tp
(
[E4αi+3αj , Eij ]c

)
∈ J (s∗pχ).

(iii) Let i, j ∈ {1, . . . , θ} be such that 3αi+2αj ∈ ∆χ
+, 5αi+3αj /∈ ∆χ

+, and q3
iiq̃ij, q

4
iiq̃ij 6= 1.

Then, Tp
(
[Eiij , E3αi+2αj ]c

)
∈ J (s∗pχ) for all p.

(iv) Let i, j ∈ {1, . . . , θ} be such that 5αi + 2αj ∈ ∆χ
+, 7αi + 3αj /∈ ∆χ

+. Then, for all p,
Tp ([[Eiiij , Eiij ], Eiij ]c) ∈ J (s∗pχ).
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Proof. For these four sets of conditions, if p 6= i, j then p is not connected with i and j, so
the proof follows easily using Lemma 3.7, or we have a diagram as in Lemma 3.21, (ii) ,
and the proof is analogous to this one. In consequence we will consider p = i and p = j
for each one of these cases.
(i) Let x = [E3αi+2αj , Eij ]c, and take p = j. If mpi = 1 (that is, qpp = −1 or qppq̃ip = 1),
we have that

sp(3αi + 2αp) = 3αi + αp ∈ ∆
s∗pχ
+ , sp(4αi + 3αp) = 4αi + αp /∈ ∆

s∗pχ
+ .

Therefore mip = 3, so E4
i (respectively, (adcEi)4Ep) is a generator of J (s∗pχ), if q

ii
belongs

(respectively, does not belong) to G4. By (66) and the previous relations, depending on
the case,

Tp(x) = a4
1

[[[
Epi, Ei

]
c
, Ei

]
c
, Ei

]
c

∈ J (s∗pχ).

The remaining case is mpi = 2, for which there exist two possible diagrams:

◦−ζ
ζ7

◦ζ3 , ζ ∈ G9; ◦−ζ
−ζ12

◦ζ5 , ζ ∈ G15.

In both cases qpp ∈ G3, and also

sp(3αi + 2αp) = 3αi + 4αp ∈ ∆
s∗pχ
+ , sp(4αi + 3αp) = 4αi + 5αp /∈ ∆

s∗pχ
+ .

Then (61) is a generator of J (s∗pχ) if 3αi + 5αp ∈ ∆
s∗pχ
+ , or (62) is a generator of J (s∗pχ)

in other case, so for both braidings E2
pEiEpEiEpEiEpEi is a linear combination of greater

words modulo J (s∗pχ), and (61) belongs to J (s∗pχ). Therefore

Tp(x) = a4
2

[[[
Eppi, Epi

]
c
, Epi

]
c
, Epi

]
c

∈ J (s∗pχ).

Consider now p = i, so by Lemma 3.5 it is enough to prove that

Tp(x′) ∈ J (s∗pχ), x′ :=
[
Ejp,

[
Ejp, [Ejp, Ep]c

]
c

]
c
.

If mpj = 2, then sp(3αp + 2αj) = αp + 2αj ∈ ∆
s∗pχ
+ , sp(4αp + 3αj) = 2αp + 3αj /∈ ∆

s∗pχ
+ ,

so mjp = 2, and (45) is a generator of J (s∗pχ); then

Tp(x′) = a3
2a1

[
Epj ,

[
Epj , Ej

]
c

]
c
∈ J (s∗pχ).

If mpj = 3, then sp(3αp + 2αj) = 3αp + 2αj ∈ ∆
s∗pχ
+ , sp(4αp + 3αj) = 5αp + 3αj /∈ ∆

s∗pχ
+ ,

so (62) is a generator of J (s∗pχ). By (66),

Tp(x′) = a3
3a2

[
Eppj ,

[
Eppj , Epj

]
c

]
c
∈ J (s∗pχ).

If mpj = 4, then sp(3αp + 2αj) = 5αp + 2αj ∈ ∆
s∗pχ
+ ; moreover, we note that 7αp + 3αj /∈

∆
s∗pχ
+ in both cases, and (60) is a generator of J (s∗pχ). By this relation and the quantum

Serre relations, E3
pEjE

3
pEjE

2
pEj is written as a linear combination of greater words modulo

J (s∗pχ), so

Tp(x′) = a3
4a3

[
Epppj ,

[
Epppj , Eppj

]
c

]
c
∈ J (s∗pχ).

(ii) The proof is similar to (i) , but more simple: for p = j we have just one possibility,
mpi = 1.
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(iii) Let x = [Eiij , E3αi+2αj ]c. Consider p = j; we consider i a non-Cartan vertex, because
in other case EiEpE

2
i or E2

iEpE
2
i can be written as a linear combination of other words

using the corresponding quantum Serre relation, and finally E2
iEpE

2
iEpEi is a linear

combination of greater words modulo J (s∗pχ), so the relation is redundant in this case. In
consequence we consider mpi = 1, and for this case EpE

2
iEpE

3
i is a linear combination of

greater words modulo J (s∗pχ), so

Tp(x) =
[[
Epi, Ei

]
c
,
[[
Epi, Ei

]
c
, Ei

]
c

]
c

∈ J (s∗pχ).

Let p = i; as above, it is enough to prove that

Tp(x′) ∈ J (s∗pχ), x′ :=
[[
Ejp, [Ejp, Ep]c

]
c
, [Ejp, Ep]c

]
c
.

If mpj = 2, then sp(3αp + 2αj) = αp + 2αj ∈ ∆
s∗pχ
+ , sp(5αp + 3αj) = αp + 3αj /∈ ∆

s∗pχ
+ ,

so (adcEj)3Ep (or E3
i ) is a generator of J (s∗pχ); therefore

Tp(x′) = a3
2a

2
1

[[
Epj , Ej

]
c
, Ej

]
c
∈ J (s∗pχ).

