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HOPF-GALOIS OBJECTS AND COGROUPOIDS

JULIEN BICHON

Abstract. We survey some aspects of the theory of Hopf-Galois objects that may studied
advantageously by using the language of cogroupoids. These are the notes for a series of
lectures given at Cordobá University, may 2010. The lectures are part of the course “Hopf-
Galois theory” by Sonia Natale.
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Introduction

These are the notes for a series of lectures given at Cordobá University, may 2010. The
lectures are part of the course “Hopf-Galois theory” by Sonia Natale. We assume therefore
some knowledge on Hopf-Galois theory, although some basic facts will be recalled for other
readers.

We shall focus on the following two concrete problems. Let H be a Hopf algebra (over a fixed
base field k).

(1) Given an H-comodule algebra A that we suspect to be an H-Galois object, how can we
prove “nicely” that A is an H-Galois object?

(2) How to classify the H-Galois objects?
Of course these two questions are strongly linked to each other. The answers (or tentative

answers) we propose rely on Ulbrich’s [59] equivalence of categories between the categories of
H-Galois objects and fibre functors over the category of H-comodules.

To answer the first question, we propose here to use the language of cogroupoids. This
forces us to introduce more notations and concepts, so what we have to do first is to explain
our motivation. Recall that an H-Galois object is an H-comodule algebra for which a certain
“canonical” linear map is bijective. The definition is clear and concise, so why should we need
to make it more complicated? Of course the basic answer, which probably provides enough
motivation, is that we want to be able to check that the canonical map is indeed bijective.
Another more conceptual motivation comes with the following parallel situation: given a monoid
G, then G is a group if and only if the following “canonical map”

G×G −→ G×G
(x, y) 7−→ (xy, y)

is bijective. Of course this gives a short definition of groups that to not use the axioms of
inverses, but for many obvious reasons we prefer to use the (slightly more involved) axioms of
inverses. This is exactly the same philosophy that leads to the use of cogroupoids in Hopf-Galois
theory: we will have (much) more axioms but on the other hand they should be more natural
and easier to deal with. We present various examples of cogroupoids (Section 3). We hope that
they will convince the reader that it is not more difficult (and in some sense easier) to work
with cogroupoids rather than with Galois objects.

One of the main motivations for studying Hopf-(bi)Galois objects is an important result by
Schauenburg [49] stating that the comodule categories over two Hopf algebras H and L are
monoidally equivalent if and only if there exists an H-L-bi-Galois object. The knowledge of the
full cogroupoid structure (rather than “only” the bi-Galois object) might be useful to exactly
determine the image of an object by the monoidal equivalence. It is also the aim of the notes
to present several applications of this: construction of new explicit resolutions from old ones
in homological algebra, invariant theory, monoidal equivalences between categories of Yetter-
Drinfeld modules with applications to bialgebra cohomology and Brauer groups. The use of the
cogroupoid structure is probably not necessary everywhere, but we believe that it can help!

The second question that we are concerned with is the classification problem of the Hopf-
Galois objects of a given Hopf algebra. Once again this is motivated by monoidal categories of
comodules and Ulbrich’s theorem [59] already mentioned. We shall see that in fact Ulbrich’s
theorem is, in some situations, a very convenient tool to classify Hopf-Galois objects.

These notes are organized as follows. In Section 1 we recall some basic definitions and some
important results on Hopf-Galois objects. In most cases we do not give proofs but at some
occasions we give parts of the proofs, when these are useful for the rest of the paper. In
Section 2 we introduce cogroupoids and prove some basic results. We show that a connected
cogroupoid induces a bi-Galois object and hence a monoidal equivalence between the comodule
categories over two Hopf algebras. Conversely it is shown that any Hopf-Galois object and any
monoidal equivalence between comodule categories always arises from a connected cogroupoid.
We also show that a connected cogroupoid gives rise to a weak Hopf algebra. In Section 3
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we present various examples of cogroupoids. In Section 4 we use the fibre functor method
(and the constructions of Section 3) to classify the Galois objects over the Hopf algebras of
bilinear forms and the universal cosovereign Hopf algebras. Section 5 is devoted to applications
of Hopf-Galois objects and monoidal equivalences to comodule algebras: we describe a model
comodule algebra for the Hopf algebra of a bilinear form and we show how to use Hopf-Galois
objects to get new results from old ones in invariant theory. In Section 6 we show how monoidal
equivalences between comodule categories extend to categories of Yetter-Drinfeld modules and
we give an application to Brauer groups of Hopf algebras. Section 7 is devoted to applications
in homological algebra: we show that the Hochshild (co)homology of a Hopf-Galois object is
determined by the Hochshild (co)homology of the corresponding Hopf algebras, we show how to
transport equivariant resolutions, and we give an application of the result on Yetter-Drindeld
modules to bialgebra cohomology.

These notes are mostly a compilation or reformulation of well-known results. One of the only
new results is the construction (Proposition 2.26) of a weak Hopf algebra from a cogroupoid
(hence from a Hopf-Galois object). This (unpublished) result was obtained in collaboration
with Grunspan in 2003-2004. A similar result has been obtained independently by De Commer
[17, 18]. The notions of cocategory and cogroupoid were presented by the author in several
talks between 2004 and 2008 (together with the result with Grunspan). It seems to be their
first formal appearance in printed form, but of course these notions are so natural that they
might have been defined by any mathematician who would have needed them!

There are many aspects of Hopf-Galois theory (in particular Galois correspondences and
Hopf-Galois extensions with non-trivial coinvariants) that are ignored in these notes. The
reader might consult the excellent survey papers [43, 50] for these topics.

Notations and conventions. Throughout these notes we work over a fixed base field de-
noted k. We assume that the reader has some knowledge of Hopf algebra theory and Hopf-
Galois theory (as in [42], for Hopf-Galois theory we recall all the necessary definitions) and on
monoidal category theory [32]. We use the standard notations, and in particular Sweedler’s
notation ∆(x) = x(1) ⊗ x(2). The k-linear monoidal category of right H-comodules (resp.
finite-dimensional right H-comodules) over a Hopf algebra H is denoted Comod(H) (resp.
Comodf (H)), and the set of H-comodule morphisms (H-colinear maps) between H-comodules
V , W is denoted HomH(V,W ).

Acknowledgements. It is a pleasure to thank Sonia Natale for the invitation to give these
lectures and for her kind hospitality at Cordobá. The visit at Cordobá University was supported
by the program Premer-Prefalc and Conicet (PIP CONICET 112-200801-00566t).

1. Background on Hopf-Galois objects

In this section we collect the definitions, constuctions and results needed in the paper.

1.1. Hopf-Galois objects.

Definition 1.1. Let H be a Hopf algebra. A left H-Galois object is a left H-comodule algebra
A 6= (0) such that if α : A −→ H ⊗A denotes the coaction of H on A, the linear map

κl : A⊗A α⊗1A−−−−→ H ⊗A⊗A 1H⊗m−−−−→ H ⊗A
is an isomorphism. A right H-Galois object is a right H-comodule algebra A 6= (0) such that
if β : A −→ A⊗H denotes the coaction of H on A, the linear map κr defined by the composition

κr : A⊗A 1A⊗β−−−−→ A⊗A⊗H m⊗1H−−−−→ A⊗H
is an isomorphism.

If L is another Hopf algebra, an H-L-bi-Galois object is an H-L-bicomodule algebra which
is both a left H-Galois object and a right L-Galois object.

The maps κl and κr are often called the canonical maps.
3



Example 1.2. The Hopf algebra H, endowed with its comultiplication ∆, is itself an H-H-bi-
Galois object.

Note that if H is a bialgebra, the maps κl and κl are well defined and H is a Hopf algebra if
and only if κl is bijective if and only if κr is bijective. This gives a definition of Hopf algebras
without using the antipode axioms. However, the definition with the antipode is much more
preferable.

Example 1.3. Let H be a Hopf algebra. Recall (see e.g. [15]) that a 2-cocycle on H is a
convolution invertible linear map σ : H ⊗H −→ k satisfying

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2))

and σ(x, 1) = σ(1, x) = ε(x), for all x, y, z ∈ H. The set of 2-cocycles on H is denoted
Z2(H). When H = k[G] is a group algebra, it is easy to check that we have an identification
Z2(k[G]) ' Z2(G, k∗). Note however that in general there is no natural group structure on
Z2(H).

The convolution inverse of σ, denoted σ−1, satisfies

σ−1(x(1)y(1), z)σ
−1(x(2), y(2)) = σ−1(x, y(1)z(1))σ

−1(y(2), z(2))

and σ−1(x, 1) = σ−1(1, x) = ε(x), for all x, y, z ∈ H.
The algebra σH is defined as follows. As a vector space σH = H and the product of σH is

defined to be
x · y = σ(x(1), y(1))x(2)y(2), x, y ∈ H.

That σH is an associative algebra with 1 as unit follows from the 2-cocycle condition. Moreover
σH is a right H-comodule algebra with ∆ : σH −→ σH⊗H as a coaction, and is a right H-Galois
object.

Similarly we have the algebra Hσ−1 . As a vector space Hσ−1 = H and the product of Hσ−1

is defined to be
x · y = σ−1(x(2), y(2))x(1)y(1), x, y ∈ H.

Then Hσ−1 is a left H-comodule algebra with coaction ∆ : Hσ−1 −→ H ⊗Hσ−1 and Hσ−1 is a
left H-Galois object. We will (re)prove these facts in Subsection 3.3.

Example 1.4. Let H be a Hopf algebra and let A be a left H-Galois object with coaction
α : A −→ H ⊗ A, α(a) = a(−1) ⊗ a(0). Then the linear map β : Aop −→ Aop ⊗ H, β(a) =
a(0)⊗S(a(−1)) endows Aop with a right H-comodule algebra structure, and Aop is right H-Galois
if the antipode S is bijective (exercise).

Hence if the antipode of H is bijective, there is no essential difference between left anf right
H-Galois objects.

Definition 1.5. Let H be a Hopf algebra. The category of left H-Galois objects (resp.
right H-Galois objects), denoted Gall(H) (resp. Galr(H)), is the category whose objects
are left H-Galois objects (resp. right H-Galois objects) and whose morphisms are H-colinear
algebra maps (i.e. H-comodule algebra maps).

The set of isomorphism classes of left H-Galois objects (resp. right H-Galois objects) is
denoted Gall(H) (resp. Galr(H)).

It follows from Example 1.4 that if H has bijective antipode, the categories Gall(H) and
Galr(H) are isomorphic, and in this case we simply put Gal(H) = Gall(H) = Galr(H).

The following result (Remark 3.11 in [51]), means that the categories Gall(H) and Galr(H)
are groupoids (i.e. every morphism is an isomorphism). It is very useful for classification results.

Proposition 1.6. Let H be a Hopf algebra and let A, B some (left or right) H-Galois objects.
Any H-colinear algebra map f : A −→ B is an isomorphism.
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Proof. Assume for example that A and B are left H-Galois and denote by κA
l and κB

l the
respective canonical maps. Endow B with the left A-module structure induced by f . The
diagram

A⊗B
κB

l ◦(f⊗1B)
−−−−−−−→ H ⊗B

'
y '

y
(A⊗A)⊗A B

κA
l ⊗A1B−−−−−→ (H ⊗A)⊗A B

commutes and hence f ⊗ 1B is an isomorphism, and so is f . �

We get a simple criterion to test if a Galois object is trivial.

Proposition 1.7. Let H be a Hopf algebra and let A be a left or right H-Galois object. Then
A ∼= H as H-comodule algebras if and only if there exists an algebra map φ : A −→ k.

Proof. It is clear, using the counit, that if A ∼= H as comodule algebras, then there exists an
algebra map A −→ k. Conversely, assume for example that A is left H-galois and that there
exists an algebra map φ : A −→ k. Then the map A −→ H, a 7−→ φ(a(0))a(−1) is a left
H-colinear algebra map, and is an isomorphism by the previous proposition. �

1.2. Cleft Hopf-Galois objects. In this subsection we briefly focus on an important class of
Hopf-Galois objects, called cleft.

We have already seen (Example 1.3) how to associate a Galois object to a 2-cocyle. This
construction is axiomatized by the following result, which summarizes work of Doi-Takeuchi
[16] and Blattner-Montgomery [11]. The proof can be found in [42] or [50].

Theorem 1.8. Let H be a Hopf algebra and let A be a left H-Galois object. The following
assertions are equivalent:

(1) There exists σ ∈ Z2(H) such that A ∼= Hσ−1 as left comodule algebras.
(2) A ∼= H as left H-comodules.
(3) There exists a convolution invertible H-colinear map φ : H −→ A

A left H-Galois object is said to be cleft if it satisfies the above equivalent conditions.

Of course there is a similar result for right H-Galois objects.
There are nice classes of Hopf algebras for which cleftness is automatic. Recall that a Hopf

algebra is said to be pointed if all its simple comodules are 1-dimensional.

Theorem 1.9. Let H be a finite-dimensional or pointed Hopf algebra. Then any H-Galois
object is cleft.

For the pointed case we refer the reader to Remark 10 in [27] and for the finite-dimensional
case we refer the reader to [36]. See however the last remark in the next subsection, where we
give a proof by using fibre functors.

1.3. Monoidal equivalences and Schauenburg’s Theorem. The following result from [49]
is one of the main motivations for the study of (bi-)Galois objects.

Theorem 1.10 (Schauenburg). Let H and L be some Hopf algebras. The following assertions
are equivalent.

(1) There exists a k-linear equivalence of monoidal categories

Comod(H) ∼=⊗ Comod(L)

(2) There exists an H-L-bi-Galois object.

So we have a very powerful tool to construct monoidal equivalences between categories of
comodules over Hopf algebras! In the next subsection we present various very important con-
structions related to Schauenburg’s Theorem.
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1.4. Cotensor product and various constructions of functors. In this subsection we
recall several important constructions of functors associated with Hopf-Galois objects. The
basic construction is the cotensor product.

Definition 1.11. Let C be a coalgebra, let V be a right C-comodule and let W be a left C-
comodule. The cotensor product of V and W , denoted V�CW , is defined to be the equalizer

0 −→ V�CW −→ V ⊗W ⇒ V ⊗ C ⊗W
i.e. the kernel of the map αV ⊗ 1W − 1V ⊗ αW , where αV and αW are the respective coactions
on V and W .

The first thing that the cotensor product allows us to do is to construct functors on comodule
categories, as follows.

Proposition 1.12. Let C be a coalgebra. Any left C-comodule W defines a k-linear functor

ΩW : Comod(C) −→ Vect(k)
V 7−→ V�CW

Proof. If f : V −→ V ′ is C-colinear map, then it is easy to check that f⊗1(V�CW ) ⊂ V ′�CW
and hence we get the announced functor. �

Remark 1.13. If W ∼= C as left C-comodules, then ΩW is isomorphic to the forgetful functor.

Proof. Let f : C −→ W be a C-colinear isomorphism. If V is a right C-comodule, we have a
vector space isomorphism

V −→ V�CW = ΩW (V )

v 7−→ v(0) ⊗ f(v(1))

(the inverse is given by v⊗a 7→ ε(f−1(a))v). The isomorphism is clearly functorial and we have
the result. �

The monoidal analogue of Proposition 1.12 is Ulbrich’s theorem [59]:

Theorem 1.14 (Ulbrich). Let H be a Hopf algebra and let A be a left H-Galois object. The
functor

ΩA : Comodf (H) −→ Vectf (k)
V 7−→ V�HA

is a fibre functor: it is k-linear, exact, faithful and monoidal. Conversely, any fibre functor
arises in this way from a unique (up to isomorphism) left H-Galois object.

Partial proof. Consider the previous functor ΩA : Comod(H) −→ Vect(k). We endow ΩA

with a monoidal structure as follows (the construction is from [58]). First define Ω̃A
0 : k −→

ΩA(k) = k�HA = AcoH , 1 7−→ 1. This is an isomorphism since for a ∈ AcoH , we have
κl(a⊗ 1) = 1⊗ a = κl(1⊗ a), hence we have a⊗ 1 = 1⊗ a by the injectivity of κl and a ∈ k1.

Now let V,W ∈ Comod(H). It is straightforward to check that if
∑

i vi ⊗ ai ∈ V�HA and∑
j wj ⊗ bj ∈W�HA, then ∑

i,j

vi ⊗ wj ⊗ aibj ∈ (V ⊗W )�HA

Thus we have a map

(V�HA)⊗ (W�HA) −→ (V ⊗W )�HA

(
∑

i

vi ⊗ ai)⊗ (
∑

j

wj ⊗ bj) 7−→
∑
i,j

vi ⊗ wj ⊗ aibj

that we denote
Ω̃A

V,W : ΩA(V )⊗ ΩA(W ) −→ ΩA(V ⊗W )
6



It is clear that this map is functorial, and we have to check that ΩA = (ΩA, Ω̃A
•,•, Ω̃0) is a

monoidal functor. It is easy to seen that the associativity (coherence) constraints of a monoidal
functor are satisfied, and what is really non trivial is to check that Ω̃A

V,W is an isomorphism for
any V,W ∈ Comod(H). We use the following Lemma.

Lemma 1.15.
(1) For any V ∈ Comod(H), the linear map 1 ⊗ ε ⊗ 1 : (V ⊗ H)�HA −→ V ⊗ A is an

isomorphism.
(2) For any V ∈ Comod(H), the linear map mV := 1⊗m : (V�HA)⊗ A −→ V ⊗ A is an

isomorphism.

Proof of the Lemma. (1) The reader will easily check that the inverse V ⊗A −→ (V ⊗H)�HA
is given by v ⊗ a 7−→ v(0) ⊗ S(v(1))a(−1) ⊗ a(0).

(2) It is not difficult to check that 1 ⊗ κl : V ⊗ A ⊗ A −→ V ⊗ H ⊗ A induces a map
1⊗ κl : (V�HA)⊗A −→ (V�HH)⊗A and that the following diagram commutes

(V�HA)⊗A

mV ''NNNNNNNNNNN

1⊗κl // (V�HH)⊗A
1⊗ε⊗1

wwooooooooooo

V ⊗A

with the vertical arrow on the right bijective by (1), so mV is an isomorphism. �

We are now ready to prove that Ω̃A
V,W is an isomorphism. The following diagram commutes

(V �HA)⊗ (W�HA)⊗A

1⊗mW

��

eΩA
V,W⊗1

// ((V ⊗W )�HA)⊗A

mV⊗W

��
(V �HA)⊗W ⊗A

1⊗τ // (V �HA)⊗A⊗W
mV ⊗1 // V ⊗A⊗W

1⊗τ // V ⊗W ⊗A

where the τ ’s denote the canonical flips x⊗y 7→ y⊗x. Since by the Lemma all the vertical and
horizontal down morphisms are isomorphisms we conclude that Ω̃A

V,W⊗1 is an isomorphism, and
so is Ω̃A

V,W : we have our monoidal functor ΩA = (ΩA, Ω̃A
•,•, Ω̃

A
0 ) : Comod(H) −→ Vect(k). That

ΩA : Comod(H) −→ Vect(k) restricts to a monoidal functor ΩA : Comodf (H) −→ Vectf (k) is
a consequence of the forthcoming Proposition 1.16.

