
UNIVERSIDAD NACIONAL DE CÓRDOBA

FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA
__

SERIE “A”

TRABAJOS DE INFORMÁTICA

Nº 4/2011

A Suite of Tools for Analyzing ACL2 Books

Gabriel Infante Lopez - Alejandro E. Orbe - J Strother Moore

Editores: Luciana Benotti – Laura Brandan Briones
__

CIUDAD UNIVERSITARIA – 5000 CÓRDOBA

REPÚBLICA ARGENTINA

A Suite of Tools for Analyzing ACL2 Books

Gabriel Infante-Lopez1,2, Alejandro Ezequiel Orbe1, and J Strother Moore3

1 Grupo de Procesamiento de Lenguaje Natural
Universidad Nacional de Córdoba, Argentina

2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas, Argentina
3 Department of Computer Science

University of Texas at Austin

Abstract. We present a tool that inspects and analyzes ACL2 books.
The tool provides useful information that might help the user to improve
or to optimize a book. For any event e in a book, the tool looks for all
the subsets of events in the book that make e admissible by ACL2. All
sets that are found have the particular property that no subset with
one fewer element makes e admissible. We show that our algorithm is
exponential in the number of sets that have this property. We also show
that it is correct and we prove that if the events in the book behave
monotonically, the algorithm also finds all sets and that those sets are in
fact the smallest sets that make an event admissible. We also describe
some uses this information might have; in particular we show that there
are books in the ACL2 standard distribution that can have 40% of their
local lemmas eliminated.

1 Introduction

In this paper we present a tool, called acl2-book-tools, designed to inspect
and to analyze ACL2 books [1], that can help an ACL2 developer to get a
new perspective on the book he or she develops. So far, the tool contains two
different scripts, book inspector and book analyzer, that are used for different
purposes. The main objective of book inspector is to “inspect” a book and to
establish dependencies among the events in it. This script inspects a given book
looking for one particular type of information: it tries to find, for every event
e in the book, all the sets made of events occurring before e that can make e
admissible by ACL2 and that have the particular property that no proper subset
with one fewer element makes e admissible.By “admissible” here we mean ACL2
will discover the requisite proofs from the events in the subset.

book inspector builds and explores the lattice (see [2] for a introduction to
lattices and order) of subsets of events in a book. More precisely, if a target event
te is an event in a given book, and e0, . . . , ek are the events occurring before te, the
tool inspects the lattice of P(e0, . . . , ek) looking for sets M = {ei : i ∈ {0, . . . , k}}
such that te is admitted by ACL2 after all elements of M are added to a new
ACL2 world as skip-proof events. Moreover, book inspector looks for sets M
such that proper subsets of M containing one fewer element makes event te not
admissible anymore. We call M a 1-irreducible set of te in the given book.

There might be more than one 1-irreducible sets for any event te in any
given book; it is the task of our algorithm to find as many as it can. In principle,
the search space is exponentially big on the number of events that occur before
the target event, but our algorithm is in fact exponential on the number of 1-
irreducible set that exist in a book. Since ACL2 books usually have only a few
1-irreducible sets, the algorithm becomes feasible. The reduction of complexity
is due to the use of the following hypothesis. If a set M of events makes an
event admissible, then all supersets of M make it also admissible. Clearly, this
property is not true in general in ACL2 given that, for instance, a new theorem
t can break the admissibility of an event that was otherwise admissible. If a
certified book contains a set of events that do not satisfy this hypothesis, then
our tool might not find all 1-irreducible sets and consequently, the information
gathered from the book might not be complete. That is, there might some 1-
irreducible sets that the tool cannot find but, nevertheless, all sets that are
returned by the tool are guaranteed to be 1-irreducible. In contrast, if the set of
events in a book behaves monotonically, then our algorithm finds them all. The
algorithm complexity is still a problem whenever a book contains too many 1-
irreducible sets for a given event. We have implemented some heuristics that are
especially suitable for analyzing books containing 1-irreducible sets that share
many elements in common. The more similar a 1-irreducible set is to one that
has already been found, the faster the algorithm finds it.

