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Abstract

In this paper we present a method for estimating unknown parameter that appear on a non-linear
reaction-diffusion model of cancer invasion. This model considers that tumor-induced alteration of
micro-enviromental pH provides a mechanism for cancer invasion. A coupled system reaction-diffusion
describing this model is given by three partial differential equations for the non dimensional spatial
distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and
the excess concentration of H+ ions. Each of the model parameters has a corresponding biological
interpretation, for instance, the growth rate of neoplastic tissue, the diffusion coefficient, the reab-
sorption rate and the destructive influence of H+ ions in the healthy tissue.

After solving the forward problem properly, we use the model for the estimation of parameters
by fitting the numerical solution with real data, obtained via in vitro experiments and fluorescence
ratio imaging microscopy. We define an appropriate functional to compare both the real data and the
numerical solution using the adjoint method for the minimization of this functional.

We apply Finite Element Method (FEM) to solve both the direct and inverse problem, computing
the a posteriori error.

Keywords: reaction-diffusion equation, tumor invasion, PDE-constrained optimization, adjoint
method, Finite Element Method, a posteriori error

1. Introduction.

Cancer is one of the greatest killers in the world although medical activity has been successful,
despite great difficulties, at least for some pathologies. A great effort of human and economical
resources is devoted, with successful outputs, to cancer research, [1, 2, 3, 4, 5, 6].

Some comments on the importance of mathematical modeling in cancer can be found in the
literature. In the work [4] the authors say “Cancer modelling has, over the years, grown immensely
as one of the challenging topics involving applied mathematicians working with researchers active in
the biological sciences. The motivation is not only scientific as in the industrial nations cancer has
now moved from seventh to second place in the league table of fatal diseases, being surpassed only by
cardiovascular diseases.”

We use in this work the mathematical analyses first proposed by [7] which supports the acid-
mediated invasion hypothesis, hence it is acquiescent to mathematical representation as a reaction-
diffusion system at the tissue scale, describing the spatial distribution and temporal development of
tumor tissue, normal tissue, and excess H+ ion concentration.

The model predicts a pH gradient extending from the tumor-host interface. The effect of biological
parameters critical to controlling this transition is supported by experimental and clinical observations
[8].

In [7] the authors model tumor invasion in an attempt to find a common, underlying mechanism
by which primary and metastatic cancers invade and destroy normal tissues. They are not modeling
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the genetic changes which result in transformation nor do they seek to understand the causes of these
changes. Similarly, they do not attempt to model the large-scale morphological features of tumors
such as central necrosis. Rather, they concentrate on the microscopic scale population interactions
occurring at the tumor-host interface, reasoning that these processes strongly influence the clinically
significant manifestations of invasive cancer.

Specifically, the authors hypothesize that transformation-induced reversion of neoplastic tissue to
primitive glycolytic metabolic pathways, with resultant increased acid production and the diffusion
of that acid into surrounding healthy tissue, creates a peritumoral microenvironment in which tumor
cells survive and proliferate, whereas normal cells are unable to remain viable. The following temporal
sequence would derive: (a) high H+ ion concentrations in tumors will extend, by chemical diffusion,
as a gradient into adjacent normal tissue, exposing these normal cells to tumor-like interstitial pH;
(b) normal cells immediately adjacent to the tumor edge are unable to survive in this chronically
acidic environment; and (c) the progressive loss of layers of normal cells at the tumor-host interface
facilitates tumor invasion. Key elements of this tumor invasion mechanism are low interstitial pH
of tumors due to primitive metabolism and reduced viability of normal tissue in a pH environment
favorable to tumor tissue.

These model equations depend only on a small number of cellular and subcellular parameters.
Analysis of the equations shows that the model predicts a crossover from a benign tumor to one that
is aggressively invasive as a dimensionless combination of the parameters increases through a critical
value.

The dynamics and structure of the tumor-host interface in invasive cancers are shown to be con-
trolled by the same biological parameters which generate the transformation from benign to malignant
growth. A hypocellular interstitial gap, as we can see in Figure 1 [7, Figure 4a], at the interface is
predicted to occur in some cancers.

Figure 1: A micrographs of the tumor-host interface from human squamous cell carcinomas of the head and neck [7].

In this paper we estimate one of these parameters (the destructive influence of H+ ions in the
healthy tissue) using an inverse problem. Moreover, via fluorescence ratio imaging microscopy, it is
possible get data about the concentration of hydrogen ions [8]. We propose a framework via a PDE-
constrained optimization problem, following the PDE-based model by Gatenby [7]. In this approach,
tumor invasion is modeled via a coupled nonlinear system of partial differential equations, which makes
the numerical solution procedure quite challenging.