Faithfulness of ΩA is obvious while exactness is easy using (3) in the Lemma (see [58]), hence
ΩA is a fibre functor. We do not prove the converse (see [58, 59]). �

The following result has been used in the partial proof of Ulbrich’s theorem and will also be
useful elsewhere.

Proposition 1.16. Let H be a Hopf algebra and let F : Comod(H) −→ Vect(k) be a monoidal
functor. If V is a finite-dimensional H-comodule, then F (V ) is a finite-dimensional vector
space. Moreover we have dim(V ) = 1 ⇒ dim(F (V )) = 1, and if F is a fibre functor then
dim(F (V )) = 1⇒ dim(V ) = 1.

Proof. The key point is that a vector space V is finite-dimensional if and only if there exists a
vector space W and linear maps e : W ⊗ V → k and d : k → V ⊗W such that

1V = (1V ⊗ e) ◦ (d⊗ 1V ), 1W = (e⊗ 1W ) ◦ (1W ⊗ d)
If V ∈ Comodf (H), the dual comodule V ∗ satisfies to the above requirement with e and d
H-colinear, where e is the evaluation map: in other words V has a left dual in Comod(H), see
[30] or [32]. Applying the monoidal functor F , we easily see that F (V ) satisfies to the above
condition and hence that F (V ) is finite-dimensional. If dim(V ) = 1, then e : V ∗ ⊗ V −→ k is
an isomorphism and so is the induced composition F (V ∗) ⊗ F (V ) ∼= F (V ∗ ⊗ V ) ∼= F (k) ∼= k,
hence dim(F (V )) = 1. If dim(F (V )) = 1, then the previous composition is an isomorphism

7



(because the monoidal functor transforms left duals into left duals), and hence F (e) is an
isomorphism. If F is a fibre functor then it is exact faithful so e is an isomorphism, which shows
that dim(V ) = 1. �

Of course there is a left-right version of Ulbrich’s Theorem. Note that Ulbrich’s theorem in
[59] is a stronger statement: it states an equivalence of categories between left H-Galois objects
and fibre functors on Comodf (H).

In the setting of fibre functors there is a nice characterization of cleftness in terms of fibre
functors, essentially due to Etingof-Gelaki [21].

Theorem 1.17. Let H be a Hopf algebra and let A be a left H-Galois object. The following
assertions are equivalent.

(1) A is a cleft H-Galois object.
(2) The fibre functor ΩA : Comodf (H) −→ Vectf (k) preserves the dimensions of the un-

derlying vector spaces.

Partial proof. We give the proof of (1)⇒ (2) (the easy part) and we refer to [21] for the proof
of (2) ⇒ (1). If A is cleft there exists an H-colinear isomorphism H ∼= A and by Remark 1.13
ΩA is isomorphic to the forgetful functor, which proves the result. �

Remark 1.18. We can use the fibre functor interpretation to give a proof of Theorem 1.9. Let
A be a left H-Galois object.

Assume first that H is pointed. Any simple H-comodule is one dimensional, so FA preserves
the dimension of any simple H-comodule by Proposition 1.16. An induction now shows that FA

preserves the dimension of any finite-dimensional H-comodule, and hence A is cleft by Theorem
1.17.

Assume now that H is finite-dimensional. We have a linear isomorphism A ∼= H�HA =
ΩA(H), a 7→ a(−1)⊗ a(0), so A is finite-dimensional since ΩA has its values in Vectf (k). Denote
by A0 the trivial H-comodule whose underlying vector space is A. The canonical map κl :
A ⊗ A0 −→ H ⊗ A0 is a left H-comodule isomorphism. Hence we have a left H-comodule
isomorphism Adim(A) ∼= Hdim(A) and so the Krull-Schmidt Theorem shows that A ∼= H as left
H-comodules.

We now come to the construction of functors between categories of comodules. The basic
result is the following one.

Proposition 1.19. Let C and D be some coalgebras. Any C-D-bicomodule X defines a k-linear
functor

FX : Comod(C) −→ Comod(D)
V 7−→ V�CX

Proof. It is clear that V ⊗X is a right D-comodule for the coaction 1V ⊗βX , where βX : X −→
X ⊗ D is the right D-coaction on X. We have to check that V�CX is a D-subcomodule of
V ⊗X. So let

∑
i vi ⊗ xi ∈ V�CX. We have∑

i

vi(0) ⊗ vi(1) ⊗ xi =
∑

i

vi ⊗ xi(−1) ⊗ xi(0)

and hence ∑
i

vi(0) ⊗ vi(1) ⊗ xi(0) ⊗ xi(1) =
∑

i

vi ⊗ xi(−1) ⊗ xi(0) ⊗ xi(1)

which shows that
∑

i vi⊗xi(0)⊗xi(1) ∈ (V�CX)⊗D, and hence V�CX is a D-subcomodule of
V ⊗X. It is clear that if f : V −→W is a C-comodule map, then f ⊗1X induces a D-comodule
map V�CX −→W�CX, and we have our functor. �

Takeuchi [54] has given the precise conditions for which the above functor is an equivalence:
the bicomodule has to be part of some more structured data, known now as a Morita-Takeuchi
context, and he has shown that any k-linear equivalence between categories of comodules arises
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in that way. The axioms of cocategories discussed in the next section are quite close from those
of Morita-Takeuchi contexts.

We finish the subsection by a monoidal version of Proposition 1.19.

Proposition 1.20. Let H and L be some Hopf algebras. Let A be an H-L-bicomodule algebra
such that A is left H-Galois. Then A defines a k-linear monoidal functor

FA : Comod(H) −→ Comod(L)
V 7−→ V�HA

Proof. The functor is provided by Proposition 1.19. By the (partial) proof of Ulbrich’s Theorem
we have for any V,W ∈ Comod(H) linear isomorphisms

(V�HA)⊗ (W�HA) −→ (V ⊗W )�HA

(
∑

i

vi ⊗ ai)⊗ (
∑

j

wj ⊗ bj) 7−→
∑
i,j

vi ⊗ wj ⊗ aibj

which are easily seen to be L-colinear. In this way FA is a monoidal functor, as announced. �

The proof of the (2) ⇒ (1) part of Schauenburg’s theorem (from a bi-Galois object to a
monoidal equivalence) uses the construction of Proposition 1.20.

2. Cocategories and cogroupoids

In this section we put Hopf bi-Galois objects into a more structured framework. The idea is
that although the axiomatic becomes more complicated at first sight, it should be more natural
and easier to deal with.

2.1. Basic definitions. The first step is to propose a notion that is dual to the one of category,
as follows.

Definition 2.1. A cocategory (or k-cocategory) C consists of:
• a set of objects ob(C).
• For any X,Y ∈ ob(C), a k-algebra C(X,Y ).
• For any X,Y, Z ∈ ob(C), algebra morphisms

∆Z
X,Y : C(X,Y ) −→ C(X,Z)⊗ C(Z, Y ) and εX : C(X,X) −→ k

such that for any X,Y, Z, T ∈ ob(C), the following diagrams commute:

C(X,Y )
∆Z

X,Y−−−−→ C(X,Z)⊗ C(Z, Y )

∆T
X,Y

y ∆T
X,Z⊗1

y
C(X,T )⊗ C(T, Y )

1⊗∆Z
T,Y−−−−−→ C(X,T )⊗ C(T,Z)⊗ C(Z, Y )

C(X,Y )

∆Y
X,Y

�� TTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT

C(X,Y )⊗ C(Y, Y )
1⊗εY // C(X,Y )

C(X,Y )

∆X
X,Y

�� TTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTT

C(X,X)⊗ C(X,Y )
εX⊗1 // C(X,Y )

The following results are immediate consequences of the axioms.

Proposition 2.2. Let C be a cocategory and let X,Y, Z ∈ ob(C).
(1) C(X,X) = (C(X,X),∆X

X,X , εX) is a bialgebra.
(2) C(X,Y ) is a C(X,X)-C(Y, Y )-bicomodule algebra, via ∆X

X,Y and ∆Y
X,Y respectively.

(3) ∆Z
X,Y : C(X,Y ) −→ C(X,Z) ⊗ C(Z, Y ) is a C(X,X)-C(Y, Y )-bicomodule algebra mor-

phism and we have ∆Z
X,Y (C(X,Y )) ⊂ C(X,Z)�C(Z,Z)C(Z, Y ).

9



Thus a cocategory with one object is just a bialgebra.

Definition 2.3. A cocategory C is said to be connected if C(X,Y ) is a non zero algebra for
any X,Y ∈ ob(C).

A groupoid is a category whose morphisms all are isomorphisms. A dual notion is the
following one.

Definition 2.4. A cogroupoid (or a k-cogroupoid) C consists of a cocategory C together with,
for any X,Y ∈ ob(C), linear maps

SX,Y : C(X,Y ) −→ C(Y,X)

such that for any X,Y ∈ ob(C), the following diagrams commute:

C(X, X)
εX //

∆Y
X,X

��

k
u // C(X, Y )

C(X, Y )⊗ C(Y, X)
1⊗SY,X // C(X, Y )⊗ C(X, Y )

m

OO C(X, X)
εX //

∆Y
X,X

��

k
u // C(Y, X)

C(X, Y )⊗ C(Y, X)
SX,Y ⊗1 // C(Y, X)⊗ C(Y, X)

m

OO

where m denotes the multiplication of C(X,Y ) and u is the unit map.

Remark 2.5 (on terminology). A connected cogroupoid with two objects is exactly what
Grunspan called a total Hopf-Galois system in [25] (some axioms are redundant in [25]), which
was a symmetrisation of the notion of Hopf-Galois system from [9]. It seems that the more
compact present formulation is much more convenient and pleasant to deal with.

Definition 2.6. A full subcocategory (resp. full subcogroupoid) of a cocategory (resp.
cogroupoid) C is a cocategory (resp. cogroupoid) D with ob(D) ⊂ ob(C), with D(X,Y ) =
C(X,Y ), ∀X,Y ∈ ob(D), and whose structural morphisms are those induced by the ones of
C.

Notation 2.7. We now introduce Sweedler’s notation for cocategories and cogroupoids. Let C
be a cocategory. For aX,Y ∈ C(X,Y ), we write

∆Z
X,Y (aX,Y ) = aX,Z

(1) ⊗ a
Z,Y
(2)

The cocategory axioms now read

(∆T
X,Z ⊗ 1) ◦∆Z

X,Y (aX,Y ) = aX,T
(1) ⊗ a

T,Z
(2) ⊗ a

Z,Y
(3) = (1⊗∆Z

T,Y ) ◦∆T
X,Y (aX,Y )

εX(aX,X
(1) )aX,Y

(2) = aX,Y = εY (aY,Y
(2) )aX,Y

(1)

and the additional cogroupoid axioms are

SX,Y (aX,Y
(1) )aY,X

(2) = εX(aX,X)1 = aX,Y
(1) SY,X(aY,X

(2) )

2.2. Back to Hopf-galois objects.

Proposition 2.8. Let C be a connected cogroupoid. Then for any X,Y ∈ ob(C), the algebra
C(X,Y ) is a C(X,X)− C(Y, Y ) bi-Galois object.

Proof. We give a proof by using Sweedler’s notation (a proof with morphisms can be found in
[9]). Let ηl : C(X,X)⊗ C(X,Y ) −→ C(X,Y )⊗ C(X,Y ) be defined by

ηl = (1⊗m) ◦ (1⊗ SY,X ⊗ 1) ◦ (∆Y
X,X ⊗ 1)

i.e. ηl(aX,X ⊗ bX,Y ) = aX,Y
(1) ⊗ SY,X(aY,X

(2) )bX,Y . We show that ηl is an inverse for κl. Let
aX,Y , bX,Y ∈ C(X,Y ). We have

ηl ◦ κl(aX,Y ⊗ bX,Y ) = ηl(a
X,X
(1) ⊗ a

X,Y
(2) b

X,Y )

= aX,Y
(1) ⊗ SY,X(aY,X

(2) )aX,Y
(3) b

X,Y = aX,Y
(1) ⊗ εY (aY,Y

(2) )bX,Y = aX,Y ⊗ bX,Y

10



Hence ηl ◦ κl is the identity map. Similarly one checks that κl ◦ ηr = id and hence C(X,Y ) is
left C(X,X)-Galois. Similarly, we define ηr : C(X,Y )⊗ C(Y, Y ) −→ C(X,Y )⊗ C(X,Y ) by

ηr = (m⊗ 1) ◦ (1⊗ SY,X ⊗ 1) ◦ (1⊗∆X
Y,Y ),

and check that ηr is an inverse for κr. Hence C(X,Y ) is right C(Y, Y )-Galois. �

Corollary 2.9. Let C be a connected cogroupoid. Then for any X,Y ∈ ob(C), there exists a
k-linear equivalence of monoidal categories

Comod(C(X,X)) ∼=⊗ Comod(C(Y, Y ))

Proof. Just combine the previous result with Schauenburg’s Theorem. �

We now state two results that mean that the theory of Hopf-Galois objects is actually equiv-
alent to the theory of connected cogroupoids.

Theorem 2.10. Let H and L be some Hopf algebras. The following assertions are equivalent.
(1) There exists a k-linear equivalence of monoidal categories

Comod(H) ∼=⊗ Comod(L)

(2) There exists a connected cogroupoid C with two objects X,Y such that H = C(X,X) and
L = C(Y, Y ).

Theorem 2.11. Let H be a Hopf algebra and let A be a left H-Galois object. Then there exists
a connected cogroupoid C with two objects X,Y such that H = C(X,X) and A = C(X,Y ).

The proof of (1)⇒ (2) in Theorem 2.10 is done in [9] by using Tannaka-Krein reconstruction
techniques ([30, 47]). We give a sketch of the proof in Subsection 2.4.

The proof of Theorem 2.11 is also given in Subsection 2.4. Another proof of this result is
provided by Grunspan [26], using quantum torsors and results by Schauenburg (see [49] and
Subsection 2.8 of [50]). This proof has the merit to work for Hopf algebras over rings (of course
with flatness assumptions).

The proofs of these two results in Subsection 2.4 will never be used in the rest of the paper,
so the reader might skip them first, and get back if he needs to.

The (2) ⇒ (1) part in Theorem 2.10 is the previous corollary. We shall give a proof of it
without using Schauenburg’s theorem in the next subsection. More precisely, the explicit form
of the monoidal equivalence constructed by starting from a connected cogroupoid is as follows.
Having this explicit form in hand is useful in some applications.

Theorem 2.12. Let C be a connected cogroupoid. Then for any X,Y ∈ ob(C) we have k-linear
equivalences of monoidal categories that are inverse of each other

Comod(C(X,X)) ∼=⊗ Comod(C(Y, Y )) Comod(C(Y, Y )) ∼=⊗ Comod(C(X,X))

V 7−→ V�C(X,X)C(X,Y ) V 7−→ V�C(Y,Y )C(Y,X)

We give a proof in the next subsection.

2.3. Some basic properties of cogroupoids. This section is devoted to state and prove
some basic properties of cogroupoids, and to give a proof of Theorem 2.12.

We begin by examinating some properties of the “antipodes”. Part (1) of the following result
is proved very indirectly in [9], with a direct proof given in [29]. In view of the next Proposition
2.26, theses properties also are consequences of results on weak Hopf algebras [12].

Proposition 2.13. Let C be a cogroupoid and let X,Y ∈ ob(C).
(1) SY,X : C(Y,X) −→ C(X,Y )op is an algebra morphism.
(2) For any Z ∈ ob(C) and aY,X ∈ C(Y,X), we have

∆Z
X,Y (SY,X(aY,X)) = SZ,X(aZ,X

(2) )⊗ SY,Z(aY,Z
(1) )
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Proof. Let aY,X , bY,X ∈ C(Y,X). We have

SY,X(aY,XbY,X) = SY,X(aY,X
(1) b

Y,X
(1) )εX(aX,X

(2) )εX(bX,X
(2) )

= SY,X(aY,X
(1) b

Y,X
(1) )aX,Y

(2) b
X,Y
(2) SY,X(bY,X

(3) )SY,X(aY,X
(3) )

= εY (aY,Y
(1) b

Y,Y
(1) )SY,X(bY,X

(2) )SY,X(aY,X
(2) )

= SY,X(bY,X)SY,X(aY,X)

and this proves (1). We also have

SZ,X(aZ,X
(2) )⊗ SY,Z(aY,Z

(1) ) = SZ,X(aZ,X
(2) εX(aX,X

(3) ))⊗ SY,Z(aY,Z
(1) )

= SZ,X(aZ,X
(2) )⊗ SY,Z(aY,Z

(1) ) ·
(
εX(aX,X

(3) )1⊗ 1
)

= SZ,X(aZ,X
(2) )⊗ SY,Z(aY,Z

(1) ) ·
(
∆Z

X,Y (aX,Y
(3) SY,X(aY,X

(4) ))
)

= SZ,X(aZ,X
(2) )⊗ SY,Z(aY,Z

(1) ) ·
(
aX,Z

(3) ⊗ a
Z,Y
(4)

)
·∆Z

X,Y (SY,X(aY,X
(5) ))

= εZ(aZ,Z
(2) )1⊗ SY,Z(aY,Z

(1) )aZ,Y
(3) ·∆

Z
X,Y (SY,X(aY,X

(4) ))

= 1⊗ SY,Z(aY,Z
(1) )aZ,Y

(2) ·∆
Z
X,Y (SY,X(aY,X

(3) ))

= ∆Z
X,Y (SY,X(aY,X))

and this proves (2). �

The following result is useful to prove connectedness properties of cogroupoids, and also for
the proof of Theorem 2.12

Lemma 2.14. Let C be a cogroupoid and let X,Y, Z ∈ ob(C). Assume that C(Z, Y ) 6= (0) or
C(X,Z) 6= (0). Then ∆Z

X,Y : C(X,Y ) −→ C(X,Z) ⊗ C(Z, Y ) is split injective, and induces a
C(X,X)− C(Y, Y )-bicomodule algebra isomorphism

C(X,Y ) ∼= C(X,Z)�C(Z,Z)C(Z, Y )

Proof. Assume first that C(Z, Y ) 6= (0), and let ψ : C(Z, Y ) −→ k be a linear map such that
ψ(1) = 1. Define f : C(X,Z)⊗ C(Z, Y ) −→ C(X,Y ) by

f(aX,Z ⊗ bZ,Y ) = ψ
(
SY,Z(aY,Z

(2) )bZ,Y
)
aX,Y

(1)

Then

f ◦∆Z
X,Y (aX,Y ) = f(aX,Z

(1) ⊗ a
Z,Y
(2) ) = ψ

(
SY,Z(aY,Z

(2) )aZ,Y
(3)

)
aX,Y

(1) = εY (aY,Y
(2) )aX,Y

(1) = aX,Y

This proves that ∆Z
X,Y is split injective. We know from Proposition 2.2 that ∆Z

X,Y is a C(X,X)-
C(Y, Y )-bicomodule algebra morphism and that ∆Z

X,Y (C(X,Y )) ⊂ C(X,Z)�C(Z,Z)C(Z, Y ). Let∑
i a

X,Z
i ⊗ bZ,Y

i ∈ C(X,Z)�C(Z,Z)C(Z, Y ). We have

∆Z
X,Y ◦ f(

∑
i

aX,Z
i ⊗ bZ,Y

i ) = ∆Z
X,Y

(∑
i

ψ
(
SY,Z(aY,Z

i(2))b
Z,Y
i

)
aX,Y

i(1)

)
=
∑

i

ψ
(
SY,Z(aY,Z

i(3))b
Z,Y
i

)
aX,Z

i(1) ⊗ a
Z,X
i(2) =

∑
i

ψ
(
SY,Z(bY,Z

i(2))b
Z,Y
i(3)

)
aX,Z

i ⊗ bZ,Y
i(1)

=
∑

i

εY (bY,Y
i(2) )a

X,Z
i(1) ⊗ b

Z,Y
i(1) =

∑
i

aX,Z
i ⊗ bZ,Y

i

which proves the result. Assume now that C(X,Z) 6= (0), and let φ : C(X,Z) −→ k be a linear
map such that φ(1) = 1. Define g : C(X,Z)⊗ C(Z, Y ) −→ C(X,Y ) by

g(aX,Z ⊗ bZ,Y ) = φ
(
aX,ZSZ,X(bZ,X

(1) )
)
bX,Y
(2)
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Then

g ◦∆Z
X,Y (aX,Y ) = g(aX,Z

(1) ⊗ a
Z,Y
(2) ) = φ

(
aX,Z

(1) SZ,X(aZ,X
(2) )

)
aX,Y

(3) = εX(aX,X
(1) )aX,Y

(2) = aX,Y

and hence ∆Z
X,Y is split injective. The rest of the proof is then similar to the previous case, and

is left to the reader. �

We get a useful criterion to show that a cogroupoid is connected.