After the tool has found the 1-irreducible sets for all the events in a book,
different types of information can be mined from them using book analyzer. In
particular, book analyzer can detect local lemmas that are not needed for prov-
ing any non-local event. We experiment with a number of books that come with
the ACL2 distribution. Our experiments shows that, over a sample of 160 books
randomly taken, 20 (11.85%) books presented an average of 60% redundant lo-
cal events. More surprisingly, there exists events like defthm mod-two in book
arithmetic-2/floor-mod/floor-mod.lisp that has 18 1-irreducible sets, that is,
there are 18 different combinations of events that make this event admissible.
book analyzer can also detect events that play a central role in a book. These
events are those that belong to the 1-irreducible sets of many other events. Since
it might be the case that not all 1-irreducible sets were found, the gathered
information is consistent but might be incomplete.

The tool handles almost all events that might occur in a book with the
exception of deftheory, in-theory and encapsulate events. The tool does
not compute 1-irreducible sets for these events but they are used as part of the
search space for foregoing events.

The rest of the paper is organized as follows. Section 2 shows a use case, we
use the tool to inspect the book list-defthms which can be found in the standard
distribution of ACL2. Our tool computes all 1-irreducible sets for the 211 events
contained in the book in about an hour and a half. Moreover, book analyzer

shows that 24% of the local theorems are in fact redundant. Section 3 describes
in detail the algorithm used by book inspector. Section 4 shows describes the
algorithm for detecting local events that are redundant. Section 5 shows that the

algorithm finds all 1-irreducible sets if the events in a book behaves monotoni-
cally, and that it runs in an exponential time on the number of 1-irreducible sets.
Section 6 shows experiments on some ACL2 standard books. Section 7 concludes
the paper.

2 A Use Case

In this section we briefly explain how to use of book inspector to ana-
lyze list-defthms.lisp from the standard ACL2 distribution. After calling
book inspector with list-defthms.lisp as argument, the script starts the setup
phase, where the input file is loaded and parsed to build the XML representation
of it. Also, the corresponding .acl2 file is also loaded if it exists. Figure 1 shows
the tool output at this stage.

... - INFO - Parsing command line options...

... - INFO - Starting the setting up of the environment ...

... - INFO - Creating results directory at: /home/ ...

... - INFO - Checking the existence of file: /.../list-defthms.acl2 .

... - INFO - File not found, moving on...

... - INFO - Loading events from file: /.../list-defthms.lisp

... - INFO - 211 events were found...

...

... - INFO - Setting up finished successfully ...

... - INFO - Starting inspection of all found events ...

...

Fig. 1. A fraction of the output during the setup phase.

One at a time, each one of the events in the book is taken as target event and
it is fed, with all its preceding events, to the exploration algorithm. The algorithm
starts by testing if the target event is admissible in the initial theory of ACL2.
If it is, then the event is skipped and the algorithm continues to deal with the
next event in the file. This is the case for the 210-th event of list-defthms.lisp.
Figure 2 shows the tool output for this event.

... - INFO - Skipping in-theory event...

... - INFO - ==================== Inspecting Event ====================

... - INFO - Target id: 210 ...

... - INFO - Target definition: (defthm update-nth-update-nth ...

... - INFO - Target event type: defthm ...

... - INFO - Number of events in the initial set: 209

... - INFO - The event its admissible in the ACL2’s initial theory...

... - INFO - 1-irreducible sets for the event: []

Fig. 2. Event 210 is skipped because it is accepted in ACL2’s initial theory.

If the target event is not admissible in ACL2’s initial theory, then the al-
gorithm tries to admit it in the ACL2 theory that results from extending the
ACL2’s initial theory with all the events preceding the target event. In order
to do so, the algorithm encloses each of them in a skip-proof form. All skipped
event conform what it is called the initial set of the target event. If the target
event is admitted in this way, the exploration starts. Figure 3 illustrate this sit-
uation for event 201 in the book list-defthms.lisp. In this case, the algorithm

explores the lattice of subsets that can be built using the preceding 200 events.
For this particular case, the exploration algorithm finds two 1-irreducible sets.

... - INFO - ==================== Inspecting Event ====================

... - INFO - Target id: 201 ...

... - INFO - Target definition: (defthm put-nth-firstn ...

... - INFO - Target event type: defthm ...

... - INFO - Number of events in the initial set: 200

... - INFO - The event is admissible...Looking for 1-irreducible sets...