This kind of problem constitutes a particular application of the so-called inverse problems, which
are being increasingly used in a broad number of fields in applied sciences. For instance, problems
referred to structured population dynamics [9], computerized tomography and image reconstruction
in medical imaging [10, 11], and more specifically tumor growth [12, 13, 14], among many others.

We solve a minimization problem using a gradient-based method considering the adjoint method in
order to find the derivative of an objective functional. In this way, we would obtain the best parameter
that fits patient-specific data.

The contents of this paper, which is organized into 9 sections and an Appendix, are as follows:
Section 2 consists in some preliminaries about the model and the definition of the direct problem.
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Section 3 deals with the variational formulation of the direct problem. Section 4 considers the formu-
lation of the minimization problem. Section 5 introduces the reduced and adjoint problem, deriving
the optimality conditions for the problem. Section 6 finds the derivative of the solution of a functional
with respect to a parameter that does not appear explicitly in the equation. Section 7 deals with the
numerical solution of the adjoint problem, designing a suitable algorithm to solve it. In particular, we
use the Finite Element Method with a computation of a posteriori error. In Section 8 we show some
numerical simulations to give information on the behavior of the functional and its dependence on the
parameters including the corresponding tables. Section 9 presents the conclusions and some future
work related to the contents of this paper. In the Appendix we include all algebraics of Section 6.

Some words about our notation. We use 〈·, ·〉 to denote the L2 inner product (the space is always
clear from the context) and we consider the sum of inner products for a cartesian product of spaces.
For a function F : V ×Uad → Z such that (u, δ1) 7→ F (u, δ1), we denote by F ′(u, δ1) the full Fréchet-
derivative and by ∂F

∂u
(u, δ1) and

∂F
∂δ1

(u, δ1) the partial Fréchet-derivatives of F at (u, δ1). For a linear
operator T : V → Z we denote T ∗ : Z∗ → V ∗ the adjoint operator of T . If T is invertible, we call
T−∗ the inverse of the adjoint operator T ∗.

2. Some preliminaries about the model.

We present the mathematical model of the tumor-host interface based on the acid mediation
hypothesis of tumor invasion due to [7]. For convenience we reproduce the equations here, which
determine the spatial distribution and temporal evolution of three fields: N1(x, t), the density of
normal tissue; N2(x, t), the density of neoplastic tissue; and L(x, t), the excess concentration of H+

ions. The units of N1 and N2 are cells/cm3 and excess H+ ion concentration is expressed as a molarity
(M), x and t are the position (in cm) and time (in seconds), respectively.

∂N1

∂t
= r1N1

(

1−
N1

K1

)

− d1LN1, (1)

∂N2

∂t
= r2N2

(

1−
N2

K2

)

+∇ ·

(

DN2

(

1−
N1

K1

)

∇N2

)

, (2)

∂L

∂t
= r3N2 − d3L+DN3

∆L, (3)

where the variables are in Ω× [0, T ].
In equation (1) the behavior of the normal tissue is determined by the logistic growth of N1 with

growth rate r1 and carrying capacity K1, and the interaction of N1 with excess H+ ions leading to a
death rate proportional to L. The number d1L is the excess acid concentration, dependent death rate
in accord with the well-described decline in the growth rate of normal cells, due to the reduction of pH
from its optimal value of 7.4. The constants r1, d1 and K1 have units of 1/s, l/(M s) and cells/cm3,
respectively.

For equation (2), the neoplastic tissue growth is described by a reaction-diffusion equation. The
reaction term is governed by a logistic growth of N2 with growth rate r2 and carrying capacity K2.
The diffusion term depends on the absence of healthy tissue with a diffusion constant DN2

. Constants
r2, K2 and DN2

have units of 1/s, cells/cm3 and cm2/s, respectively.
In equation (3), it is assumed that excess H+ ions are produced at a rate proportional to the

neoplastic cell density, and diffuse chemically. An uptake term is included to take account of the
mechanisms for increasing local pH (e.g., buffering and large-scale vascular evacuation [7]). Constant
r3 is the production rate (M cm3/(cell s)), d3 is the reabsorption rate (1/s), and DN3

is the H+ ion
diffusion constant (cm2/s).

All the parameter values can be found in Table 1.

