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I. HOPF ALGEBRA EXTENSIONS ARISING FROM FINITE GROUPS
Throughout in these notes, we work over a fixed ground k, unless otherwise stated.

1. Crossed products of a group. Let I' be a group (with unit 1), R a commutative algebra over k. Let
—: I'x R — R be an action of I' giving algebra automorphisms of R, o : I' x I' = R* a (normalized)
2-cocycle for the I'module R* (units of R). (I'~module means ZI'-module, as usual.) Thus, o satisfies

[ = o(y, 2)|o(@,y2) = alxy, 2)o(z,y), (L.1)
o(z,1)=0(l,2)=1 (normalizing condition), (1.2)
where z,y,z € I.

Let R+, I be the algebra defined as follows: R+,1' = @, Ru, as k-vector space, and it has the product
given by (auy)(Buy) = a(z — p)o(x, y)uyy, where a, 3 € R, z,y € I'. It has unit uy.

Definition 1.3. R *, I' is called the (left) I'-crossed product of I' over R determined by —,c. The set
{ugy|z € I'} is called a basis. The notion of right I'-crossed product over R determined by an action
—: R x T — R from the right and a 2-cocycle 7 : I' x I' — R* for the right I-module R* is defined
analogously.

Remark 1.4. 1. If —, o are both trivial, then R %, I' = RI, the group ring.
2. If o is trivial, then R #, I' = R X I'; the semidirect product.
3. R = Ruy is a subalgebra of Rx*, I'. It is central iff — is trivial. In this case, R*, I' = R'T', the twisted
group ring.

Note that R *, I' is a I'-graded algebra with z-component Ru,.

Proposition 1.5. R x, ' is characterized as the I'-graded algebra which contains an invertible element in
each component and whose 1-component is R.

Proof. In fact, the 1-component of R #, I' is R and each z-component Ru, contains the invertible element
U, with inverse
(up)™' = o o, a7,

Conversely, suppose that a I'-graded algebra R = D.er R, has these proper‘Eies. CI}OSG for every z € FNan
invertible element w, in the z-component. We may suppose uy = 1. Then R, = (qugl)uw C Ru, C R,
whence R, = Ru, and further R = @ o Ru,. Define — and o by

T — a=ugau;’, (1.6)

o(z,y) = uxuyu;yl. (1.7)
Then

(Tt )(Sty) = 1(UeSUp—1 gty gy = 1(x — $)0(T, Y) sy,

whence R = R #, I'. Here the associativity of R and the condition u; = 1 require T' to act by algebra
automorphisms, and ¢ to be a normalized 2-cocycle. O

The definition of — above is independent of the choice of the basis {u;} since R is commutative: we say
that R gives rise to —. It is clear that R *, I' gives rise to the originally given —.
We want to classify all I'-crossed products over R.

Definition 1.8. We say that R *, I' is equivalent to R+, I' (and denote R %, I' ~ R . I') if there is a map
(necessarily an isomorphism) f: R*, ' — R+, of I'-graded algebras preserving each element in R, i.e.
such that the following diagram commutes

R p— R

l l

R+, I —— Rx*,T
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If R*, 1"~ Rx*;I', then these give rise to the same action (this is why the action — is not indicated in
the notation R *, I'.)
Fix an action —: I' x R — R, and define

ELR,—) = {
Proposition 1.9. The map o — R *, I’ induces a bijection

HA(T, R¥) = E(T, R, —),

where H*(T', R*) is the second cohomology group of T with coefficients in R*, i.e. the group (with respect
to the point-wise product) of 2-cocycles modulo 2-coboundaries.

equivalence classes of all the I'-crossed
products over R giving rise to — '

A 2-cocycle o is called a 2-coboundary if there is a map
v: I — R* withv(l)=1
such that
o(z,y) = 0v(z,y) = [z — vy~ (ey)v(z) (,yeT).
Proof. Tt is left as an exercise. Hint: for f in Definition 1.8, set v(z) = f(u;)(u})~! and show ¢ = 79(v). O

