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Abstract

Auto-logistic model is widely used to describe binary images texture
and spatial presence-absence data. Gibbs Sampler algorithm (like others)
simulates this kind of model, but his performance depends on the model
global properties. Under general conditions we have at least a global dis-
tribution that locally performs as the model specifies. We give a sufficient
condition on the parameters, and this condition ensures the distribution
is unique.

Keywords: Auto-logistic model - uniqueness - Dobrushin’s condition - Gibbs
measure - Simulation

1 Introduction

In Statistical Physics, Ising (in 1925) laid the foundation of the Random fields in
his doctoral thesis ([9, 10]). He presented a ferromagnetic model where fix par-
ticles interact in a lattice, each one associated with a spin value +1 or -1. Besag
applied this idea for the first time to image processing ([2]). Images statistical
modelling is a valuable tool and there are a lot of interests in image processing
at several knowledge areas. Ising and Besag models take into account the de-
pendence between nearest pixels. These kinds of models are called Markovian
Random Fields. By Hammersley-Clifford Theorem ([15]), they have Gibbs dis-
tribution. There are algorithms that simulate Gibbs distribution. Gibbs Sam-
pler is the most popular one (see [5, 15]). It generates a Markov Chain of images
converging to a realization of the subjacent model using its local dependence.
The convergence holds if there is only one global distribution. Under general
conditions we have existence, but uniqueness is not trivial (see [7]). There are a
lot of works on this topic (see [1, 3, 12, 14]). The Dobrushin’s condition theorem
provides us with a sufficient condition to achieve it. To verify this condition is
not easy and model dependent. The Auto-logistic one models the dependence
of spatial binary data like binary images indicating presence-absence of some-
thing. These kind of data appear in several areas like biology and geoscience.
We give a sufficient (but not necessary) condition that ensures uniqueness in
the Auto-logistic model for 4 and 8 neighbours. This condition does not involve
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an external field and constrains interaction parameters to a bounded and con-
vex region (in R2 or R4). We think this theorem could be extended to bigger
neighbourhoods and to 3D lattices. The organization of this work is as follows.
At section 2 we give some definitions we need. At section 3 we describe the
model and condition bases. Then, at section 4 we present and demonstrate the
theorem. Finally, we discuss about theorem condition at section 5.

2 Theoretical framework

Let the lattice S ⊆ Z2, not necessarily finite. We consider the following defini-
tions as assumptions

E = {0, 1} and E = P(E) is parts of E;

x = {xs}s∈S ∈ ES is a binary image;

X = {Xs}s∈S is the underlying stochastic process;

V ⊆ S; xV =̇ {xs}s∈V ∈ EV ; E V is the product σ-algebra;

FV =̇
{
B × ES\V /B ∈ E V

}
⊆ F =̇E S ;

S =̇
{

Λ ⊂ Z2/1 ≤ # (Λ) <∞
}

;

Φ=̇ (ΦΛ)Λ∈S is a potential. That is ΦΛ(x) = φΛ(xΛ) where φΛ is a real
function E Λ-medible and there exists HΛ=̇

∑
∆∈S∩Λ Φ∆, it is the energy

function;

γ = (γΛ)Λ∈S is the Gibbsian specification (for Φ) that is

γΛ(A|x)=̇
∑
ξ∈EΛ 1A(ξxS\Λ)exp(−HΛ(ξxS\Λ))∑

ξ∈EΛ exp(−HΛ(ξxS\Λ))
, A ∈ F ;

G (γ)=̇{µ/µ(A ∩ B) =
∫
B
γΛ(A| )dµ∀B ∈ FS\Λ} is the set of global Gibbsian

probabilities µ in ES such that γΛ(A|x) is the probability of A with respect
to µ conditional to xS\Λ.

#G (γ) ≥ 1 by Theorem 4.23 in [7].

3 Auto-logistic model and Dobrushin’s condi-
tion

We consider the potential

ΦΛ(x) =

 βixtxt+vi Λ = {t, t+ vi}
β0xt Λ = {t}
0 otherwise

,

where t ∈ S, i = 1, .., g (g = 2, first order and g = 4, second order), v1 = (0, 1),
v2 = (1, 0), v3 = (1, 1), and v4 = (−1, 1).
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For s ∈ S we define

γ0
s (B|x) =̇ γ{s}(B × ES\{s}|x)

=

∑
ξ∈B exp

(
−H{s}

(
ξxS\{s}

))∑
ξ∈E exp

(
−H{s}

(
ξxS\{s}

))
=

∑
ξ∈B exp

(
−
∑

Λ∈{s}∩S ΦΛ

(
ξxS\{s}

))
∑
ξ∈E exp

(
−
∑

Λ∈{s}∩S ΦΛ

(
ξxS\{s}

)) , B ∈ E .

