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Abstract

A new algorithm for solving smooth large-scale minimization problems
with bound constraints is introduced. The way of dealing with active con-
straints is similar to the one used in some recently introduced quadratic
solvers. A limited-memory multipoint symmetric secant method for ap-
proximating the Hessian is presented. Positive-definiteness of the Hessian
approximation is not enforced. A combination of trust-region and conjugate-
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Linköping, Sweden. Part of the work of this author was done while he was visiting the University
of Campinas under support of FAPESP (Grant 1197-11730-5). E-Mail: olbur@mai.liu.se

†Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP
6065, 13081-970 Campinas SP, Brazil. This author was supported by PRONEX-Optimization,
FAPESP (Grant 90-3724-6), CNPq and FAEP-UNICAMP. E-Mail: martinez@ime.unicamp.br
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1 Introduction

We consider the following bound (or box-) constrained optimization problem:

Minimize f(x) subject to x ∈ Ω. (1)

We assume that the function f : IRn → IR is continuously differentiable and
the box Ω is given by

Ω = {x ∈ IRn | ` ≤ x ≤ u},

where ` < u.
This problem is very important in practical optimization. A lot of applied

problems admit mathematical models of type (1). Moreover, one of the most ef-
fective approaches for solving general constrained optimization problems, based
on augmented Lagrangians, relies on effective algorithms for solving (1) (see
[16, 17, 19, 38]). Finally, in recent works on complementarity and variational
inequalities, these problems are reduced to bound constrained minimization prob-
lems in an efficient way (see [1, 2, 3, 4] and references therein).

All practical methods for solving (1) are iterative. Given xk ∈ Ω, many
methods construct a quadratic model of f , whose gradient at xk coincides with
the gradient of f , and whose Hessian is an approximation of the Hessian of f .
Many different (but related) ways of using this approximation were considered in
recent publications. See [13, 16, 30, 34, 37].

In the algorithms introduced in this paper we also use quadratic models, but
the way of treating constraints differs from the ones described in [13, 16, 30, 34,
37, 41]. Roughly speaking, our proposal is to treat constraints in the same way the
quadratic solvers [5, 23, 33] do. This means that an algorithm for unconstrained
minimization on the current face is used, until a separate indicator says that this
is not worthwhile anymore. In this case, the face is abandoned along a direction
defined in [31, 32, 33] for convex minimization. For this direction, interesting
physical interpretations are given in [23]. See also [24, 25, 26, 27, 28, 29]. When,
in the unconstrained search process within a face, the algorithm hits a bound,
several new constraints are incorporated.

Existing algorithms use different ways of constructing Hessians for the
quadratic models. The true Hessian of f , the limited-memory BFGS and SR1
quasi-Newton approximations are the best known alternatives (see [13, 16]). An
interesting Gauss-Newton-type approximation of the Hessian of augmented La-
grangians was considered in [38]. The cases in which the true Hessian is very
costly or difficult to compute and its finite-difference approximation is also time-
consuming are not rare in practice. In these cases, it is possible to use the
truncated-Newton approach [6, 21], where each “Hessian × vector” product is
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replaced by an incremental quotient. However, since each of these products in-
volves an additional gradient evaluation, this alternative can also be inefficient.
Moreover, in this approach, information about the Hessian matrix obtained at
the current iteration is not used in the next ones.

On the other hand, quasi-Newton approximations of the Hessian (see, e.g.,
[22]) are able to accumulate information along the process. These approxima-
tions involve only one gradient evaluation per iteration. In the large-scale case,
conventional quasi-Newton methods generate dense Hessian approximations that
cannot be stored (or manipulated) explicitly. To overcome these difficulties,
limited-memory alternatives have been developed (see [13, 14, 35] and references
therein).

Our limited-memory approach will be based on the multipoint symmetric
secant approximations of the Hessian matrix proposed in [9]. These approxima-
tions are an extension of the classical multipoint secant scheme (see [39, 42] and
references therein) with the advantage that they exploit the symmetry of the
Hessian matrix in a natural way. They also differ from those introduced in [44].
The idea is that the Hessian approximation should be such that the gradient of
the quadratic model should interpolate the gradient of f at some previous points.
However, since this objective conflicts with the symmetry, the most “fresh” infor-
mation carried by gradient values is privileged with respect to older information.
The tendency to instability of the sequential secant methods is overcome with
the approach developed in [10, 11, 12]. A combination of the box-trust-region
(BTR) and conjugate gradient (CG) approaches allows us to take advantage of
negative curvature information.

The organization of this paper is as follows. An algorithmic outline of the
main algorithm is described in Section 2, where basic global convergence theo-
rems are also proved. In Section 3 we present a sub-algorithm that can be used by
the main algorithm for minimization within the current face. The sub-algorithm
is based on the BTR and CG approaches, and it assumes that a Hessian approx-
imation is given. A limited-memory multipoint symmetric secant approximation
is introduced in Section 4. In Section 5 we discuss some implementation details.
Numerical results are presented in Section 6. Finally, conclusions are given in
Section 7.