We wonder which product (T, R, —) inherits from H*(T', R*). Let R, R’ be I'-crossed products over R
giving rise to a fixed action —. Then R ® R'is a T’ x I-crossed product over R ® R (@ = @x). Let ROR'
denote the sum of all (z,z)-components (z € ') in R @ R’, that is,

ROR = D R o R
zel’
a I'-crossed product over R ® R, which gives rise to the diagonal action of —. Now, take R ® R — R the

multiplication map, which is a morphism of I'-modules. This endows R® R with a structure of an R-module.
Form then the base extension

R-R := R®R®R(RDR/).
This gives rise to —, since

(uy @ul )@@ D(uy—1 @um)=(z —a)@(z—1)=z — a.
This is the Baer product of R and R'.

Corollary 1.10. The Baer product induces a product on E(I'yR,—). The bijection in Proposition 1.9
preserves the product. Hence E(I', R,—) forms an abelian group. ]

Exercise 1.11. The tensor product R @p R’ of the left R-modules rR and pR' is naturally a T x T' graded
vector space with 1-component R. Show that R - R' is naturally identified with the direct sum of all (z,2)-
components in R R R’, where x € T'.

2. Presentation by generators and relations. Let R be a commutative k-algebra. An R-ring is an
algebra R (over k) together with an algebra map R — R (we do not impose the image of R to be central
in R) For example, R *, I' with the inclusion R — R %, I', is an R-ring. It is often useful to present the
R-ring R *, I' by generators and relations. As an example, suppose I' = (), =< 2 >, the cyclic group of
order n (> 1) with generator z. Let R = R *, C,, for some —, 0. Define

dla)i=2z —a(a€R), E:=ul.
We have then that
¢ € Aut(R), ¢"=id; € R*, &) =¢. (2.1)
Moreover, the R-ring R has a generator u = u, and satisfies

uo = Pp(a)u (a € R);  u" = €1, (2.2)
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Lemma 2.3. These are defining relations for R.

Proof. Denote by R’ the R-ring generated by u with relations (2.2). As an algebra, Ris generated by u and
all elements in R with the relations (2.2) plus a3 = the product of @ and g in R (a,5 € R).

There is a unique R-ring map f : R’ — R such that f(u) = uy, and it is easy to see that this is surjective.
Since

R=R1® Ru, & --- & Ru" ™",

there is a unique left R-linear map ¢ : R — R’ such that g(ul) =u' (0 <i<n). Clearly fog =id. Regard
R as a left R-module along f,i.e., by a’a = f(a’)a (o’ € R, a € R). Then one sees that g is left R'-linear.
This, combined with (g o f)(1) = 1, yields that g o f = id, and hence that f is an isomorphism. O

Corollary 2.4. Given ¢, § which satisfy (2.1), the R-ring R’ defined as above is a C,-crossed product over
R with x*-component Ru*. Conversely, every C,-crossed product is obtained in this way.

Proof. The second statement follows from the Lemma, and hence we have to prove the first. In the proof
above, replace R by
M= Rmo® Rm1 & -+ Rmy,_q,

a free left R-module. Define an action of v on M by

N [ ela)mip (0< i< n—1)

)= { Goleme GZaZ
where a € R. One sees that, for a, 5 € R, 0 <i<mn,
u(Blam;)) = ¢(F)u(am;),
(wo---ou)am;) = ¢"(a)fm; = Eam; (n times u).

Hence the representation R — Endy(M) is extended to an R-ring map R’ — Endy(M) so that M gives rise
to a left R’-module. There is a unique left R'-linear map f: R’ — M such that f(1) = mg, while there is a
unique left R-linear map g : M — R’ such that g(m;) = u* (0 < i < n). Clearly fog =id. One sees that ¢
is left R'-linear and (g o f)(1) = 1, whence f is an isomorphism. We have

R=RI&Rud--® Ru",
a (,-crossed product over R. U

We now fix an action —: C, XR—R of algebra automorpNhisms. Let £ be in the subgroup (RX)O" of
Cy-invariants in R*. We write R¢ for the C),-crossed product R’ over R defined for ¢ :=— and €.