... - INFO - A 1-irreducible set was founded: [2, 31, 200] ...

... - INFO - A 1-irreducible set was founded: [2, 105, 200] ...

... - INFO - 1-irreducible sets for the event: [(3, [2, 31, 200]), (3, [2, 105, 200])]

Fig. 3. The exploration algorithm has found two 1-irreducible sets for event 201.

Once the tool has inspected all the events in a book, it outputs an XML and
a DOT file. The XML file contains all the information that was gathered during
the exploration. It contains an entry for each event in the book specifying the
1-irreducible sets that were found for them. Figure 4 shows a small fraction of
the XML file that results from exploring list-defthms.lisp. It states that there
are two 1-irreducible sets that can prove event 201, that the tool took 1 hour 25
minutes for computing all the 1-irreducible sets for the 211 events in the book
and that it took 2 minutes 37 seconds to find the 1-irreducible sets for event 201.

<book-inspection exploration-time="1:25:52.00" ...>
<book filename="/home/.../list-defthms.lisp"/>
...
<events>

<event book-id="1" id="201" local="False" type="defthm">
<definition>

(defthm put-nth-firstn ...
</definition>
<irreducible-sets calls-to-prover="112" exploration-time="0:02:23.768467" ...>

<irreducible-set calls-to-prover="53" ... set="[2, 31, 200]" .../>
<irreducible-set calls-to-prover="51" ... set="[2, 105, 200]" .../>

</irreducible-sets>
</event>

...
<events>

</book-inspection>

Fig. 4. Fraction of an XML file showing information about event 201 of
list-defthms.lisp

The DOT file contains an event dependency graph (see Fig. 5) that is built
using the information contained in the XML file. Conceptually, an event depen-
dency graph is a directed acyclic graph that contains a node for each event in
the book and arc from event i to event j if event i occurs in a 1-irreducible set of
event j. In this graph the shadowed octagon node corresponds to a local event,
the ellipse to a non- local theorem, and the box to every other event. Also, every
node has a label of the form “x/y/z” where x is an id of a book where the event
occurs, y is the event id and z is the event type. Books id are used because our
tool accepts more than one book as argument allowing the user to test how the
events in one book interact with the events in another book.

1 / 2 / include-book

1 / 31 / defthm 1 / 105 / defthm 1 / 200 / defun

1 / 201 / defthm

(a)

1 / 188 / defthm

1 / 2 / include-book

1 / 3 / include-book

1 / 165 / defun

1 / 166 / defthm

1 / 167 / defthm

1 / 168 / defthm

1 / 163 / defun

1 / 164 / defthm

1 / 187 / defthm

(b)

Fig. 5. (a) A sub-graph of the event dependency graph corresponding to book
list-defthms.lisp, (b) A sub-graph of the event dependency graph corresponding
to book list-defthms.lisp.

Figure 5 (a) shows a sub-graph, centered on the event 201, of the event depen-
dency graph corresponding to the list-defthms.lisp book. With the informa-
tion contained in the XML file, book analyzer can determine all the available
proofs that can be built for a given event and find the shortest one. Figure 5
(b) shows two different proof for event 188. Different proofs are built using the
information for all 1-irreducible sets. For example, the graph in Fig. 5 (b) states
that event 1/2 does not have any 1-irreducible set, i.e., it is accepted in ACL2
initial world. Event 1/3 has one 1-irreducible set containing solely event 1/2,
event 1/165 has two different 1-irreducible sets, one containing 1/164 and the
other one containing event 1/3. Clearly, event 1/165 can be proved without using
events 1/164 and 1/163. Our tool can detect the existence of redundant events
that can be deleted from the book. A redundant event is an event that can
be deleted from the book without modifying the admissibility of other events.
Our tool uses a rather shallow analysis to detect redundant events that does
not guarantee that all of them are found. The algorithm for finding redundant
lemmas is explained in more detail in Sect. 4.

Figure 6 shows the output of book analyzer for list-defthms.lisp. The
output indicates that are at least 13 local theorems that could be removed from
the book without risk, moreover, it states that event 2 is the most important
event in the book. A more detailed report is saved in an XML file, which in-

cludes information about the alternative proofs for a given event, successors and
predecessors count, degree and degree centrality among others.