2 Main algorithmic model and global convergence

The main algorithm presented in this paper is an active-set method with a special
procedure for dropping constraints. It calls a sub-algorithm for minimization on
the current face. The algorithm visits the different faces of the box using a
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strategy that will be described below. First we need some general definitions.
As in [33], let us divide the feasible set Ω into disjoint faces, as follows. For

all I ⊂ {1, 2, . . . , n, n + 1, n + 2, . . . , 2n}, we define

FI = {x ∈ Ω | xi = `i if i ∈ I, xi = ui if n + i ∈ I, `i < xi < ui otherwise}.

The closure of FI is denoted by F̄I . Let [FI ] denote the smallest linear manifold
that contains FI , and SI denote the subspace obtained by the parallel translation
of [FI ]. For brevity, −∇f(x) will be called antigradient.

Given x ∈ FI , the orthogonal projection of −∇f(x) on SI will be called
internal antigradient and denoted by gI(x). The chopped antigradient (see [23,
33]) gC(x) is defined for x ∈ Ω as follows

[gC(x)]i =











− ∂f
∂xi

(x), if xi = `i and ∂f
∂xi

(x) < 0,

− ∂f
∂xi

(x), if xi = ui and ∂f
∂xi

(x) > 0,

0, otherwise,

where i = 1, . . . , n. Observe that [gC(x)]i = 0 if `i < xi < ui.
Since gC(x) ⊥ SI , we have that

gI(x) ⊥ gC(x).

Denote gP (x) = gI(x) + gC(x). The vector gP (x) will be called projected anti-
gradient. Note that x ∈ Ω is a stationary point of problem (1) if and only
if gP (x) = 0. In general, the mapping gP (x) is not continuous, nevertheless,
xk → x and gP (xk)→ 0 imply that gP (x) = 0 (see [15]).

Given xk ∈ Ω, the sub-algorithm computes a new iterate xk+1. We assume
that the sub-algorithm has the following properties:

P1. f(xk+1) < f(xk).
P2. If xk ∈ FI then xk+1 ∈ F̄I .
P3. If {xk, xk+1, xk+2, . . .} ⊂ FI is a set of infinitely many iterates generated by
the sub-algorithm, then gI(x

k)→ 0.

Below we present our main model algorithm. The symbol ‖ · ‖ will denote the
Euclidean vector norm throughout the paper, although in many cases, any other
norm can be used instead.

Algorithm 2.1. Assume that x0 ∈ Ω is an arbitrary initial point, η ∈ (0, 1),
0 < τmin ≤ τmax < ∞, 0 < βmin ≤ βmax < 1 and θ ∈ (0, 1). Let FI be the
face that contains the current iterate xk. The new iterate xk+1 is computed as
follows.
Step 1. If ‖gP (xk)‖ = 0 (xk is a stationary point), stop. If
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‖gC(xk)‖

‖gP (xk)‖
≥ η, (2)

compute xk+1 at Step 2, else compute xk+1 using the sub-algorithm.
Step 2. Choose τk ∈ [τmin, τmax]. Let αmax be the maximum value of α, for
which xk + αgC(xk) ∈ Ω. Set α = min{τk, αmax}. If

f(xk + αgC(xk)) ≤ f(xk)− θα‖gC(xk)‖2 (3)

set αk = α, xk+1 = xk +αkgC(xk) and finish the k-th iteration. Else, choose new
value for α in the interval [βminα, βmaxα] and repeat test (3).

The global convergence theory for this algorithm generalizes the one given in
[5] for quadratic minimization.

We assume that ∇f(x) satisfies a Lipschitz condition: there exists L > 0 such
that

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Ω.

This implies that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2, ∀x, y ∈ Ω. (4)

Here and below, 〈a, b〉 denotes the scalar product aT b in IRn.
Let us prove global convergence for Algorithm 2.1.

Theorem 2.1. Algorithm 2.1 is well defined, and at least one of the limit points
the generated sequence is a stationary point for problem (1).

Proof. Denote
K = {k ∈ IN | ‖gC(xk)‖/‖gP (xk)‖ ≥ η}.

To prove that the algorithm is well defined, it is sufficient to show that, for all
k ∈ K, condition (3) is satisfied after a finite number of reductions of α. Indeed,
for all α ≥ 0, from (4) we have

f(xk + αgC(xk)) ≤ f(xk)− α‖gC(xk)‖2 +
α2L

2
‖gC(xk)‖2.

This implies that (3) holds for α ≤ 2(1−θ)
L

. Therefore, the new iterate is well
defined.

Moreover, the value of α accepted at Step 2 of Algorithm 2.1 is bounded below
by

ᾱ = min{τmin,
2(1− θ)

L
βmin} > 0.
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Hence, at Step 2 we have

f(xk)− f(xk+1) ≥ θᾱη‖gP (xk)‖2. (5)

Since f(xk+1) ≤ f(xk) for all k ∈ IN and since f(x) is bounded below on Ω,
(5) implies that either K is finite or

∑

k∈K

‖gP (xk)‖2 <∞. (6)

In the infinite case, (6) implies that gP (xk)→ 0 for k ∈ K. Consequently, every
limit point of {xk}k∈K is a stationary point.