2.1. Nondimensionalization.

Following the ideas exposed in [7], and considering that Ω ⊂ R, the mathematical model is rescaled
and the domain is transformed onto the interval [0, 1] × [0, T ]. Hence, let us define the following
functions:
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Parameter Estimate
K1 5× 107/cm3

K2 5× 107/cm3

r1 1× 10−6/s
r2 1× 10−6/s

DN2
2× 10−10cm2/s

DN3
5× 10−6cm2/s

r3 2.2× 10−17M cm3/s
d3 1.1× 10−4/s

Table 1: Parameter values used in [7].

u1 =
N1

K1

u2 =
N2

K2

u3 =
L

L0

τ = r1t

ξ =

√

r1
DN3

x

(4)

where L0 = r3K2/d3. We will continue denoting x and t instead of ξ and τ , respectively. Using the
transformation (4) the dimensionless form of the equations (1)-(3) become

∂u1

∂t
= u1(1− u1)− δ1u1u3, (5)

∂u2

∂t
= ρ2u2(1− u2) +

∂

∂x

(

D2(1− u1)
∂u2

∂x

)

, (6)

∂u3

∂t
= δ3(u2 − u3) +

∂2u3

∂x2
, (7)

for (x, t) ∈ (0, 1) × (0, T ], where the four dimensionless quantities which parameterize the model are
given by:

δ1 =
d1r3K2

d3r1
, ρ2 =

r2
r1

, D2 =
DN2

DN3

, δ3 =
d3
r1

.

The interaction parameters between different cells (healthy and tumor) and concentration of H+

are difficult to measure experimentally. This is the reason for which we propose to estimate them, so
we will focus on δ1 in this work. The other parameters can be estimated by different techniques (see
Table 1).

2.2. Initial and boundary conditions.

At t = 0 we will consider the tumor at a certain stage of its evolution. Hence the initial conditions
are:

u1(x, 0) = u0
1(x), (8)

u2(x, 0) = u0
2(x), (9)

u3(x, 0) = u0
3(x), (10)

for all x ∈ [0, 1]. We assume that the tumor is on the left of the domain, in the sense that the tumor
cells are not moving. Then, for all t ∈ [0, T ], we have

∂u1

∂x
(0, t) = 0, u1(1, t) = 1, (11)
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∂u2

∂x
(0, t) = 0, u2(1, t) = 0, (12)

∂u3

∂x
(0, t) = 0, u3(1, t) = 0. (13)

From now on, equations (5)-(13) will be referred to as the direct problem.

3. Variational form for the direct problem.

Using the variational techniques for obtaining the weak solution of the direct problem [15, 16, 17],
we define the following weak formulation:

0 =

∫ T

0

∫ 1

0

λ1

[

∂u1

∂t
− u1(1− u1) + δ1u1u3

]

dxdt+

∫ T

0

∫ 1

0

λ2

[

∂u2

∂t
− ρ2u2(1− u2)−

∂

∂x

(

D2(1− u1)
∂u2

∂x

)]

dxdt+

∫ T

0

∫ 1

0

λ3

[

∂u3

∂t
− δ3(u2 − u3)−

∂2u3

∂x2

]

dxdt, (14)

where λ = (λ1, λ2, λ3),

λ1, λ2, λ3 ∈ W =

{

v ∈ L2(0, T ;H1
D((0, 1))) and

∂v

∂t
∈ L2(0, T ; (H1

D((0, 1)))∗)

}

,

L2(0, T ;H1
D((0, 1))) =

{

v(x, ·) ∈ L2((0, T )) and v(·, t) ∈ H1
D((0, 1))

}

and
H1

D =
{

v ∈ H1((0, 1)) : v = 0 on ΓD = {1}
}

.

Using integration by parts and boundary condition for λ and u in (14) we get the following weak
formulation of (5)-(13):

0 =

∫ T

0

∫ 1

0

(

∂u1

∂t
λ1 − u1(1− u1)λ1 + δ1u1u3λ1

)

dxdt+

∫ T

0

∫ 1

0

(

∂u2

∂t
λ2 − ρ2u2(1− u2)λ2 +D2(1− u1)

∂u2

∂x

∂λ2

∂x

)

dxdt+

∫ T

0

∫ 1

0

(

∂u3

∂t
λ3 + δ3u3λ3 − δ3u2λ3 +

∂u3

∂x

∂λ3

∂x

)

dxdt. (15)

A weak solution u = [u1, u2, u3]
T ∈ V = W 3 is a function that satisfies (15) for all λ ∈ V and

u(x, 0) = u0(x) = [u0
1(x), u

0
2(x), u

0
3(x)].

4. Formulation of the minimization problem.

As described above we propose to use an inverse problem technique in order to estimate δ1.
Function u represents the solution of the direct problem (the components of u are the state variables
of the problem) for each choice of the parameter δ1.

Let us assume that experimental information is available during the time interval 0 ≤ t ≤ T . Then,
the inverse problem can be formulated as:

Find a parameter δ1 able to generate data u = [u1, u2, u3]
T that best match the available

(experimental) information over time 0 ≤ t ≤ T .
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Figure 2: A map of peritumoral H+ flow using vectors generated from the pH distribution around the tumor, [18, Figure
4].