Proposition 2.5. The map € — Rg induces an isomorphism
(R*)" N(R") = E(Cy, R, —),
where N(R*) denotes the image of the norm map
n—1
N :R* = (RX)O", N(n)= H(wZ — 7).
=0
Proof. 1t follows from the Corollary that the correspondence gives a surjection (R*) — &(Cn, R, —),

which is seen to preserve the product. Suppose that f: Rg — Re gives an equivalence. There exists € R*
such that f(u) = nu'. Then

€= ) = Loy = ()" = Ne.
Conversely, if £ = N(n)¢’ for some 5 € R*, the unique R-ring map f: R¢ — R given by f(u) = nu/, gives
an equivalence. O

Exercise 2.6. Prove the Proposition by using the following result on group cohomologies:

H*(C\y M)~ M /N(M).
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3. Extensions of finite-dimensional Hopf algebras. To motivate what follows, we think about Hopf
algebras as being “morally” equivalent to groups in a contravariant way, as follows!

A A A G G G
Al sl sl s Tprod. Tunit Tinverse
AoA kA GxG { G

a Hopf subalgebra (K C A) «~ a quotient group (G — G)
a quotient Hopf algebra (A — A) «~ a subgroup (F C G)

Note that the kernel of G — G is the equalizer of the maps G = G x G defined by z +— (z,%), * — (z, 1).
Consequently, the (left) cokernel of K — A should be defined to be the coequalizer of the linear maps
A® K = Agiven by a @b+ ab, a @b+ ac(b); that is, A/AK™, where KT = ker(¢ : K — k). (This is not
necessarily a quotient Hopf algebra, but a quotient left A-module coalgebra.)

Note that the right cokernel G/F of F' — G is the coequalizer of the maps G x F' = G defined by
(z,y) — 2y, (z,y) — x. Consequently, the right kernel A°4 of A — A should be defined to be the equalizer
of the linear maps A = A @ A given by a — aqy ®ag), a— a® 1 (this is a left coideal subalgebra). The

left kernel 4 A is defined analogously.

Lemma-Definition 3.1. Let (A) = K - A= H be a sequence of finite-dimensional Hopf algebras and Hopf
algebra maps, and suppose that v is an injection and w is a surjection (we often suppose that ¢ is an inclusion
and © a quotient map). The following are equivalent:

1. A/JKTA=H,

2. AJAKT = H,

3. K = A°H

4. K =<HA,

Such a sequence (A) is called an extension of H by K.

Proof. 1 = 2. Apply the antipode (bijective) to each side of A/KTA = H to get S(A)/S(A)S(K*) = S(H).
Then A/AKT = H. Similarly, 2 = 1.

1 = 3. There is an isomorphism A ® A ~ A ® A given by ¢ @ b — ab(l) ® b(z), with inverse ¢ ® b —
aS(b(1)) @ b(z). One sees that this induces an isomorphism A g A ~ A ® A/KTA. If AJKTA = H, it
follows that

AH — {a € A|a(1) ® 7r(a<2)) =a®@mn(l)}
={aecAll®a=a®1lin AQxg A}
=K

since K, a Frobenius algebra, is a left (and right) K-module-direct summand in A.

2 = 4. Similar. . .

4 = 2. Dualizing (A), we have K* <~ A* £~ H*. Suppose 4, then K is the equalizer of A = H ® A,
whence K* is the coequalizer of A* = H* ® A*, i.e. K* = A*/(H*)TA*. From the proof of “1=3",
H* = (A*)°K" | which implies 2.

3 = 1. Similar. O

Proposition 3.2. Fvery extension (A) = K-> AL H of finite-dimensional Hopf algebras is cleft in the

following sense: there exists an isomorphism 0 : A= K @ H of left K -modules and right H -comodules which
preserves unit and counit (A is a left K-module along v and a right H-comodule along 7.) For such 0, we
define

¢ H— A, ¢h)=6""1®h).