If mpj = 3, then sp(3αp + 2αj) = 3αp + 2αj ∈ ∆
s∗pχ
+ , sp(5αp + 3αj) = 4αp + 3αj /∈ ∆

s∗pχ
+ ,

so (61) is a generator of J (s∗pχ). Therefore

Tp(x′) = a3
3a

2
2

[[
Eppj , Epj

]
c
, Epj

]
c
∈ J (s∗pχ).

If mpj = 4, then sp(3αp + 2αj) = 5αp + 2αj ∈ ∆
s∗pχ
+ , sp(5αp + 3αj) = 7αp + 3αj /∈ ∆

s∗pχ
+ ,

so (60) is a generator of J (s∗pχ). In consequence,

Tp(x′) = a3
4a

2
3

[[
Epppj , Eppj

]
c
, Eppj

]
c
∈ J (s∗pχ).

(iv) The proof is analogous to the previous one. �

Now we are ready to prove that the Lusztig isomorphisms descend to the family of
algebras U(χ), so we will look at the root system of this family of algebras. As we consider
finite root systems, they are univocally determined as sets of real roots, and using this
result we will obtain the desired Theorem of presentation by generators and relations of
Nichols algebras.

Proposition 3.23. The morphisms (38) induce algebra isomorphisms

Tp, T
−
p : U(χ)→ U(s∗pχ),

such that TpT−p = T−p Tp = idU(χ).

Proof. By the definition of the ideals J (χ) and the previous Lemmata, Tp(J (χ)) ⊂
J (s∗pχ), so there exists an algebra morphism Tp : U(χ) → U(s∗pχ). By φ2

4 = id and the
definition of the ideal, φ4(J (χ)) = J (χ), and also ϕλ(J (χ)) = J (χ) for any λ ∈ (k×)θ,
because the ideal is Zθ-homogeneous. By (39) we have that T−p (J (χ)) ⊂ J (s∗pχ), so there
exists also an algebra morphism T−p : U(χ) → U(s∗pχ), induced by the corresponding
morfism.

These algebras are generated by Ei, Fi, Li, Ki, and the identities TpT−p = T−p Tp = id
hold for each one of these elements, so these identities hold for all the elements of these
algebras, and these morphisms are isomorphisms. �
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This result lets us to prove the main result of this Section. The proof is similar to the
one for [A1, Thm.5.25].

Proof of Theorem 3.1.
Set ∆χ

+ := ∆+(U+(χ)) \ {Nαα : α ∈ ∆χ
+}. By the triangular decomposition, Lemma

2.8, Theorem 2.9 and Proposition 3.23, we have that

(67) HU+(χ) = HU+
+p(χ)qh(Ep) = sp(HU+

+p(s∗pχ))qh(Ep),

for all p ∈ {1, . . . , θ}, because deg(Tp(X)) = sp(degX) for each homogeneous element
X ∈ U(χ). Recall that h(Ep) ∈ {ord qpp,∞}, so

(68) ∆+
(
U+(χ)

)
= sp

(
∆+

(
U+(s∗pχ)

)
\ {αp, Npαp}

)
∪ Sp,

where Sp = {αp}, or Sp = {αp, Npαp}, so ∆χ
+ = sp

(
∆
s∗pχ
+ \ {αp}

)
∪ {αp}.

In this way, if we consider the sets ∆χ
+, for each χ in a Weyl equivalence class of a

fixed braiding with finite root system, then R = {∆χ
+} is a root system for our Weyl

groupoid, according with the Definition 1.17. As we have a finite root system, it follows
that ∆χ

+ = ∆χ
+, for all χ, because by Proposition 1.21 all the roots are real. In this way,

∆+(U+(χ)) is obtained from ∆χ
+ adding Nαα, for some α ∈ ∆χ

+. Fix an order on the letters
xi and consider the corresponding PBW basis. We have a projection πχ : U(χ) � u(χ)
of graded braided Hopf algebras, so the corresponding xα of the PBW basis of u(χ) are
generators of the PBW basis of U(χ), by the definition of Kharchenko’s PBW basis. On
the other hand, each simple root of a non-Cartan vertex satisfies ENii = 0 in U(χ), so
Niαi /∈ ∆+ (U+(χ)). Therefore (67) implies that

Nαα /∈ ∆+
(
U+(χ)

)
, for all α ∈ ∆χ

+ \ O(χ),

because α is of the way α = w(αi) for some w ∈ W and i ∈ {1, . . . , θ}, i a non-Cartan
vertex in the corresponding χ′. Analogously, for each Cartan vertex i, Niαi ∈ ∆+ (U+(χ)),
because ENii 6= 0 in U(χ), so

Nαα ∈ ∆+
(
U+(χ)

)
, for all α ∈ O(χ).

Therefore ∆+(U+(χ)) = ∆χ
+ ∪ {Nαα : α ∈ O(χ)}.

Suppose that the degree Nαα in ∆+(U+(χ)) corresponds to a Lyndon word of this
degree: we can assume that it is of minimal length, and we denote it by u; set (v, w) =
Sh(u). In this way, deg v = β, degw = γ, for some β, γ ∈ ∆χ

+, and β + γ = Nαα. As
all the roots are real, we deduce that if β < γ, then β < α < γ, by a similar argument
to the convexity properties in [A2]. We can consider then the case β = αi, because
if β = si1 · · · sik(αik+1

), where w = si1 · · · sik is the beginning of the expression of the
element of maximal length, we apply w−1 to obtain that αik+1

+ γ′ = Nαα
′ for some

α′, γ′ ∈ ∆χ
+. Note also that Nα > 2, because if we suppose Nα = 2, then α is applied in

a simple root αi corresponding a Cartan vertex by some element of the Weyl groupoid,
and as Nα is invariant by the action of the Weyl groupoid, it should be qii = −1, but it
corresponds to an isolated vertex or a non-Cartan vertex, which is a contradiction. Set

α =
θ∑
j=1

njαj , γ =
θ∑
j=1

mjαj , for some nj ,mj ∈ N0.