... - INFO - ============== SUMMARY ===============

... - INFO - Event Type: in-package - Count: 1 - Local Count: 0 - Redundants Count: 0

... - INFO - Event Type: defthm - Count: 201 - Local Count: 50 - Redundants Count: 13

... - INFO - Event Type: in-theory - Count: 3 - Local Count: 2 - Redundants Count: 2

... - INFO - Event Type: defun - Count: 4 - Local Count: 4 - Redundants Count: 0

... - INFO - Event Type: include-book - Count: 2 - Local Count: 1 - Redundants Count: 0

... - INFO - Central Event: Id: 2 - Type: include-book - Successors Count: 82 - ...

... - INFO - ============== END SUMMARY ===============

... - INFO - Complete statistics are available at:/.../list-defthms-stats.xml

Fig. 6. Our tool output for the analysis of the dependency graph.

3 Exploration Algorithm

This section presents a detailed description of the algorithm that finds the 1-
irreducible sets for a given event te and it also introduces some concepts that
are required later.

The book inspector algorithm takes as input a target event te and an initial
set I = {e0, . . . , ek} of events, all of them occurring before te in the book file.
The goal of the algorithm is to find all the sets M = {ei : i ∈ {0, . . . , k}} such
that te is admitted by ACL2 after extending ACL2’s initial theory with all events
in M but no subset of M with one fewer element makes te admissible. Those
sets are called the 1-irreducible sets of the target event te.

To achieve its goal, the algorithm explores the lattice P(I) containing one
node for each subset of I. Ii identifies an element in the lattice, it denotes the
i-th subset of a family of subsets FI, containing 1 fewer element than the set I.
The ordering among the elements of FI is not really important and can be any.

In order to test if a set I makes the target theorem te admissible, every event
in I is submitted to ACL2 embedded in a skip-proofs form, thus forcing ACL2
to omit its proofs obligations. Once all events have been introduced to the ACL2’s
initial theory, the algorithm submits the target event te to ACL2 and checks if te
is or is not admitted. The subset I is called a positive set for te if ACL2 admits
the target event, and is called negative set otherwise. It is worth mentioning that
in this context, our notion of the admissibility of a target event, like ACL2’s,
requires that certain proof obligations be dispatched by the prover. For example,
a definition event requires proofs of the termination conjectures (and the guard
conjectures if guards are being verified). A defthm event requires proof of the
stated theorem.

If set I behaves monotonically, that is, any superset of a positive set is also
positive, then the 1-irreducible sets are in fact the smallest sets that make an
event admissible. To illustrate this point, suppose that I is a set such that any
superset of a positive set is also positive. Let M be a 1-irreducible set and let M ′

be a proper subset of M that is also positive. If M ′ is not M , then M can not be
a 1-irreducible set given that there has to be a subset of M containing one fewer

element that is a superset of M ′ contradicting the definition of 1-irreducible sets.
Nevertheless, since ACL2 books might not satisfy this property, it might be the
case that a set M is a 1-irreducible set and yet it is not the smallest set that
makes an event admissible.

[1, 2, 3, 4]

[1, 2, 3]

[1, 2]

[1]

[]

[2]

[1, 3]

[3]

[2, 3]

[1, 2, 4]

[1, 4]

[4]

[2, 4]

[1, 3, 4]

[3, 4]

[2, 3, 4]

Fig. 7. The lattice to be explored for an initial set containing 4 events.

In fact, book inspector can be thought of as containing two different phases.
One that starts in a positive set and looks for the set below the starting one that
is a 1-irreducible set. The algorithm enters its second phase every time the first
phase produces a new 1-irreducible set. The second phase is in charge of looking
a new positive set in the lattice that does not contain any of the 1-irreducible
sets that were already found. The first phase starts with an initial set I and a
target event te. The algorithm starts exploring the first family of subsets of I:

FI = {Ii : Ii ⊂ I ∧ |Ii| = |I| − 1} ,

where |I| is the cardinality of the set I. Sets in FI are easily obtained from I by
removing one element at a time. I is called the generating set of the family FI.
The exploration algorithm tests sets in FI until it finds a positive set. If none
of these sets is positive, then the algorithm has found that I is a 1-irreducible
set. If a positive set Ii is found, then a new family FIi of sets is inspected. This
process goes on recursively until it finds a set I that is a 1-irreducible set. The
first phase of the algorithm guarantees that a 1-irreducible set is produced if this
phase is started in a positive initial set.