If K is finite, there exists k0 ∈ IN and a face FI such that xk ∈ FI for all
k ≥ k0. Therefore, xk+1 is computed by the sub-algorithm for all k ≥ k0. Then,
by the property P3, limk→∞ ‖gI(x

k)‖ = 0. But, for all k ≥ k0, inequality (2)
does not hold. Hence limk→∞ ‖gP (xk)‖ = 0. As before, this means that every
limit point of {xk} is stationary.

Recall that the stationary points of our problem are characterized by gP (x) =
0. If x is a stationary point, such that xi = `i (or xi = ui) and ∂f

∂xi
= 0, we say that

this point is degenerate. In the following theorem we prove that, if degenerate
points do not exist, the algorithm identifies the active constraints at the limit
points in a finite number of iterations.

Theorem 2.2. Assume that all the stationary points of (1) are nondegenerate.
Then, there exists I ⊂ {1, 2, . . . , 2n} and k0 ∈ IN such that xk ∈ FI for all
k ≥ k0. Moreover, all the limit points of the sequence {xk} belong to FI and are
stationary.

Proof. We exclude from our consideration the trivial case, when Algorithm 2.1
terminates in a finite number of iterations. Let us prove first that Step 2 cannot
be executed infinitely many times. Assume, by contradiction, that the set of
iterates xk+1 computed at Step 2 is infinite. Then there exists a constraint which
is abandoned infinitely many times. Without loss of generality, assume that this
constraint is xi = `i, i.e. there exists an infinite set K such that, for all k ∈ K,

xk
i = `i, xk+1

i > `i, (7)

∂f

∂xi
(xk) < 0, (8)

and xk+1 is computed at Step 2. Let x∗ be a limit point of {xk}k∈K . By The-
orem 2.1, x∗ is a stationary point. From (7) and (8), we have x∗

i = `i and
∂f
∂xi

(x∗) ≤ 0. But since x∗ is stationary, ∂f
∂xi

(x∗) ≥ 0. Hence x∗ is degenerate,
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which contradicts the theorem assumption. Thus, we proved that there exists
k0 ∈ IN and I ⊂ {1, 2, . . . , 2n} such that xk ∈ FI for all k ≥ k0. This implies
that xk+1 is computed by the sub-algorithm for all k ≥ k0. Then, according to
the property P3, gI(x

k)→ 0. By continuity, this implies that

∂f

∂xi
(x∗) = 0

for all i such that i /∈ I and n + i /∈ I. Since x∗ is nondegenerate, this implies
that `i < x∗

i < ui. Therefore, x∗ ∈ FI .

3 Minimization within a given face

Algorithm 3.1, which is presented below, is one of the possible implementations of
the sub-algorithm, which is used at Step 1 of Algorithm 2.1 for the minimization
within a given face FI . Given xk ∈ FI (that violates (2)), a symmetric Hessian
approximation Bk ∈ IRn×n and a trust region radius δk, Algorithm 3.1 generates
xk+1 ∈ F̄I . To simplify the notation, suppose that the face FI is the interior of
Ω. The extension to a general FI is straightforward. In Algorithm 3.1, the CG
method is applied to the quadratic subproblem

Minimize Q(p) ≡
1

2
〈p,Bkp〉+ 〈∇f(xk), p〉. (9)

Like in [45], the regular CG iterations are interrupted, when the constraints

‖p‖∞ ≤ δk, ` ≤ xk + p ≤ u (10)

are violated or when a direction of negative curvature is encountered. A TR
approach is used to decide whether the generated trial point is good enough. We
also follow the classical rules to modify the trust-region radius.

The sub-algorithm can be stated formally as follows.

Algorithm 3.1.

Step 1. Starting with p0 = 0, apply the CG method to (9). This method
generates a search direction dj and a new iterate pj+1 at its jth iteration (j =
0, 1, . . .). Interrupt this process in any of the following three cases:

Case 1: ∇Q(pj) = 0. In this case, set ptrial = pj .
Case 2: Q(p) tends to −∞ along dj . In this case, proceed as in Case 3, with

pj+1 replaced by pj + Mdj, where M is a large positive number.
Case 3: pj+1 violates at least one of the constraints (10). In this case, define p′

as the projection of pj+1 on the region given by (10), and define p′′ as the farthest
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point from pj among those belonging to the segment [pj , pj+1] and satisfying (10).
If Q(p′) ≤ Q(p′′), then set ptrial = p′, else set ptrial = p′′.
Step 2. Set xtrial = xk + ptrial, and compute the following predicted and actual
reductions in function value:

∆pred = −Q(ptrial), ∆act = f(xk)− f(xtrial).

If ∆act < 0.1∆pred, set δk = 0.5‖ptrial‖∞ and go to Step 1.
If 0.1∆pred ≤ ∆act ≤ ∆pred, set xk+1 = xtrial and δk+1 = δk.
If ∆act > ∆pred, set xk+1 = xtrial and δk+1 = 3δk.

At Step 2, we can use different numbers in (0, 1) instead of 0.1 and 0.5.
Analogously, we can use any number greater than 1 instead 3. Our choice of
these parameters was motivated by numerical experience.

The existing theoretical results concerning trust-region methods (see e.g.
[16, 19]) can be applied to show that, under boundedness assumptions on ‖Bk‖,
Algorithm 3.1 is well defined and enjoys the properties P1-P3.