Proposition 2.15. Let C be a cogroupoid. The following assertions are equivalent.

(1) C is connected.
(2) There exists X0 ∈ ob(C) such that ∀Y ∈ ob(C), C(X0, Y ) 6= (0).
(3) There exists X0 ∈ ob(C) such that ∀Y ∈ ob(C), C(Y,X0) 6= (0).

Proof. Assume that (2) holds. Then for X,Y ∈ ob(C), the previous lemma ensures that

C(X0, X)⊗ C(X,Y ) ' C(X0, Y )⊕W

for some vector space W . Hence C(X,Y ) 6= (0) and C is connected.
Assume that (3) holds. Then for X,Y ∈ ob(C), the previous lemma ensures that

C(X,Y )⊗ C(Y,X0) ' C(X,X0)⊕W ′

for some vector space W ′. Hence C(X,Y ) 6= (0) and C is connected. �

We now provide a self-contained proof of Theorem 2.12.

Proof of Theorem 2.12. Let C be a connected cogroupoid and let X,Y ∈ ob(C). By Proposition
2.2 and Proposition 1.19 we have two k-linear functors

F : Comod(C(X,X)) −→ Comod(C(Y, Y )), V 7−→ V�C(X,X)C(X,Y )

G : Comod(C(Y, Y )) −→ Comod(C(X,X)), V 7−→ V�C(Y,Y )C(Y,X)

Let us prove that these functors are inverse equivalences. Let V ∈ Comod(C(X,X)). We have
a C(X,X)-colinear isomorphism θV : V ∼= G ◦ F (V ) defined by the composition:

V
∼= // V �C(X,X)C(X, X)

1⊗∆Y
X,X

��
V �C(X,X)

`
C(X, Y )�C(Y,Y )C(Y, X)

´ ∼= // `V �C(X,X)(C(X, Y )
´
�C(Y,Y )C(Y, X) = G ◦ F (V )

where the first isomorphism is induced by the C(X,X)-coaction on V , the second map is an
isomorphism by Lemma 2.14 (∆Y

X,X is C(X,X)-colinear), and the third isomorphism is the
associativity isomorphism of cotensor products. This isomorphism is clearly natural in V , so
we have a functor isomorphism id ∼= G◦F , and we also have id ∼= F ◦G, so F and G are inverse
equivalences.

We know from Proposition 1.20 that F and G are monoidal functors, and it is easy to check
that the above functor isomorphisms are isomorphisms of monoidal functors. �

Remark 2.16. It is not difficult (and probably interesting) to give a proof of the fact that F
and G are monoidal functors without using Proposition 1.20 (and hence Ulbrich’s Theorem)
directly from the cogroupoid axioms.

We have to check that for V,W ∈ Comod(C(X,X)) the map

F̃V,W : (V�C(X,X)C(X,Y ))⊗ (W�C(X,X)C(X,Y )) −→ (V ⊗W )�C(X,X)C(X,Y )

(
∑

i

vi ⊗ aX,Y
i )⊗ (

∑
j

wj ⊗ bX,Y
j ) 7−→

∑
i,j

vi ⊗ wj ⊗ aX,Y
i bX,Y

j
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is an isomorphism. It is immediate to check that the following diagram commutes

GF (V )⊗GF (W )
eGF (V ),F (W ) // G(F (V )⊗ F (W ))

G( eFV,W )
��

V ⊗W

θV ⊗θW

OO

θV⊗W

// GF (V ⊗W )

(with the previous notation) and hence G(F̃V,W ) ◦ G̃F (V ),F (W ) is an isomorphism. The same
reasoning for G shows that F (G̃F (V ),F (W ))◦ F̃GF (V ),GF (W ) is an isomorphism. We conclude that
G̃F (V ),F (W ) is an isomorphism and hence so is F̃V,W .

Remark 2.17. Let us say that a cocategory C is a Takeuchi cocategory if for all X,Y, Z ∈ ob(C)
the algebra map

∆Z
X,Y : C(X,Y ) −→ C(X,Z)�C(Z,Z)C(Z, Y )

is an isomorphism. This terminology comes from the fact that every pair of objects in a
Takeuchi cocategory produces a set of equivalence data in the sense of [54] (a Morita-Takeuchi
equivalence). Lemma 2.14 ensures that a connected cogroupoid is a Takeuchi cocategory and the
proof that the functors of Theorem 2.12 are inverse equivalences is just the classical proof that a
Morita-Takeuchi equivalence produces an equivalence of categories. The proof of monoidality we
gave in the last remark shows that if X,Y are objects of a Takeuchi cocategory C the comodule
categories over the bialgebras C(X,X) and C(Y, Y ) are monoidally equivalent.

2.4. From Hopf-Galois objects and monoidal equivalences to cogroupoids. In this
subsection we give (sketches of) the proofs of Theorem 2.11 and of the implication (1)⇒ (2) in
Theorem 2.10. The techniques used here are never used in the rest of the paper, so the reader
who would prefer to see examples and applications might skip the subsection first, and get back
if he wants or needs to.

We use Tannaka-Krein reconstruction techniques (see [30, 47]). Let us begin with the follow-
ing general situation. Let C be a small category and let F,G : C −→ Vectf (k) be some functors.
Following [30], Section 3, we associate a vector space Hom∨(F,G) to such a pair:

Hom∨(F,G) =
⊕

X∈ob(C)

Homk(F (X), G(X))/N

where N is the linear subspace of
⊕

X∈ob(C) Homk(F (X), G(X)) generated by the elements
G(f)◦u−u◦F (f), with f ∈ HomC(X,Y ) and u ∈ Homk(F (Y ), G(X)). The class of an element
u ∈ Homk(F (X), G(X)) is denoted by [X,u] in Hom∨(F,G) (note that we have changed the order
of the functors in [30]: our Hom∨(F,G) is Hom∨(G,F ) in [30]). The vector space Hom∨(F,G)
has the following universal property.

Lemma 2.18. The vector space Hom∨(F,G) represents the functor

Vectf (k) −→ Vect(k), V 7−→ Nat(G,F ⊗ V )

More precisely, there exists α• ∈ Nat(G,F ⊗ Hom∨(F,G)) such that the map

Homk(Hom∨(F,G), V ) −→ Nat(G,F ⊗ V )

φ 7−→ (1⊗ φ) ◦ α•
is a bijection.

Proof. Let X in ob(C) and let e1, . . . , en be a basis of F (X). Define

αX : G(X) −→ F (X)⊗ Hom∨(F,G)

by αX(x) =
∑

i ei ⊗ [X, e∗i ⊗ x]. It is easily seen that αX does not depend on the choice of a
basis of G(X), and that this procedure defines an element α• ∈ Nat(G,F ⊗ Hom∨(F,G)). It is
not difficult to check that the map in the statement of the lemma is a bijection. �
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The universal property of Hom∨(F,G) gives, for any functor K : C −→ Vectf (k), a linear map

∆K
F,G : Hom∨(F,G) −→ Hom∨(F,K)⊗ Hom∨(K,G)

coassociative in the sense of cocategories. The map ∆K
F,G may be described as follows. Let

X ∈ ob(C), let φ ∈ F (X)∗, let x ∈ G(X) and let e1, . . . , en be a basis of K(X). Then

∆K
F,G([X,φ⊗ x]) =

n∑
i=1

[X,φ⊗ ei]⊗ [X, e∗i ⊗ x].

As a particular case of the previous construction, End∨(F ) := Hom∨(F, F ) is a coalgebra, with
counit εX induced by the trace: εX([X,u]) = tr(u) for u ∈ Hom(F (X), F (X)).

The previous construction enables one to reconstruct a coalgebra from its category of finite-
dimensional comodules and the forgetful functor: this the Tannaka reconstruction theorem.

Theorem 2.19. Let C be a coalgebra and let ΩC : Comodf (C) −→ Vectf (k) be the forgetful
functor. We have a coalgebra isomorphism End∨(ΩC) ∼= C.

Proof. Consider the natural transformation αC : ΩC −→ ΩC ⊗C induced by the coactions of C
on its comodules. The universal property of End∨ yields a unique linear map f : End∨(ΩC) −→ C
such that the following diagram commutes

ΩC
α• //

αC ##GGGGGGGGG ΩC ⊗ End∨(ΩC)

1⊗fwwoooooooooooo

ΩC ⊗ C
It is easy to see that f is a coalgebra morphism. To prove that f is an isomorphism, we proceed
by following [47], Lemma 2.2.1 (for another proof see Section 6 in [30]). Consider, for a vector
space V , the linear map

Φ : Homk(C, V ) −→ Nat(ΩC ,ΩC ⊗ V )

φ 7−→ (1⊗ φ) ◦ αC

Let us prove that Φ is bijection. This will define a linear map C −→ End∨(ΩC) which necessarily
will be an inverse of f . To construct the inverse of Φ, the key remark is that if ϕ ∈ Nat(ΩC ,ΩC⊗
V ) and N , M are two finite-dimensional subcomodules of C, then

((ε⊗ 1) ◦ ϕN )|N∩M = (ε⊗ 1) ◦ ϕN∩M = ((ε⊗ 1) ◦ ϕM )|N∩M

This follows from the naturality of ϕ. This enables to define a (linear) map

Ψ : Nat(ΩC ,ΩC ⊗ V ) −→ Homk(C, V )

by Ψ(ϕ)(x) = (ε ⊗ 1) ◦ ϕM (x), ∀x ∈ C, where M is any finite-dimensional subcomodule of C
containing x.

For φ ∈ Homk(C, V ), x ∈ C and M a finite-dimensional subcomodule of C containing x, we
have

φ(x) = φ((1⊗ ε) ◦ αC
M (x)) = (ε⊗ 1) ◦ (1⊗ φ) ◦ αC

M (x) = Ψ(Φ(φ))(x)
which proves that Ψ ◦ Φ = id.

Let ϕ ∈ Nat(ΩC ,ΩC ⊗ V ). Let M be a finite-dimensional comodule and let D be a finite-
dimensional subcoalgebra of C such that αC(M) ⊂ M ⊗ D. Then D is a subcomodule of
C. Denote by M0 ⊗ D the C-comodule whose coaction is given by 1 ⊗ ∆. It is clear that
αC

M : M −→ M0 ⊗ D is a C-comodule map, hence by naturality of ϕ the following diagram
commutes

M
ϕM //

αC
M

��

M ⊗ V
αC

M⊗1
��

M0 ⊗D
ϕM0⊗D// M0 ⊗D ⊗ V
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Any linear map D −→ M0 ⊗ D is C-colinear, hence again the naturality of ϕ shows that
ϕM0⊗D = 1⊗ ϕD. Hence we have

Φ ◦Ψ(ϕ)M = (1⊗Ψ(ϕ)) ◦ αC
M = (1⊗Ψ(ϕ)|D) ◦ αC

M

= (1⊗ ε⊗ 1) ◦ (1⊗ ϕD) ◦ αC
M = (1⊗ ε⊗ 1) ◦ (αC

M ⊗ 1) ◦ ϕM = ϕM

and this proves that Φ ◦Ψ = id. We conclude that Φ is an isomorphism. �

Now assume that C is a monoidal category and that F,G are monoidal functors. Then
Hom∨(F,G) inherits an algebra structure, whose product may be described by the following
formula:

[X,u].[Y, v] = [X ⊗ Y, G̃X,Y ◦ (u⊗ v) ◦ F̃−1
X,Y ]

where the isomorphisms F̃X,Y : F (X) ⊗ F (Y ) −→ F (X ⊗ Y ) and G̃X,Y : G(X) ⊗ G(Y ) −→
G(X⊗Y ) are the constraints of the monoidal functors F and G. The unit element is [I, G̃0◦F̃−1

0 ]
where I stands for the monoidal unit of C (that we indeed have an associative algebra structure
heavily depends on the fact that F and G are monoidal functors). It is not difficult to check
that the maps ∆K

F,G and εF are algebra maps. In particular End∨(F ) is a bialgebra.
We summarize the above constructions as follows.

Definition 2.20. Let C be a monoidal category. The cocategory Monk(C) is the cocategory
whose objects are the monoidal functors C −→ Vectf (k), with Monk(C)(F,G) = Hom∨(F,G) for
F,G ∈ Monk(C), and with structural maps ∆•

•,• and ε• defined above.

We shall need a monoidal version of Lemma 2.18. If A is an algebra and F,G : C −→ Vectf (k)
are monoidal functors, denote by Nat⊗(G,F ⊗ A) the set of elements θ ∈ Nat(G,F ⊗ A) such
that the following diagrams commute for any objects X,Y

G(X ⊗ Y )
θX⊗Y // F (X ⊗ Y )⊗A

eF−1
X,Y // F (X)⊗ F (Y )⊗A

G(X)⊗G(Y )

eGX,Y

OO

θX⊗θY // F (X)⊗A⊗ F (Y )⊗A 1⊗τ⊗1// F (X)⊗ F (Y )⊗A⊗A

1⊗1⊗mA

OO

F (I)
θI // G(I)⊗A

k

eF0

OO

u // A ∼= k ⊗A

eG0⊗1

OO

Lemma 2.21. Consider the element α• ∈ Nat(G,F ⊗ Hom∨(F,G)) of Lemma 2.18. We have
α• ∈ Nat⊗(G,F ⊗ Hom∨(F,G)) and we have, for any algebra A, a map

Homk−alg(Hom∨(F,G), A) −→ Nat⊗(G,F ⊗A)

φ 7−→ (1⊗ φ) ◦ α•
which is a bijection.

Proof. The proof is straightforward. �

The bialgebra version of the Tannaka duality theorem is as follows.

Theorem 2.22. Let B be a bialgebra and let ΩB : Comodf (B) −→ Vectf (k) be the forgetful
functor. We have a bialgebra isomorphism End∨(ΩB) ∼= B.

Proof. The natural transformation αB : ΩB −→ ΩB ⊗ B induced by the coactions of B on
its comodules is an element in Nat⊗(ΩB,ΩB ⊗ B), by definition of the tensor product of B-
comodules. Hence Lemma 2.21 yields a unique algebra map map f : End∨(ΩB) −→ B such that
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the following diagram commutes

ΩC
α• //

αC ##GGGGGGGGG ΩC ⊗ End∨(ΩC)

1⊗fwwoooooooooooo

ΩC ⊗ C
We know from the proof of Lemma 2.21 that f is a colagebra isomorphism, and hence is a
bialgebra isomorphism. �

Assume moreover that C is a rigid monoidal category. This means that every object X
has a left dual ([30, 32]), i.e. there exist a triplet (X∗, eX , dX) where X∗ ∈ ob(C), while
eX : X∗ ⊗X −→ I (I is the monoidal unit of C) and dX : I −→ X ⊗X∗ are morphisms of C
such that:

(1X ⊗ eX) ◦ (dX ⊗ 1X) = 1X and (eX ⊗ 1X∗) ◦ (1X∗ ⊗ dX) = 1X∗

The rigidity of C allows one to define a duality endofunctor of C, which will be used in the proof
of the following result, which generalizes [60], using the same idea.

Proposition 2.23. Let C be a rigid monoidal category. Then the cocategory Monk(C) has a
cogroupoid structure.

