
UNIVERSIDAD NACIONAL DE CÓRDOBA 
 

FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA 
______________________________________________________________________ 
 
 
 
 
 

 
SERIE “A” 

 
 
 
 

TRABAJOS DE INFORMÁTICA 
 
 
 
  
 

Nº 5/2011 
 

 
iSat: Structure Visualization for SAT Problems 

 
 

 
Ezequiel Orbe - Carlos Areces - Gabriel Infante Lopez 

 
 

 
 
 

 
 
 
 

Editores: Luciana Benotti – Laura Brandan Briones 
____________________________________________________________ 
 

CIUDAD UNIVERSITARIA – 5000 CÓRDOBA 
 

REPÚBLICA ARGENTINA 



iSat: Structure Visualization for SAT Problems

Ezequiel Orbe1, Carlos Areces, and Gabriel Infante-Lopez1,2

1 Grupo de Procesamiento de Lenguaje Natural
Universidad Nacional de Córdoba, Argentina

2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas, Argentina

Abstract. We present iSat, a Python command line tool to analyze
and find structure in propositional satisfiability problems. iSat offers
an interactive shell to control propositional solvers and generate graph
representations of the internal structure of the search space explored by
them for visualization, with the final aim of providing a unified envi-
ronment for propositional solving experimentation. iSat was designed to
allow the simple integration of both new provers and new visualization
graphs and statistics with a minimum of coding overhead.

1 Introduction

iSat (interactive SAT) is a command line tool implemented in Python that helps
a user to analyze and find structure in propositional satisfiability problems. It can
be used, for example, to investigate the behavior of different provers over a given
test set. The main service offered by iSat is a unified interface for experimen-
tation with different SAT solvers and visualization graphs. Moreover, it can be
used to mechanize the repetitive tasks often performed during the development
of SAT solvers (e.g., fine tuning heuristics) or the selection of the appropriate
configuration options for a given solver working on a particular satisfiability
problem. iSat computes different graphs (e.g., the Variable-Clause graph, Vari-
able graph, Interaction graph, etc.) over the current clause set at different points
during the exploration of the search space, and computes related statistics over
these graphs (degree mean/max/min/standard deviation, clique number, clus-
tering, number of cliques, etc.). iSat was designed to allow the simple integra-
tion of both new provers and new visualization graphs and statistics with a
minimum of coding overhead. The source code of iSat can be downloaded from
https://cs.famaf.unc.edu.ar/~ezequiel/software/isat/. It is distributed
under a GPL license and currently supports two SAT solvers out of the box:
Minisat [1] and CryptoMinisat [2].

1.1 A Brief Overview on SAT Solving

Propositional satisfiability (SAT) is a well-known NP-complete problem [3] that
consists of determining if there exists a boolean assignment to variables, such
that all clauses in a given propositional formula reduce to true. Despite its com-
plexity there are many different theorem provers, usually called SAT solvers

https://cs.famaf.unc.edu.ar/~ezequiel/software/isat/


(e.g., [1,4,5]), that are able to efficiently solve many instances of the SAT prob-
lem.

Current SAT solvers can be classified in two broad classes: incomplete and
complete systems. Incomplete solvers performs different kinds of stochastic lo-
cal search to find a satisfying valuation; if the search is successful, satisfiability
is established, but search failure does not imply unsatisfiability. Complete SAT
solvers, on the other hand, perform an exhaustive, systematic search, and hence
can establish both satisfiability and unsatisfiability. Most of them implement
variants of the Davis-Putnam-Logemann-Loveland algorithm (DPLL) [6,7] to
explore the exponential search space. Complete SAT solvers can be further clas-
sified into conflict-driven and look-ahead. Conflict-driven solvers augment the
basic DPLL with conflict analysis, clause learning, non-chronological backtrack-
ing and restarts as their principal components. Look-ahead solvers, are also based
on DPLL but invest substantial efforts choosing first the branching variable to
be used (the different choice options are called decision heuristics) and then the
truth value this variable will be assigned (using so called direction heuristics)
aiming to achieve the largest reduction of the remaining search space. [8] provides
an excellent overview of the area.