The Hessian approximation Bk, that will be introduced in the next section, is
a limited-memory approximation. Since this approximation is a low-rank modi-
fication of a multiple of the identity matrix, the matrix Bk has a small number
of different eigenvalues. Then, the CG method uses a small number of iterations
to solve the quadratic problem (9) or to identify a negative curvature direction
of the quadratic. Negative curvature information is accumulated in the Hessian
approximations thanks to the multipoint symmetric secant approach.

4 Limited-memory multipoint symmetric secant

approximations

Let us describe now how to employ the basic idea of the multipoint symmetric
secant method for generating the matrices Bk.

Denote sk = xk+1−xk, yk = gk+1−gk. Consider a special case assuming that
the sequence of n vectors s0, . . . , sn−1 have been generated somehow, and that
they are linearly independent. The ideal aim would be to construct a Hessian
approximation Bn ∈ IRn×n such that

(Bn)T = Bn, (11)

Bnsi = yi, i = 0, . . . , n− 1. (12)

In general, this is impossible, because the system (11)-(12) (whose unknowns are
the entries of Bn) is overdetermined. The information about the symmetry of the
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Figure 1: Symmetric secant approximation of the Hessian matrix.

Hessian matrix conflicts with the information carried by the pairs {si, yi}. The
idea of the sequential symmetric secant methods introduced in [9] is to release
partially equations (12) in order to have Bn well defined. This can be accom-
plished in various ways. Uniqueness can be achieved by ranging the pairs {si, yi}
according to the reliability of the information that they carry. For example, for
i > j, one can consider {si, yi} as more reliable for the Hessian approximation
than {sj, yj}. Therefore, in the process of constructing the Hessian approximation
Bn, it is natural to use the pairs {si, yi} sequentially for i = n− 1, n− 2, . . . , 0.

Suppose, for a moment, that each vector sn−i, i = 1, . . . , n, is parallel to the
coordinate axis ei. Then the first column and the first row of the Hessian matrix
can be approximated by the standard finite-difference formula as yn−1/‖sn−1‖.
The second column and row, in their parts outside the first column and row, are
approximated by yn−2/‖sn−2‖, and so on. In order to fill the “nonfilled” part of
the ith row and column, the components yn−i

j /‖sn−i‖, j = i, . . . , n, are used (see
Fig. 1).

In the general case of arbitrary vectors sn−i, the space can be linearly trans-
formed so that, in the new space, the vectors s̃n−i are parallel to the new co-
ordinate axes ẽi. Then the described approach can be used to approximate the
Hessian matrix in the new space. After returning to the original space, we get
the approximation

Bn = S−T sym(ST Y )S−1, (13)

where S = [sn−1, sn−2, . . . , s0], Y = [yn−1, yn−2, . . . , y0] ∈ IRn×n. For any matrix
A, the symmetrization operation is defined as

(symA)ij =

{

Aij , i ≥ j,
Aji, otherwise.

Note that Bn = f ′′, if f(x) is quadratic. If not, multipoint symmetric secant
formula (13) gives a good approximation to f ′′(xn), provided that the matrix S
is “safely” nonsingular (see [9]).

Let us compare the approximation (13) with the one Bn = Y S−1 given by the
classic multipoint secant method (see [42]). In the new subspace, where s̃k−i is
parallel to ẽi, i = 1, . . . , n, it is easy to see for each element of the approximations,
how “fresh” is the information involved in its computation. Comparing these two
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Figure 2: The symmetric (left) and the classic (right) secant approximations with
indication, for each element, the iteration at which its pair {s, y} was computed.

approximations, say, row by row (see Fig. 2), one can see that the symmetric one
uses more “fresh” information than the classic one. An important property of
(13) is that Bn can be obtained, for any initial B0 ∈ IRn×n, as the result of n
sequential updatings by the rank-two formula

Bk+1 = Bk +
(yk −Bksk)(ck)T + ck(yk −Bksk)T

〈sk, ck〉
−
〈yk −Bksk, sk〉ck(ck)T

〈sk, ck〉2
,

(14)
where ck is any vector in IRn, such that

〈ck, si〉 = 0, 0 ≤ i < k, (15)

〈ck, sk〉 6= 0. (16)

The sequence {Bk}n0 is well defined by (14)-(16) in the sense that there is no
break-down for all k = 0, . . . , n − 1. We assume, from now on, that B0 is sym-
metric, although some of our further assertions do not require this assumption.