Note that mi = Nαni − 1 ≥ 2, and for j 6= i, mj = Nαnj ≥ 3, so supp γ = suppα. By
simplicity assume that suppα = {1, . . . , θ}; note that the vertices of suppβ corresponds
to a connected subdiagram, for any positive root β.

By these considerations we reduce the problem to an analysis case by case of the
positive root systems of connected diagrams, and we do it with the help of the program
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SARNA [GHV]. We look for the possible γ such that all the coordinates, except at most
one, are divisible by an integer ≥ 3, and the remaining coordinate is ≥ 2, so we just have
a few 3-uples in rank two or three. Analyzing each of these 3-uples

(α, γ, i) ∈ ∆χ
+ ×∆χ

+ × {1, . . . , θ} such that there exists N ∈ N : αi + γ = Nα,

we note that N 6= Nα for all of them. Therefore, there are no Lyndon words of degree
Nαα, so the generators of degree Nαα are xNαα , and then the elements

xn1
β1
· · ·xnkβk , βi ∈ ∆χ

+,

{
0 ≤ nj < Nj , si βj /∈ O(χ)
0 ≤ nj <∞, si βj ∈ O(χ)

are a PBW basis of U(χ). As xNαα = 0 in u+(χ), πχ induces a surjective morphism

π′χ : U(χ)/〈xNαα : α ∈ O(χ)〉 −→ u+(χ),

which applies the set

{xn1
β1
· · ·xnkβk , βi ∈ ∆χ

+, 0 ≤ nj < Nj},

generating linearly the quotient, to the corresponding PBW basis of u+(χ). Therefore π′χ
is an isomorphism. �

4. Generation in degree one

Now we answer positively the Conjeture 1, formulated by Andruskiewitsch and Schnei-
der, but restricting to the case in which G(H) is abelian. The technique of the proof is
the same that these authors use in [AS4], extended in some works to other families. In
particular, the first Lemmata of this Section correspond to relations generating the ideal
for standard braidings as in [AGI], but the proof is made in a general context.

In what follows Γ denotes a finite abelian group, and S =
⊕

n≥0 S(n) is a graded
braided Hopf algebra in G

GYD such that S(0) = k1, generated as an algebra by V := S(1).
Fix a basis {x1, . . . , xθ} of V , so V has a braiding of diagonal type: we can assume that
xi ∈ S(1)χigi for some gi ∈ Γ and χi ∈ Γ̂. Set then qij := χj(gi) ∈ k×.

We will prove that if S is finite dimensional, then S is the Nichols algebra B(V )
associated to V . We will obtain then the main Theorem of this Section, answering this
Conjecture.

We begin by extending [AS4, Lemma 5.4] for a general quantum Serre relation, proving
that they hold in S, or S is infinite-dimensional.

Proposition 4.1. Let S be as above. If there exist i, j ∈ {1, . . . , θ} such that qmij+1
ii 6= 1,

and also adc(xi)1+mij (xj) 6= 0, then S is infinite-dimensional.

Proof. By definition of mij , we have that qmijii q̃ij = 1. We begin the proof as in [AS4,
Lemma 5.4]. To simplify the notation, call m = mij , q = qii, y1 := xi, y2 := xj , y3 :=
adc(xi)1+m(xj). Set also

h1 = gi, h2 = gj , h3 = gm+1
i gj ,

η1 = χi, η2 = χj , η3 = χm+1
i χj ,

so yk ∈ Sηkhk , 1 ≤ k ≤ 3. If W = ky1 + ky2 + ky3, then W ⊂ P(S) (because y3 is also
primitive), so there exists a monomorphism B(W ) ↪→ S. We compute the corresponding
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braiding matrix (Qkl = ηl(hk))1≤k,l≤3, and consider the corresponding generalized Dynkin
diagram:

(69) ◦qjj
q−m(m+1)q2jj

JJJJJJJJJ

◦q

q−m
||||||||

qm+2 ◦qm+1qjj .

We will consider the different possible cases and prove that no one of them are in [H3],
so B(W ), and in consequence S, is infinite-dimensional. Suppose that the diagram (69) is
in Heckenberger’s list:

Case I: QklQlk 6= 1 for all 1 ≤ k < l ≤ 3. By [H3, Lemma 9], 1 =
∏
k<lQklQlk =

q2−m(m+1)q2
jj , and at least one of the vertices is labeled with −1. Note that q 6= −1,

because in such case m = 0 (and we assume qm+1 6= 1). Also qjj 6= qm+1qjj by hypothesis,
so there is only one vertex labeled with −1.

• If qjj = −1, then 1 = (qm+1qjj)(q−m(m+1)q2
jj) = −q1−m2

and m = 1 by the same
Heckenberger’s Lemma, which is a contradiction.
• If qm+1qjj = −1, then 1 = qqm+2 = qm+3 by the same result, and also

1 = qjj(q−m(m+1)q2
jj) = q3

jjq
−m(m+3)+2m = q3

jjq
2m,

so we deduce that

−1 = (−1)3 = q3
jjq

3m+3 = (q3
jjq

2m)qm+3 = qm+3,

which is also a contradiction. Therefore (69) does not belong to Heckenberger list
for this case.