The SAT solving community is large and very active, with strong industrial
involvement on classic application areas like planning [9], timing analysis [10],
test pattern generation [11,12], Field Programmable Gate Arrays routing [13],
to name only a few. As a result of this demand, new algorithms and heuristics
are being constantly developed, and the available solvers are constantly tuned
to obtain the best behavior on particular problem domains.

Nevertheless interacting with solvers to gather statistics and explore their
behavior when solving particular problems in order to find the best configura-
tion parameters for a given problem class is a burdensome task. Consider, for
example, the case of a researcher trying to find how the heuristics from different
conflict-driven SAT solvers affect the internal structure of a particular problem
by analyzing its Variable Clause graph. First, she would have to build the graph
for the problem before running the SAT solvers (this is easy). Then, she would
run every SAT solver with the problem in consideration and build visualiza-
tion graphs at different stages during the search. Available solvers provide only
limited access to their internal states, and in the best of cases this access is
cumbersome and difficult to handle. In this article we present iSat as a tool to
simplify these tasks. iSat is a command line system developed in Python that
provides an interactive shell for multiple solvers and is capable of producing
a wide range of visualization graphs and statistics, with the final aim of pro-
viding a unified environment for SAT solving experimentation. Currently, iSat
provides access to the Minisat [1] and the CryptoMinisat [2] solvers; produces
Variable-Clause graphs, Variable graphs, Literal-Clause graphs, Literal graphs
and Interaction graphs that can be exported in gml and dot format and can
be visualized using, for example, Cytoscape3; and computes statistics over these
graphs like degree mean/max/min/standard deviation, clique number, cluster-

3 http://www.cytoscape.org/

http://www.cytoscape.org/


ing and number of cliques. Moreover, the architecture of iSat has been designed
to allow the simple integration of new solvers and new analysis tools (i.e., new
visualizations and statistics).

The rest of this paper is organized as follows. Section 2 presents a typical use
case of the tool from the point of view of the user. This is followed, in Section 3,
by a detailed discussion of the capabilities of iSat, with a description of the avail-
able commands, supported provers and graphs visualizations already provided.
In Section 4 we discuss the architecture of iSat and explain how new solvers
and graph visualization tools and statistics can be integrated. We conclude in
Section 5 with some final remarks and suggestions for further development.

2 A Sample Session

In this section we will describe, step by step, a typical interaction session with
iSat to illustrate its capabilities. The screen capture of the interaction can be
seen in Figure 1.

Consider the case of a researcher who wants to visualize how the structure of
a pigeon hole problem evolves during search. She suspects that if she can identify
some structural properties of the problem, she could develop new heuristics that
use that information to improve the search.

To carry out her experiments she decided to use iSat with Minisat as SAT
solver and the Literal-Clause graph to visualize the problem structure.

When iSat starts, it loads all the SAT solver modules and visualization
graph modules that are available. Once the start up process has finished, she
loads (command loadcnf) the problem into the tool. iSat first parses and loads
the problem, and then, creates an output folder where all the results files of the
session will be stored. When this is finished, she creates an instance of Minisat
(command setup), iSat automatically loads the problem into the solver and
creates an output folder where all the files related to this instance will be stored.

Then she builds the Literal-Clause graph (command dumpgph) for the orig-
inal problem. She plans to use it as a baseline against which to compare the
different graphs she is planning to generate during the rest of her session. Before
solving the problem, she configures the solver instance (command setconf) to
make it restart its search after having found only 2 conflicts and to keep this
upper bound constant during the next restarts. Next, she checks that the other
configuration options of the instance are correctly set (command getconf).

Now, she can start the process of exploring how Minisat attempts to solve
the problem. Given that she wants to see the structure of the problem at dif-
ferent points, she runs a partial solving of the problem (command psolve). A
partial solve in iSat consists on stopping the search after an specific number
of restarts. Once the partial solving ends, she retrieves some statistics from the
solver (command ssts) to check how the search is performing, and then builds
another graph representation from the current state of the problem. She repeats
this process until the problem is proved to be UNSAT. After that, she saves its



... : Seaching solvers in /.../iSat/solvers . 