!This correspondence is a functor if for instance we restrict to commutative finite-dimensional Hopf algebras from one side
and finite groups from the other, provided that k is algebraically closed.
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This is a right H-colinear map which is invertible under the convolution product and preserves unit and
counit. We define also

v: A=K, v(a)=(id®e)f(a).
This is a left K-linear map, which is invertible and preserves unit and counit.

Proof. See [Sch, Thm 2.4] or [MD, Thm 3.5]. O

Let F, G be finite groups, and consider the special case where

H = kF, the group-like Hopf algebra,
K = k% = (kG)*, the dual Hopf algebra of kG

Thus K = @, kes, where {e,} is the dual basis of {s}, and this forms a commutative Hopf algebra with
the following structure

€56y = Og€,, UNit = E €,

seEG
Aes) = Z e ® e—1,, e(es) = b1,
teG
S(es) = e,-1.

Proposition 3.3. Let (A) = k% 5 A L kF be an extension and take 0, ¢, v as in the previous Proposition.
Set u, = ¢(x) (x € F), vs =7%(s) (s € G). Then

1. A is a left F-crossed product over kK& with basis {u,}.cr (in particular, u; = 1).
2. A* is a right G-crossed product over k' with basis {vs}seq.
3. < ey, vsey >= b1500, (z,y € F, s,t € G).

Proof. 1. Being a right kF-comodule algebra with structure p = (id @ 7) 0 A, A is an F-graded algebra
with z-component A, = {a € Al|p(a) = a® 2} (z € F). Since ¢ is kF-colinear, u, € A,. Since ¢ is
invertible, u, € A*. Since ¢(1) =1, uy = 1.

2. Note that (4*) = k(& oA T KF s an extension, and that v* : kG — A* is unit preserving, left
kG-colinear and invertible. The proof then works as in 1.
3. < ey, vs6y >=< 0" (e; @), 07 (s D ey) >< €1, >< a6y >= 6516y
O

Corollary-Definition 3.4. Let (A), (A’) be extensions of kI’ by k“, and suppose that there is a Hopf
algebra map [ : A — A’ making the following diagram commutative

k& A kF
|l |
k& Al kF

Then, f is an isomorphism. In this case, (A) and (A') are said to be equivalent.
Proof. This holds since f is in particular a map of F-graded algebras preserving each element in k“. O

Exercise 3.5. Generalize the Corollary to arbitrary extensions of finite-dimensional Hopf algebras (or more
generally to cleft extensions of Hopf algebras).
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4. Extensions of kF' by k“. Let A be a vector space which has the properties 1-3 of Proposition 3.3.
Then the crossed products A, A* give rise to actions by algebra automorphisms

— Fxk% k% —kfxag-—k"
respectively. These are induced from actions of permutations
a:GEGxF -G, v:GxF—=F
so that
T — €y = €gqp1, €2 — S=€,1,, (vEF s€q).
The product of A is given, with respect to some basis {u, },cr, by means of a 2-cocycle
o:Fx F— (k%* = Map(G, k).
This is viewed as a map
c:Gx FxF—k*,
whose value is written as o(s;z,y). Then the (normalized) 2-cocycle condition is discribed as follows
(pampatuem s dsm e (oG oyen.
The product of A is given by
(esug)(etuy) = es(@ — ep)uzuy = es(x — er)o(z,y)ug, (4.2)
= 6555,15495—1‘7(957 y)uxy = 5s<x,t0(5§ Z, y)esuxy-
Similarly, the product of A* is given by
(vsex)(viey) = vor€ybu iy (8, 1Y),
where 7 : G x G x F' — Kk* is a map satisfying
(g e ek e o

We want to recover now the coalgebra structure of A from the algebra structure of A*. It follows from
3 in Proposition 3.3 that the left kG-comodule structure of A* is dualized exactly to the left k“-module
structure of A, i.e., k@ A — Ais dual to (t*@id)Agx : A* — kG @ A*. Hence Ay, e 4 are the left k& linear
maps (A® A is a left k% module through its comultiplication, and k is a left k%-module through its counit)
determined by