For this purpose, we should construct an objective functional which gives us a notion of distance
between the experimental (real) data and the solution of the system of PDEs for each choice of the
parameter δ1.

First of all, it is important to decide which variables are capable to be measured experimentally.
For instance, the excess concentration of H+ ions can be measured using fluorescence ratio imaging
microscopy [8, 18] at certain times tk, k = 1, . . . ,M . For example, Figure 2 [18, Figure 4] shows
a map of peritumoral H+ flow using vectors generated from the pH distribution around the tumor.
Such experiments could help to determine optimal variables and the parameter in order to control
real tumor invasion.

So, the functional J : V × Uad → R could be defined as:

J(u, δ1) =
1

2

∫ T

0

∫ 1

0

[u3(x, t)− û3(x, t)]
2dxdt, (16)

where u3(x, t) is the excess concentration of H+ ions obtained by solving the direct problem for a
certain choice of δ1 and û3(x, t) is the excess concentration measured experimentally (real data).

Let us define E : V × Uad → V ∗ ×Z∗ such that

〈E(u, δ1), ζ〉 =

∫ T

0

∫ 1

0

(

∂u1

∂t
λ1 − u1(1− u1)λ1 + δ1u1u3λ1

)

dxdt+

∫ T

0

∫ 1

0

(

∂u2

∂t
λ2 − ρ2u2(1− u2)λ2 +D2(1− u1)

∂u2

∂x

∂λ2

∂x

)

dxdt+

∫ T

0

∫ 1

0

(

∂u3

∂t
λ3 + δ3u3λ3 − δ3u2λ3 +

∂u3

∂x

∂λ3

∂x

)

dxdt+

∫ 1

0

(u1(x, 0)− u0
1(x))γ1dx+

∫ 1

0

(u2(x, 0)− u0
2(x))γ2dx+

∫ 1

0

(u3(x, 0)− u0
3(x))γ3dx

=

〈

∂u

∂t
, λ

〉

V ∗,V

+ 〈F (u), λ〉V ∗,V +
〈

u(x, 0)− u0(x), γ
〉

Z∗,Z
, (17)

where ζ = [λ, γ], γ = [γ1, γ2, γ3] ∈ Z and Z =
(

H1
D((0, 1))

)3
.

In this way we can rewrite the weak formulation (15) as E(u, δ1) = 0.
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The parameter that best matches the experimental information with the generated data provided
by the direct problem can be computed by solving a PDE-constrained optimization problem, namely:

minimize
δ1

J(u, δ1)

subject to E(u, δ1) = 0,
δ1 ∈ Uad,

(18)

where Uad denotes the set of admissible values of δ1. In our case, Uad should be a subset of (0,∞).
Notice that a solution (u, δ1) must satisfy the constraint E(u, δ1) = 0, which constitutes the direct
problem.

We remark that, in general, there is a fundamental difference between the direct and the inverse
problems. In fact, the latter is usually ill-posed in the sense of existence, uniqueness and stability of
the solution. This inconvenient is often treated by using some regularization techniques [10, 19, 20].

5. Formulation of the reduced and adjoint problems.

In the following, we will consider the so-called reduced problem

minimize
δ1

J̃(δ1) = J(u(δ1), δ1)

subject to δ1 ∈ Uad,
(19)

where u(δ1) is given as the solution of E(u(δ1), δ1) = 0. The existence of the function u is obtained
by the implicit function theorem. According to the ideas exposed in [21, 22], this can be done since
Uad = [0, L] is a nonempty, closed and convex set, J and E are continuously Fréchet-differentiable
functions, and assuming that for each δ1 ∈ Uad there exists a unique corresponding solution u(δ1) such
that E(u(δ1), δ1) = 0 and the derivative ∂E

∂u
(u(δ1), δ1) is a continuous linear operator continuously

invertible for all δ1 ∈ Uad.
In order to find a minimum of the continuosly differentiable function J̃ , it will be important to

compute the derivative of this reduced objective function. Hence, we will show a procedure to obtain
J̃ ′ by using the adjoint approach. Since

J̃ ′(δ1) =
(

u′(δ1)
)∗ ∂J

∂u
(u(δ1), δ1) +

∂J

∂δ1
(u(δ1), δ1). (20)

Let us consider ζ ∈ V ×Z as the solution of the so-called adjoint problem:

∂J

∂u
(u(δ1), δ1) +

(

∂E

∂u
(u(δ1), δ1)

)∗

ζ = 0. (21)

where
(

∂E
∂u

(u, δ1)
)∗

is the adjoint operator of ∂E
∂u

(u, δ1). Note that each term in (21) is an element of
the space V ∗.