Proof. We have to construct the linear maps SF,G : Hom∨(F,G) −→ Hom∨(G,F ). We fix for
every X ∈ ob(C) a left dual (X∗, eX , dX) (with I∗ = I for the monoidal unit). This defines a
contravariant endofunctor of C: X 7−→ X∗, f 7−→ f∗, where for f : X −→ Y , the morphism
f∗ : Y ∗ −→ X∗ is defined by the composition

Y ∗ 1⊗dX // Y ∗ ⊗ (X ⊗X∗)
1⊗(f⊗1)// Y ∗ ⊗ (Y ⊗X∗) ∼ // (Y ∗ ⊗ Y )⊗X∗ eY ⊗1 // I ⊗X∗ ∼= X∗

Let X ∈ ob(C). The unicity of a left dual in a monoidal category yields natural isomorphisms

λF
X : F (X)∗ −→ F (X∗) and λG

X : G(X)∗ −→ G(X∗)

such that the following diagrams commute:

F (X)∗ ⊗ F (X)
eF (X) //

λF
X⊗1F (X)

��

I
eF0 // F (I)

F (X∗)⊗ F (X)
eFX∗,X // F (X∗ ⊗X)

F (eX)

OO
F (X)⊗ F (X)∗

1F (X)⊗λF
X

��

I
dF (X)oo

eF0 // F (I)

F (dX)
��

F (X)⊗ F (X∗)
eFX,X∗

// F (X ⊗X∗)

(we have endowed Vectf (k) with its standard duality). Let u ∈ Homk(F (X), G(X)). We put

SF,G([X,u]) = [X∗, λF
X ◦ u∗ ◦ (λG

X)−1]

It is easy to see that SF,G is a well defined linear map. Now let φ ∈ F (X)∗, let x ∈ F (X) and
let e1, . . . , en be a basis of G(X). Then we have

m ◦ (1⊗ SG,F ) ◦∆G
F,F ([X,φ⊗ x]) =

n∑
i=1

[X,φ⊗ ei][X∗, λG
X ◦ (e∗i ⊗ x) ◦ (λF

X)−1] =

=
n∑

i=1

[X ⊗X∗, G̃X,X∗ ◦ (1G(X) ⊗ λG
X) ◦ ((φ⊗ ei)⊗ (x⊗ e∗i )) ◦ (1F (X) ⊗ (λF

X)−1) ◦ F̃−1
X,X∗ ]

=[X ⊗X∗, G̃X,X∗ ◦ (1G(X) ⊗ λG
X) ◦ dG(X) ◦ (φ⊗ x) ◦ (1F (X) ⊗ (λF

X)−1) ◦ F̃−1
X,X∗ ]

=[X ⊗X∗, G(dX) ◦ G̃0 ◦ (φ⊗ x) ◦ (1F (X) ⊗ (λF
X)−1) ◦ F̃−1

X,X∗ ]

=[I, G̃0 ◦ (φ⊗ x) ◦ (1F (X) ⊗ (λF
X)−1) ◦ F̃−1

X,X∗ ◦ F (dX)]

=[I, G̃0 ◦ (φ⊗ x) ◦ dF (X) ◦ F̃−1
0 ] = φ(x)[I, G̃0 ◦ F̃−1

0 ] = εF ([X,φ⊗ x])1.
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Since the elements [X,φ ⊗ x] linearly span End∨(F ), we have the commutativity of the first
diagram. The commutativity of the second diagram is proved similarly. �

Definition 2.24. Let H be a Hopf algebra. The fibre functor cogroupoid of H, denoted
Fib(H), is the full subcogroupoid of Monk(Comodf (H)) whose objects are the fibre functors on
Comodf (H).

We have now all the ingredients to prove Theorem 2.11.

Proof of Theorem 2.11. Let H be a Hopf algebra and let A be a left H-Galois object. Consider
the full subcogroupoid D of Fib(H) whose objects are Ω (the forgetful functor) and ΩA (see
Ulbrich’s theorem). Let us check that D is connected. Let φ : A −→ k be a linear map such
that φ(1) = 1. For any X ∈ Comodf (H), the maps 1 ⊗ φ : X�HA → X define a non-zero
element in Nat(ΩA,Ω). Hence by Lemma 2.18 we have Hom∨(Ω,ΩA) 6= (0) and the cogroupoid
D is connected by Proposition 2.15.

For any X ∈ Comodf (H), the inclusions X�HA ⊂ X ⊗A define an element

β• ∈ Nat⊗(ΩA,Ω⊗A)

which corresponds by Lemma 2.21 to an algebra map g : Hom∨(Ω,ΩA) −→ A, and we leave it
to the reader to check that the following diagram commutes

Hom∨(Ω,ΩA)
g //

∆Ω
Ω,ΩA

��

A

ρ

��
Hom∨(Ω,Ω)⊗ Hom∨(Ω,ΩA)

f⊗g // H ⊗A

where ρ stands for the coaction of H on A and f is the bialgebra isomorphism of Theorem
2.22. This means that if we endow Hom∨(Ω,ΩA) with the left H-comodule algebra structure
transported from the Hopf algebra isomorphism f , then g is an H-comodule algebra morphism.
But Hom∨(Ω,ΩA) is H-Galois since it is Hom∨(Ω,Ω)-Galois (Proposition 2.8), and hence by
Proposition 1.6 g is an isomorphism. We can now consider the connected cogroupoid D0 with
two objects X,Y and

D0(X,X) = H, D0(X,Y ) = A, D0(Y,X) = Hom∨(ΩA,Ω), D0(Y, Y ) = Hom∨(ΩA,ΩA)

The structural maps of D0 are transported from the connected cogroupoid D via the isomor-
phisms f and g, and we are done. �

We get the following result as a corollary of the proof.

Proposition 2.25. Let H be a Hopf algebra. The cogroupoid Fib(H) is connected.

Proof. If A is a left H-Galois object, we have seen in the previous proof that Hom∨(Ω,ΩA) 6= (0).
Hence the result follows from Ulbrich’s theorem (any fibre fonctor is isomorphic to some ΩA)
and Proposition 2.15. �

Proof of Theorem 2.10. Let H, L be some Hopf algebras and let F : Comod(H) −→ Comod(L)
be a k-linear monoidal equivalence. Then F induces a monoidal equivalence Comodf (H) −→
Comodf (L), still denoted F (see Proposition 1.16). It is clear that ΩL ◦ F is a fibre functor
on Comodf (H). It is not difficult to construct a linear map End∨(ΩL) −→ End∨(ΩL ◦ F ) which
is a Hopf algebra map since F is monoidal and is an isomorphism since F is an equivalence.
Let D be the (connected) subcogroupoid of Fib(H) whose objects are ΩH and ΩL ◦ F . By
Theorem 2.22 we have Hopf algebra isomorphisms End∨(ΩH) ∼= H and End∨(ΩL) ∼= L, and
hence End∨(ΩL ◦F ) ∼= L. Therefore we get, by transporting the appropriate structures from the
connected cogroupoid D, a cogroupoid D0 with two objects X,Y such that H = D0(X,X) and
L = D0(Y, Y ). �

18



2.5. The weak Hopf algebra of a finite cogroupoid. In this short subsection we connect
the theory of cogroupoids (and hence of Hopf-Galois objects) with the theory of weak Hopf
algebras [12] (we do not recall here the precise definition of a weak Hopf algebra). Since
cogroupoids are non commutative generalizations of groupoids, it is natural to wonder if they
are linked with weak Hopf algebras, one of the most well-known non commutative generalization
of groupoids. Not surprisingly, the following construction shows that this is indeed the case.
The (unpublished) result was obtained in collaboration with Grunspan in 2003-2004.

Proposition 2.26. Let C be a cogroupoid and let X1, . . . , Xn ∈ ob(C). For i, j ∈ {1, . . . , n},
Put C(i, j) = C(Xi, Xj), ∆k

i,j = ∆Xk
Xi,Xj

, Si,j = SXi,Xj , εi = εXi. Consider the direct sum of
algebras

H =
n⊕

i,j=1

C(i, j)

Then H has a weak Hopf algebra structure defined as follows.
(1) The comultiplication ∆ : H −→ H ⊗H is defined by

∆(ai,j) =
n∑

k=1

∆k
i,j(a

i,j) =
n∑

k=1

ai,k
(1) ⊗ a

k,j
(2)

(2) The counit ε : H −→ k is defined by ε|C(i,j) = δijεi
(3) The antipode S : H −→ H is defined by S|C(i,j) = Si,j.

The proof is done by a straightforward verification.

Remark 2.27. (1) The use of quantum groupoids (in a different framework) in the study
of monoidal equivalences also arose (much earlier) in the work of Bruguières [13].

(2) It is also worth to note that De Commer [17, 18] obtained independently more or less
the same result in his investigation of Galois objects for multiplier Hopf algebras and
operator algebraic quantum groups.

3. Examples of connected cogroupoids

This section is devoted to the presentation of some examples of connected cogroupoids. We
hope that these examples will convince that the reader that very often in concrete situations it
is easy and natural to work with cogroupoids.

3.1. The bilinear cogroupoid B. Let E ∈ GLn(k). The algebra B(E) is the algebra presented
by generators (aij)1≤i,j≤n submitted to the relations

E−1atEa = In = aE−1atE,

where a is the matrix (aij)1≤i,j≤n, at is the transpose matrix and In is the n×n identity matrix.
It admits a Hopf algebra structure, with comultiplication ∆ defined by

∆(aij) =
n∑

k=1

aik ⊗ akj , ε(aij) = δij , S(a) = E−1atE

This Hopf algebra was introduced by Dubois-Violette and Launer [20] as the quantum auto-
morphism group of the non degenerate bilinear form associated to E. This terminology comes
from the following result.

Proposition 3.1 (Universal property of B(E)).
(1) Consider the vector space V = kn with its canonical basis (ei)1≤i≤n. Endow V with the
B(E)-comodule structure defined by α(ei) =

∑n
j=1 ej ⊗ aji, 1 ≤ i ≤ n. Then the linear

map β : V ⊗ V −→ k defined by β(ei ⊗ ej) = λij, 1 ≤ i, j ≤ n, where E = (λij), is a
B(E)-comodule morphism.
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(2) Let H be a Hopf algebra and let V be a finite-dimensional H-comodule of dimension n.
Let β : V ⊗ V −→ k be an H-comodule morphism such that the associate bilinear form
is non-degenerate. Then there exists E ∈ GLn(k) such that V is a B(E)-comodule, that
β is a B(E)-comodule morphism, and that there exists a unique Hopf algebra morphism
φ : B(E) −→ H with (idV ⊗ φ) ◦ α = α′, where α and α′ denote the coactions on V of
B(E) and H respectively.

Proof. The proof is left as an exercise. �

It is not difficult to check that Oq(SL2(k)) = B(Eq), where

Eq =
(

0 1
−q−1 0

)
and hence the Hopf algebras B(E) are generalizations of Oq(SL2(k)).

We now will describe B(E) as part of a cogroupoid. We first need a version involving two
matrices, as follows.

Let E ∈ GLm(k) and let F ∈ GLn(k). The algebra B(E,F ) is the universal algebra with
generators aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, satisfying the relations

F−1atEa = In ; aF−1atE = Im.

Of course the generator aij in B(E,F ) should be denoted aE,F
ij to express the dependence on

E and F , but when there is no confusion and we simply denote it by aij . It is clear that
B(E,E) = B(E)

In the following lemma we construct the structural maps that will put the algebras B(E,F )
in a cogroupoid framework.

Lemma 3.2. (1) For any E ∈ GLm(k), F ∈ GLn(k), G ∈ GLp(k), there exists an algebra
map

∆G
E,F : B(E,F ) −→ B(E,G)⊗ B(G,F )

aij 7−→
p∑

k=1

aik ⊗ akj

and for any M ∈ GLr(k), the following diagrams commute

B(E,F )
∆G

E,F−−−−→ B(E,G)⊗ B(G,F )

∆M
E,F

y ∆M
E,G⊗1

y
B(E,M)⊗ B(M,F )

1⊗∆G
M,F−−−−−→ B(E,M)⊗ B(M,G)⊗ B(G,F )

B(E,F )

∆F
E,F

��

id

TTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT

B(E,F )⊗ B(F, F )
1⊗εF // B(E,F )

B(E,F )

∆E
E,F

��

id

TTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT

B(E,E)⊗ B(E,F )
εE⊗1 // B(E,F )

where εE is the counit of B(E).
(2) For any E ∈ GLm(k), F ∈ GLn(k), there exists an algebra map

SE,F : B(E,F ) −→ B(F,E)op

a 7−→ E−1atF

such that the following diagrams commute

B(E, E)
εE //

∆F
E,E

��

k
u // B(E, F )

B(E, F )⊗ B(F, E)
1⊗SF,E // B(E, F )⊗ B(E, F )

m

OO B(E, E)
εE //

∆F
E,E

��

k
u // B(F, E)

B(E, F )⊗ B(F, E)
SE,F⊗1 // B(F, E)⊗ B(F, E)

m

OO
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Proof. It is a straighforward verification to construct the announced algebra maps: this is left
to the reader. The maps involved in the diagrams of part (1) all are algebra maps, and hence
it is enough to check the commutativity on the generators of B(E,F ), which is obvious. For
the diagrams of part (2), the commutativity follows from the immediate verification on the
generators of B(E,E) and the fact that ∆•

•,• and S•,• are algebra maps. �

Hence the lemma ensures that we have a cogroupoid.

Definition 3.3. The cogroupoid B is the cogroupoid defined as follows:
(1) ob(B) = {E ∈ GLn(k), n ≥ 1},
(2) For E,F ∈ ob(B), the algebra B(E,F ) is the algebra defined above,
(3) The structural maps ∆•

•,•, ε• and S•,• are defined in the previous lemma.

So we have a cogroupoid linking all the Hopf algebras B(E), and the natural next question
is to study the connectedness of B.

Lemma 3.4. Let E ∈ GLm(k), F ∈ GLn(k) with m,n ≥ 2. Then B(E,F ) 6= (0) if and only if
tr(E−1Et) = tr(F−1F t).

Proof. It is left as an exercise to check that if B(E,F ) 6= (0) then tr(E−1Et) = tr(F−1F t).
Conversely, assume that tr(E−1Et) = tr(F−1F t). To show that B(E,F ) 6= (0) we can assume
that k is algebraically closed and hence that there exists q ∈ k∗ such that tr(E−1Et) = −q −
q−1 = tr(F−1F t). It is shown in [8], by using the diamond lemma, that B(Eq, F ) 6= (0) and
hence by Proposition 2.15 we conclude that B(E,F ) 6= (0). �

Corollary 3.5. Let λ ∈ k. Consider the full subcogroupoid Bλ of B with objects

ob(Bλ) = {E ∈ GLn(k), n ≥ 2, tr(E−1Et) = λ}
Then Bλ is a connected cogroupoid.

In particular for E ∈ GLm(k), F ∈ GLn(k) with n,m ≥ 2 and tr(E−1Et) = tr(F−1F t), then
B(E,F ) is a B(E)-B(F )-bi-Galois object and is not cleft if m 6= n.

Proof. It follows from the previous lemma and Proposition 2.8 that B(E,F ) is a B(E)-B(F )-
bi-Galois object if tr(E−1Et) = tr(F−1F t). Let us check that it is not cleft if m 6= n. For
E ∈ GLm(k), let VE be the m-dimensional B(E)-comodule with basis vE

1 , . . . , v
E
m and with

B(E)-coaction α(vE
i ) =

∑
j v

E
j ⊗ aji. Let

Θ : Comod(B(E)) ∼=⊗ Comod(B(F )) Θ′ : Comod(B(F )) ∼=⊗ Comod(B(E))

V 7−→ V�B(E)B(E,F ) V 7−→ V�B(F )B(F,E)

be the inverse monoidal equivalences induced by the bi-Galois objects B(E,F ) and B(F,E)
(see Theorem 2.12). We shall show that Θ(VE) ∼= VF , which by Theorem 1.17, will prove that
B(E,F ) is not a cleft B(E)-Galois object. It is easy to check that the linear map

νF : VF −→ Θ(VE) = VE�B(E)B(E,F )

vF
j 7−→

m∑
i=1

vE
i ⊗ a

E,F
ij

is B(F )-colinear. We get a sequence of colinear maps

VF
νF−−−−→ Θ(VE)

Θ(νE)−−−−→ ΘΘ′(VF ) '−−−−→ VF

whose composition is the identity map, as shown by the following concrete computation

VF −→ VE�B(E)B(E,F ) −→
(
VF �B(F )B(F,E)

)
�B(E)B(E,F ) ∼= VF

vF
j 7−→

m∑
i=1

vE
i ⊗ a

E,F
ij 7−→

m∑
i=1

n∑
k=1

vE
k ⊗ a

F,E
ki ⊗ a

E,F
ij ←− [ vF

j

Hence νF is injective, Θ(νE) is surjective, and νF is surjective by the symmetric argument. �
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Corollary 3.6. Let E ∈ GLn(k) and let q ∈ k∗ be such that tr(E−1Et) = −q − q−1. Then we
have a k-linear equivalence of monoidal categories

Comod(B(E)) ∼=⊗ Comod(Oq(SL2(k))

Proof. This follows from the previous corollary and Corollary 2.9. �

This result has a number of interesting consequences in characteristic zero:
(1) ([8]) Any cosemisimple Hopf algebra having a (co-)representation semi-ring isomorphic

to the one of O(SL2) is isomorphic to B(E) for some matrix E ∈ GLn(k) (n ≥ 2) such
that the solutions of tr(E−1Et) = −q − q−1 are generic (i.e. q = ±1 or q is not a root
of unity).

(2) ([8]) For E ∈ GLm(k), F ∈ GLn(k), the Hopf algebras B(E) and B(F ) are isomorphic if
and only if m = n and there exists P ∈ GLn(k) such that F = PEP t (i.e. the bilinear
forms associated to E and F are equivalent, by [46] this is equivalent so say that the
matrices E−1Et and F−1F t are conjugate).

(3) ([7]) For any m ≥ 1, there exists cosemisimple Hopf algebras having an antipode of
order 2m .

We shall also see in Section 4 that one can deduce easily the classification of Galois objects
over B(E) from these results.

3.2. The universal cosovereign cogroupoid H. We present in this subsection another ex-
ample of cogroupoid involving non cleft Galois objects. This is also an occasion to advertize on
an interesting but not very well known class of Hopf algebras.

let F ∈ GLn(k). The algebra H(F ) [6] is defined to be the universal algebra with generators
(uij)1≤i,j≤n, (vij)1≤i,j≤n and relations:

uvt = vtu = In ; vFutF−1 = FutF−1v = In,

where u = (uij), v = (vij) and In is the identity n × n matrix. The algebra H(F ) has a Hopf
algebra structure defined by

∆(uij) =
∑

k

uik ⊗ ukj , ∆(vij) =
∑

k

vik ⊗ vkj , ε(uij) = ε(vij) = δij , S(u) = tv, S(v) = F tuF−1

Furthermore, H(F ) is a cosovereign Hopf algebra (see [6] for the precise meaning): in particular
this means that any finite-dimensional H(F )-comodule is isomorphic to its bidual (let us say
that a Hopf algebra having this property is coreflexive). The Hopf algebras H(F ) are called
the universal cosovereign Hopf algebras in [6] because they have the following universal property.