... : 1 solvers were found. 

... : -------------------------------------- 

... :  Solver Id: minisat20 

... :  Solver Version: 2.0 

... :  Solver Description: Minisat core solver 

... : -------------------------------------- 

... : Searching graphs in /.../iSat/graphs . 

... : 1 graphs were found. 

... : -------------------------------------- 

... :  Graph Id: litclause 

... :  Graph Description: Literal Clause Graph 

... :  Graph Dump Formats: ['gml', 'dot'] 

... : -------------------------------------- 

... :  Graph Id: varclause 

... :  Graph Description: Variable Clause Graph 

... :  Graph Dump Formats: ['gml', 'dot'] 

... : -------------------------------------- 
isat > loadcnf -p /.../pigeonh/unsat/ph-5-4.cnf
... : Output will be located at: /.../iSat/bin/results/ph-5-4-1304023285 
... : Parsing /.../pigeonh/unsat/ph-5-4.cnf file... 
... : Problem /.../pigeonh/unsat/ph-5-4.cnf was loaded.  
      20 vars (40 literals) and 45 clauses were parsed. 
isat > setup -s minisat20
... : Creating instance of minisat20. 
... : Loading the problem into the solver. 
... : The instance-id of the solver is: 0 
... : The results for this instance will be stored at 
      /.../iSat/bin/results/ph-5-4-1304023285/minisat20-0 
isat > dumpgph -g litclause -f gml
... : litclause graph for instance 0 of solver minisat20 dumped in 
      /.../iSat/bin/results/ph-5-4-1304023285/minisat20-0/litclause-1304023285.gml 
isat > setconf -s minisat20 -i 0 -v [(3,2),(4,1)]
isat > getconf
... : Solver: minisat20 
... :  Instance 0 
... :  0 - var_decay = 1.05263157895 (float) 
... :  1 - clause_decay = 1.001001001 (float) 
... :  2 - random_var_freq = 0.02 (float) 
... :  3 - restart_first = 2 (int) 
... :  4 - restart_inc = 1.0 (float) 
... :  5 - learntsize_factor = 0.333333333333 (float) 
... :  6 - learntsize_inc = 1.1 (float) 
... :  7 - expensive_ccmin = True (bool) 
... :  8 - polarity_mode = 1 (int) 
... :  9 - verbosity = 0 (int) 
... : -------------------------------------- 
isat > reset
... : Solver: minisat20 
... : Resetting instance 0 
isat > psolve -r 1
... : Solver: minisat20 
... :  Instance 0  
... : Status => UNDEF 
isat > ssts
... : Solver: minisat20 
... :  Instance 0 
... :  starts = 1 
... :  decisions = 7 
... :  rnd_decisions = 0 
... :  propagations = 25 
... :  conflicts = 2 
... :  clauses_literals = 100 
... :  learnts_literals = 9 
... :  max_literals = 9 
... :  tot_literals = 9 
... :  nAssigns = 0 
... :  nClauses = 45 
... :  nLearnts = 2 
... :  nVars = 20 
... : -------------------------------------- 
isat > dumpgph -g litclause -f gml
... : litclause graph for instance 0 of solver minisat20 dumped in 
      /.../iSat/bin/results/ph-5-4-1304023285/minisat20-0/litclause-1304023287.gml 
isat > psolve -r 4
... : Solver: minisat20 
... :  Instance 0  
... : Status => UNDEF 
isat > ssts
... : Solver: minisat20 
... :  Instance 0 
... :  starts = 5 
... :  decisions = 44 

... :  nLearnts = 15 

... :  nVars = 20 

... : -------------------------------------- 
isat > dumpgph -g litclause -f gml
... : litclause graph for instance 0 of solver minisat20 dumped in 
      /.../iSat/bin/results/ph-5-4-1304023285/minisat20-0/litclause-1304023288.gml 
isat > psolve -r 8
... : Solver: minisat20 
... :  Instance 0  
... : Status => UNSAT
isat > save * /.../script.txt 
... : Saved to /../script.txt

Loading solver modules

Loading the problem

Creating the instance

Configuring the instance

Creating Literal-Clause graph

Getting statistics from the 
solver

Partial Solving

Loading graph modules

Saving the session

Fig. 1. A typical session.



activity as a script (command save) so she can easily re-run her experiments
later.