An equation for the derivative u′(δ1) is obtained by differentiating the equation E(u(δ1), δ1) = 0
with respect to δ1:

∂E

∂u
(u(δ1), δ1)u

′(δ1) +
∂E

∂δ1
(u(δ1), δ1) = 0, (22)

where 0 is the zero vector in V ∗ ×Z∗.
By using (20) we have that:

J̃ ′(δ1) =
(

u′(δ1)
)∗ ∂J

∂u
(u(δ1), δ1) +

∂J

∂δ1
(u(δ1), δ1)

= −

(

∂E

∂δ1
(u(δ1), δ1)

)∗ (
∂E

∂u
(u(δ1), δ1)

)−∗
∂J

∂u
(u(δ1), δ1) +

∂J

∂δ1
(u(δ1), δ1)

=

(

∂E

∂δ1
(u(δ1), δ1)

)∗

ζ +
∂J

∂δ1
(u(δ1), δ1),
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where in the second equation we used (22) and for the last equation we used (21). Then:

J̃ ′(δ1) =
∂J

∂δ1
(u(δ1), δ1) +

(

∂E

∂δ1
(u(δ1), δ1)

)∗

ζ. (23)

Notice that in order to obtain J̃ ′(δ1) we need first to compute u(δ1) by solving the direct problem,
followed by the calculation of ζ by solving the adjoint problem. For computing the second term of
(23) it is not necessary to obtain the adjoint of ∂E

∂δ1
(u(δ1), δ1) but just its action over ζ.

6. Getting the derivative of the functional.

In order to obtain the adjoint operator of ∂E
∂u

, we have to find
(

∂E
∂u

)∗
such that:

〈

∂E

∂u
η, ζ

〉

=

〈

η,

(

∂E

∂u

)∗

ζ

〉

, (24)

where η = [η1, η2, η3]
T is the direction of descent for the state variables u1, u2 and u3, respectively,

then
〈

∂E

∂u
(u, δ1)η, ζ

〉

= lim
µ→0+

〈E(u+ µη, δ1), ζ〉 − 〈E(u, δ1), ζ〉

µ
.

After some algebraics, it can be shown that ∂E
∂u

(u, δ1) η is given by:

〈

∂E

∂u
(u, δ1)η, ζ

〉

=

∫ T

0

∫ 1

0

(

∂η1
∂t

− η1(1− 2u1) + δ1η1u3 + δ1u1η3

)

λ1dxdt+

∫ T

0

∫ 1

0

(

∂η2
∂t

− ρ2η2(1− 2u2)

)

λ2dxdt+

∫ T

0

∫ 1

0

(

−D2η1
∂u2

∂x
+D2(1− u1)

∂η2
∂x

)

∂λ2

∂x
dxdt+

∫ T

0

∫ 1

0

(

∂η3
∂t

− δ3(η2 − η3)

)

λ3dxdt+

∫ T

0

∫ 1

0

∂η3
∂x

∂λ3

∂x
dxdt+

∫ 1

0

η1(x, 0)γ1(x)dx+

∫ 1

0

η2(x, 0)γ2(x)dx+

∫ 1

0

η3(x, 0)γ3(x)dx. (25)

An inspection over equations (24) and (25) shows that, roughly speaking, we should remove the
spatial and temporal derivatives from η and pass them to λ.

The calculations make use of successive integration by parts to express each derivative of η in
terms of a derivative of λ. Omitting here the details, that are shown in the Appendix, we obtain the
following expression of the adjoint problem (21), which consists in finding λ ∈ V satisfying

0 =

∫ T

0

∫ 1

0

(

−
∂λ1

∂t
η1 − η1(1− 2u1)λ1 + δ1η1u3λ1 −D2η1

∂u2

∂x

∂λ2

∂x

)

dxdt+

∫ T

0

∫ 1

0

(

−
∂λ2

∂t
η2 − ρ2η2(1− 2u2)λ2 +D2(1− u1)

∂λ2

∂x

∂η2
∂x

− δ3η2λ3

)

dxdt+

∫ T

0

∫ 1

0

(

−
∂λ3

∂t
η3 + δ3η3λ3 +

∂λ3

∂x

∂η3
∂x

+ δ1u1η3λ1

)

dxdt+

∫ T

0

∫ 1

0

η3(u3 − û3)dxdt

=

〈

−
∂λ

∂t
, η

〉

V ∗,V

+ 〈H(λ), η〉V ∗,V , (26)

for all η ∈ V and λ(x, T ) = 0. As we show in the Appendix we can define γ(x) = λ(x, 0).
Equation (26) shall be solved in order to get λ. Notice that the adjoint equations are posed

backwards in time, with a final condition at t = T , while the state equations are posed forward in
time, with an initial condition at t = 0.