It can be easily shown by analogy with [12] that formulae (14)–(16) gener-
ate symmetric Hessian approximations that satisfy for all k = 0, . . . , n − 1 the
following equations

(Sk)T Bk+1Sk = sym((Sk)T Y k), (17)

sT Bk+1Sk = sTY k, ∀s ⊥ Sk, (18)

(Sk)T Bk+1s = (Y k)T s, ∀s ⊥ Sk, (19)

where Sk = [sk, sk−1, . . . , s0], Y k = [yk, yk−1, . . . , y0] ∈ IRn×(k+1). These equali-
ties imply the secant equation

Bk+1sk = yk. (20)

Note that the vector ck, as well as Bk+1, are not uniquely defined by (15) and
(16). Uniqueness can be obtained, if we assume that Bk+1 is the solution of the
following least-change problem:
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Minimize ‖B −Bk‖F , (21)

subject to (Sk)T BSk = sym((Sk)T Y k),

sT BSk = sTY k, ∀s ⊥ Sk,

(Sk)T Bs = (Y k)T s, ∀s ⊥ Sk,

where ‖·‖F is the Frobenius matrix norm, and Bk is supposed to satisfy equations
similar to (17) and (18). The solution to this problem is unique, and it is given
by formula (14) with

ck = [I − Sk−1((Sk−1)T Sk−1)−1(Sk−1)T ]sk.

This means that the sequence {ck}n−1
0 can be obtained, e.g., by the Gram-Schmidt

orthogonalization process applied to the sequence {sk}n−1
0 . Denoting

Ck =

[

c0

‖c0‖
, . . . ,

ck

‖ck‖

]

∈ IRn×(k+1),

we see that (Ck)T Ck = I and

ck = [I − Ck−1(Ck−1)T ]sk. (22)

This choice of ck ensures that the equation

sTBks = sT B0s ∀s ⊥ Sk−1 (23)

holds for all k = 1, . . . , n. Note that the sequence of approximations Bk is
uniquely defined by (17)-(19) and (23). Our limited-memory approach will be
essentially based on this property.

In limited-memory methods, the Hessian matrix is approximated by a low-
rank modification of a simple matrix B0. In the next theorem, we present the
multipoint symmetric secant approximations in the form that will be useful for
implementation. For simplicity, the upper indices of Sk and Y k will be omitted.

Theorem 4.1. Let S = [sk, sk−1, . . . , s0] ∈ IRn×(k+1) be a full-rank matrix.
Suppose that the matrices B1, . . . , Bk+1 are generated by (14) and (22). Then,
for any B0 ∈ IRn×n,

Bk+1 = (I − S(ST S)−1ST )B0(I − S(ST S)−1ST ) (24)

+
[

S Y
]

[

−(ST S)−1sym(Y T S)(ST S)−1 (ST S)−1

(ST S)−1 0

] [

ST

Y T

]

,
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where Y = [yk, yk−1, . . . , y0] ∈ IRn×(k+1).

Proof. Let S⊥ ∈ IRn×(n−k−1) be any matrix such that

ST
⊥S⊥ = I and ST

⊥S = 0.

Then, equations (17)–(19) and (23) can be written as
[

ST

ST
⊥

]

Bk+1
[

S S⊥

]

=

[

sym(ST Y ) Y T S⊥

ST
⊥Y ST

⊥B0S⊥

]

. (25)

By the hypothesis, the matrix [S S⊥] ∈ IRn×n is nonsingular. Clearly,

[

S S⊥

]−1
=

[

(ST S)−1S
ST
⊥

]

.

Therefore, using
S⊥ST

⊥ = I − S(ST S)−1ST ,

sym(Y T S)− ST Y − Y T S = −sym(ST Y ),

formula (24) can be easily derived from (25).

In limited-memory methods, the initial Hessian approximation is usually cho-
sen as B0 = γI, where the positive scalar γ may change from iteration to iteration
of the main algorithm.

In our approximation, we choose a small collection of vector pairs {si, yi}
among those recently generated by the main algorithm. The number of these
pairs, denoted by m, may also change from one iteration to another. Then we
compute the matrices S, Y ∈ IRn×m and we apply formula (24) with B0 = γI.
This gives

B = γI (26)

+
[

S Y
]

[

−W sym(Y T S)W − γW W
W 0

] [

ST

Y T

]

,

where W = (ST S)−1 ∈ IRm×m. The size of the middle matrix is 2m× 2m. Since
m � n, the matrix B is a low-rank correction of γI. This is the most essential
property of the limited-memory methods. Therefore, the number of different
eigenvalues of the Hessian approximation is small and, so, the CG method must
converge in a small number of iterations.

Our limited-memory formulae (24) and (26) differ from the conventional ones,
because they are based on different quasi-Newton methods. As in other limited-
memory approaches, the Hessian approximation in our version is not stored ex-
plicitly. Instead, the smaller matrices S, Y ∈ IRn×m, ST S, Y T S ∈ IRm×m are
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stored and updated. The products of the form Bv and uT Bv, are be computed
by formula (26) using only the stored matrices.

If the vectors si used in (26) are linearly dependent, the matrix ST S is sin-
gular. Even if this is not the case, if the vectors are “almost” linearly dependent,
the Hessian approximation may be poor. This is typical in sequential multipoint
secant approximations. To avoid instability we use only a subset of the available
vectors in (26). As in [9, 10, 11, 12], the vectors selected for this subset must
be safely linearly independent in some sense. The stable methods [11, 12] enjoy
superlinear convergence due to the fact that they use only safely linearly inde-
pendent vectors si for their multipoint symmetric secant approximations. In the
next section, we introduce a measure of linear independence. When this measure
is above a fixed threshold value σ ∈ (0, 1], we consider that the vectors are safely
linearly independent.