Then, the local characteristic is

πs(x) = γ0
s ({xs}|x) =

e−xs(β0+
∑g
i=1 βi(xs+vi+xs−vi ))

e−(β0+
∑g
i=1 βi(xs+vi+xs−vi )) + 1

.

We note that γ0
s (.|x) depends on x∂s, with

∂s = {s± vi}gi=1 neighbourhood of s.

For g = 4, ∂s =

s− v3 s− v1 s+ v4

s− v2 s+ v2

s− v4 s+ v1 s+ v3

.

β0 is the external field parameter, if β0 = 0 we say the model does not
have an external field. β = (β0, β1, β2, β3, β4) is the parameter vector for the
second order model (8 neighbours) and β = (β1, β2, β3, β4) if does not have
external field. β = (β0, β1, β2) is the parameter vector for the first order model
(4 neighbors) and β = (β1, β2) without an external field. It is easy to see that
g = 2 is the particular case of g = 4 when β3 = β4 = 0, and Φ is translation-
invariant (i.e. β does not depend on t ∈ S). It is remarkable that we can not
consider the Auto-logistic regression model, since the external field depends on
t ([8, 13]).

We define the Uniform Distance between the probabilities µ and µ̃ by

dU (µ, µ̃) =̇ sup {|µ(B)− µ̃(B)|B ∈ E } .

For s and t in S we define

γs,t=̇ sup
{
dU (γ0

s (·|x), γ0
s (·|w))/xS\t = wS\t

}
.

We note that γs,t = 0 if t /∈ ∂s.
Finally,

α(γ)=̇ sup
s∈S

{∑
t∈S

γs,t

}
.

If α(γ) < 1 then γ meets Dobrushin’s condition and #G (γ) = 1 (Definition
8.6 and Theorem 8.7 in [7]).
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4 Uniqueness Theorem

Theorem 4.1. Let γ be the Gibbsian specification for Φ. Then

2

g∑
l=1

tanh(|βl| /4) < 1⇒ #G (γ) = 1

Proof
To prove theorem we only need to check that α(γ) ≤ 2

∑g
l=1 tanh(|βl| /4)

Let s ∈ S, t ∈ ∂s, x and w in ES such that xS\t = wS\t.
If xt = wt, then x = w and dU (γ0

s (·|x), γ0
s (·|w)) = 0.

If xt = 1 − wt, where t = s + vl or t = s − vl, for 1 ≤ l ≤ g. Without
loss of generality, we assume that t = s − vl. Then xr = wr, r 6= s − vl and
xs−vl = 1− ws−vl .

We note that

dU (γ0
s (·|x), γ0

s (·|w)) = sup
{
|γ0
s (A|x)− γ0

s (A|w)|/A ∈ E
}
,

= max
{
|γ0
s (A|x)− γ0

s (A|w)|/A = ∅, E, {0}, {1}
}
,

and

|γ0
s (∅|x)− γ0

s (∅|w)| = |0− 0| = 0,

|γ0
s (E|x)− γ0

s (E|w)| = |1− 1| = 0,

|γ0
s ({1}|x)− γ0

s ({1}|w)| = |γ0
s ({0}|x)− γ0

s ({0}|w)|,

(because γ0
s ({1}|x) = 1− γ0

s ({0}|x)), therefore

dU (γ0
s (·|x), γ0

s (·|w)) =
∣∣γ0
s ({1}|x)− γ0

s ({1}|w)
∣∣ ,

=

∣∣∣∣∣ e−(β0+
∑g
i=1 βi(xs+vi+xs−vi ))

e−(β0+
∑g
i=1 βi(xs+vi+xs−vi )) + 1

− e−(β0+
∑g
i=1 βi(ws+vi+ws−vi ))

e−(β0+
∑g
i=1 βi(ws+vi+ws−vi )) + 1

∣∣∣∣∣ ,
=

∣∣∣∣ 1

1 + eβ0+βl(xs+vl+xs−vl )+
∑
i6=l βi(xs+vi+xs−vi )