In order to illustrate this phase Fig. 7 shows the lattice that the first phase
has to explore. Shadowed nodes are positive, while others are negative. The first
phase explores nodes [1, 2, 3], [1, 2], [1] and [] concluding that [1] is a 1-irreducible
set. Note that nodes [2, 3, 4], [3, 4], [3] and [4] are positive, but [2, 4] and [2, 3]
are not. This is the case because [1, 2, 3, 4] does not behave monotonically, and

event 2 interferes with events 3 and 4. Once the 1-irreducible set [1] has been
found, the algorithm has to start its search over.

Relocalization A key step during the lattice exploration process is to determine
the next subset that must be explored by the algorithm once a 1-irreducible set
has been found. In particular the algorithm must avoid all the supersets of the 1-
irreducible sets that have been already found because the first phase of algorithm
will deterministically converge to those entering in a endless cycle.

The exploration algorithm implements a relocalization process every time
a new 1-irreducible set is found. This process consists of finding a subset of
the initial set I that does not contain any of the 1-irreducible sets that have
been already found. A relocalization set is generated by removing elements from
I that are in some 1-irreducible sets. Specifically, a relocalization set is built
by first building a set containing one element from each 1-irreducible set, and
second, removing this set from the original set I. Clearly, there are more than
one relocalization set. The algorithm looks for the first relocalization set that
makes the target event admissible; if it cannot find such a set, it terminates.

A more formal definition of this process can be provided by defining the
family R of relocalization sets as:

R = {I − ki : ki ∈ K} , (1)

where K is defined as:

K = M1 ×M2 × . . .×Mk ,

the Cartesian product of the k 1-irreducible sets found so far by the algorithm.
This product is calculated every time a new 1-irreducible set is found thus as-
suring that the next relocalization set to explore does not lead to a known
1-irreducible set.

Let us illustrate how the relocalization works using the previous example.
After 1-irreducible set [1] has been found, the relocalization process generates
and tests set [2, 3, 4], starts its first phase again, and finds 1-irreducible set [3].
Then the algorithm tries to relocalize again, testing [2, 4], but since [2, 4] is
negative, the algorithm terminates without finding the 1-irreducible set [4]. Had
[1, 2, 3, 4] been monotonic, then [2, 4] would have had to be positive.

4 Finding Redundant Local Events

The algorithm in charge of finding redundant local events builds a directed
labeled graph with the information produced by book inspector for a given
book. These graphs contain a node for each event in a book and an arc from
node i to node j labeled with a number n if the n-proof for event j requires
event i to be admitted before. Nodes that do not have incoming edges are called
starting nodes and correspond to events that are admissible in ACL2’s initial
theory. A proof path is a path that starts at a starting node and has all of its

arcs labeled with the same number. The algorithm process the graph one node
at the time following backwards the order of events in the given book. For each
node, the algorithm tries to find a proof path ending in the current node that
does not include any local event . Proof paths that meet this requirement are
called local-free paths. If there is more than one local-free path for the current
node, the algorithm picks the shortest one. If there is no local-free path, then the
algorithm picks the shortest proof path that exists. Depending on whether the
node being analyzed is a non-local or local event, local nodes in the path proof
are marked as required, or maybe-required respectively. Once a proof path has
been selected for each event, the algorithm checks the marks of all local nodes
in the graph. Nodes that are neither required nor maybe-required correspond
to events that the algorithm reports as redundant. Moreover, nodes that are
marked as maybe-required are also reported as redundant if the local events
that required them were previously marked as redundant. Our algorithm does
not backtrack and consequently, there might better paths in the graph – that is,
requiring fewer local events – than the ones that are found by our algorithm.