Suppose Bk is the Hessian approximation at the kth iteration of the main
algorithm. We limit the maximal number of the vector pairs {si, yi} used in
constructing Bk by a parameter m1 � n. Another parameter, m2 ≥ m1, prevents
from using the pairs {si, yi} with i < k −m2 (we call such pairs old, in contrast
to the other pairs that we call recent). A general scheme of our limited-memory
algorithm can be presented as follows.

Algorithm 4.1. Given m1 � n, m2 ≥ m1, ν ∈ (0, 1), γk > 0 and a set of recent
vector pairs {si, yi}, execute the following steps.
Step 1. From the given set of recently computed vectors si choose a subset of
at most m1 vectors such that, first, sk−1 is included in the subset, second, the
vectors in the subset are safely linearly independent. Use all si from the subset
as columns (preferably in decreasing order of i) for composing the matrix S.
Compose the matrix Y accordingly.
Step 2. Construct Bk by formula (26) with γ = γk.

Note that Step 1 can be implemented in several ways. The simplest choice
that could meet all the requirements of Step 1 would be to compose S of just one
column sk−1. In this case, formula (26) is equivalent to the Powell-symmetric-
Broyden update [22] of the matrix B0 = γkI.

In our algorithm, we set initially S = [sk−1], and then we check, in decreasing
order of the iteration number i, whether the safe linear independence of the
columns of S is preserved after adding si as a new column. If this is the case,
S is enlarged by adding si as its new last column. We stop after checking all si

from the given set of “recent” vectors. Our implementation of this approach is
discussed in the following section.
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5 Implementation features

In this section we address some implementation issues concerning the algorithms
presented in the previous sections of this paper.

5.1 Updating of S and B at the k-th iteration

After the computation of xk+1, a new vector pair {sk, yk} is available. We check
whether the vector sk and the columns of Sk−1 are safely linearly independent. If
so, we simply add sk to Sk−1 as a new column so that Sk = [sk Sk−1]. Otherwise,
we compose Sk with sk and of some columns of Sk−1 in such a way that the
columns of Sk are safely linearly independent.

To maintain safe linear independence of the columns of S, we use and update
the QR decomposition of the matrix S̄. This matrix is such that S̄P = S, where
P is a permutation matrix which ensures that the columns si in S are ordered
in decreasing order of the iteration number i. Thus, we assume that the fol-
lowing matrices are available from the previous iteration: the orthogonal matrix
Qk−1 ∈ IRn×m, the upper-triangular matrix Rk−1 ∈ IRm×m and the permuta-
tion matrix P k−1 ∈ IRm×m, such that the matrix Sk−1 = Qk−1Rk−1P k−1 has the
desired ordering of columns. For k = 0, our initialization of Sk−1 corresponds to
the choice m = 0. To simplify the linear algebra involved, we do the same at the
subsequent iterations, whenever the current face changes.

Our criterion of safe linear independence is based on the following definition.
Given σ ∈ (0, 1], a matrix A = [a1, . . . , am] ∈ IRn×m with m ≤ n is said to be
σ-regular, if for all i = 1, . . . ,m,

| sin ϕi| ≥ σ, (27)

where ϕi is the angle between the column ai and the subspace generated by
the preceding columns a1, . . . , ai−1. Note that the column lengths ‖ai‖ are not
essential in this definition.

An additional point to emphasize is that, if the matrix R in the QR de-
composition of A is available, the left-hand side of inequality (27) can be easily
computed by the formula

| sinϕi| = Rii/‖ai‖.

The outlined updating of S̄ and of its QR decomposition is presented below
by Algorithm 5.1. For simplicity, we use the notations sc = sk, S̄c = S̄k−1,
Qc = Qk−1, Rc = Rk−1 and Pc = P k−1 for the input variables with the subscript
c standing for “current”, and the notations S̄ = S̄k, Q = Qk, R = Rk and P = P k

for the output variables. The dimension m is an input-output variable.
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Algorithm 5.1. Assume that m1 � n, m2 ≥ m1, m ≤ m1, σ ∈ (0, 1), sc ∈ IRn

and that S̄c ∈ IRn×m is a σ-regular matrix composed of some recent vectors si and
of at most one old vector. Moreover, assume that its QR-factors are Qc ∈ IRn×m

and Rc ∈ IRm×m, and Pc ∈ IRm×m is a permutation matrix such that the columns
si of Sc ≡ S̄cPc are ordered in decreasing order of the iteration number i.

Step 1. If S̄c has an old vector in the last column then set m← m− 1, exclude the
last columns in S̄c and Qc and exclude both the last columns and the last
rows in Rc and Pc.

Step 2. If (m < m1) and (there is no old vector in S̄c) then:
Set r̄ = QT

c sc, q = sc −Qcr̄, r = ‖q‖ and q = q/r.
If r > σ‖sc‖ then

set m = m + 1, S̄ = [S̄c sc], Q = [Qc q],

R =

[

Rc r̄
0 r

]

, P =

[

0 Pc

1 0

]

and stop.

Step 3. Set m = 1, S̄ = [sc], Q = [sc/‖sc‖], R = [‖sc‖], P = [1].