Aug) = Z T(8, 65 %) esUppy @ €4tly, (4.5)
s,t€G
eluy) =1 (4.6)
Proposition 4.7. 1. A is a bialgebra iff the following holds for all x,y € F, s,t € G.
o(st;x,y)T(s, t;ay) = o(s;tea, (taz)vy)o(t;z, y)r(s, a)r(sa(tea), taz;y) (4.8)
o(liz,y)=1=1(s1;1) (4.9)

{8[>$@/I(8[>$)((8<1$)[>y)

stax =(sa(tva))(tan)

2. If these hold, A is a Hopf algebra. Moreover, it forms an extension of kF by k& together with
L k9 — A, tles) = esuq,
T:A—kF, w(esuy)= 612
We write A = k% x, . kI (with >, < kept in mind), and denote the extension by (k< %, , kF").
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Proof. 1. A, ¢ are algebra maps iff the following hold for all z,y € F, s € G.

A(ul) = U ® (751 (411)
Augpty) = Aug)A(uy) (4.12)
A(uges) = Alug)A(es) (4.13)
e(uguy) = e(uy)e(uy) (4.14)
e(uges) = e(ug)e(es) (4.15)
We see that
(4.11) <= the right equality in (4.9) holds and t>1 =1 (t € G).
(4.12) <= (4.8) and the first equation in (4.10).
(4.13) <= the second equation in (4.10) holds.
(4.14) <= the left equality in (4.9) holds.
(4.15) <= laz=1(z € F).
In fact, we see for example for (4.12) that
LHS = Z U(St; z, y)T(Sv t; xy)esutbxy ® Etlgy,
s,t€G
RHS = Z T(Sv t; x)T(E, i; y)esut>x€§uﬁ>y @ erUgzely
s,t,5,teG
(we take s = sa(t>x), t =t ax since otherwise the summand would vanish)
= Z T(s,tix)T(sa(tea),taxsy)o(sitea, (taz) > y)o(t; 2, y)est(pe)((taz)py) © E1llzy-
s,t€G
These yield the second “ <= 7. Note that the conditions
spl=1(sel), laz=1(ze€l)
follow from (4.10). Then Part 1 follows.
2. The linear map § : A — A determined by
S(esuy) =o((sv ) soa;(sax) ™ r(s™h s w)_le(sqx)_l U( o)1
gives the antipode. See [Ho, Prop 3.13].
O

Lemma-Definition 4.16. The maps
GEGXFPSF

give actions of permutations and satisfy 4.10 iff the cartesian product F' X G forms a group with respect to
the product defined by

(z,8)(y, 1) = (z(s>y), (s ay)t)

whose unit is (1,1). In this case (F,G) is called a matched pair, and the group F' X G is denoted by F < (.
Proof. Straightforward. O

If (F,G) is a matched pair, then F' = F' x {1} and ¢ = {1} x G are subgroups of I 0 GG such that the
product map F x G — F < GG is a bijection. Conversely, if I and G are subgroups of a group 3 such that
the product map p : F' X G — ¥ is a bijection, then (F, ) forms a matched pair in a unique way so that
g F oo G — Y is an isomorphism. The actions are defined by the equation sz = (sez)(s<z) for s € G
and ¢ € F.

It follows from Proposition 3.3 that every extension (A) of kF by k® is equivalent to some
(kG .7 kF'). The actions >, < associated with k< *, - kF' are independent of choice of bases. (In other
words, if (k% , . kF) ~ (k% , .+ kF) then the associated actions are the same.)
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Definition 4.17. In this case, (A) is said to be associated with the matched pair (F,G) = (F,G, >, «). For
a fixed matched pair (F,G), we denote by

Opext(kF, k%)
the set of the equivalence classes of all extensions of kF by k& associated with (F,G).