Proposition 3.7. Let H be a Hopf algebra and let V be a finite dimensional H-comodule
isomorphic to its bidual comodule V ∗∗. Then there exists a matrix F ∈ GLn(k) (n = dimV )
such that V is an H(F )-comodule and such that there exists a unique Hopf algebra morphism
π : H(F ) −→ H satisfying (1V⊗π)◦βV = αV , where αV : V −→ V⊗H and βV : V −→ V⊗H(F )
denote the coactions of H and H(F ) on V respectively.

V
βV //

αV

""FF
FF

FF
FF

F V ⊗H(F )
1V ⊗f

xxq q
q

q
q

V ⊗H
In particular, every finitely generated coreflexive Hopf algebra is a homomorphic quotient of
some Hopf algebra H(F ).

Proof. Let e1, . . . , en be a basis of V and let xij , 1 ≤ i, j ≤ n be elements of H such that
αV (ei) =

∑
k ek ⊗ xki, ∀i. Put yij = S(xji). Then we have xyt = In = ytx for the matrices

x = (xij) and y = (yij) since H is a Hopf algebra. Let f : V −→ V ∗∗ be an H-colinear
isomorphism, with f(ei) =

∑
k λkiek, for M = (λij) ∈ Mn(k). The H-colinearity of f means

that S2(x)M = Mx, i.e. S(y)t = S2(x) = MxM−1. We also have yS(y) = In = S(y)y since
22



H is a Hopf algebra, so we get yM−1t
xtM t = In = M−1t

xtM ty. Hence we get a Hopf algebra
map π : H(M−1t

) −→ H such π(uij) = xij and π(vij) = yij . An H(M−1t
)-comodule structure

on V is defined by letting βV (ei) =
∑

k ek ⊗ uki, and it is clear that π satisfies the property in
the statement, while uniqueness is clear. The last assertion follows from the previous one and
the fact that a Hopf algebra that is finitely generated as an algebra is generated (as a Hopf
algebra) by the coefficients of one finite-dimensional comodule. �

The above universal property indicates that the Hopf algebras H(F ) are the quantum ana-
logues ofO(GLn(k)) (as soon as we believe that a finite-dimensional representation of a quantum
group should be isomorphic with its bidual).

Similarly to the previous subsection, we describe H(F ) as part of a cogroupoid, and we begin
with a generalization involving two matrices.

Let E ∈ GLm(k) and let F ∈ GLn(k). The algebra H(E,F ) is the algebra presented by
generators uij , vij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and submitted to the relations

uvt = Im = vFutE−1 ; vtu = In = FutE−1v.

When E = F , we have H(F, F ) = H(F ).
The structural morphisms of the corresponding cogroupoid are constructed in the following

lemma.

Lemma 3.8. (1) For any E ∈ GLm(k), F ∈ GLn(k), G ∈ GLp(k), there exists an algebra
map

∆G
E,F : H(E,F ) −→ H(E,G)⊗H(G,F )

uij , vij 7−→
p∑

k=1

uik ⊗ ukj ,

p∑
k=1

vik ⊗ vkj

and for any M ∈ GLr(k), the following diagrams commute

H(E,F )
∆G

E,F−−−−→ H(E,G)⊗H(G,F )

∆M
E,F

y ∆M
E,G⊗1

y
H(E,M)⊗H(M,F )

1⊗∆G
M,F−−−−−→ H(E,M)⊗H(M,G)⊗H(G,F )

H(E,F )

∆F
E,F

��

id

UUUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUUU

H(E,F )⊗H(F, F )
1⊗εF // H(E,F )

H(E,F )

∆E
E,F

��

id

UUUUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUUUU

H(E,E)⊗H(E,F )
εE⊗1 // H(E,F )

(2) For any E ∈ GLm(k), F ∈ GLn(k), there exists an algebra map

SE,F : H(E,F ) −→ H(F,E)op

u, v 7−→ vt, EutF−1

such that the following diagrams commute

H(E, E)
εE //

∆F
E,E

��

k
u // H(E, F )

H(E, F )⊗H(F, E)
1⊗SF,E // H(E, F )⊗H(E, F )

m

OO H(E, E)
εE //

∆F
E,E

��

k
u // H(F, E)

H(E, F )⊗H(F, E)
SE,F⊗1 // H(F, E)⊗H(F, E)

m

OO

Proof. The proof is similar to that of Lemma 3.2. �

Hence the lemma ensures that we have a cogroupoid.

Definition 3.9. The cogroupoid H is the cogroupoid defined as follows:
(1) ob(H) = {F ∈ GLn(k), n ≥ 1},
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(2) For E,F ∈ ob(H), the algebra H(E,F ) is the algebra defined above,
(3) The structural maps ∆•

•,•, ε• and S•,• are defined in the previous lemmma.

So we have cogroupoid linking all the Hopf algebras H(F ), and the natural next question is
to study the connectedness of H.

Lemma 3.10. Let E ∈ GLm(k), F ∈ GLn(k) with m,n ≥ 2. Then H(E,F ) 6= (0) if and only
if tr(E) = tr(F ) and tr(E−1) = tr(F−1).

Proof. It is left as an exercise to check that if H(E,F ) 6= (0) then tr(E) = tr(F ) and tr(E−1) =
tr(F−1). The proof of the converse uses the diamond lemma, it might be found in [10]. �

Corollary 3.11. Let λ, µ ∈ k. Consider the full subcogroupoid Hλ,µ of H with objects

ob(Hλ,µ) = {F ∈ GLn(k), n ≥ 2, tr(F ) = λ, tr(F−1) = µ}
Then Hλ,µ is a connected cogroupoid.

In particular for E ∈ GLm(k), F ∈ GLn(k) with n,m ≥ 2, tr(E) = tr(F ) and tr(E−1) =
tr(F−1), then H(E,F ) is a H(E)-H(F )-bi-Galois object and is not cleft if n 6= m.

Proof. The proof is a copy and paste of the proof of Corollary 3.5. �

We can use this result to deduce the corepresentation theory of H(F ) when F is a generic
matrix. Let us introduce some notation and terminology.
• Let F ∈ GLn(k). We say that F is normalized if tr(F ) = tr(F−1). We say that F is
normalizable if there exists λ ∈ k∗ such that tr(λF ) = tr((λF )−1). Over an algebraically closed
field, any matrix is normalizable unless tr(F ) = 0 6= tr(F−1) or tr(F ) 6= 0 = tr(F−1). The study
of the Hopf algebra H(F ) for a normalizable matrix reduces to the case when F is normalized,
since H(λF ) = H(F ).
• Let q ∈ k∗. As usual, we say that q is generic if q is not a root of unity of order N ≥ 3. We say
that a matrix F ∈ GLn(k) is generic if F is normalized and if the solutions of q2−tr(F )q+1 = 0
are generic.

• Let q ∈ k∗. We put Fq =
(
q−1 0
0 q

)
∈ GL2(k). The Hopf algebra H(Fq) is denoted by H(q).

• Let F ∈ GLn(k). The natural n-dimensional H(F )-comodules associated to the multiplicative
matrices u = (uij) and v = (vij) are denoted by U and V , with V = U∗.
• We will consider the coproduct monoid N ∗ N. Equivalently N ∗ N is the free monoid on
two generators, which we denote, by α and β. There is a unique antimultiplicative morphism
− : N ∗ N −→ N ∗ N such that ē = e, ᾱ = β and β̄ = α (e denotes the unit element of N ∗ N).

The corepresensation theory of H(F ) is described in the following result from [10]. Here k
denotes an algebraically closed field.

Theorem 3.12. Let F ∈ GLn(k) (n ≥ 2) be a normalized matrix.
(a) Let q ∈ k∗ be such that q2−tr(F )q+1 = 0. Then we have a k-linear equivalence of monoidal
categories

Comod(H(F )) ∼=⊗ Comod(H(q))
We assume now that k is a characteristic zero field.
(b) The Hopf algebra H(F ) is cosemisimple if and only if F is a generic matrix.
(c) Assume that F is generic. To any element x ∈ N ∗ N corresponds a simple H(F )-comodule
Ux, with Ue = k, Uα = U and Uβ = V . Any simple H(F )-comodule is isomorphic to one of the
Ux, and Ux

∼= Uy if and only if x = y. For x, y ∈ N ∗ N, we have U∗x ∼= Ux̄ and

Ux ⊗ Uy
∼=

⊕
{a,b,g∈N∗N|x=ag,y=ḡb}

Uab .

Part (a) follows from Corollary 3.11 and Corollary 2.9 and reduces the study to the case of
H(q). One then constructs a Hopf algebra embedding H(q) ⊂ k[z, z−1] ∗ Oq(SL2(k)) and uses
properties of Oq(SL2(k)) and results on free products of cosemisimple Hopf algebras by Wang
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[63]. See [10] for details. The fusion rule formulas arose first in [3], where another proof of (c),
for positive matrices F ∈ GLn(C), might be found.

3.3. The 2-cocycle cogroupoid of a Hopf algebra. We now come back to the familiar Hopf-
Galois objects obtained from 2-cocycles and see how they behave in the cogroupoid framework.

Let H be a Hopf algebra and let σ, τ ∈ Z2(H). The algebra H(σ, τ) is the algebra having H
as underlying vector space and product defined by

x.y = σ(x(1), y(1))τ
−1(x(3), y(3))x(2)y(2)

It is straighforward to check that H(σ, τ) is an associative algebra (with the same unit as H).
In the following lemma we define all the necessary structural maps for the 2-cocycle cogroupoid

of H.

Lemma 3.13. (1) Let σ, τ, ω ∈ Z2(H). The map

∆ω
σ,τ = ∆ : H(σ, τ) −→ H(σ, ω)⊗H(ω, τ)

x 7−→ x(1) ⊗ x(2)

is an algebra map, and for any α ∈ Z2(H), the following diagram commutes:

H(σ, τ)
∆ω

σ,τ−−−−→ H(σ, ω)⊗H(ω, τ)

∆α
σ,τ

y ∆α
σ,ω⊗1

y
H(σ, α)⊗H(α, τ)

1⊗∆ω
α,τ−−−−−→ H(σ, α)⊗H(α, ω)⊗H(ω, τ)

(2) Let σ ∈ Z2(H). The linear map εσ = ε : H(σ, σ) −→ k is an algebra map, and for any
τ ∈ Z2(H), the following diagrams commute:

H(σ, τ)

∆τ
σ,τ

��

id

TTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT

H(σ, τ)⊗H(τ, τ)
1⊗ετ // H(σ, τ)

H(σ, τ)

∆τ
σ,τ

��

id

TTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT

H(σ, σ)⊗H(σ, τ)
εσ⊗1 // H(σ, τ)

(3) Let σ, τ ∈ Z2(H). Consider the linear map

Sσ,τ : H(σ, τ) −→ H(τ, σ)

x 7−→ σ(x(1), S(x(2)))τ
−1(S(x(4)), x(5))S(x(3))

The following diagrams commute:

H(σ, σ)
εσ //

∆τ
σ,σ

��

k
u // H(σ, τ)

H(σ, τ)⊗H(τ, σ)
1⊗Sτ,σ // H(σ, τ)⊗H(σ, τ)

m

OO H(σ, σ)
εσ //

∆τ
σ,σ

��

k
u // H(τ, σ)

H(σ, τ)⊗H(τ, σ)
Sσ,τ⊗1 // H(τ, σ)⊗H(τ, σ)

m

OO

Proof. Assertions (1) and (2) are obvious. Let x ∈ H. In H(σ, τ), we have

x(1) · Sτ,σ(x(2)) = x(1) ·
(
τ(x(2), S(x(3)))σ

−1(S(x(5)), x(6))S(x(4))
)

= τ(x(4), S(x(5)))σ
−1(S(x(9)), x(10))σ(x(1), S(x(8)))τ

−1(x(3), S(x(6)))x(2)S(x(7))

= τ−1 ∗ τ(x(3), S(x(4)))σ
−1(S(x(7)), x(8))σ(x(1), S(x(6)))x(2)S(x(5))

= σ−1(S(x(5)), x(6))σ(x(1), S(x(4)))x(2)S(x(3))

= σ(x(1), S(x(2)))σ
−1(S(x(3)), x(4)) = ε(x)1
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where the last identity is (a5) from Theorem 1.6 in [15]. This proves the commutativity of the
first diagram in (3). For the second diagram, we have in H(τ, σ)

Sσ,τ (x(1)) · x(2) =
(
σ(x(1), S(x(2)))τ

−1(S(x(4)), x(5))S(x(3))
)
· x(6)

= σ(x(1), S(x(2)))τ
−1(S(x(6)), x(7))τ(S(x(5)), x(8))σ

−1(S(x(3)), x(10))S(x(4))x(9)

= σ(x(1), S(x(2)))τ
−1 ∗ τ(S(x(5)), x(6))σ

−1(S(x(3)), x(8))S(x(4))x(7)

= σ(x(1), S(x(2)))σ
−1(S(x(3)), x(6))S(x(4))x(5)

= σ(x(1), S(x(2)))σ
−1(S(x(3)), x(4)) = ε(x)1

where again the last identity is (a5) from Theorem 1.6 in [15]. �

Definition 3.14. Let H be a Hopf algebra. The 2-cocycle cogroupoid of H, denoted H, is
the cogroupoid defined as follows:

(1) ob(H) = Z2(H).
(2) For σ, τ ∈ Z2(H), the algebra H(σ, τ) is the algebra H(σ, τ) defined above.
(3) The structural maps ∆•

•,•, ε• and S•,• are the ones defined in the previous lemmma.

The Hopf algebra H(σ, σ) is the Hopf algebra Hσ defined by Doi in [15]. The algebras σH
and Hσ−1 considered in Example 1.3 are the algebras H(σ, 1) and H(1, σ) respectively (where
1 stand for ε ⊗ ε). It follows that H(σ, 1) is an Hσ-H-bi-Galois object and that H(1, σ) is an
H-Hσ-bi-Galois object. The associated monoidal equivalence

Comod(H) ∼=⊗ Comod(Hσ)

is isomorphic (as a monoidal functor) to the monoidal equivalence whose underlying functor is
the identity (recall that H = Hσ as coalgebras) and whose monoidal constraints is given by the
following isomorphisms

V ⊗W ∼= V ⊗W
v ⊗ w 7→ σ−1(v(1), w(1))v(0) ⊗ w(0)

3.4. The multiparametric GLn-cogroupoid. It is in general unpleasant and difficult to work
with explicit cocycles, and the 2-cocycle cogroupoid in the previous subsection is a theoretical
tool. In concrete examples, it is much easier to work with explicit algebras (although it is
useful to know that a cocycle lies behind the constructions, e.g. to prove that the algebras are
non-zero), and in this subsection we present an example of a full subcogroupoid of the 2-cocycle
cogroupoid of O(GLn(k)).

We say that a matrix p = (pij) ∈ Mn(k) is an AST-matrix (after Artin-Schelter-Tate [1]) if
pii = 1 and pijpji = 1 for all i and j. The trivial AST-matrix (i.e. pij = 1 for all i and j) is
denoted by 1. We denote by AST(n) the set of AST matrices of size n .

For p ∈ AST(n), the algebra Op(GLn(k)) ([1]) is the algebra presented by generators xij ,
yij , 1 ≤ i, j ≤ n, submitted to the following relations (1 ≤ i, j, k, l ≤ n):

xklxij = pkipjlxijxkl, yklyij = pkipjlyijykl, yklxij = pikpljxijykl

n∑
k=1

xikyjk = δij =
n∑

k=1

xkiykj

The presentation we have given avoids the use of the quantum determinant. The algebra
Op(GLn(k)) has a standard Hopf algebra structure, described as follows:

∆(xij) =
∑

k

xik ⊗ xkj , ∆(yij) =
∑

k

yik ⊗ ykj , ε(xij) = δij = ε(yij), S(xij) = yji, S(yij) = xji

When p = 1, one gets the usual Hopf algebra O(GLn(k)).
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To put Op(GLn(k)) in a cogroupoid framework, we use the following algebras. For p,q ∈
AST(n), the algebra Op,q(GLn(k)) is the algebra presented by generators xij , yij , 1 ≤ i, j ≤ n,
submitted to the following relations (1 ≤ i, j, k, l ≤ n):

xklxij = pkiqjlxijxkl, yklyij = pkiqjlyijykl, yklxij = pikqljxijykl

n∑
k=1

xikyjk = δij =
n∑

k=1

xkiykj

Lemma 3.15. In this lemma we note Op,q = Op,q(GLn(k)).
(1) For any p,q, r ∈ AST(n), there exists an algebra map

∆r
p,q : Op,q −→ Op,r ⊗Or,p

xij , yij 7−→
n∑

k=1

xik ⊗ xkj ,

n∑
k=1

yik ⊗ ykj

and for any s ∈ AST(n), the following diagrams commute

Op,q

∆r
p,q−−−−→ Op,r ⊗Or,p

∆s
p,q

y ∆s
p,r⊗1

y
Op,s ⊗Os,q

1⊗∆r
s,q−−−−−→ Op,s ⊗Os,r ⊗Or,q

Op,q

∆q
p,q

��

id

RRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRR

Op,q ⊗Oq,q
1⊗εq // Op,q

Op,q

∆p
p,q

��

id

RRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRR

Op,p ⊗Op,q
εp⊗1 // Op,q

(2) For any p,q ∈ AST(n), there exists an algebra map

Sp,q : Op,q(GLn(k)) −→ Oq,p(GLn(k))op

x, y 7−→ yt, xt

such that the following diagrams commute

Op,p

εp //

∆q
p,p

��

k
u // Op,q

Op,q ⊗Oq,p

1⊗Sq,p // Op,q ⊗Op,q

m

OO Op,p

εp //

∆q
p,p

��

k
u // Oq,p

Op,q ⊗Oq,p

Sp,q⊗1 // Oq,p ⊗Oq,p

m

OO

Proof. Exercise. �

The lemma ensures that we have a cogroupoid.

Definition 3.16. The multiparametric GLn-cogroupoid, denoted GLn, is defined as follows:
(1) ob(GLn) = AST(n),
(2) For p,q ∈ AST(n), the algebra GLn(p,q) is the algebra Op,q(GLn(k)) defined above.
(3) The structural maps ∆•

•,•, ε• and S•,• are defined in the previous lemmma.

Proposition 3.17. The multiparametric GLn-cogroupoid is connected.