Let us illustrate this algorithm using a small example. Suppose that
book inspector inspects a book with 5 events and that it returns the description
shown in Fig. 8 (a). First the algorithm looks for a local-free path to node 5.
In our example, such a path is the one starting at node 2 labeled with 3. Then
it goes to node 4, and again path 3 is selected given that does not include any
local node. For event 3, which is a local node, the local-free path labeled 2 is
selected. The local node 1 is also a starting node so no path proof is searched.
Once a path has been selected for each node the algorithm identifies events 1
and 3 as redundant given that they are not required by any non-local event. A
more interesting situation arises when path 3 is not present in the graph. In this
case, event 5 has three different paths, namely 1, 2 and 4, all of them containing
local nodes. The algorithm chooses the shortest one containing the fewer local
nodes and marks all of them as required. Since all paths have the same length,
the algorithm selects path 1 given that it is the first one it finds. Consequently,
local node 1 is marked as “required”. Finally, the algorithm only identifies node
3 as redundant because there is no other node requiring it.

5 Properties of book inspector

We start by showing that if the set of events in a book behaves monotonically,
i.e., a superset of a positive set is also positive, the book inspector finds all 1-
irreducible sets and moreover all found 1-irreducible sets are in fact the smallest
sets that make the target event admissible.

Lemma 1. If the target event is not admissible in ACL2’s initial theory, the
initial set is a positive set, and the initial set behaves monotonically, then the
first phase of the book inspector algorithm always finds one 1-irreducible set
and it also corresponds to one of the smallest sets that make the target event
admissible.

event number 1-irreducible sets

1 ∅
2 ∅
3 {2}, {1}
4 {1} , {2}
5 {3}, {4}

(a)

2

4

5

1

1 2

3

3

2

4

4

3/defthm

1/defthm

(b)

Fig. 8. (a) Small example of the possible for a book containing 5 events. The table
shows the hypothetical 1-irreducible sets for each event. (b) The labeled graph that
this built using the information in (b) specifically for event 5.

Proof. The proof is direct. The first phase goes down the lattice only when a
positive set has been found. When the algorithm stops going down, it has found
a set M such that every subset with exactly 1 less element is negative, i.e., M
is 1-irreducible set. ut

The previous lemma states that the first phase always produce a new 1-
irreducible set. On the other hand, the second phase is in charge of looking
for the right initial set to start the first phase over. In order to show that the
algorithm finds all 1-irreducible sets, we need to show that there is always a
relocalization set that contains an unexplored part of the lattice. The following
lemma states precisely this result.

Lemma 2. A set not containing a 1-irreducible set is either a relocalization set
or a subset of a relocalization set.

Proof. Let I be the initial set for some target event te, and let M1, . . . ,Mk be
the k 1-irreducible sets found so far by the algorithm. Now take a set S ⊆ I and
suppose that it does not contains any 1-irreducible sets found by the algorithm.
Then, S must differ in at least one element with each of the 1-irreducible sets
found, that is,

S ⊆ I − {mi1, . . . ,mjk} , (2)

where mjk ∈ Mk. Nevertheless, the r.h.s of Equation 2 corresponds to the defi-
nition of relocalization set given by Equation 1, and therefore, S ⊆ Ri, where Ri

is a relocalization set belonging to the family R of relocalization sets generated
by the k-th 1-irreducible sets. ut

Corollary 1. If the initial sets behaves monotonically then book inspector

finds all existing 1-irreducible sets.

The idea behind a 1-irreducible set can be extended to k-irreducible, that
is, a positive set is k-irreducible if all subsets having at most k fewer elements
are negative. If the set behaves monotonically them there is no point of using
k-irreducible because if a set is 1-irreducible set then it is k-irreducible for all
possible k. But on the other hand, if the set does not behave monotonically there
might be a set that is k-irreducible but that might have a subset containing k+1
fewer elements that is again positive. If the set does not behave monotonically,
and one wants to find the smallest set that makes the target event admissible,
then it has to traverse the whole lattice given that, unfortunately, a negative set
does not state that all of its subsets are negative. The parameter k controls the
order of the first phase of book inspector, the bigger the k the more inefficient
is the algorithm. Fortunately for k equal to 1 this phase is still polynomial.