Case II : Q12Q21 = q−m = 1. In this case m = 0, so (69) becomes:

(70) ◦q
q2
◦qqjj

q2jj
◦qjj .

If qjj = −1 we obtain the connected subdiagram ◦q
q2
◦−q , which has no vertices

labeled with −1, and these labels are different. Such diagram is not of finite Cartan type
and moreover it does not correspond to any diagram without −1 in the vertices in rows
5, 9, 11, 12, 15 of [H3, Table 1], so B(W ) is infinite-dimensional.

If qjj 6= −1 and q = −1, we have an analogous situation, so q 6= −1 and (70) is a
connected diagram of three vertices. If qqjj 6= −1, then [H3, Lemma 9] implies that one
of the following situations holds:

• the diagram is of finite Cartan type, so it contains a subdiagram of Cartan type
A2. Then 1 = qq2 = (qqjj)q2, or 1 = qjjq

2
jj = (qqjj)q2

jj , so q = 1 or qjj = 1;
• q3 = 1, qjj , qjjq ∈ G6 ∪G9, and qjjq

2
jj = 1 or q3

jj = 1, q, qjjq ∈ G6 ∪G9, qq2 = 1.

No one of these situations hold, so qqjj = −1. If this diagram is in [H3, Table 2], it follows
that QiiQi2Q2i = 1 for some i ∈ {1, 3} in all the possible cases. We can assume then i = 1,
q3 = 1. By [H3, Lemma 9], one of the following situations holds:

• q3
jj = 1, but also q3

jj = −q−3 = −1,
• q4

jj = 1,
• qjj = −q.

No one of these situations are possible, so we obtain a contradiction in this case too.
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Case III: Q13Q31 = qm+2 = 1. We obtain the diagram:

◦q
q2
◦qjj

q−2q2jj
◦q−1qjj .

Such diagram is the corresponding to (70), but changing qjj by qjjq
−1, so it does not

belong to [H3, Table 2]. Then qm+2 6= 1.

Case IV: Q23Q32 = 1. This means q2
jj = qm(m+1), so we have the diagram:

(71) ◦qjj
q−m

◦q
qm+2◦q

m+1qjj .

This diagram is connected by the previous cases. As m 6= 0, qm+1 6= 1, it follows that
q 6= −1. Consider the different possible values of the labels of the vertices:

qjj = qm+1qjj = −1: that is, qm+1 = 1 and we have the diagram:

◦−1
q ◦q q ◦−1,

which is not in Heckenberger’s list.
qjj = −1,qm+1qjj 6= −1: By [H3, Table 2], it should be 1 = Q22Q23Q32 = qm+3, and

we should have the diagram

◦−q−2

q−1
◦q

q3
◦−1.

Moreover, 1 = q2
jj = qm(m+1) = q2m = q−6. Note that q3 6= 1 because qm 6= 1, so q ∈ G6.

But this diagram is not in Heckenberger’s list.
qjj 6= −1,qm+1qjj = −1: as above, 1 = Q22Q21Q12 = q1−m. By definition it should

be m = 1, with the same diagram of the previous case and q ∈ G6, so we obtain the same
contradiction.

qjj,qm+1qjj 6= −1: By [H3, Lemma 9], one of the following situations holds:
• the diagram is of Cartan type. Then, q = qjj and m = 1, or q = qm+1qjj = q−m−2.

In both cases we obtain the same diagram,

◦q
q−1

◦q
q3
◦q3 .

We discard easily the cases A3, C3, because q, q2 6= q3. If it is of type B3, q =
(q3)2 = q−3, which is a contradiction.
• qjj ∈ G3, q ∈ G6 ∪ G9 and 1 = q1−m = qjjq

2m+3. Then m = 1 and q5 = q−1
jj ,

so q15 = 1, but we obtain then a contradiction with the fact that q ∈ G6 ∪ G9 is
primitive.
• qm+1qjj ∈ G3, q ∈ G6 ∪ G9 y 1 = qjjq

−m = qm+3. Again q15 = 1, and we obtain
the same contradiction.

In consequence, (69) is not in Heckenberger’s list, and S is infinite-dimensional. �

Now we continue with another Lemmata from [AGI], just adapted to this general
context.

Lemma 4.2. Let j, k, l ∈ {1, . . . , θ} be such that qkk = −1, q̃kj = q̃kl
−1 6= 1, q̃jl = 1. If

[xjkl, xk]c 6= 0 is a primitive element of S, then S is infinite-dimensional.

Proof. Set u := [xjkl, xk]c, gu := gjg
2
kgl ∈ Γ, χu := χjχ

2
kχl ∈ Γ̂, q := q̃lk; we work then as

in the previous Lemma.
We compute the braiding corresponding to the primitive elements y1 = xj , y2 = xk,

y3 = xl and y4 = u, with the corresponding elements hi ∈ Γ, ηi ∈ Γ̂; we will prove that
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such braiding has an associated Nichols algebra of infinite dimension, and so S has infinite
dimension. The corresponding generalized Dynkin diagram to (Qrs = ηs(hr))1≤r,s≤4 is:

(72) ◦qjj
q−1

q2jjq
−2

◦−1

q

◦qjjqll
q2llq

2
◦qll .

Suppose that such diagram is in Heckenberger’s list. If q = −1, then (72) contains (70)
as a subdiagram, so it does not appear in the list. Therefore q 6= −1. As each diagram in
[H3, Table 3] does not contain a 4-cycle, it follows that q2

jjq
−2 = 1, or q2

llq
2 = 1. As the

conditions are symmetric, it is enough to consider the case qjj = ±q.
If we also have qll = ±q−1, and as Q44 = qjjqll 6= 1, the diagram contains the following

◦q
q−1 ◦−1

q ◦−q
−1 ,

which is a contradiction with [H3, Lemma 9]. In consequence we have:

◦±q
q−1 ◦−1

q ◦qll
q2llq

2
◦qjjqll .