Proof. We know from Proposition 2.15 that it is enough to show thatOp,1(GLn(k)) 6= (0) for any
p ∈ AST(n). Consider the algebra kp[t±1

1 , · · · , t±1
n ] presented by generators t1, · · · , tn, t−1

1 , · · · , t−1
n

submitted to the relations (1 ≤ i, k ≤ n)

tit
−1
i = 1 = t−1

i ti, titk = piktkti, t
−1
i t−1

k = pikt
−1
k t−1

i , tit
−1
k = pkit

−1
k ti
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It is not difficult to check that kp[t±1
1 , · · · , t±1

n ] is a non-zero algebra either by using the diamond
lemma or by showing that it is isomorphic to the twisted group algebra kσ[Zn] for the 2-cocycle
considered in [1]. It is straighforward to check that we have a surjective algebra map

Op,1(GLn(k)) −→ kp[t±1
1 , · · · , t±1

n ]

xij , yij 7−→ δijti, δijt
−1
i

and hence Op,1(GLn(k)) 6= (0) . �

Corollary 3.18. For any p ∈ AST(n), we have a k-linear equivalence of monoidal categories

Comod(Op(GLn(k))) ∼=⊗ Comod(O(GLn(k))

4. Classifying Hopf-Galois objects: the fibre functor method

In this section we explain how to classify Hopf-Galois objects by using fibre functors via
Ulbrich’s Theorem. The idea is to study how the fibre functor associated to the Galois object
will transform the “fundamental” morphisms of the category of comodules.

4.1. Hopf-Galois objects over B(E). Let E ∈ GLm(k) with m ≥ 2. We first state the
classification result for (left) B(E)-Galois objects. We already know from the previous section
that B(E,F ) is a left B(E)-Galois object if F ∈ GLn(k) satisfies tr(E−1Et) = tr(F−1F t). Let

X0(E) = {F ∈ GLn(k), n ≥ 2 | tr(E−1Et) = tr(F−1F t)}

and let ∼ be the equivalence relation on X0(E) defined for F,G ∈ X0(E) with F ∈ GLn(k) and
G ∈ GLp(k) by

F ∼ G ⇐⇒ [n = p and ∃P ∈ GLn(k) with F = PGP t]

We put X(E) = X0(E)/ ∼. The following result is stated in [2].

Theorem 4.1. Let E ∈ GLm(k) with m ≥ 2. The map

X0(E) −→ Gal(B(E))

F 7−→ [B(E,F )]

induces a bijection X(E) ' Gal(B(E)).

Of course the meaning of bracket symbol [, ] is that we consider the isomorphism class of the
Galois object.

let VE be the m-dimensional B(E)-comodule with basis vE
1 , . . . , v

E
m and with B(E)-coaction

α(vE
i ) =

∑
j v

E
j ⊗ aji. We know that the nondegenerate bilinear form

βE : VE ⊗ VE 7−→ k, vE
i ⊗ vE

j 7−→ λij , E = (λij)

is B(E)-colinear and generates Comod(B(E)) as a tensor category (by the universal property of
B(E)). So to study the fibre functors on Comod(B(E)) we have to study how they transform
βE . We then deduce informations on the corresponding Galois object.

Proposition 4.2. Let A be a left B(E)-Galois object. Then there exists F ∈ X0(E) such that
A ∼= B(E,F ) as Galois objects.

Proof. Let ΩA : Comodf (B(E)) 7−→ k be the fibre functor corresponding to A and consider the
bilinear map defined by the composition

β′ : ΩA(VE)⊗ ΩA(VE) ∼−−−−→ ΩA(VE ⊗ VE)
ΩA(βE)−−−−−→ ΩA(k) ∼−−−−→ k∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥

VE�B(E)A⊗ VE�B(E)A
∼−−−−→ (VE ⊗ VE)�B(E)A

βE⊗1−−−−→ k�B(E)A
∼−−−−→ k
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Let w1, . . . , wn be a basis of ΩA(VE) (we have n ≥ 2 by Proposition 1.16). For i ∈ {1, . . . , n},
write

wi =
m∑

k=1

vE
k ⊗ zki

for elements zki ∈ A, 1 ≤ k ≤ m, 1 ≤ i ≤ n. Let F = (µij) ∈Mn(k) be such that β′(wi⊗wj) =
µij . We have

β′(wi ⊗ wj)1 = β′(
m∑

k,l=1

vE
k ⊗ zki ⊗ vE

l ⊗ zlj)1 =
m∑

k,l=1

zkiλklzlj = µij1

which means that if z = (zki) ∈Mm,n(A), we have

ztEz = F

We have to check that the matrix F is invertible. We use the fact that β gives a dual for VE in
the category of B(E)-comdules. For this consider the linear map

δ : k −→ VE ⊗ VE , 1 7−→
∑
k,l

λ−1
kl v

E
k ⊗ vE

l , (with E−1 = (λ−1
kl ))

This map is B(E)-colinear (direct verification) and hence we can consider the linear map δ′

defined by the composition

δ′ : k ∼−−−−→ ΩA(k)
ΩA(δ)−−−−→ ΩA(VE ⊗ VE)

(eΩA
VE,VE

)−1

−−−−−−−−→ ΩA(VE)⊗ ΩA(VE)∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥
k

∼−−−−→ k�B(E)A
δ⊗1−−−−→ (VE ⊗ VE)�B(E)A

∼−−−−→ VE�B(E)A⊗ VE�B(E)A

We have
δ′(1) =

∑
i,j

γijwi ⊗ wj =
∑
k,l

∑
i,j

γijv
E
k ⊗ zki ⊗ vE

l ⊗ vlj ⊗ zlj

for G = (γij) ∈Mn(k) and hence

Ω̃A
VE ,VE

◦ δ′(1) =
∑
k,l

vE
k ⊗ vE

l ⊗ (
∑
i,j

zkiγijzlj)

On the other hand
Ω̃A

VE ,VE
◦ δ′(1) =

∑
k,l

vE
k ⊗ vE

l ⊗ λ−1
kl 1

which shows that zGzt = E−1. We have

(1⊗ βE) ◦ (δ ⊗ 1) = 1VE

in the monoidal category of B(E)-comodules, so the monoidal functor ΩA transforms this equa-
tion into

(1⊗ β′) ◦ (δ′ ⊗ 1) = 1ΩA(VE)

This means that FG = In, so that F is invertible with G = F−1. We have ztEz = F and
zGzt = E−1, hence

F−1ztEz = In and zF−1ztE = Im

Thus there exists a unique algebra morphism f : B(E,F ) −→ A defined by f(aki) = zki.
Moreover it is easy to see that f is left B(E)-colinear since

wi =
∑

k

vE
k ⊗ zki ∈ VE�B(E)A

We conclude by Proposition 1.6 that f is an isomorphism. �

To classify the Galois objects B(E,F ) up to isomorphism, it is also useful to examine the
associated fibre functors.
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Proposition 4.3. Let F,G ∈ X0(E) with F ∈ GLn(k) and G ∈ GLp(k). The following
assertions are equivalent.

(1) The left B(E)-comodule algebras B(E,F ) and B(E,G) are isomorphic.
(2) F ∼ G, i.e. n = p and ∃P ∈ GLn(k) with F = PGP t.

Proof. We use the notation in the previous proof. Let f : B(E,F ) −→ B(E,G) be a left
B(E)-comodule algebra isomorphism. Then f induces a linear isomorphim

1⊗ f : VE�B(E)B(E,F ) −→ VE�B(E)B(E,G)

By corollary 3.5 and its proof we have n = p and the elements

wi =
∑

k

vE
k ⊗ a

E,F
ki , w′i =

∑
k

vE
k ⊗ a

E,G
ki , 1 ≤ i ≤ n

form respective bases of VE�B(E)B(E,F ) and VE�B(E)B(E,G). Then there exists M = (mij) ∈
GLn(k) such that 1⊗ f(wi) =

∑
j mjiw

′
j , ∀i, and hence∑

k

vE
k ⊗ f(aE,F

ki ) =
∑

k

vE
k ⊗ (

∑
j

aE,G
kj mji)

which in matrix form gives f(aE,F ) = aE,GM or dropping the exponents f(a) = aM . We have
F−1atEa = In in B(E,F ), hence

In = f(F−1atEa) = F−1M tatEaM ⇒MF−1M tatEa = In in B(E,G)

But we have aG−1atE = Im so MF−1M tatE = G−1atE ⇒ MF−1M tat = G−1at and we
conclude by multiplying on the right by EaG−1 that MF−1M t = G−1. This proves that
F ∼ G.

Conversely, if n = p and ∃P ∈ GLn(k) such that F = PGP t, it is not difficult so show that
there exists a unique algebra map f : B(E,F ) −→ B(E,G) such that f(a) = aP t, that f is an
isomorphism and is B(E)-colinear. �

Theorem 4.1 follows from these two propositions.

Remark 4.4. There is an interesting equivalence relation on Galois objects, called homotopy,
introduced by Kassel and further developped by Kassel and Schneider in [34]. The classification
of Galois objects over B(E) up to homotopy is studied in [2].

4.2. Hopf-Galois objects over H(F ). We provide now the classification of the Galois objects
over the universal cosovereign Hopf algebras H(F ), following the same line as the one of the
previous subsection.

Let E ∈ GLm(k) with m ≥ 2. We know from the previous section that H(E,F ) is a left
H(E)-Galois object if F ∈ GLn(k) satisfies tr(E) = tr(F ) and tr(E−1) = tr(F−1). Let

X0(E) = {F ∈ GLn(k), n ≥ 2 | tr(E) = tr(F ), tr(E−1) = tr(F−1)}
and let ≈ be the equivalence relation on X0(E) defined for F,G ∈ X0(E) with F ∈ GLn(k)
and G ∈ GLp(k) by

F ≈ G ⇐⇒ [n = p and ∃P ∈ GLn(k) with F = PGP−1]

We put X(E) = X0(E)/ ≈.

Theorem 4.5. Let E ∈ GLm(k) with m ≥ 2. The map

X0(E) −→ Gal(H(E))

F 7−→ [H(E,F )]

induces a bijection X(E) ' Gal(H(E)).

Proposition 4.6. Let A be a left H(E)-Galois object. Then there exists F ∈ X0(E) such that
A ∼= H(E,F ) as Galois objects.
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Proof. The reasoning is similar to the one of Proposition 4.2 so we give less detail. Let UE

be the m-dimensional H(E)-comodule with basis uE
1 , . . . , u

E
m and with H(E)-coaction given by

α(uE
i ) =

∑
j u

E
j ⊗uji. The coaction of the dual comodule U∗E is given by α∗(uE∗

i ) =
∑

j u
E∗
j ⊗vji.

The following linear maps

e : U∗E ⊗ UE −→ k, u∗i ⊗ uj 7−→ δij

d : k −→ UE ⊗ U∗E , 1 7−→
m∑

i=1

ui ⊗ u∗i

ε : UE ⊗ U∗E −→ k, ui ⊗ u∗j 7−→ λ−1
ij

δ : k −→ U∗E ⊗ UE , 1 7−→
m∑

i,j=1

λiju
∗
i ⊗ uj

where E = (λij) and E−1 = (λ−1
ij ), are H(E)-colinear. Let ΩA : Comodf (H(E)) 7−→ k be the

fibre functor corresponding to A. Consider the linear maps defined by the compositions

e′ : ΩA(U∗E)⊗ ΩA(UE) ∼−−−−→ ΩA(U∗E ⊗ UE)
ΩA(e)−−−−→ ΩA(k) ∼−−−−→ k∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥

U∗E�H(E)A⊗ UE�H(E)A
∼−−−−→ (U∗E ⊗ UE)�H(E)A

e⊗1−−−−→ k�H(E)A
∼−−−−→ k

d′ : k ∼−−−−→ ΩA(k)
ΩA(d)−−−−→ ΩA(UE ⊗ U∗E)

(eΩA
UE,U∗

E
)−1

−−−−−−−−→ ΩA(UE)⊗ ΩA(U∗E)∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥
k

∼−−−−→ k�H(E)A
d⊗1−−−−→ (UE ⊗ U∗E)�H(E)A

∼−−−−→ UE�H(E)A⊗ U∗E�H(E)A

Then (ΩA(U∗E), e′, d′) is a left dual for ΩA(UE) since ΩA is a monoidal functor. Hence there exist
bases w1, . . . , wn and w′1, . . . , w

′
n of ΩA(UE) and ΩA(U∗E) respectively (n = dim ΩA(UE) ≥ 2)

such that e′(w′i ⊗ wj) = δij and d′(1) =
∑

iwi ⊗ w′i. Now write wi =
∑

k u
E
k ⊗ zki and

w′i =
∑

k u
E∗
k ⊗ cki for elements zki, cki ∈ A. Then we see that ctz = In and zct = Im.

Consider now the linear maps defined by the compositions

ε′ : ΩA(UE)⊗ ΩA(U∗E) ∼−−−−→ ΩA(UE ⊗ U∗E)
ΩA(ε)−−−−→ ΩA(k) ∼−−−−→ k∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥

UE�H(E)A⊗ U∗E�H(E)A
∼−−−−→ (UE ⊗ U∗E)�H(E)A

ε⊗1−−−−→ k�H(E)A
∼−−−−→ k

δ′ : k ∼−−−−→ ΩA(k)
ΩA(δ)−−−−→ ΩA(U∗E ⊗ UE)

(eΩA
U∗

E
,UE

)−1

−−−−−−−−→ ΩA(U∗E)⊗ ΩA(UE)∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥
k

∼−−−−→ k�H(E)A
δ⊗1−−−−→ (U∗E ⊗ UE)�H(E)A

∼−−−−→ U∗E�H(E)A⊗ UE�H(E)A

Since (ΩA(UE), ε′, δ′) is a left dual for ΩA(U∗E), there exists M = (mij) ∈ GLn(k) such that
ε′(wi ⊗ w′j) = mij and δ′(1) =

∑n
i,j=1m

−1
ij w

′
i ⊗ wj . From this we see that M = ztE−1c and

E = cM−1zt. Hence there exists an algebra map f : H(E,M−1) −→ A such that f(uki) = zki

and f(vki) = cki, which is H(E)-colinear, and is an isomorphism by Proposition 1.6. �

Proposition 4.7. Let F,G ∈ X0(E) with F ∈ GLn(k) and G ∈ GLp(k). The following
assertions are equivalent.

(1) The left H(E)-comodule algebras H(E,F ) and H(E,G) are isomorphic.
(2) F ≈ G, i.e. n = p and ∃P ∈ GLn(k) with F = PGP−1.
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Proof. The proof is similar to that of Proposition 4.3: if f : H(E,F ) −→ H(E,G) is a left
H(E)-comodule algebra isomorphism, then n = p and there exists M ∈ GLn(k) such that
f(u) = uM and f(v) = uM t−1

, and then we have G = M t−1
FM t, so F ≈ G. Conversely, if there

exists P ∈ GLn(k) with F = PGP−1, one defines a left H(E)-comodule algebra isomorphism
f : H(E,F ) −→ H(E,G) by f(u) = uP t and f(v) = vP t−1

. �

Theorem 4.5 follows from these two propositions.

4.3. Some remarks.

(1) The problem of classifying the fibre functors (or Galois objects) on a comodule category
is a particular case of the problem of classifying the module categories over the comodule
category (see [44]), considered for Oq(SL2(k)) by Etingof and Ostrik ([22] and [45]).
Recent nice contributions on the problem of classifying module categories (and hence
Hopf-Galois objects) were done by Mombelli [40, 41]

(2) As we have seen the fibre functor method provides a powerful method for classifying
Hopf-Galois objects, as least if the comodule category is generated by a few equationnaly
well defined morphisms. It does not seem to work so well for pointed Hopf algebras, or
at least I could not make it work well. The best technique for pointed Hopf algebras
has been for a long time the one by Masuoka [38], but recently new techniques have
emerged, by Masuoka again [39] or more interestingly yet by the already mentionned
work of Mombelli [40, 41].

5. Applications to comodule algebras

In this section we present applications of bi-Galois theory to the study of comodule algebras.
The basic result is the following one.

Theorem 5.1. Let H, L be Hopf algebras with a k-linear monoidal equivalence

F : Comod(H) ∼=⊗ Comod(L)

Then F induces an equivalence of categories between right H-comodule algebras and right L-
comodule algebras. If B is a right H-comodule algebra, the above monoidal equivalence induces
an algebra isomorphism between the respective coinvariant subalgebras BcoH ∼= F (B)coL.

Proof. A right H-comodule algebra is exactly an algebra in the monoidal category of right H-
comodules, thus the above functor induces the announced category equivalence. Let B be a
right H-comodule algebra. We have an algebra isomorphism

HomH(k,B) −→ BcoH

f 7−→ f(1)

where the algebra structure on HomH(k,B) is given by f ·g = mB ◦(f⊗g). The above monoidal
functor induces an algebra isomorphism

HomH(k,B) ∼= HomL(F (k), F (B)) ∼= HomL(k, F (B))

and hence induces an algebra isomorphism BcoH ∼= F (B)coL. �

The cogroupoid picture might be useful to determine exactly the algebras F (B) and F (B)coL

(with F (B) = B�HA and F (B)coL = (B�HA)coL for an H-L-bi-Galois object A), for example
to get a presentation by generators and relation from the ones of B and BcoH . We present some
illustrations.
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5.1. A model comodule algebra for B(E). We continue the study of B(E)-comodules by
providing explicit models for the simple B(E)-comodules in the cosemisimple case. We assume
that k has characteristic zero in this subsection.

Definition 5.2. Let H be a cosemisimple Hopf algebra. A model H-comodule algebra is a
right H-comodule algebra in which every simple H-comodule appears with multiplicity one.

It is well known that if q is not a root of unity of order ≥ 3, then the quantum plane
algebra kq[x, y] is a model Oq(SL2(k))-comodule algebra, since the degree grading provides a
decomposition

kq[x, y] =
⊕
n∈N

kq[x, y]n

and the comodules kq[x, y]n, n ∈ N, provide a complete list of simple Oq(SL2(k))-comodules
(see e.g. [35]). It is clear from Theorem 5.1 that the property of having a model comodule
algebra is monoidally invariant and hence B(E) will have a model comodule algebra when it is
cosemisimple.

Definition 5.3. Let M = (αij) ∈Mm(k) and t ∈ k. The algebra AM,t is the algebra presented
by generators x1, . . . , xm submitted to the relation

∑m
i,j=1 αijxixj = t.

When

M = E−1
q =

(
0 −q
1 0

)
the algebra AM,0 is the quantum plane kq[x, y], while that algebra AM,1 is the quantum Weyl
algebra Aq

1(k).

Proposition 5.4. Let E ∈ GLm(k). Then AE−1,t has a right B(E)-comodule algebra structure
defined by the formula

α(xi) =
m∑

k=1

xk ⊗ aki

Let F ∈ GLn(k) be such that tr(E−1Et) = tr(F−1F t) (m,n ≥ 2) and consider the monoidal
equivalence Θ : Comod(B(E)) −→ Comod(B(F )) induced by the B(E)-B(F )-bi-Galois object
B(E,F ). We have an isomorphism of B(F )-comodule algebras Θ(AE−1,t) ∼= AF−1,t.