5. Cohomological description of Opext(kF,k%). We now want to describe Opext(kF, k%) by some
cohomology group.
Let us fix a matched pair (F,G), and denote ¥ = F' 0a . Let

B=0—7Z%B,2B 2B, — ...
be the normalized bar resolution of the trivial left F-module Z. This means

By = ©i2e;erLF 24| .. |2,])  (a free left Z F-module),
n—1

dplzy] .. |an] = x1fae] . Jen] + (Z(—l)l[wﬂ ozl -cean]) F (D) @] - |@a—1]  (F-linear),
=1
e:By=2ZF —Z,e(x)=1 (z€F).
We define an action G B,, of Z-linear endomorphisms by

s(zlze] .. |zn]) = (spa)[(sax)pai|(sqazay) o x| .. |(s<qaay - pot) > Ty

One sees then that each B, is a left G-module and further a left ¥-module and that d,, ¢ turn out to be
Y-linear. Similarly, let
B=0—7Z<B 8B Zp ..

be the normalized bar resolution of the trivial right G-module Z. We make it into a resolution of right
Y-modules by defining the action B! “F given by

([snl---Is1]s)x = [sp < (Sp_1 -+ s15>2)| ... |s2a(s185p )]sy a(s>a)](sax).

We further regard B’ as a resolution of left ¥-modules by twisting the action via the inverse.
We now tensor B’ and B. over Z to obtain the double complex

d ®idl —d} ®idl

— id®d
B = BloB, < Blo B ——
di@idl —di@idl
id®dy

B6®B0 — B6®B1 —
where we applied the usual sign trick, changing the sign of the differentials in odd columns.

Exercise 5.1. Show that each left Y-module By @ B, is free with basis [s,|...|s1] @ [#1]...]zp], where
l#z, e F,1#s,€0.
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We regard k* as trivial left ¥-module and apply Homy,(—,k*) to B.. to obtain the double cochain complex

]

D = ol It
I I
DOO DlO

By Exercise 5.1, D?? = Homy (B, @z By, k*) is identified with

the abelian group of the maps f: G9 x FP — k* such that
f(s1,...,81521,...2p) = Lif either s,,...,81,29,...0r 2, =1 [~

Map  (G? x FP k™) := {

By deleting the first row and the first column from D™, we obtain

¢ = Map_ (G* x F' k*) N Map, (G* x F? k*) ——
Q'T QIT
Map, (G' x F1,kX) —2— Map, (G' x F2,kX) —— ... .
Let f € Map, (G? x FP,k*). Then 0f, 0'f are given as follows:

Of(Sqyve s S13T1, v, Tpg1) =
flsga(sgor - s1021), .. ,829(851>21),81 421322, , Tpy1)
p .
X Hf(slv"' R PR E 7R 790p+1)(_1)
=1
_1)ptl
Xf(sq,...,sl;xl,...xp)( nere.
O f(Sqatsevvr ST, - ,xp)(_l)p =
F(sgq1s.v 82381021, (s1921) > 2o, .., (ST 921 Tp_1) > Tp)
q .
X Hf(sq_H,... s Si1 S0y e e s ST Xy e 7%)(—1)
=1
_1)et1
X f(8gyeev, 81521, .. ,xp)( nert
(To see that df is as above, note that [s,|...|s1] @ z1[2za] ... |2ps1] = z1([s1] .. [s1]21 @ [22] .. . |2pt1]).)

The maps 0 : G x F? — k*, 7: G* x F — k* satisfy (4.1), (4.4), (4.8) and (4.9) iff (o,7) is a 1-cocycle
in the total complex Tot(C). Therefore we obtain by Proposition 4.7 Part 2 the map Z!(Tot(C")) —
Opext(kF, k%) given by (o, 7) + the equivalence class of (k% *, , kF).

Proposition 5.2. This map induces a bijection
HY(Tot(C™)) ~ Opext(kF, k).