Suppose that qjj = −q. As Q11Q12Q21 6= 1, we deduce from [H3, Table 3] that m12 = 2;
that is,

0 = (1−Q3
11)(Q2

11Q12Q21 − 1) = (1 + q3)(q − 1),
which gives conditions about q, but each diagram in [H3, Lemma 9] does not satisfy this
condition.

Therefore qjj = q. We look at [H3, Table 3] but a diagram in such list does not satisfy
Q22 = −1, Q11 = Q44Q

−1
33 = q 6= ±1, so (72) is not in the list. In consequence, S has

infinite dimension. �

Lemma 4.3. (i) Let i, j ∈ {1, . . . , θ} be such that qjj = −1, qiiq̃ij ∈ G6, and also qii ∈ G3

or mij ≥ 3. If [xiij , xij ]c ∈ P(S) \ {0}, then S is infinite-dimensional.
(ii) Let i, j, k ∈ {1, . . . , θ} be such that qii = ±q̃ij ∈ G3, q̃ik = 1, and also −qjj = q̃ij q̃jk = 1
or q−1

jj = q̃ij = q̃jk 6= −1. If [xiijk, xij ]c ∈ P(S) \ {0}, then S is infinite-dimensional.

Proof. (i) We follow the same scheme of proof. Set

y1 = xi, y2 = xj , y3 = [xiij , xij ]c ,

and hi ∈ Γ, ηi ∈ Γ̂, i = 1, 2, 3 the corresponding elements. Suppose that the braiding
matrix (Qrs = ηs(hr))1≤r,s≤3 appears in Heckenberger’s list. The associated generalized
Dynkin diagram is

◦qii q

q2 CC
CC

CC
CC

◦−1

◦q3ii
q3

{{{{{{{{

, q := q̃ij .

Then Q33 = q3
ii 6= 1, so mij ≥ 3. Moreover the diagram is connected, so it is of type super

G(3), the unique diagram of rank three such that somemrs is≥ 3. Therefore 1 = Q23Q32 =
q3, which is a contradiction, so the diagram associated to (Qrs) does not correspond to a
finite-dimensional Nichols algebra. In consequence S is infinite-dimensional.
(ii) Set w := [xiijk, xij ]c, and denote as above y1 = xi, y2 = xj , y3 = xk, y4 = w,
W the subspace generated by these elements, and hi ∈ Γ, ηi ∈ Γ̂, i = 1, 2, 3, 4 the
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corresponding elements: suppose again that B(W ) is a finite-dimensional Nichols algebra.
Set ζ = qii ∈ G3. We analyze each possible case.

• qjj = −1, q̃ij q̃jk = 1: the diagram of (Qrs) becomes

◦ζ
±ζ

ζ2 DD
DD

DD
DD

◦−1
∓ζ2

ζ2

◦qkk

q2kkζxx
xx

xx
xx

x

◦qkkζ

.

As Q12Q21, Q14Q41, Q42Q24 6= 1, and the product of these three scalars is not 1,
such diagram is not in Heckenberger’s list, by [H3, Lemma 9].
• q−1

jj = q̃ij = q̃jk 6= −1: now we have the diagram

◦ζ
±ζ

ζ2 CC
CC

CC
CC ◦±ζ2

±ζ
◦qkk

q2kkζ
2xx

xx
xx

xx
x

◦qkkζ

.

The lack of 4-cycles in Heckenberger’s list implies that 1 = Q34Q43 = q2
kkζ

2, so
qkkζ = −1, because Q44 = qkkζ 6= 1. But this diagram does not appear in [H3,
Table 3].

We obtain a contradiction in all the cases, so S is infinite-dimensional. �

Lemma 4.4. Let i, j, k ∈ {1, . . . , θ} be such that q̃ik, q̃ij, q̃jk 6= 1. Let

w := xijk −
1− q̃jk

qkj(1− q̃ik)
[xik, xj ]c − qij(1− q̃jk) xjxik.

If w ∈ P(S) \ {0}, then S is infinite-dimensional.

Proof. Set y1 = xi, y2 = xj , y3 = xk, y4 = w, W the subspace generated by these elements,
hi ∈ Γ, ηi ∈ Γ̂, i = 1, 2, 3, 4 the corresponding elements, and (Qrs = ηs(hr))1≤r,s≤4:
supppose as above that B(W ) is finite dimensional. Note that

Q14Q41 = q2
iiq̃ij q̃ik = q2

iiq̃jk
−1,

because q̃ij q̃ikq̃jk = 1, by [H3, Lemma 9]. By the same Lemma at least one vertex is
labeled with −1. Then, if qii = −1, we have that Q14Q41 6= −1; the same holds for the
other vertices, so exactly one vertex is labeled with −1 (we have no 4-cycles). We look
for possible braiding with these conditions in [H3, Table 3], but no one coincides with this
description. Therefore B(W ) is infinite-dimensional, and S too. �

Lemma 4.5. (i) Let i, j, k ∈ {1, . . . , θ} be such that one of the following conditions holds:

• qii = qjj = −1, q̃ij
2 = q̃jk

−1, q̃ik = 1, or
• q̃ij = qjj = −1, qii = −q̃jk2 ∈ G3, q̃ik = 1, or
• qkk = q̃jk = qjj = −1, qii = −q̃ij ∈ G3, q̃ik = 1, or
• qjj = −1, q̃ij = q−2

ii , qkk = q̃jk
−1 = −q3

ii, q̃ik = 1, or
• qii = qjj = qkk = −1, ±q̃ij = q̃jk ∈ G3, q̃ik = 1,

If
[
[xij , xijk]c , xj

]
c
∈ P(S) \ {0}, then S is infinite-dimensional.