Proof. It is straighforward to check that AE−1,t has a B(E)-comodule algebra structure given
by the above formula. We give two sketches of proof that Θ(AE−1,t) ∼= AF−1,t. In the first proof
we proceed very similarly to the proof of Corollary 3.5 when we showed that Θ(VE) ∼= VF . It is
straightforward to check that one has an algebra map

ιF : AF−1,t −→ AE−1,t�B(E)B(E,F ) = Θ(AE−1,t)

xF
i 7−→

m∑
k=1

xE
k ⊗ a

E,F
ki

which is B(F )-colinear and the argument of the proof of Corollary 3.5 to show that ιF is an
isomorphism works without any change.

A second sketch of proof is as follows [37]. Consider the tensor algebra T (VE) =
⊕

l∈N V
⊗l
E .

This is a B(E)-comodule algebra and we have Θ(T (VE)) ∼= T (Θ(VE)) ∼= T (VF ) as B(F )-
comodule algebras. As in the proof of Proposition 4.2, consider the B(E)-colinear map

δE : k −→ VE ⊗ VE , 1 7−→
∑
k,l

λ−1
kl v

E
k ⊗ vE

l , (with E−1 = (λ−1
kl ))

By construction AE−1,t = T (VE)/〈δE − t1〉 an with an obvious abuse of notation we have
Θ(δE) = δF (check this) and hence

Θ(AE−1,t) = Θ(T (VE)/〈δE − t1〉) ∼= T (VF )/〈Θ(δE − t1)〉) = T (VF )/〈δF − t1〉 = AF−1,t

This concludes the proof. �
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Corollary 5.5. Let E ∈ GLn(k) be such that there exists q ∈ k∗ with tr(E−1Et) = −q − q−1

and q is not a root of unity of order ≥ 3. Then for t ∈ {0, 1}, AE−1,t is a model B(E)-comodule
algebra.

Proof. The proof follows from Corollary 3.6, the previous proposition and the fact that AE−1
q ,0 =

kq[x, y] and AE−1
q ,1 = Aq

1(k) are model Oq(SL2(k))-comodule algebras (that Aq
1(k) is a model

Oq(SL2(k))-comodule algebra can be deduced from the fact that kq[x, y] is the graded algebra
associated to the natural degree filtration on Aq

1(k)). �

Remark 5.6. It follows from the previous results that if B(E) is cosemisimple, the simple
B(E)-comodule corresponding to n ∈ N is the subspace of degree n elements in AE−1,0.

5.2. An application to invariant theory. The considerations of the beginning of the section
allows us to get nice theorems in invariant theory almost for free. We provide an illustration
taken from [5].

The first and most well-known theorem in invariant theory is the structure theorem for the
algebra of symmetric polynomials. So each time we have a 2-cocycle deformation of O(Sn) (the
algebra of functions on the symmetric group Sn), we can derive a twisted version of the classical
theorem on symmetric polynomials.

We begin by introducing some notation. We assume that char(k) 6= 2 . Let n ≥ 2 For
i ∈ {1, . . . , 2n}, we put {

i′ = i− 1 and i∗ = i/2 if i is even
i′ = i+ 1 and i∗ = i′/2 if i is odd

We have i′∗ = i∗. Let AST2(n) be the set of AST matrices p = (pij) ∈Mn(k) with pii = 1 and
pij = pji = ±1 for any i and j.

For p ∈ AST2(n), the algebra Op(S2n) is the algebra presented by generators (xij)1≤i,j≤2n

and submitted to the relations (1 ≤ i, j, k, l ≤ 2n):

xijxik = δjkxij ; xjixki = δjkxji ;
2n∑
l=1

xil = 1 =
2n∑
l=1

xli .(5.1)

(3 + pi∗j∗)xkjxli + (1− pi∗j∗)xkjxli′ + (1− pi∗j∗)xkj′xli + (pi∗j∗ − 1)xkj′xli′ =
(3 + pl∗k∗)xlixkj + (1− pl∗k∗)xl′ixkj + (1− pl∗k∗)xlixk′j + (pl∗k∗ − 1)xl′ixk′j .(5.2)

If p = 1 then O1(S2n) is just the algebra of functions on S2n (see [64]). It is a direct verification
to check that Op(S2n) is a Hopf algebra with

∆(xij) =
∑

k

xik ⊗ xkj , ε(xij) = δij , S(xij) = xji

We consider the algebra kp[x1, . . . , x2n] presented by generators x1, . . . , x2n submitted to the
relations

4xixj = (3 + pi∗j∗)xjxi + (1− pi∗j∗)xj′xi + (1− pi∗j∗)xjxi′ + (pi∗j∗ − 1)xj′xi′ .(5.3)

It is clear that k1[x1, . . . , x2n] = k[x1, . . . , x2n].
Our aim is to prove the following result.

Theorem 5.7. The algebra kp[x1, . . . , x2n] has a right Op(S2n)-comodule algebra structure de-
fined by δ(xi) =

∑
k xk⊗xki, and the algebra of coinvariants kp[x1, . . . , x2n]coOp(S2n) is a (com-

mutative) algebra of polynomials on 2n variables.

The strategy is clear: we have construct a k-linear monoidal equivalence

Comod(O(S2n)) ∼=⊗ Comod(Op(S2n))

sending k[x1, . . . , x2n] to kp[x1, . . . , x2n], and combine the classical theorem on symmetric poly-
nomials with Theorem 5.1. In order to do this we construct an appropriate connected cogroupoid.
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Let p,q ∈ AST2(n). The algebraOp,q(S2n) is the algebra presented by generators (xij)1≤i,j≤2n

submitted to the relation:

xijxik = δjkxij ; xjixki = δjkxji ;
2n∑
l=1

xil = 1 =
2n∑
l=1

xli .(5.4)

(3 + qi∗j∗)xkjxli + (1− qi∗j∗)xkjxli′ + (1− qi∗j∗)xkj′xli + (qi∗j∗ − 1)xkj′xli′ =
(3 + pl∗k∗)xlixkj + (1− pl∗k∗)xl′ixkj + (1− pl∗k∗)xlixk′j + (pl∗k∗ − 1)xl′ixk′j .(5.5)

Lemma 5.8. In this lemma we note Op,q = Op,q(S2n).
(1) For any p,q, r ∈ AST2(n), there exists an algebra map

∆r
p,q : Op,q −→ Op,r ⊗Or,p

xij , 7−→
n∑

k=1

xik ⊗ xkj

and for any s ∈ AST2(n), the following diagrams commute

Op,q

∆r
p,q−−−−→ Op,r ⊗Or,p

∆s
p,q

y ∆s
p,r⊗1

y
Op,s ⊗Os,q

1⊗∆r
s,q−−−−−→ Op,s ⊗Os,r ⊗Or,q

Op,q

∆q
p,q

��

id

RRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRR

Op,q ⊗Oq,q
1⊗εq // Op,q

Op,q

∆p
p,q

��

id

RRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRR

Op,p ⊗Op,q
εp⊗1 // Op,q

(2) For any p,q ∈ AST(n), there exists an algebra map

Sp,q : Op,q(S2n) −→ Oq,p(S2n)op

x 7−→ xt

such that the following diagrams commute

Op,p

εp //

∆q
p,p

��

k
u // Op,q

Op,q ⊗Oq,p

1⊗Sq,p // Op,q ⊗Op,q

m

OO Op,p

εp //

∆q
p,p

��

k
u // Oq,p

Op,q ⊗Oq,p

Sp,q⊗1 // Oq,p ⊗Oq,p

m

OO

Proof. This is a straightforward verification. One way to simplify the computations is as follows.
For i, j, l, k ∈ {1, . . . , 2n} and p ∈ ASR2(n), put

Rkl
ij (p) = δi∗l∗δj∗k∗

(
1 + (−1)i−l + (−1)j−k + (−1)i−l+j−kpj∗i∗

)
With this notation, the second relations defining Op,q are∑

α,β

Rkl
αβ(p)xαixβj =

∑
α,β

Rαβ
ij (q)xkαxlβ

With this compact notation the verification that ∆r
p,q is well-defined is easy. �

The lemma ensures that we have a cogroupoid whose objects are the elements of AST2(n)
and whose algebras are the above algebras Op,q(S2n). The following lemma and Proposition
2.15 ensure that the cogroupoid is connected, and hence that each Op,q(S2n) is an Op(S2n)-
Oq(S2n)-bi-Galois object.

Lemma 5.9. We have Op,1(S2n) 6= (0) for any p ∈ AST2(n).
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Proof. Consider the algebra A presented by generators t1, . . . , tn submitted to the relations
t2i = 1, ∀i, titj = pijtjti. It is not difficult to check that A is a non-zero algebra (it is isomorphic
with the twisted group algebra kσ[(Z/2Z)n] for an appropriate 2-cocycle). One then checks that
there exists an algebra map

Op,1(Smn) −→ A

xij 7−→
δi∗,j∗

2
(1 + (−1)j−iti∗)

and hence Op,1(Smn) is a non-zero algebra. �

Proof of Theorem 5.7. The existence of the announced Op(S2n)-comodule algebra structure on
kp[x1, . . . , x2n] is left to the reader. Also the reader will check the existence of an algebra map

kp[x1, . . . , x2n] −→ kq[x1, . . . , xn]�Oq(S2n)Oq,p(S2n)

xi 7−→
n∑

k=1

xk ⊗ xki

for any p,q ∈ AST2(n). From this he will check, using the technique already used several
times (e.g. in the proof of Corollary 3.5), that the monoidal equivalence associated to the
Oq(S2n)-Op(S2n)-bi-Galois object Oq,p(S2n) transforms the algebra kq[x1, . . . , xn] into the al-
gebra kp[x1, . . . , xn]. Theorem 5.1 and the classical theorem on the structure of symmetric
polynomials conclude the proof. �

6. Yetter-Drinfeld modules

In this section the previous results and constructions are applied to Yetter-Drinfeld modules.
We give an application to Brauer groups of Hopf algebras, while an application to bialgebra
cohomology will be given at the end of the next Section.

Let H be a Hopf algebra. Recall that a (right-right) Yetter-Drinfeld module over H is a right
H-comodule and right H-module V satisfying the condition

(v ← x)(0) ⊗ (v ← x)(1) = v(0) ← x(2) ⊗ S(x(1))v(1)x(3)

The category of Yetter-Drinfeld modules over H is denoted YDH
H : the morphisms are the H-

linear H-colinear maps. Endowed with the usual tensor product of modules and comodules, it
is a monoidal category.

6.1. Monoidal equivalence between categories of Yetter-Drinfeld modules. Recently
some authors ([14, 4]) have used the fact that the Yetter-Drinfeld categories of Hopf algebras
that are cocycle deformation of each other are monoidally equivalent. This result is a particular
case of the following result.

Theorem 6.1. Let H and L be two Hopf algebras such that there exists a k-linear monoidal
equivalence between Comod(H) and Comod(L). Then there exists a a k-linear monoidal equiv-
alence between YDH

H and YDL
L.

A sketch of a quick proof of the theorem is as follows: the weak center (see the appendix in
[50]) of the category Comod(H) is monoidally equivalent with the category YDH

H , and hence
a monoidal equivalence between Comod(H) and Comod(L) will induce a monoidal equivalence
between YDH

H and YDL
L.

The result that the weak center of Comod(H) is YDH
H is stated in [50]. It is probably well-

known to many specialists, but to the best of my knowledge no complete proof is avalaible in
the litterarure (although it is similar to the more familiar module case). Hence it might be
useful to have a direct and more constructive proof using bi-Galois objects and cogoupoids. It
is the aim of the section to provide such a proof.

Proposition 6.2. Let C be cogroupoid, let X,Y ∈ ob(C) and let V be a right C(X,X)-module.
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(1) V ⊗ C(X,Y ) has a right C(Y, Y )-module structure defined by(
v ⊗ aX,Y

)
← bY,Y = v ← bX,X

(2) ⊗ SY,X(bY,X
(1) )aX,Y bX,Y

(3)

Endowed with the right C(Y, Y )-comodule defined by 1⊗∆Y
X,Y , V ⊗C(X,Y ) is a Yetter-

Drinfeld module over C(Y, Y ).
(2) If moreover V is Yetter-Drinfeld module, then V�C(X,X)C(X,Y ) is Yetter-Drinfeld sub-

module of V ⊗ C(X,Y ).

Note that when V = k is the trivial comodule, then the action of C(Y, Y ) on C(X,Y ) is the
Myashita-Ulbrich action (see [50], Definition 2.1.8).

Proof. We freely use Proposition 2.13. Let us first check that the above formula defines a right
C(Y, Y )-module structure on V ⊗ C(X,Y ). It is clear that (v ⊗ aX,Y ) ← 1Y,Y = v ⊗ aX,Y . We
have

(v ⊗ aX,Y )← (bY,Y cY,Y ) = v ← (bX,X
(2) cX,X

(2) )⊗ SY,X(bY,X
(1) c

Y,X
(1) )aX,Y bX,Y

(3) c
X,Y
(3)

= (v ← bX,X
(2) )← cX,X

(2) ⊗ SY,X(cY,X
(1) )SY,X(bY,X

(1) )aX,Y bX,Y
(3) c

X,Y
(3)

=
(
v ← bX,X

(2) ⊗ SY,X(bY,X
(1) )aX,Y bX,Y

(3)

)
← cX,X

=
(
v ⊗ aX,Y ← bY,Y

)
← cY,Y

and hence V ⊗ C(X,Y ) is a right C(Y, Y )-module. We also have

((v ⊗ aX,Y )← bY,Y )(0) ⊗ ((v ⊗ aX,Y )← bY,Y )(1)

= v ← bX,X
(2) ⊗∆Y

X,Y (SY,X(bY,X
(1) )aX,Y bX,Y

(3) )

= v ← bX,X
(3) ⊗ SY,X(bY,X

(2) )aX,Y
(1) b

X,Y
(4) ⊗ SY,Y (bY,Y

(1) )aY,Y
(2) b

Y,Y
(5)

= ((v ⊗ aX,Y
(1) )← bY,Y

(2) )⊗ SY,Y (bY,Y
(1) )aY,Y

(2) b
Y,Y
(3)

= (v ⊗ aX,Y )(0) ← bY,Y
(2) ⊗ SY,Y (bY,Y

(1) )(v ⊗ aX,Y )(1)b
Y,Y
(3)

and this shows that V ⊗ C(X,Y ) is a Yetter-Drindeld module over C(Y, Y ).
Assume now that V is a Yetter-Drinfeld module and let us check that V�C(X,X)C(X,Y ) is

Yetter-Drinfeld submodule of V ⊗ C(X,Y ). We already know that it is a subcomodule. Let∑
i vi ⊗ aX,Y

i ∈ V�C(X,X)C(X,Y ). We must check that

(
∑

i

vi ⊗ aX,Y
i )← bY,Y =

∑
i

vi ← bX,X
(2) ⊗ SY,X(bY,X

(1) )aX,Y
i bX,Y

(3) ∈ V�C(X,X)C(X,Y )

We have ∑
i

(vi ← bX,X
(2) )(0) ⊗ (vi ← bX,X

(2) )(1) ⊗ SY,X(bY,X
(1) )aX,Y

i bX,Y
(3)

=
∑

i

vi(0) ← bX,X
(3) ⊗ SX,X(bX,X

(2) )vi(1)b
X,X
(4) ⊗ SY,X(bY,X

(1) )aX,Y
i bX,Y

(5)

=
∑

i

vi ← bX,X
(3) ⊗ SX,X(bX,X

(2) )aX,X
i(1) b

X,X
(4) ⊗ SY,X(bY,X

(1) )aX,Y
i(2) b

X,Y
(5)

=
∑

i

vi ← bX,X
(2) ⊗∆X

X,Y (SY,X(bY,X
(1) )aX,Y

i bX,Y
(3) )

which gives the result. �

Theorem 6.3. Let C be connected cogroupoid. Then for any X,Y ∈ ob(C), the functor

YDC(X,X)
C(X,X) −→ YD

C(Y,Y )
C(Y,Y )

V 7−→ V�C(X,X)C(X,Y )

is an equivalence of k-linear monoidal categories.
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Proof. First we have to check that we indeed have a functor, i.e. that if f : V −→ W is a
morphism of Yetter-Drinfeld modules, then f ⊗ 1 : V�C(X,X)C(X,Y ) −→ W�C(X,X)C(X,Y ) is
a morphism of Yetter-Drindeld modules. We already know it is colinear, and it is not difficult
to check that it is also C(Y, Y )-linear. Hence we have our functor

F : YDC(X,X)
C(X,X) −→ YD

C(Y,Y )
C(Y,Y )

V 7−→ V�C(X,X)C(X,Y )

Consider the symmetrically defined functor

G : YDC(Y,Y )
C(Y,Y ) −→ YD

C(X,X)
C(X,X)

V 7−→ V�C(Y,Y )C(Y,X)

We know from Theorem 2.12 and its proof that these are inverse equivalences on comodules and
hence we have to check that the comodule isomophisms G ◦ F ∼= id and F ◦ G ∼= id are linear.
The first isomorphism is given for V ∈ Comod(C(X,X)) by

θV : V −→ (V�C(X,X)C(X,Y ))�C(Y,Y )C(Y,X)

v 7−→ v(0) ⊗∆Y
X,X(v(1)) = v(0) ⊗ v

X,Y
(1) ⊗ v

Y,X
(2)

For aX,X ∈ C(X,X), we have

θV (v ← aX,X) = (v ← aX,X)(0) ⊗∆Y
X,X((v ← aX,X)(1))

= v(0) ← aX,X
(2) ⊗∆Y

X,X(SX,X(aX,X
(1) )v(1)a

X,X
(3) )

= v(0) ← aX,X
(3) ⊗ SY,X(aY,X

(2) )vX,Y
(1) aX,Y

(4) ⊗ SX,Y (aX,Y
(1) )vY,X

(2) a
Y,X
(5)

= ((v(0) ⊗ v
X,Y
(1) )← aY,Y

(2) )⊗ SX,Y (aX,Y
(1) )vY,X

(2) a
Y,X
(3)

= (v(0) ⊗ v
X,Y
(1) ⊗ v

Y,X
(2) )← aX,X = θV (v)← aX,X

So θV is C(X,X)-linear, and we have inverse equivalences of Yetter-Drinfeld module categories.
We have to check that F is monoidal. It is clear that k ∼= F(k) is C(Y, Y )-linear and hence it

remains to check that for V,W ∈ YDC(X,X))
C(X,X) the C(Y, Y )-colinear isomorphism

F̃V,W : (V�C(X,X)C(X,Y ))⊗ (W�C(X,X)C(X,Y )) −→ (V ⊗W )�C(X,X)C(X,Y )

(
∑

i

vi ⊗ aX,Y
i )⊗ (

∑
j

wj ⊗ bX,Y
j ) 7−→

∑
i,j

vi ⊗ wj ⊗ aX,Y
i bX,Y

j
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is C(Y, Y )-linear. For cY,Y ∈ C(Y, Y ) we have

F̃V,W

(
∑

i

vi ⊗ aX,Y
i )⊗ (

∑
j

wj ⊗ bX,Y
j )

← cY,Y


= F̃V,W

∑
i,j

vi ← cX,X
(2) ⊗ SY,X(cY,X

(1) )aX,Y
i cX,Y

(3) ⊗ wj ← cX,X
(5) ⊗ SY,X(cY,X

(4) )bX,Y
j cX,Y

(6)


=
∑
i,j

vi ← cX,X
(2) ⊗ wj ← cX,X

(5) ⊗ SY,X(cY,X
(1) )aX,Y

i cX,Y
(3) SY,X(cY,X

(4) )bX,Y
j cX,Y

(6)

=
∑
i,j

vi ← cX,X
(2) ⊗ wj ← cX,X

(3) ⊗ SY,X(cY,X
(1) )aX,Y

i bX,Y
j cX,Y

(4)

=

∑
i,j

vi ⊗ wj ⊗ aX,Y
i bX,Y

j

← cY,Y

= F̃V,W

(
∑

i

vi ⊗ aX,Y
i )⊗ (

∑
j

wj ⊗ bX,Y
j )

← cY,Y

This finishes the proof. �

Theorem 6.1 now follows from Theorem 2.10 and Theorem 6.3.