Step 4. Checking one by one the vectors si that compose the columns of S̄c

in decreasing order of i, while i > k −m2 and m < m1, do:
Set r̄ = QT si, q = si −Qr̄, r = ‖q‖ and q = q/r.
If r > σ‖si‖ then

set m = m + 1, S̄ = [S̄ si], Q = [Q q],

R =

[

R r̄
0 r

]

, P =

[

P 0
0 1

]

.

One can see that the output matrix S̄ is σ-regular, and that its column vectors
si are not old. Moreover, the perturbation matrix

P =





















1 0

0
. . .

0 1

0 1

··
· 0

1 0





















produces the desired ordering of columns in the matrix S = S̄P .
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Remark

Our process of updating the QR decomposition can be viewed as a sort of Gram-
Schmidt orthogonalization. Numerical stability can be significantly improved
with the use of the approaches discussed, e.g., in [7, 20, 36].

Having available the matrix S, we compute the corresponding matrix Y and,
if required, construct the Hessian approximation by formula (26), in which we
set W = P T R−1R−T P .

Note that the Q-factor is not involved in this Hessian approximation. There-
fore, some savings, both in the computational costs and in the memory require-
ments, can be obtained if, as in [35], we avoid the computation of the matrix Q in
Algorithm 5.1. This means that all the ocurrences of products of the form QT

c v
and QTv should be replaced by R−T

c S̄T
c v and R−T S̄T v, respectively. Since in

Algorithm 5.1 the vector v is either sc or a column of S̄c, the major computations
involve the small matrices S̄T

c S̄c, Rc ∈ IRm×m and the small vector S̄T
c sc ∈ IRm.

Since for m � n the major cost of the implicit Hessian approximation Bk+1 by
formula (26) is determined by the computation of the two products Sk−1sk and
Sk−1yk, the overall computational cost of this approximation can be estimated
as 2mn flops. The outlined approach is expected to improve in the future our
implementation of Algorithm 4.1.

5.2 Computation of α at Step 2 of Algorithm 2.1

Recall that in Algorithm 2.1 we define the steplength α in the chopped direc-
tion gC(xk) as the minimum between τk and αmax, where τk ∈ [τmin, τmax]. To
take into account second order information we adopted the spectral choice (see
[40],[43]):

τk = max

(

τmin,min

(

τmax,
〈sk, sk〉

〈sk, yk〉

))

(28)

5.3 Initial Hessian approximation

For constructing the matrix Bk, it is necessary to specify in (26) the value of γ,
which is associated with the initial Hessian approximation B0 = γI. For k = 0,
following [22], we set γ = |f(x0)|. If γ is less than a tolerance ε, we set γ = 1.
For k > 0, we use the spectral choice (28) γ = 1/τk.
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6 Numerical experiments

Algorithm 2.1, along with sub-algorithm 3.1 and the multipoint symmetric secant
approximations Bk, define an implementable algorithm for box-constrained min-
imization of smooth functions. Each particular implementation is determined by
the choice of several parameters. Using a small set of test problems, we arrived
to the following default options:

• ε = 10−5, tolerance for 2-norm of projected gradient gP (Algorithm 2.1).

• η = 0.9, tolerance in the test to leave the face (Algorithm 2.1).

• τmin = 10−3, τmax = 103, bounds for the spectral parameter τk (Algo-
rithm 2.1).

• θ = 10−4, line search parameter (Algorithm 2.1).

• βmin = 0.1, βmax = 0.9, parameters specifying the decrease interval for α
(Algorithm 2.1).

• M = 10, multiplier for increasing search direction. (Case 2 in Algo-
rithm 3.1.)

• δ0 = 1.0, initial trust region radius (Algorithm 3.1).

• σ = 0.01, threshold in the σ-regularity test (Algorithm 5.1).

• m1 = 5, maximal number of columns in the matrix S (Algorithm 5.1).

• m2 = 7, parameter protecting from using too old vectors si (Algorithm 5.1).

The resulting code, named BSS, was compared with the code LANCELOT
[16, 18] on a set of 20 bound constrained problems from the CUTE collection
[8]. BSS and LANCELOT were implemented in Fortran 77 and compiled with
f77 compiler. All the experiments were done with the -O optimization compiler
option on a SUN UltraSPARC1 station.

LANCELOT was used with the following default options:

• bandsolver-preconditioned-cg-solver-used 5

• exact-Cauchy-point-required

• solve-bqp-accurately

• gradient-tolerance 1.0D-05
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• constraints-tolerance 1.0D-06

• maximum-number-of-iterations 5000

The numerical results are presented by Table 1. We list the name of the prob-
lem, the type of the objective function (“q”, “ssq” and “o” stand for quadratic,
sum of squares and other, respectively), the number of variables, the number
of iterations (It) and the CPU time (in seconds) for BSS and LANCELOT. For
LANCELOT, the results are presented for the three options:

• exact-second-derivatives-used (LAN(1))

• bfgs-approximation-used (LAN(2))

• sr1-approximation-used (LAN(3))