− 1

1 + eβ0+βl(ws+vl+ws−vl )+
∑
i6=l βi(ws+vi+ws−vi )

∣∣∣∣ ,
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=

∣∣∣∣ 1

1 + eβ0+βl(xs+vl+xs−vl )+
∑
i6=l βi(xs+vi+xs−vi )

− 1

1 + eβ0+βl(xs+vl+(1−xs−vl ))+
∑
i6=l βi(xs+vi+xs−vi )

∣∣∣∣ ,
=

∣∣∣∣ 1

1 + eβlxs−vl eθ
− 1

1 + eβl(1−xs−vl )eθ

∣∣∣∣ 1

=

∣∣∣∣∣ eβl(1−xs−vl ) − eβlxs−vl
e−θ + eβl(xs−vl ) + eβl(1−xs−vl ) + eβleθ

∣∣∣∣∣ ,
=

|1− eβl |
eβleθ + e−θ + eβle0 + e−0

,

≤ |1− eβl |
eβle−βl/2 + e−(−βl/2) + eβl + 1

,

=
|1− eβl |

(1 + eβl/2)2
=

(1 + eβl/2)|1− eβl/2|
(1 + eβl/2)2

=
|1− eβl/2|
1 + eβl/2

=
e|βl|/2 − 1

e|βl|/2 + 1
= tanh(|βl| /4)

(since eβle−βl/2 + eβl/2 ≤ eβlez + e−z, z ∈ R).
Therefore γs,s−vl ≤ tanh(|βl| /4) and

∑
t∈∂s γs,t ≤

∑g
l=1 2 tanh(|βl| /4), ∀s ∈

S, then

α (γ) = sup
s∈S

{∑
t∈∂s

γs,t

}
≤ 2

g∑
l=1

tanh(|βl| /4)

�

Remark 4.1. The counterpart is false (:)

Proof
If we identify 0 with −1, first order Auto-logistic model with β0/2 = β1 = β2

is the (−1)-normalized Ising model for β1/4 and without an external field (see
Example 3.3.33 in [4]). The β1 = β2 = 1.6 case does not reach our theorem
condition. But there is uniqueness because β1/4 < βc = (log (1 +

√
2))/2 =

0.4402 (Ising critical parameter, see page 100 of [7] and example in [6]).

5 Discussion

Theorem 4.1 provides us with a region for interaction parameters. We called
it Uniqueness region and we can see its graphic in figure 1 for the first order
model.

These parameters constrains ensure uniqueness but limit models diversity.
There are a lot of textures, like the one in figure 2, which can not be characterized
for the Auto-logistic model if parameters must lie in Uniqueness region. Images
in figure 2 came from an Auto-logistic model with β = (20,−20,−20, 10, 10).
Image in figure 2(a) was generated with 500 iterations of Gibbs Sampler and
image in figure 2(b) was generated with 8000 iterations of the same algorithm.

1θ = β0 + βl(xs+vl ) +
∑

i6=l βi(xs+vi + xs−vi )
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Figure 1: Uniqueness region

(a) 500 iterations of Gibbs Sampler (b) 8000 iterations of Gibbs Sampler

Figure 2: Images of size 64 × 64, from an Autologistic model with β =
(20,−20,−20, 10, 10)

(a) 500 iterations of Gibbs Sampler (b) 8000 iterations of Gibbs Sampler

Figure 3: Images of size 64 × 64, from an Autologistic model with β̂NR =
(0.66,−0.66,−0.66, 0.33, 0.32)

We estimate β of image in figure 2(b) maximizing Pseudo-likelihood function

within Uniqueness region. We get β̂NR = (0.66,−0.66,−0.66, 0.33, 0.32) using
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(a) 500 iterations of Gibbs Sampler (b) 8000 Gibbs iterations

Figure 4: Images of size 64 × 64, from an Autologistic model with β̂SA =
(0.82,−0.95,−0.69,−0.07, 0.23)

Newton-Raphson method (see [11]) and β̂SA = (0.82,−0.95,−0.69,−0.07, 0.23)
using Simulated Annealing (see [5, 15]). Images in figure 3 were generated with

Gibbs Sampler and β̂NR. Images in figure 4 were generated with Gibbs Sampler
and β̂NR. The difference between images in figure 2 and images in figures 3 and 4
is remarkable. This shows us the constrained model limits. However Uniqueness
region avoids the phenomenon known in Statistical Physics as Phase transition.
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