8



In order to obtain the derivative of the functional, according to (23), we must compute the deriva-
tive of E with respect to δ1. Since

〈

∂E

∂δ1
(u, δ1)q, ζ

〉

= lim
µ→0+

〈E(u, δ1 + µq), ζ〉 − 〈E(u, δ1), ζ〉

µ
,

for q ∈ Uad, then
〈

∂E

∂δ1
(u, δ1)q, ζ

〉

= q

∫ T

0

∫ 1

0

u1u3λ1dxdt.

Thus, since ∂J
∂δ1

= 0, we obtain an expression for (23), that is

J̃ ′(δ1) =

(

∂E

∂δ1
(u(δ1), δ1)

)∗

ζ =

∫ T

0

∫ 1

0

u1u3λ1dxdt. (27)

7. Designing an algorithm to solve the minimization problem.

It is worth stressing that obtaining model parameters via minimization of the objective functional
J̃ is in general an iterative process requiring the value of the derivative. To compute J̃ ′ we just
solve two weak PDEs problems per iteration: the direct and the adjoint problems. This method is
much cheaper than the sensitivity approach [22] in which the direct problem is solved many times per
iteration. We develop an implementation in MATLAB that solves the direct and adjoint problems by
using a Finite Element Method and the optimization problem is solved by using a Sequential Quadratic
Programming (SQP) method , using the built-in function fmincon. For the direct problem, Figure 3
shows the density of health cells, tumor cells and excess concetration of H+ at fixed time (t = 20) in
terms of x variable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

D
en

si
ty

 

 

u
1

u
2

u
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

D
en

si
ty

 

 

u
1

u
2

u
3

Figure 3: Density of health, tumor cells and excess concetration of H+ at fixed time (t = 20) in terms of x variable, for
δ1 = 0.5 (left) and δ1 = 12.5 (right).

It is well-known [23] that gradient-based optimization algorithms require the evaluation of the
gradient of the functional. One important advantage of evaluating the gradient through adjoints is
that it requires to solve the adjoint problem only once per iteration, regardless the number of inversion
variables. Note that the derivative of the functional can be approximated by using Finite Element
Method.

The method we will use for minimizing the functional J̃ can be summarized as follows:

Algorithm 7.1. Adjoint-based minimization method.

1. Give an initial guess δ01 for the parameter.

2. Given δk1 in step k, solve the direct and adjoint problems at this step.
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3. Obtain the derivative of the functional, i.e. J̃ ′(δk1 ), using (27).

4. Obtain δk+1
1 by performing one iteration of the SQP method.

5. Stop using the criteria of fmincon.

Algorithm 7.2. Direct problem.

1. Do an implicit Euler step to find the state variables u:
∂u

∂t
(·, tn) ≈

u(·, tn)− u(·, tn−1)

τ
=

F (u(·, tn)), where tn = tn−1 + τ , F (u(·, tn)) is a nonlinear functional and the intial condition is
u0(x) = u(x, 0).

2. Use FEM to make a discretization of ui(x, tn) ≈
nod
∑

j=1

un
i,jφj(x), i = 1, 2, 3, φj(x) are the linear

shape function and we note Un
i = [un

i,1, · · · , u
n
i,j , · · · , u

n
i,nod] ∈ R

nod, Un = [Un
1 , U

n
2 , U

n
3 ] ∈ R

q,
where nod is the number of uniform distributed nodes for the spatial meshgrid for [0, 1].

3. Use the Newton method to solve: find Un ∈ R
q such as Un − Un−1 − τG(Un) = 0, where G is

the discretization of F .

Algorithm 7.3. Adjoint problem.

1. Do an implicit Euler step to find the adjoint variable λ: −
∂λ

∂t
(·, tn) ≈ −

λ(·, tn)− λ(·, tn−1)

τ
=

H(λ(·, tn−1)), and the final condition is λ(·, T ) = 0.

2. Use FEM to make a discretization of λ(·, tn) and solve the linear problem λn−1−λn−τK(λn−1) =
0, where K is the discretization of H.

8. Numerical experiments.

The goal of this section is to test and evaluate the performance of an adjoint-based optimization
method, by executing some numerical simulations of Algorithm 7.1 for some test-cases.

First consider an optimization problem that consist in minimizing the functional defined in (19),
where û3(x, t) is generated via the forward model, for a choice of the model parameters ρ2 = 1,

D2 = 4 × 10−5, δ3 = 1 and δ̂1 = 0.5, 4, 12.5, 16. We chose different values of δ̂1 because each one of
these shows a different behavior of tumor invasion, according to [7].