Problem Type n BSS LAN(1) LAN(2) LAN(3)
It Time It Time It Time It Time

BQPGABIM q 50 34 0.03 4 0.04 1272 10.71 9 0.11
BQPGASIM q 50 22 0.02 3 0.04 5000 46.82 10 0.13
DECONVB ssq 61 724 3.00 14 0.36 41 0.77 14 0.46
HARKERP2 q 100 113 0.37 8 0.94 8 0.95 8 0.95
HS110 ssq 100 2 0.01 1 0.04 1 0.04 1 0.04

S368 o 100 26 3.44 8 3.14 (∗)5000 2158.73 52 29.87
EXPLIN o 500 77 0.09 11 0.45 16 0.47 2016 0.48
EXPLIN2 o 500 236 0.66 13 0.48 18 0.51 18 0.52
EXPQUAD o 500 4284 64.63 792 105.74 1914 32.96 495 30.99
QRTQUAD o 500 2378 19.72 859 239.15 54 8.34 527 87.13
CVXBQP1 q 10000 15 1.23 1 4.76 1 4.97 1 4.87
HATFLDC ssq 10000 396 184.74 4 4.63 4 5.01 4 4.76
MCCORMCK o 10000 17 5.87 4 4.73 6 6.34 6 6.42
NONSCOMP ssq 10000 23 3.05 8 6.63 5 5.48 8 6.27
NCVXBQP1 q 10000 5 0.66 4 8.31 4 8.80 4 8.55
NCVXBQP2 q 10000 60 8.96 5 11.94 5 12.75 5 11.50
PENTDI q 10000 3 0.37 1 3.05 20 6.40 3 3.17
PROBPENL o 10000 3 0.61 1 27.63 2 51.45 2 51.73
QUDLIN q 10001 53 2.51 4 8.30 4 8.01 4 7.81
TORSION6 q 14884 292 123.73 8 17.29 9 16.95 9 17.02

Table 1. Performance of BSS versus LANCELOT.

BSS and LANCELOT found the same solutions, except the problem S368,
marked off by (∗), for which the maximum number of iterations was reached by
LAN(2).

The reported results were obtained for η = 0.9. This is a rather conservative
strategy that worked better than the “greedy” ones, which correspond to small
values of η. This means that, in general, it is worthwhile to stay in the current
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face, exploiting the quadratic model, instead of trying to change frequently the
active constraints.

We used different values of m1 in the range [3, 20] and we defined m2 =
1.5 ∗m1. The results were not very sensitive to the choice of m1. This behavior
is due to the strategy of resetting the matrix S when change of faces occur.

Note that too large values of σ (say, above 0.1), would be very restrictive
in the sense that too many vectors si would be rejected in the process of Hes-
sian approximation. The numerical results were not too different for the values
σ = 0.1, 0.01 and 0.001, mainly because of the resetting strategy. Since σ = 0.01
produced slightly better results, we adopted this parameter for our implementa-
tion.

These tests do not aim to establish the superiority of one algorithm over he
other but only to assess the reliability of BSS. For this reason, we ran LANCELOT
only with its default parameters.

In general, the number of iterations of BSS is larger than the one of the code
LANCELOT with second derivatives, but this is not reflected in the computer
time. The reason is that our subproblems are very cheap due to the low-rank
character of the Hessian approximations, and so, the number of the CG-iterations
in the trust-region subproblems is very small.

7 Conclusions

Active set methods are among the most traditional tools of constrained opti-
mization. Their appeal comes from the fact that they allow the algorithmic
designer to take full advantage of previously developed unconstrained optimiza-
tion techniques. As far as new ideas in unconstrained minimization continue to
be introduced, the implementation of active set methods based on those ideas is
a natural task.

The unconstrained optimization technique exploited in this paper is the mem-
oryless multipoint symmetric secant scheme, which is related to quasi-Newton
methods. The fulfillment of several secant equations within a given face (or sub-
space) usually ensures Newton-like properties of the search directions generated
on that face. On the other hand, since the approximate Hessians so far generated
are not necessarily positive definite, a trust-region strategy for global convergence
is necessary. A small number of low-rank corrections guarantees that the Hessian
approximations possess a small number of different eigenvalues and, so, the CG
method is efficient for solving the resulting quadratic subproblems.

The comparison with LANCELOT reveals that the method introduced here
is reliable, and that it is able to compete with well established optimization
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solvers. It is interesting to observe that the new method worked very well in
problems where the performance of LANCELOT was rather poor (NCVXBQP1,
PENTDI, PROBPENL, QUDLIN), whereas LANCELOT was more efficient in
others (HATFLDC,TORSION6). This fact indicates that the trust-region strat-
egy of LANCELOT and of other box-constrained solvers is complementary to
the active-set strategy in the sense that difficult problems for one of them are
relatively easy for the other.

Box-constrained minimization subroutines are usually employed in the imple-
mentation of augmented Lagrangian algorithms for general nonlinear program-
ming (see [17, 38]). We plan to adapt our method for that purpose in the near
future. Moreover, as it was mentioned in Sub-section 5.1, we also plan to employ
some ideas of [35] to improve the computational efficiency of our limited-memory
multipoint symmetric secant approximation of the Hessian. Note that in the cur-
rent implementation we reset the matrix S when the working face changes. With
an affordable complication of the linear algebra involved, this resetting procedure
can be avoided. Probably, this will contribute to the overall improvement of the
efficiency of the method.
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