After quitting iSat she will be able to visualize and analyze the generated
graphs (see Figure 2) using a suitable graph analysis tool like Cytoscape, looking
for structural properties that can be used in the heuristic she is developing.

(a) (b) (c)

Fig. 2. Evolution of the problem structure: a) Original problem. b) After one
restart. c) After five restarts.

3 Services Provided by iSat

SAT solvers can be though as complex procedures that iteratively modify one
internal state which consists of the set of clauses still to be solved and a partial
assignment. The computation starts with initial state given by the set of clauses
in the original formula and an empty assignment. The solver modifies this state
step by step adding and removing clauses, and assigning variables. iSat is a tool
that instruments this computation. It allows a user to retrieve the solver state,
explore it, represent it as a graph and manually modify it.

iSat can run many instances of either the same or different solvers in the
same session. It allows a user to compare different intermediate states that might
come from different solvers or from the same solver at different stages. Since
iSat groups instances according to the underlying SAT solver, it is possible to
interact with one specific instance, with all instances of one specific solver or
with all instances of all solvers. The current version of iSat can interact with
Minisat and CryptoMinisat but other SAT solvers can be easily integrated.

iSat also allows the user to save sessions and to reproduce them as scripts.
The shell interface (implemented with cmd24) allows the user to retrieve com-
mand history, search the history, and execute Python code and shell commands.

iSat provides different ways to inspect intermediate states by means of visu-
alization graphs that can be visualized using existing graph visualization tools.
Currently, iSat provides five graph representations: Interaction graph [14] ,

4 http://packages.python.org/cmd2/

http://packages.python.org/cmd2/


Variable-Clause graph [15], Variable graph [15], Literal-Clause graph and Literal
graph. The last two are similar to the previous two but they uses literals as nodes
instead of variables. The user can select at any time during the exploration the
type of graph and the instance whose state she wants to export. The graph is
then generated as a file for further analysis.

The commands available in the interactive shell can be grouped in four cate-
gories. Commands to handle and modify the state of the SAT solver, commands
to inspect the current state (by means of relevant statistics or visualization
graphs), commands to create instances of a problem and commands to save
sessions and to execute saved sessions. We briefly describe the most relevant
commands here:

State handling commands:

addc: Adds a list of clauses to a given instance. If no instance is given, they are
added to all instances.

simplify: Simplifies the set of clauses in a given instance. If no instance is
given, it simplifies all instances.

solve: Attempts to solve the problem in a given instance; it lets the solver
compute a final state. If no instance is given, it solves all instances.

psolve: Performs a partial solve in a given instance. It receives as parameter
the number of restarts the solver can make before returning control to the
user. If no instance is given, it partially solves all instances using the same
number of restarts.

reset: Resets the internal state. If no instance is given, it resets all instances.

State Exporting Commands:

ssts: Gather statistics from the given instance. If no instance is specified, it
gathers statistics from all instances.

gsts: Gathers statistics from a specific visualization graph. If no instance is
given, it gathers statistics from all instances.

dumpgph: Generates a file with the visualization graph of the current state of a
given instance. If no instance is specified, it generates visualization graphs
for every instance.

getconf: Gets the current configuration options from a given instance. If no
instance is specified, it gets the current configuration options from all in-
stances.

Instance Creation Commands:

loadcnf: Loads a problem into memory and creates a folder where the results
of the session are stored.

setup: Creates an instance of a solver and feeds it with the last problem that
was loaded using loadcnf. For each instance, it creates a subfolder where it
outputs information particular to the instance.

setconf: Configures a SAT solver instance with the given configuration options.



Session Saving and Retrieval Commands

save: Saves the current session as a script.
load: Loads and execute a script file.

iSat is a powerful tool offers the user a wealth of information. It allows the
user to interact with different solver instances in a ordered and intuitive fashion.
Moreover, its architecture allows easy integration of new solvers and visualization
graphs as we discuss in the next section.