5.1 Order of the Algorithm

We mainly count the number of elements in the lattice that are inspected in
each phase. Suppose that the size of the initial set is I and that there is one
1-irreducible set whose size is k. The worst case occurs when the 1-irreducible
set occurs as the last element in all orderings of intermediate families. If in Fig. 7
families are explored from left to right , if k = 2, then the first phase tests [1, 2, 3],
[1, 2, 4],[1, 3, 4] as negative, [2, 3, 4] as positive, [2, 3], [2, 4] as negative, [3, 4] as
positive, and finally [3], [4] as negative. In the worst case, the algorithm makes(

I−k∑
i=1

I − i

)
+ (I − k) + 1 + k

tests.
∑I−k

i=1 I − i accounts for the number of negative test the algorithm has to
make before it reaches the 1-irreducible set, I − k + 1 accounts for the positive
paths that leads to the 1-irreducible set and k accounts for the negative tests
below the 1-irreducible set. Then, the resulting number of tests is(

I−k∑
i=1

I − i

)
+ I + 1 < I2 + I + 1 .

The second phase of the algorithm looks for new sets on which to start the
first phase.The number of relocalization sets in the second phase is given by the
number of minimals that have been already found. Let us suppose that there are
m 1-irreducible sets. The worst case scenario occurs when the algorithm starts
its second phase after having found all m 1-irreducible sets. At this point the
algorithm starts its first phase again looking for a positive set. Clearly, since all
1-irreducible sets have been already found, all relocalization sets are negative
and consequently, the algorithm has to explore all of them. The algorithm will
end when it has explored all of them. In order to determine the complexity of the
second phase, we count the number of relocalization sets that are generated after
the first phase has found all the m minimals. If we suppose that each 1-irreducible

set contains at most k elements, then the number of relocalization sets is smaller
than km. This means that the algorithm has to explore an exponential number
of relocalization set on the number of 1-irreducible sets. Moreover, every time
it finds a new one, the relocalization sets have to be recomputed. In practice,
the second phase does not generate all relocalization sets; it does not generate
the relocalization sets that are contained by other relocalization sets. Using this
simple heuristic, and because 1-irreducible sets for ACL2 books tend to share a
lot of their members, the number of relocalization sets diminishes dramatically.
In order to hint why this is the case, suppose that A and B are two 1-irreducible
sets. The number of relocalization sets that have to be checked is |A| × |B −A|,
while if only the upper most sets are generated, then the number is |A ∩ B| +
|A− (A ∩B)| × |B − (A ∩B)|. If A and B have k elements each and they differ
in one element, the number of relocalization sets is k − 1 + 1 × 1 = k, while if
all relocalization sets are generated, the number of relocalization sets becomes
k× k. But on the other hand, if two 1-irreducible sets A and B do not have any
element in common, the number of relocalization sets is A × B and the worst
case complexity is indeed exponential, but it turns out that it is still feasible
for ACL2 books. The worst case complexity arises when the book is such that
all sets with even cardinality are positive and all others are negative. Moreover,
any algorithm trying to find all 1-irreducible sets for this pathological case has
to traverse the whole lattice.

It easy to see that our algorithm does not find all 1-irreducible sets. For
instance, if nodes [1, 2, 3, 4], [1, 2, 3], [1, 3], [1] and [3] are the only positive nodes
of Figure 7, our algorithm correctly finds [1] but it does not find [3], but any
of the relocalization sets is again positive. Relocalization sets work as a random
sample of nodes. As a consequence of Lemma 2, we know that they are a sample
that covers the whole lattice, but we also know the sample is rather big.

6 Experiments

In this section we present the outcome of having executed our tool over a random
sample of 160 books from the ACL2 standard distribution. All books in the
sample were inspected using book inspector and the information it generated
was analyzed using book analyzer. Experiments were executed on an Intel Core
Duo T7100 PC with 4 GB of RAM memory using ACL2 version 3.4. Table 1
shows a small summary of all the information gathered by book inspector.

Table 1. Number of events and books that were processed by our tool.

Number of Books 160 Number of Events 4493
Number of Theorems 2766 Number of Functions 495
Number of Books w/ Theorems 127

Our experiments show that only 19 books – representing a 11.85% of the total
– contain local lemmas and that 60% of the local lemmas are redundant. More-

over, 6 books have all their local lemmas redundant. Table 2 shows a summary
of the data that was collected for some of books in the sample.