Figure 4 shows the value that the functional defined in (19) takes for different values of δ1, remaining
the other parameters constant. It is worth mentioning that J̃ looks convex with respect to δ1.
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Figure 4: The functional J̃ for û3 generated with δ̂1 = 12.5.

The idea of this test case is to investigate how close the original value of the parameter can be
retrieved. However, it is not a trivial one, because we do not know, for instance, if the optimization
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problem has a solution or, in that case, if it is unique or if the method converges to another local
minima.

We have run the Algorithm 7.1 for different values of δ̂1 taking the initial condition δ01 randomly,
as we can see from the Table 2 the retrieved parameter is obtained very accurately since the standard
deviation is small. For Algorithms 7.2 and 7.3 we use the following algorithmic parameters τ = 0.5
and T = 20, nod = 201 and Uad = [0, 20].

δ̂1 δ̄1 S
0.5 0.5000 ± 4.1372×10−7

4 4.0000 ± 2.2187×10−6

12.5 12.4999 ± 4.6521×10−5

16 15.9993 ± 9.4495×10−5

Table 2: Experiments for randomly initial data δ0
1

We emphasize that we have retrieved accurately the value of δ̂1 independently of the value of δ01 .
Thus, in the next experiment we will consider a fixed value δ01 = 8.

It is well-known that the presence of noise in the data may imply the appearance of strong numerical
instabilities in the solution of an inverse problem [24].

One of the experimental method to obtain values of û3 is by using fluorescence ratio imaging
microscopy [8]. As it is well-known that measurements are often affected by perturbations, usually
random ones.

Then we perform numerical experiments where û3 is perturbed by using Gaussian random noise
whith mean zero and standard deviation σ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. In the next tables 3-6, for
each value of σ, we show the average δ̄1 of 30 values of δ1, the standard deviation S and the relative

error eδ1 = |δ̂1−δ̄1|

δ̂1
.

σ δ̄1 S eδ1
0.0500 0.4707 ± 0.1231 0.0586
0.1000 0.5090 ± 0.0335 0.0180
0.1500 0.4855 ± 0.0472 0.0291
0.2000 0.4982 ± 0.0726 0.0037
0.2500 0.5112 ± 0.1022 0.0225
0.3000 0.5027 ± 0.0937 0.0054

Table 3: Experiments for δ̂1 = 0.5

σ δ̄1 S eδ1
0.0500 4.0221 ± 0.1129 0.0055
0.1000 4.0470 ± 0.1695 0.0117
0.1500 3.9087 ± 0.2412 0.0228
0.2000 3.9459 ± 0.3524 0.0135
0.2500 3.8970 ± 0.4800 0.0258
0.3000 4.0219 ± 0.4471 0.0055

Table 4: Experiments for δ̂1 = 4

Remark 8.1. Since we have used FEM to solve both Algorithms, 7.2 and 7.3, we have computed the
a posteriori error in each case [25, 26]. In Table 7 we put the estimation of the a posteriori error for

Algorithm 7.2 for each δ̂1.
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σ δ̄1 S eδ1
0.0500 12.7922 ± 1.2354 0.0234
0.1000 13.0807 ± 1.9360 0.0465
0.1500 12.0701 ± 2.3401 0.0344
0.2000 11.4698 ± 2.7463 0.0824
0.2500 11.1943 ± 3.7566 0.1044
0.3000 11.8203 ± 4.3648 0.0544

Table 5: Experiments for δ̂1 = 12.5

σ δ̄1 S eδ1
0.0500 16.4165 ± 2.0834 0.0261
0.1000 16.6122 ± 2.7864 0.0383
0.1500 14.8108 ± 3.3098 0.0743
0.2000 13.7965 ± 3.8915 0.1377
0.2500 14.1021 ± 4.5295 0.1186
0.3000 13.3095 ± 4.5152 0.1681

Table 6: Experiments for δ̂1 = 16

9. Final conclusions and future work.

A miscellany of new strategies, experimental techniques and theoretical approaches are emerging
in the ongoing battle against cancer. Nevertheless, as new, ground-breaking discoveries relating to
many and diverse areas of cancer research are made, scientists often have recourse to mathematical
modelling in order to elucidate and interpret these experimental findings, [2, 4, 5, 27], and it became
clear that these models are expected to success if the parameters involved in the modeling process
are known. Or eventually, taking into account that some biological parameters may be unknown
(especially in vivo), the model can be used to obtain them [12, 10].

This paper, as already mentioned in Section 1, aims at offering a mathematical tool for the ob-
tention of phenomenological parameters which can be identified by inverse estimation, by making
suitable comparisons with experimental data. The inverse problem was stated as a PDE-constrained
optimization problem, which was solved by using the adjoint method. In addition, the gradient of
the proposed functional is obtained and can be extended, in principle, to any number of unknown
parameters.