6.2. Application to Brauer groups of Hopf algebras. In this section we briefly indicate
applications of the previous considerations to Brauer groups of Hopf algebras.

Let H be a Hopf algebra. Recall that for V,W ∈ YDH
H , the linear map

cV,W : V ⊗W −→W ⊗ V
v ⊗ w 7−→ w(0) ⊗ v ← w(1)

defines a prebraiding on YDH
H (see e.g. the appendix in [50]) which is a braiding if the antipode

of H is bijective.
The Brauer group Br(H) of a Hopf algebra H with bijective antipode is defined as the Brauer

group of the braided category of finite-dimensional Yetter-Drinfeld modules over H [61].
Chen and Zhang [14] observed that for σ ∈ Z2(H) there is an equivalence of braided monoidal

categories between YDH
H and YDHσ

Hσ and the Brauer group of a braided monoidal category clearly
being an invariant of the braided category, this yields a group isomorphism Br(H) ∼= Br(Hσ).
To generalize the result to general monoidal equivalences Comod(H) ∼=⊗ Comod(L), one may
use the center argument or it is enough to check that the monoidal equivalence of Theorem 6.3
is a braided equivalence.

Proposition 6.4. Let C be connected cogroupoid. Then for any X,Y ∈ ob(C), the monoidal
equivalence

YDC(X,X)
C(X,X)

∼=⊗ YDC(Y,Y )
C(Y,Y )

in Theorem 6.3 is an equivalence of prebraided categories.

Proof. We have to check that the diagram

(V�C(X,X)C(X,Y ))⊗ (W�C(X,X)C(X,Y ))
eFV,W−−−−→ (V ⊗W )�C(X,X)C(X,Y )

c−,−

y cV,W⊗1

y
(W�C(X,X)C(X,Y ))⊗ (V�C(X,X)C(X,Y ))

eFW,V−−−−→ (W ⊗ V )�C(X,X)C(X,Y )
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is commutative. We have

F̃V,W ◦ c−,−

(
∑

i

vi ⊗ aX,Y
i )⊗ (

∑
j

wj ⊗ bX,Y
j )


= F̃V,W

∑
i,j

(wj ⊗ bX,Y
j )(0) ⊗ (vi ⊗ aX,Y

i )← (wj ⊗ bX,Y
j )(2)


= F̃V,W

∑
i,j

wj ⊗ bX,Y
j(1) ⊗ (vi ⊗ aX,Y

i )← bY,Y
j(2)


= F̃V,W

∑
i,j

wj ⊗ bX,Y
j(1) ⊗ vi ← bX,X

j(3) ⊗ SY,X(bY,X
j(2))a

X,Y
i bX,Y

j(4)


=
∑
i,j

wj ⊗ vi ← bX,X
j(3) ⊗ b

X,Y
j(1) SY,X(bY,X

j(2))a
X,Y
i bX,Y

j(4)

=
∑
i,j

wj ⊗ vi ← bX,X
j(1) ⊗ a

X,Y
i bX,Y

j(2) =
∑
i,j

wj(0) ⊗ vi ← wX,X
j(1) ⊗ a

X,Y
i bX,Y

j

= (cV,W ⊗ 1) ◦ F̃V,W

(
∑

i

vi ⊗ aX,Y
i )⊗ (

∑
j

wj ⊗ bX,Y
j )


and we are done. �

Corollary 6.5. Let H, L be Hopf algebras. If Comod(H) ∼=⊗ Comod(L) then Br(H) ∼= Br(L).

7. Homological algebra applications

This section is devoted to various applications in homological algebra. The first two subsec-
tions deal with Hochschild (co)homology of Hopf-Galois objects and comodule algebras. We
do not recall the definitions related to Hochschild homology (see [33] for a concise introduction
and the references therein). We will not try to give the more complete and strongest results,
but we will concentrate on simple concrete applications. The last section deals with bialgebra
cohomology introduced by Gerstenhaber and Schack [23, 24].

7.1. Homology of Hopf-Galois objects. In this subsection we explain how to relate the
(co)homology of a Hopf-Galois object to the (co)homology of the underlying Hopf algebra. A
deeper study is done in [52].

Theorem 7.1. Let H be a Hopf algebra and let A be left H-Galois object. There exists two
functors ′,′′ : Bimod(A) −→ Bimod(H), such that for any A-bimodule M we have

∀n ≥ 0, Hn(A,M) ∼= Hn(H,M ′) and Hn(A,M) ∼= Hn(H,M ′′)

We begin with a lemma.

Lemma 7.2. Let H be a Hopf algebra and let A be left H-Galois object.
(1) Let M be a left A-module. For any n ≥ 0, the linear map

A⊗n ⊗M −→ H⊗n ⊗M
a1 ⊗ · · · ⊗ an ⊗m 7−→ a1(−1) ⊗ · · · ⊗ an(−1) ⊗ a1(0) · · · an(0) ·m

is an isomorphism.
(2) Let M be a right A-module. For any n ≥ 0, we have a linear isomorphism

Homk(A⊗n,M) ∼= Homk(H⊗n,M)
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Proof. By Theorem 2.11 we can assume thatH = C(X,X) andA = C(X,Y ) for objectsX,Y of a
connected cogroupoid C. If M is a left A-module, the inverse isomorphism H⊗n⊗M → A⊗n⊗M
is given by

aX,X
1 ⊗ · · · ⊗ aX,X

n ⊗m 7−→ aX,Y
1(1) ⊗ · · · ⊗ a

X,Y
n(1) ⊗ SY,X(aY,X

1(2) · · · a
Y,X
n(2)) ·m

Assume now that M is a right A-module. Consider the linear map

Homk(A⊗n,M) −→ Homk(H⊗n,M)

f 7−→ f̂ , f̂(aX,X
1 ⊗ · · · ⊗ aX,X

n ) = f(aX,Y
1(1) ⊗ · · · ⊗ a

X,Y
n(1)) · SY,X(aY,X

1(2) · · · a
Y,X
n(2))

The inverse is given by g 7−→ g̃, where

g̃(aX,Y
1 ⊗ · · · ⊗ aX,Y

n ) = g(aX,X
1(1) ⊗ · · · ⊗ a

X,Y
n(1)) · a

X,Y
1(2) · · · a

X,Y
n(2)

and we have our result. �

Proof of Theorem 7.1. Again we can assume that H = C(X,X) and A = C(X,Y ) for objects
X,Y of a connected cogroupoid C. Let M be an A-bimodule. It is straighforward to check that
one defines an H-bimodule structure on M by letting

aX,X ·m = εX(aX,X)m, m · aX,X = SY,X(aY,X
(2) ) ·m · aX,Y

(1)

This H-bimodule is denoted M ′, and we get a functor Bimod(A) −→ Bimod(H), M 7−→M ′.
Similarly there is an H-bimodule structure on M defined by

aX,X ·m = aX,Y
(1) ·m · SY,X(aY,X

(2) ), m · aX,X = εX(aX,X)m

This H-bimodule is denoted M ′′, and we get a second functor Bimod(A) −→ Bimod(H), M 7−→
M ′′. It is not difficult to check that the linear isomorphisms of the previous lemma induce
isomorphisms between the standard complexes

C∗(A,M) ∼= C∗(H,M ′), C∗(A,M) ∼= C∗(H,M ′′)

defining Hochschild homology and cohomology respectively. See [33] (note that for C∗(A,M)
one has to switch M ⊗A⊗∗ to A⊗∗ ⊗M). �

Corollary 7.3. Let q ∈ k∗ and let F ∈ GLn(k) satisfying tr(F−1F t) = −q− q−1. Then for any
p > 3 and any B(Eq, F )-bimodule M , we have Hp(B(Eq, F ),M) = (0) = Hp(B(Eq, F ),M).

Proof. It is known that for any Oq(SL2(k))-bimodule M one has Hp(Oq(SL2(k)),M) = (0) =
Hp(Oq(SL2(k)),M) if p > 3 (see e.g. [28]). Hence since B(Eq) = Oq(SL2(k)), the result follows
from Corollary 3.5 and Theorem 7.1. �

7.2. Equivariant resolutions for comodules algebras. In this subsection we show how to
use monoidal equivalences to get informations on the Hochschild (co)homology of a comodule
algebra, by transporting appropriate resolutions. We apply this to the previous algebras AF,t

(with F invertible) to get the following result. The techniques are taken from [37, 45], where
more general algebras are studied.

Theorem 7.4. Let F ∈ GLn(k) and t ∈ {0, 1}. Then for any AF,t-bimodule M and any m > 2
we have Hm(AF,t,M) = (0) = Hm(AF,t,M).

The idea is that we can transport well-known resolutions for the quantum plane kq[x, y] and
for the quantum Weyl algebra Aq

1(k) to AF,t through a monoidal equivalence.
We begin with some generalities. If A is any algebra, we denote by Ae the algebra A⊗Aop.

The categories of A-bimodules and of Ae-modules are identified in the usual manner.

Definition 7.5. Let H be a Hopf algebra and let A be a right H-comodule algebra. An H-
equivariant free resolution of A is an exact sequence

· · ·A⊗ Vn+1 ⊗ A
dn+1−−−−−−→ A⊗ Vn ⊗ A

dn−−−−−−→ · · ·A⊗ V2 ⊗ A
d2−−−−−−→ A⊗ V1 ⊗ A

d1−−−−−−→ A⊗ A
d0=m

−−−−−−→ A −−−−−−→ 0

where ∀n ≥ 1, Vn is an H-comodule and dn is a left A-linear, right A-linear and right H-colinear
map.
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An H-equivariant free resolution of A is in particular a resolution of A by free Ae-modules.

Proposition 7.6. Let H, L be Hopf algebras and assume that there exists a k-linear monoidal
equivalence F : Comod(H) ∼=⊗ Comod(L). Let A be a right H-comodule algebra. Then any
H-equivariant free resolution of A

· · ·A⊗ Vn+1 ⊗ A
dn+1−−−−−−→ A⊗ Vn ⊗ A

dn−−−−−−→ · · ·A⊗ V2 ⊗ A
d2−−−−−−→ A⊗ V1 ⊗ A

d1−−−−−−→ A⊗ A
d0=m

−−−−−−→ A −−−−−−→ 0

induces a L-equivariant free resolution of F (A)
· · ·F (A)⊗ F (Vn+1)⊗ F (A) −−−−−→ F (A)⊗ F (Vn)⊗ F (A) −−−−−→ · · ·

· · ·F (A)⊗ F (V1)⊗ F (A) −−−−−→ F (A)⊗ F (A) −−−−−→ F (A) −−−−−→ 0

Proof. The L-equivariant free resolution of F (A) is defined through the commutative diagram
· · ·F (A)⊗ F (Vn+1)⊗ F (A) −−−−−→ F (A)⊗ F (Vn)⊗ F (A) · · · −−−−−→ F (A)⊗ F (A) −−−−−→ F (A) −−−−−→ 0

eF??y eF??y eFA,A

??y ‚‚‚
· · ·F (A⊗ Vn+1 ⊗A)

F (dn+1)
−−−−−−→ F (A⊗ Vn ⊗A) · · · F (d1)−−−−−→ F (A⊗A)

F (m)−−−−−→ F (A) −−−−−→ 0

where the F̃ ’s denote the monoidal constraints of F (the maps on the top of the diagram are
F (A)-linear by definition of the algebra structure on F (A)). �

We now apply these considerations to the algebras AF,t by using the algebras kq[x, y] and
Aq

1(k). These algebras are Oq(SL2(k))-comodule algebras and the associated classical Kozsul
type resolution are Oq(SL2(k))-equivariant.

Proposition 7.7. For Aq,t = AE−1
q ,t, t ∈ {0, 1}, Aq,t = k〈x, y〉/(yx − qxy = t1), we have an

Oq(SL2(k))-equivariant free resolution of Aq,t

0 −−−−→ Aq,t ⊗Aq,t −−−−→ Aq,t ⊗ V ⊗Aq,t −−−−→ Aq,t ⊗Aq,t −−−−→ Aq,t −−−−→ 0

where V = kx⊕ ky.

Proof. The resolution is

0 −−−−→ Aq,t ⊗Aq,t
γ−−−−→ Aq,t ⊗ V ⊗Aq,t

m⊗1−1⊗m−−−−−−−→ Aq,t ⊗Aq,t
m−−−−→ Aq,t −−−−→ 0

where γ is the unique Aq,t-bimodule map such that

γ(1⊗ 1) = −qx⊗ y ⊗ 1− q1⊗ x⊗ y + y ⊗ x⊗ 1 + 1⊗ y ⊗ x
See [31, 62] for the verification that this complex of Aq,t-bimodules is exact. It is straightforward
to check that γ is Oq(SL2(k))-colinear, and since the multiplication of a comodule algebra is
colinear, we conclude that we indeed have an Oq(SL2(k))-equivariant resolution of Aq,t. �

Proof of Theorem 7.4. First assume that there exists q ∈ k∗ such that tr(F−1F t) = −q −
q−1, so that B(Eq, F

−1) is a Oq(SL2(k))-B(F−1)-bi-Galois object. The result follows by using
Propositions 5.4, 7.7, 7.6 and the definition of Hochshild (co)homology by Tor and Ext.

Otherwise let k ⊂ k′ a field extension such that there exists q ∈ k′∗ such that tr(F−1F t) =
−q − q−1. Propositions 7.7 and 7.6 yield a k′ ⊗B(F−1)-equivariant free resolution of k′ ⊗AF,t.
Writing explicitely this resolution we see that it is obtained by tensoring an exact sequence of
the following type with k′

0 −−−−→ AF,t ⊗AF,t −−−−→ AF,t ⊗ VF ⊗AF,t −−−−→ AF,t ⊗AF,t −−−−→ AF,t −−−−→ 0

which is therefore a resolution of AF,t by free Ae
F,t-modules, and we are done. �

Remark 7.8. The algebras AF,0 are studied directly by Dubois-Violette in [19] by using Koszul
algebras techniques.

Remark 7.9. Let us briefly explain how one can also use a monoidal equivalence to deduce the
well-known resolution for kq[x, y] of Proposition 7.7 from the even more well-known resolution
for k[x, y]. For this consider the resolution of Proposition 7.7 at q = 1 slightly modified as
follows:
0 −−−−−→ k[x, y]⊗ det⊗ k[x, y] −−−−−→ k[x, y]⊗ V ⊗ k[x, y] −−−−−→ k[x, y]⊗ k[x, y] −−−−−→ k[x, y] −−−−−→ 0
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where det is the one dimensional O(GL2(k))-comodule associated to the determinant. This
resolution is formed by O(GL2(k))-colinear maps. Consider now the AST-matrix

q =
(

1 q
q−1 1

)
Put Oq,q−1(GL2(k)) = Oq(GL2(k)) (see Subsection 3.4). The reader will check that the
monoidal equivalence of Corollary 3.18 transforms the O(GL2(k))-comodule algebra k[x, y] into
the Oq,q−1(GL2(k))-comodule algebra kq[x, y]. Hence one gets the resolution of Proposition 7.7
by using Proposition 7.6.

Of course we could not use Oq(SL2(k)) to get the resolution because there does not exists a
monoidal equivalence bewteen O(SL2(k)) and Oq(SL2(k)) if q 6= 1.

7.3. Application to bialgebra cohomology. The cohomology of a bialgebra was introduced
by Gerstenhaber and Schack [24, 23]: it is defined by means of an explicit bicomplex whose
arrows are modelled on the Hochschild complex of the underlying algebra and columns are
modelled on the Cartier complex of the underlying coalgebra. If H is a Hopf algebra, let us
denote by H∗

b (H) the resulting cohomology. Taillefer [56] proved that

H∗
b (H) ∼= Ext∗M(H)(H,H)

where M(H) is the category of Hopf bimodules over H. Combined with the monoidal equiva-
lence between Hopf bimodules and Yetter-Drinfeld modules [48], this yields an isomorphism

H∗
b (H) ∼= Ext∗YDH

H
(k, k)

Moreover it is proved in [55] that if H and L are Hopf algebras such that Mod(H) ∼=⊗ Mod(L),
then H∗

b (H) ∼= H∗
b (L). The proof is done by constructing a monoidal equivalence between

M(H) and M(L) from the given monoidal equivalence between Mod(H) and Mod(L) (the
construction was done by using the dual notion of Hopf-Galois object from [53]) and by using
the Ext-description. Of course the argument works if one starts from a monoidal equivalence
between comodule categories. It is worth summarizing this in the following statement.

Theorem 7.10. Let H and L be two Hopf algebras. Assume that

Mod(H) ∼=⊗ Mod(L) or Comod(H) ∼=⊗ Comod(L)

Then H∗
b (H) ∼= H∗

b (L).

Note that explicit computations of H∗
b (H) are known only in very few cases: see [57] and the

references therein.
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