(ii) Let i, j, k ∈ {1, . . . , θ} be such that qii = qjj = −1, (q̃ij)3 = (q̃jk)−1, q̃ik = 1. If[[
xij , [xij , xijk]c

]
c
, xj
]
c
∈ P(S) \ {0}, then S is infinite-dimensional.
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Proof. (i) Set y1 = xi, y2 = xj , y3 = xk, y4 =
[
[xij , xijk]c , xj

]
c
, W the subspace generated

by these elements, hi ∈ Γ, ηi ∈ Γ̂, i = 1, 2, 3, 4 the associated elements and (Qrs =
ηs(hr))1≤r,s≤4 the braiding matrix. We will consider the associated generalized Dynkin
diagram for each case.

For the first case, we have the following diagram, where q := q̃ij :

◦−1
q

q3 FFFFFFFF ◦−1
q−2

◦qkk

q2kkq
−6ww

ww
ww

ww
w

◦−qkk

.

Suppose that B(W ) is finite-dimensional. Then Q33Q32Q23 = 1, so qkk = q2 and then
Q34Q43 = q−2 6= 1. In consequence such diagram is of type super F (4). Then 1 =
Q14Q41 = q3, which is a contradiction.

For the second case, Q12Q21 = qii ∈ G3, and Q14Q41 = −1, so the diagram contains a
4-cycle and then B(W ) is infinite-dimensional. An analogous situation holds for the third
case, because Q12Q21 = −qii ∈ G6, and Q14Q41 = −1.

For the fourth case, Q̃23 = Q̃24 = Q̃34 = q̃kj 6= 1 and Q̃14 = Q̃12 = q̃ij 6= 1, so B(W ) is
infinite-dimensional.

For the last case, Q44 = 1, and then B(W ) is infinite-dimensional.
Therefore S is infinite-dimensional in all the cases.

(ii) We use the same notation, but in this case y4 =
[[
xij , [xij , xijk]c

]
c
, xj
]
c
. So we have

the following diagram for (Qrs):

◦−1
q

q4 FFFFFFFF ◦−1
q−3

◦qkk

q2kkq
−6ww

ww
ww

ww
w

◦−qkk

,

where q = q̃ij . Suppose that B(W ) is finite-dimensional. By [H3, Table 3], this diagram
cannot be connected. In consequence, 1 = Q41Q14 = Q34Q43, so qkk = ±1. But then
Q33 = 1, or Q44 = 1, which is a contradiction to the fact that B(W ) is finite-dimensional.
So S is infinite-dimensional. �

Lemma 4.6. Let i, j, k, l ∈ {1, . . . , θ} be such that qjj q̃ij = qjj q̃jk = 1, q̃jk
2 = q̃kl

−1 = qll,
qkk = −1, q̃ik = q̃il = q̃jl. If

[[
[xijkl, xk]c , xj

]
c
, xk
]
c
∈ P(S) \ {0}, then S is infinite-

dimensional.

Proof. We use a similar notation and consider the corresponding subspace W generated
by the corresponding primitive elements. Suppose that B(W ) is finite-dimensional. Its
associated Dynkin diagram is

◦qii
q−1

q2iiq
−2 EE

EE
EE

EE
E ◦q

q−1

◦−1
q2

◦q−2

q2llllllllllllllll

◦−qii

, q = qjj .

Note that 1 = Q15Q51, because there are no 5-cycles and q2 6= 1. Therefore qii = q, but
this diagram is not in Heckenberger’s list, so B(W ) is infinite-dimensional, and S too. �
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Lemma 4.7. Let i, j, k ∈ {1, . . . , θ} be such that qjj = q̃ij
−1 = q̃jk.

(i) If qjj ∈ G3 and
[
[xijk, xj ]c xj

]
c
∈ P(S) \ {0}, then S is infinite-dimensional.

(ii) If qjj ∈ G4 and
[[

[xijk, xj ]c , xj
]
c
, xj
]
c
∈ P(S) \ {0}, then S is infinite-dimensional.

Proof. (i) Using the same notation as in previous Lemmata, we have the diagram

◦qii
ζ2

q2ii GG
GG

GG
GG

G ◦ζ
ζ
◦qkk

q2kkvvvvvvvvv

◦qkkqii

, ζ = qjj ∈ G3,

for y1 = xi, y2 = xj , y3 = xk, y4 =
[
[xijk, xj ]c xj

]
c
, with corresponding matrix (Qrs), and

W is the subspace generated by these elements. Note that
• if qii = qkk = −1, then Q44 = 1;
• if qii, qkk 6= −1, then the diagram contains a 4-cycle;

• if qii = −1, qkk 6= −1, or qii 6= −1, qkk = −1, the diagram contains ◦q
q2

◦−q
as a subdiagram (where q = qii or q = qkk), and this connected subdiagram of
rank two is not in [H3, Table 1].

In all the cases B(W ) is infinite-dimensional, so S too.