Table 2. Columns shows the name, the number of events, the number of theorems, the
number of local theorems, the number of redundant theorems, the sum of the numbers
of 1-irreducible sets and the time it took to analyze the book respectively.

book events theorems locals redundant 1-irr time

array1 69 54 38 20 39 19:04:37.87
list-defthms 211 201 50 13 143 01:25:52.00
alist-defuns 57 10 10 6 36 00:03:10.13
arithmetic-3/.../floor-mod 92 63 7 4 80 32:00:00.00
arithmetic-4/.../expt 33 26 3 3 53 00:10:00.10
more-floor-mod 28 18 3 3 23 00:17:16.04
simple-equ-and-inequ-helper 12 6 4 3 9 00:00:53.88
binomial 35 23 7 3 28 00:08:06.97
arithmetic-3/.../expt 33 26 3 3 53 00:12:34.69
alist-defthms 162 153 20 3 159 01:37:48.45
prefer-times 16 11 3 2 9 00:00:11.78
arithmetic-2/.../expt 31 25 2 2 50 00:10:52.97
building-blocks-helper 14 7 4 2 9 00:00:33.21
perm 12 7 7 2 11 00:01:14.50
collect-terms-meta 9 1 1 1 4 00:00:11.72
types-helper 10 8 5 1 5 00:00:10.66
memtree 65 32 3 1 51 02:42:09.87
integerp 94 82 3 1 95 01:19:20.17
cancel-terms-meta 65 6 1 1 34 12:00:00.00

The results state that there are local lemmas that might be eliminated but
elimination of these local lemmas might not be as direct as just deleting the
lemmas from the book. The information generated by book inspector not only
states which local events can be eliminated but also states how to modify the
theory of events that depend on it. We did test which books could have their
redundant events removed: 10 out of 19 books that contain local lemmas can
have all their redundant lemmas deleted without any further changes in the
book. Some events in the remaining 9 requires that hints be added in order to
make them admissible again.

This small analysis raises the question of why the authors of these book in-
troduce redundant lemmas. The question is easily answered when the redundant
lemmas cannot be directly deleted: the lemmas guide ACL2. It is often easier
and produces a more robust script for an author to guide the prover with a local
lemma than a goal-specific hint. But it is harder to understand the presence
of irrelevant lemmas that can be directly eliminated. Perhaps ACL2 has been
improved since the book was created so that local lemmas once needed to the
guide the proof are no longer required.

Central events are those that belong to 1-irreducible sets of many other events
in a book. The centrality of an event is computed from the same graph that is

Table 3. A few central events from the books that contain the higher number of events.

Book # Events Event # Succ.

list-defthms 211 (include-book “list-defuns”) 82
alist-defthms 162 (include-book “alist-defuns”) 129
arithmetic-4/.../arithmetic-theory 110 (local (include-book “expt”)) 32
arithmetic-3/.../arithmetic-theory 108 (local (include-book “basic”)) 41
arithmetic-3/.../integerp 105 (encapsulate () 64

(defthm not-integerp-helper ...)
(defthm not-integerp-1a...))

used for finding redundant lemmas, the centrality of a node is the number of
outgoing arcs it has. Table 3 shows some nodes with highest centrality values for
the biggest 5 books. Usually the most required event is the include-book event
which masks the real interaction between the events in the book being included
and the events that need that book.

7 Conclusions

We have presented a set of tools to inspect and analyze ACL2 books. The algo-
rithm we presented takes polynomial time on the size of the initial set to find
a 1-irreducible set if the initial set is positive and it takes an exponential time
on the number of 1-irreducible sets contained in a book to find a new positive
starting set. We showed that if the set of events in a book behaves monotonically,
the algorithm finds all 1-irreducible set and that those 1-irreducible sets are in
fact the smallest sets that can make an event admissible. We showed empirically,
that even though the algorithm is exponential, the nature of ACL2 books allows
us to produce statistics for 160 books. A possible application of the information
gathered by book inspector that we did not explore is to compare different ver-
sions of ACL2. With the information that our algorithm produces we can not
only compare the time that different version of ACL2 take to accept events but
we can also see how 1-irreducible sets have evolved with ACL2 version. It may
be the case that older versions of ACL2 had fewer 1-irreducible sets or that they
had fewer redundant lemmas.

References

1. Kaufmann, M., Manolios, P., Moore, J.: Computer– Aided Reasoning: An Approach.
Kluwer (2000)

2. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press (2002)