4 Extending iSat

iSat has been designed to be easily extended to include new SAT solvers and
different visualization graphs, with their respective statistics.

iSat uses a Client/Services architecture. The Client layer is in charge of
implementing the user interface which is an interactive shell. The Services layer
provides the interface to different solvers and visualization graphs. Services can
be either Solvers or Graphs. A graphical description of the architecture is shown
in Figure 3.

SOLVER 1

INTERACTIVE SHELL

GRAPH 1

CLIENT

SERVICES

build(clauses)
analyze_graph
analyze_nodes(nodes)
dump(format, filename)

Graph

load(clauses, params)
set_conf_params(params)
add_clause(clause)
reset_state()
solve(assumptions)
partial_solve(assumptions)
get_stats()
get_clauses()
get_learnt_clauses()
get_conf_params()
get_model()

Solver

SOLVER N GRAPH M. . . . . .

Fig. 3. The architecture of iSat.

To integrate a new SAT solver into iSat, two components have to be defined.
The first component wraps the API of the SAT solver into Python, and provides
Python bindings for this API. Since this wrapper only traduces the SAT solver’s



API into Python, the resulting bindings might not be the ones required by
the interactive shell. The second component addresses this issue adapting the
wrapper to the specific needs of the interactive shell. Both components are SAT
solver dependent and both have to be implemented when a new solver is added
to iSat.

For solvers developed in C/C++ (this is the case for most current SAT
solvers), the first component can be defined with the help of tools like the Sim-
plified Wrapper and Interface Generator (Swig)5 or the Boost libraries6 which
assist in the definition of bindings for a number of target programming lan-
guages, including Python. But even with the help of these tools, defining this
component requires careful work and knowledge of the particular solver involved.
In particular it is in this component where we should ensure that the resulting
Python bindings provide all the necessary basic functionality required by iSat
(like the ability to stop the run of the solver at a certain point, and retrieve the
current state). For example, to build the Python bindings for Minisat, its origi-
nal C++ API was first extended in the native language to provide the missing
functionality required by iSat. Besides providing a simplified interface to some
of the methods already present in the solver, this extension includes a partial
solving method that continues the search till the next restart, and methods that
returns the current set of clauses and learnt clauses. The Python bindings for
this extension were then obtained using Swig.

The second component, on the other hand, is mostly bookkeeping, and adapts
the previous functionality to the concrete function interfaces and datatypes used
by iSat. In particular, implementing this component boils down to the defini-
tion of a subclass of the Python class Solver and uses the functionality provided
by the wrapper in its implementation. The Solver class interface is shown in
Figure 3. Methods in this class can be grouped into three categories: config-
uration methods, information methods, and solving methods. In the configu-
ration category we have methods to load a problem in the solver (load and
add clause), methods to configure the solver parameters (set conf params),
and methods to reset the internal state of the solver (reset state). In the in-
formation category, we have methods that grant access to the internal state of
the solver (get clauses, get learnt clauses), a method to obtain statistics
(get stats), a method that returns a model of the current problem, if available
(get model), and a method that returns the current configuration parameters
(get conf params). Finally, the solving category includes methods to run the
solver, or to run it till a certain predefined condition is met, over the current
problem (solve and partial solve).

Integrating new visualization graphs into iSat follows a similar strategy but
is usually simpler as we don’t have to deal with the internal complexity of a
SAT solver. The common interface is defined by the class Graph also shown in
Figure 3. This interface includes methods to build the graph (build), dump the
graph to a file (dump), and gather statistics both at graph and at node level

5 http://www.swig.org/
6 http://www.boost.org/

http://www.swig.org/
http://www.boost.org/


(analyze graph and analyze node). There is no restriction on how the graph
is implemented internally, or on how the statistics are gathered.

For example, graphs modules already implemented in iSat has been devel-
oped using the Python package NetworkX7 to build graphs and to gather asso-
ciated statistics.