(ii) The proof is analogous. �

Lemma 4.8. (i) Let i, j, k ∈ {1, . . . , θ} be such that qii = qkk = q̃ij = −1, qjj = q̃jk
−1,

q̃ik = 1. If [xij , xijk]c ∈ P(S) \ {0}, then S is infinite-dimensional.
(ii) Let i, j, k ∈ {1, . . . , θ} be such that qii = qkk = −1, q̃ij ∈ G3, qjj = ±q̃ij = −q̃jk,
q̃ik = 1. If [xi, xjjk]c − (1 + q2

jj)q
−1
kj [xijk, xj ]c − (1 + qjj)(1 + q2

jj)qij xjxijk ∈ P(S) \ {0},
then S is infinite-dimensional.
(iii) Let i, j, k ∈ {1, . . . , θ} be such that q̃jk = 1, qii = q̃ij = −q̃ik ∈ G3. If

[
xi, [xij , xik]c

]
c
+

qjkqikqji [xiik, xij ]c + qij xijxiik ∈ P(S) \ {0}, then S is infinite-dimensional.
(iv) Let i, j, k ∈ {1, . . . , θ} be such that qjj = qkk = q̃jk = −1, qii = −q̃ij ∈ G3, q̃ik = 1. If
[xiijk, xijk]c ∈ P(S) \ {0}, then S is infinite-dimensional.

Proof. We consider the same notation as before. We consider the subspace W generated
by y1 = xi, y2 = xj , y3 = xk and y4 (the primitive element corresponding to the relation),
where yi ∈W ηi

hi
, for some hi ∈ Γ, ηi ∈ Γ̂, and set (Qrs = ηs(hr)). We will prove again that

B(W ) is infinite-dimensional.
(i) The corresponding diagram of (Qrs) is

◦−1
−1

◦q

q3

q−1

◦−1

q−2yy
yy

yy
yy

◦−q2

, q = qjj ∈ G3 ∪G4 ∪G6.

If q ∈ G4 then Q44 = 1, so B(W ) is infinite-dimensional. If q ∈ G3 ∪ G6, the diagram is
not in [H3, Table 3], so B(W ) is also again infinite-dimensional.
(ii) We note that Q14Q41 = Q34Q43 = q2

jj ∈ G3. Therefore, the diagram corresponding to
(Qrs) contains a 4-cycle, and then B(W ) is infinite-dimensional.
(iii) In this case, Q24Q42 = −q2

ii and Q34Q43 = −q2
kk 6= 1, because qkk ∈ {−1, q̃ik

−1}. The
diagram corresponding to (Qrs)r,s=2,3,4 is a 3-cycle such that Q̃24Q̃34Q̃23 6= 1. [H3, Lemma
9] implies that B(W ) is infinite-dimensional.
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(iv) B(W ) is infinite-dimensional because Q44 = 1. �

Lemma 4.9. Let i, j ∈ {1, . . . , θ} be such that the satisfy one of the following conditions:
(i) −qii,−qjj , qiiq̃ij , qjj q̃ij 6= 1,[

xi, [xij , xj ]c
]
c
− (1 + qjj)(1− qjj q̃ij)

(1− q̃ij)qjjqji
x2
ij ∈ P(S) \ {0};

(ii) qjj = −1, qiiq̃ij /∈ G6, and also mij ∈ {4, 5}, or mij = 3, qii ∈ G4,[
xi, x3αi+2αj

]
c
− 1− qiiq̃ij − q2

iiq̃ij
2qjj

(1− qiiq̃ij)qji
x2
iij ∈ P(S) \ {0};

(iii) 4αi + 3αj /∈ ∆χ
+, qjj = −1 or mji = 2, and also mij ≥ 3 or mij = 2, qii ∈ G3,

[x3αi+2αj , xij ]c ∈ P(S) \ {0};

(iv) 3αi + 2αj ∈ ∆χ
+, 5αi + 3αj /∈ ∆χ

+, and q3
iiq̃ij , q

4
iiq̃ij 6= 1, [xiij , x3αi+2αj ]c ∈ P(S) \ {0};

(v) 4αi + 3αj ∈ ∆χ
+, 5αi + 4αj /∈ ∆χ

+, [x4αi+3αj , xij ]c ∈ P(S) \ {0};
(vi) 5αi + 2αj ∈ ∆χ

+, 7αi + 3αj /∈ ∆χ
+, [[xiiij , xiij ], xiij ]c ∈ P(S) \ {0};

(vii) qjj = −1, 5αi+4αj ∈ ∆χ
+, [xiij , x4αi+3αj ]c−ax2

3αi+2αj
∈ P(S)\{0}, for some a ∈ k×.

Then S is infinite-dimensional.

Proof. Firstly we note that there exists just one connected generalized Dynkin diagram
of rank three such that 3αi + 2αj ∈ ∆χ

+, for some pair i, j, which is exactly the unique
one such that mkl ≥ 3 for some pair k, l. Moreover, 4αi + 3αj , 5αi + 4αj , are not positive
roots for any pair i, j and any connected Dynkin diagram of rank 3.

We consider as above the subspace W generated by y1 = xi, y2 = xj and y3, the
relation which is a primitive element by hypothesis, and analize its generalized Dynkin
diagram.
(i) If Q13Q31 6= 1 or Q23Q32 6= 1, then B(W ) is infinite-dimensional. In other case,

Q13Q31 = q4
iiq

2
ijq

2
ji = 1, Q23Q32 = q4

jjq
2
ijq

2
ji = 1,

so Q33 = q4
iiq

4
ijq

4
jiq

4
jj = 1, and B(W ) is also infinite-dimensional.

(ii) If qii ∈ G4, q̃ij = qii = q−1
jj (and then (qrs) is Cartan of type G2), then

Q33 = q16
ii q

8
ijq

8
jiq

4
jj = 1,

so B(W ) is infinite-dimensional. In other case, Q13Q31 6= 1, or Q23Q32 6= 1, or

Q13Q31 = q8
iiq

2
ijq

2
ji = 1, Q23Q32 = q4

ijq
4
jiq

4
jj , so Q33 = 1,

and therefore B(W ) is infinite-dimensional.
(iii) Now we calculate

Q33 = q16
ii q

12
ij q

12
ji q

9
jj , Q13Q31 = q8

iiq
3
ijq

3
ji, Q23Q32 = q4

ijq
4
jiq

6
jj .