We remark that the parameter estimation via PDE-constrained optimization is a general approach
that can be used, for instance, to consider the effects of nonlinear interaction between the health and
tumor cells [28].

As a future work we are interested in the dependence of the δ1 on time and in the dependence of
the diffusivity coefficient of excess of the H+ concentration DN3

with respect to the space variable x,
as in [29]. Also we propose to solve the problem in two dimensional space, where the importance of
using adaptive FEM will be crucial.
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Appendix A. Appendix: obtaining the adjoint problem.

In this section we show the calculations involved in order to obtain the adjoint equations (26). As
stated in Section 6, the adjoint equations constitute a weak formulation of the adjoint problem, with
unknown ζ, given by (21). Here, (∂E

∂u
)∗ζ is obtained by using (24). In what follows, we shall obtain

equivalent expressions for each of the six terms of the summation 〈∂E
∂u

η, ζ〉, which are associated with
the six constraints given by E in (17).

〈

∂E

∂u
(u, δ1)η, ζ

〉

= lim
µ→0+

〈E(u+ µη, δ1), ζ〉 − 〈E(u, δ1), ζ〉

µ
.

〈

∂E

∂u
(u, δ1)η, ζ

〉

=

∫ T

0

∫ 1

0

(

∂η1
∂t

λ1 − η1(1− 2u1)λ1 + δ1η1u3λ1 + δ1u1η3λ1

)

dxdt+

∫ T

0

∫ 1

0

(

∂η2
∂t

λ2 − ρ2η2(1− 2u2)λ2

)

dxdt+

∫ T

0

∫ 1

0

(

−D2η1
∂u2

∂x

∂λ2

∂x
+D2(1− u1)

∂η2
∂x

∂λ2

∂x

)

dxdt+

∫ T

0

∫ 1

0

(

∂η3
∂t

λ3 − δ3(η2 − η3)λ3 +
∂η3
∂x

∂λ3

∂x

)

dxdt+

∫ 1

0

η1(x, 0)γ1dx+

∫ 1

0

η2(x, 0)γ2dx+

∫ 1

0

η3(x, 0)γ3dx, (A.1)

using the integration by parts for time, we obtain
〈

η,

(

∂E

∂u
(u, δ1)ζ

)∗〉

=

∫ T

0

∫ 1

0

(

−
∂λ1

∂t
η1 − (1− 2u1)λ1η1 + δ1u3λ1η1

)

dxdt+

∫ T

0

∫ 1

0

(

−
∂λ2

∂t
η2 − ρ2(1− 2u2)λ2η2 − δ3λ3η2

)

dxdt+

∫ T

0

∫ 1

0

(

−D2

∂u2

∂x

∂λ2

∂x
η1 +D2(1− u1)

∂λ2

∂x

∂η2
∂x

)

dxdt+

∫ T

0

∫ 1

0

(

−
∂λ3

∂t
η3 + δ3λ3η3 +

∂λ3

∂x

∂η3
∂x

+ δ1u1λ1η3

)

dxdt+

∫ 1

0

η1(x, 0) (γ1(x)− λ1(x, 0)) dx+

∫ 1

0

η1(x, T )λ1(x, T )dx+

∫ 1

0

η2(x, 0) (γ2(x)− λ2(x, 0)) dx+

∫ 1

0

η2(x, T )λ2(x, T )dx+

∫ 1

0

η3(x, 0) (γ3(x)− λ3(x, 0)) dx+

∫ 1

0

η3(x, T )λ3(x, T )dx, (A.2)

then choosing γ(x) = λ(x, 0) and λ(x, T ) = 0 for all x ∈ [0, 1], we obtain the following expression of
(

∂E
∂u

(u, δ1)ζ
)∗
:

〈

η,

(

∂E

∂u
(u, δ1)ζ

)∗〉

=

∫ T

0

∫ 1

0

(

−
∂λ1

∂t
η1 − η1(1− 2u1)λ1 + δ1η1u3λ1

)

dxdt+

∫ T

0

∫ 1

0

(

−
∂λ2

∂t
η2 − ρ2η2(1− 2u2)λ2 − δ3η2λ3

)

dxdt+

∫ T

0

∫ 1

0

(

−D2

∂u2

∂x

∂λ2

∂x
η1 +D2(1− u1)

∂λ2

∂x

∂η2
∂x

)

dxdt+

∫ T

0

∫ 1

0

(

−
∂λ3

∂t
η3 + δ3η3λ3 +

∂λ3

∂x

∂η3
∂x

+ δ1u1η3λ1

)

dxdt (A.3)
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