5 Conclusions

In this article we introduced iSat, an interactive command line tool that can
be used to investigate the internal structure of the search space explored by
propositional solvers, to assist developing new heuristics and to compare differ-
ent stages of the same or different solvers. It also provides different graphical
visualizations of the current problem state, and related statistics. The current
version of iSat provides the general architecture, integration with the Minisat
and CryptoMinisat solvers, and implementations for computing Variable-Clause,
Variable, Literal-Clause, Literal and Interaction graphs; it provides access to the
statistics obtained from Minisat and CryptoMinisat (number of decisions made,
propagations, conflicts detected, current number of variables, etc.) together with
statistics over the graphs computed (degree mean/max/min/standard deviation,
clique number, clustering, number of cliques, etc.). iSat was developed with two
concrete design goals in mind: to simplify extensibility and to provide an agile
interaction with different provers. The outcome is a unified interface for ex-
perimentation where new SAT solvers and visualization graphs can be easily
integrated.

In contrast to similar tools like DPViz [14], which mainly have a pedagogical
purpose, the main target of iSat are researchers investigating the behavior of
SAT solvers over particular problem instances (e.g., SAT solver developers) or
skilled users fine tuning a SAT solver for a particular application (e.g., SAT
solvers used in particular industrial applications).

This is the first release of iSat. We are currently working on the integration
of new SAT solvers, and different graph visualizations. The flexibility offered by
the current implementation opens the way to many customizations possibilities.
It would be interesting to see in which ways the SAT solving community will
make use of iSat and contribute to its development.

References

1. Een, N., Sörensson, N.: An extensible SAT-solver. Theory and Applications of
Satisfiability Testing (2004)

2. Soos, M.: CryptoMiniSat — a SAT solver for cryptographic problems (2009) http:
//www.msoos.org/cryptominisat2.

3. Cook, S.: The complexity of theorem-proving procedures. In: STOC’71: Proceed-
ings of the third annual ACM symposium on theory of computing, New York, NY,
USA, ACM (1971) 151–158

7 http://networkx.lanl.gov/

http://www.msoos.org/cryptominisat2
http://www.msoos.org/cryptominisat2
http://networkx.lanl.gov/


4. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient sat solver. In: Proceedings of the 38th Design Automation Conference
(DAC’01). (2001)

5. Heule, M., van Maaren, H.: March dl: Adding adaptive heuristics and a new
branching strategy. Journal on Satisfiability, Boolean Modeling and Computation
2 (2006) 47–59

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3) (1960) 201–215

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7) (1962) 394–397

8. Heule, M.: SmArT solving: Tools and techniques for satisfiability solvers. PhD
thesis, TU Delft (2008)

9. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of ECAI-92, John
Wiley and Sons, Inc (1992)

10. L. Guerra e Silva, J. Marques-Silva, L.S., Sakallah, K.: Timing analysis using
propositional satisfiability. In: Proceedings of the IEEE International Conference
on Electronics, Circuits and Systems (ICECS), IEEE Press (1998)

11. Larrabee, T.: Test pattern generation using boolean satisfiability. IEEE Transac-
tions on Computer-Aided Design 11(1) (1992) 6–22

12. Marques-Silva, J., Sakallah, K.: Robust search algorithms for test pattern genera-
tion. In: Proceedings of the Fault-Tolerant Computing Symposium (FTCS), IEEE
Computer Society (1997)

13. Nam, G., Sakallah, K., Rutenbar, R.: Satisfiability-based layout revisited: Detailed
routing of complex FPGAs via search-based boolean SAT. In: Proceedings of the
International Symposium on Field Programmable Gate Arrays, ACM Press (1999)

14. Sinz, C.: DPvis - a tool to visualize the structure of SAT instances. Theory and
Applications of Satisfiability Testing (2005)

15. Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., Hoos, H.: Under-
standing random SAT: Beyond the clauses-to-variables ratio. In: International
Conference on Principles and Practice of Constraint Programming (CP). (2004)
438–452


	iSat: Structure Visualization for SAT Problems
	Ezequiel Orbe , Carlos Areces, and Gabriel Infante-Lopez 