If (qrs) is Cartan of type G2 and qii ∈ G6, q̃ij = qjj = −1, then B(W ) is infinite-
dimensional, because we have a connected diagram of rank three such that M12 = 3, and
it is not of type super G(3). In other case, we will prove that Q13Q31 6= 1 or Q23Q32 6= 1
to conclude that B(W ) is infinite-dimensional. If mji ≥ 2, we have the following possible
cases:

• qii = −ζ, q̃ij = ζ7, qjj = ζ3, ζ ∈ G9; in such case, Q23Q32 = ζ.
• qii = −ζ, q̃ij = −ζ12, qjj = ζ5, ζ ∈ G15; therefore, Q23Q32 = ζ3.
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Also, if qii = ζ8, q̃ij = ζ3, qjj = −1, ζ ∈ G12, then Q13Q31 = ζ. In all the remaining cases,
qjj = −1 and q̃ij /∈ G4, so Q23Q32 6= 1.
(iv) This relation is not redundant just in the following two cases:

◦ζ3
ζ8

◦−1 , ζ ∈ G9, ◦η3
−η4

◦−η−4 , η ∈ G15.

Note that they are not contained in any connected diagram of rank three in [H3, Table
2], so it is enough to verify that Q13Q31 6= 1 or Q23Q32 6= 1 to conclude that B(W ) is
infinite-dimensional. For the first diagram, Q23Q32 = ζ4 6= 1; and for the second one,
Q23Q32 = −η−4 6= 1.
(v) The proof is analogous to (iii) . Note that

Q33 = q25
ii q

12
ij q

20
ji q

16
jj , Q13Q31 = q10

ii q
4
ijq

4
ji, Q23Q32 = q5

ijq
5
jiq

8
jj .

We have that qjj = −1 for every diagram satisfying the conditions for this item. Also,
if qii = ζ ∈ G5, q̃ij = ζ2, it follows that Q33 = 1. In the remaining cases, q̃ij /∈ G5, so
Q32Q23 6= −1, and then B(W ) is infinite-dimensional.
(vi) In this case,

Q33 = q49
ii q

21
ij q

21
ji q

9
jj , Q13Q31 = q14

ii q
3
ijq

3
ji, Q23Q32 = q7

ijq
7
jiq

6
jj .

We have that qjj = −1 for every diagram satisfying the conditions for this item, and also
q̃ij /∈ G7, so Q23Q32 6= 1. Therefore B(W ) is infinite-dimensional.
(vii) The proof is analogous to the one for (i) .

We conclude that S is infinite-dimensional in all the cases. �

Now we can prove the main Theorem of this Section.

Theorem 4.10. Let S = ⊕n≥0S(n) be a finite-dimensional graded Hopf algebra in G
GYD,

where Γ is a finite abelian group, such that S(0) = k1. Fix a basis x1, . . . , xθ of V := S(1),
such that xi ∈ S(1)χigi for some gi ∈ Γ and χi ∈ Γ̂, and set qij := χj(gi). If S is generated
as an algebra by S(0)⊕ S(1), then S ∼= B(V ).

Proof. As S is generated as an algebra by S(0)⊕ S(1), the canonical projection T (V )�
B(V ) = T (V )/I(V ) induces a surjective morphism π : S � B(V ) of graded braided Hopf
algebras; we can consider S = T (V )/I, for some graded braided Hopf ideal I of T (V ),
generated by homogeneous elements of degree ≥ 2, I ⊆ I(V ).

Suppose that I(V ) % I. Then at least one of the generators of I(V ) from Theorem
3.1 does not belong to I. We can assume that x ∈ I(V ) \ I is one of these generators, of
minimal degree k. Then x is primitive in S by Lemma 3.2.

By Proposition 4.1 and Lemmata 4.2-4.9, we deduce that x = xNαα for some α ∈ O,
or a simple root α = αi such that i is not a Cartan vertex, or α = αi + αj , such that
Nα = 2, qii = qjj = q̃ij = −1. If gα ∈ Γ, χα ∈ Γ̂ are the associated elements, we have that
qα = χα(gα), which is a root of unity of order Nα. Therefore gNαα ∈ Γ and χNαα ∈ Γ̂ are
the associated elements to x, and

c(x⊗ x) = gNαα · x⊗ x = χNαα
(
gNαα

)
x⊗ x = x⊗ x,

so x generates in S an infinite-dimensional braided Hopf subalgebra, and we obtain a
contradiction. In consequence, S ∼= B(V ). �

Remark 4.11. Note that we just use the fact that the braiding is diagonal, so we can
generalize this Theorem to a general braided Hopf algebra R in H

HYD, where H is a
finite-dimensional Hopf algebra which acts diagonally over R(1).



ON NICHOLS ALGEBRAS OF DIAGONAL TYPE 49

The following Theorem answers positively Conjecture 1 in the case that the group of
group-like elements is abelian. It extends [AS4, Thm. 5.5].

Theorem 4.12. Let H be a finite-dimensional pointed Hopf algebra over an abelian group
Γ. Then H is generated by its group-like and skew-primitive elements.

Proof. Let grH = R#kΓ, V = R(1). Then H is generated by its group-like and skew-
primitive elements if and only if grH satisfies this condition, which is equivalent to the
fact that R is the Nichols algebra B(V ). Let S be the graded dual R∗ in the category
G
GYD, which is generated as an algebra by S(1) = V ∗. By [AS3, Lemma 2.3] it is enough
to prove that S is the Nichols algebra B(V ∗), which follows by Theorem 4.10. �
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