Proof. Tt follows from Proposition 4.7 Part 1 that the map is a surjection. Let (o,7), (o', 7') be 1-cocycles. If
v is a 0-cochain such that o' = 0dv, 7/ = 70'v, then e ul, — v(s;¢)esu, gives an equivalence (kG*g/J/kF) ~
(k% *, . kF). Conversely, any equivalence is given in this way by some v, in which case ¢’ = ¢dv, 7/ = 79'v
by a simple computation. O
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We wonder now which product Opext(kF, k) inherits from H'(Tot(C")). Let (A), (A’) be extensions
associated with the fixed matched pair (F, ). By forming the Baer product of the left F-crossed products
A, A’ over k¥, we obtain the k®-ring A - A’. It follows from the right version of Exercise 1.11 that this is the
dual of the Baer product A*- A’ of the right G-crossed products A*, A’ over kf'. Hence A-A’is a coalgebra
giving a coalgebra map onto kF. If we present A, A’ in the form A4 = (k% %, kF), A" = (k% %,/ kF), we
see that A+ A" = k% %,/ ... kF, and hence obtain an extension (A - A’) associated with (¥, G).

Corollary 5.3. The product defined by
(A4)-(A) =(4-4)
induces a product in Opext(kF), kG). Then the bijection in Proposition 5.2 preserves product and hence

Opext(kF, k%) forms an abelian group. O

Opext(kF, k%) is called the Opext group associated with the matched pair (F,G). Its unit is the element
(k% %11 kF), which is called the split extension (since in this case ¢ has a coalgebra splitting and 7 has
an algebra splitting) and is denoted simply by (k% * kF). We denote by Aut(k® * kF') the group of the
auto-equivalences of (k& x kF).

Exercise 5.4. Let v be a 0-cocycle in Tot(C"). Show that esu, — v(s;z)esu, gives an auto-equivalence of
(kY x kF). Prove that this gives an isomorphism H°(Tot(C)) ~ Aut(k® x kF"). (Hint: see the proof of
Proposition 5.2.)

Exercise 5.5. Let (F,G) be a matched pair and define new actions F TrExGEa by
vds= (st e s=(s"taa™h)™h

Then, (G, F,v',<') is a matched pair (arising from the factorization (s,z) w (s71)°P(271)°P, which gives
G x F2(F = G)®), and hence the Opext group Opext(kG, k") is defined. Show that the map (A) — (A*)
gives an isomorphism Opext(kF, k) ~ Opext(kG, kT').

Exercise 5.6. Define the category of all matched pairs (F,G). Show that (F,G) — Opext(kF,k%) gives a
group-valued functor. (This implies that, if (F,G) ~ (F',G"), then Opext(kF,k) ~ Opext(kF", kG/).)

6. Sample computation I. The trivial action o : G x F' — F and an action <« : G x F' — G of group-
automorphisms make (F, ) into a matched pair, so that F' e« G = F X (G, the semi-direct product.
As an example, we suppose

F=Cy={(x|a*=1),
G=C,xCp=(s,t|s"=1=1", ts = st),
with > trivial and < given by
st ax =t (i,5 € Z/n).
Let us consider the matched pair (Csq, C,, x C},) with these actions.

Theorem 6.1. If (k*)" = k*, then the Opext group associated with the matched pair just defined is given
by

Opeat(kCq, kX ~ p (k),
where p, (k) is the group of n-th roots of 1 in k.
Proof. Define K := k&*n = D jezyn keij, where {e;;} is the dual basis of {57}, Let ¢ € p,(k), and
define an extension (A¢) associated with the matched pair as follows: first, define A = A¢ to be the K-ring
generated by u with relations

2 _ .. = e
u = g (e, ue;; = eju.

]
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Then, by the first part of Corollary 2.4,
A=K1& Ku (afreeleft K-module).
Next, define K-ring maps A: A —- A® A, ¢: A —k by
Au) = Z (Pesiu @ epqu, e(u) = 1.
13pg
To show that A is well defined, we see that
Aw)? = Y (" e’ @ epgeqpu®

1jpq
IJPQ

= Z ij-l-iqeijuz ® epqu2
ijpq
= Z C(Hp)(ﬁq)eﬁ © €pg = A(u?),
ijpq
and similarly that
Alu)A(eij) = Aleji) Au).
Further, to show that (A, A,¢) is a bialgebra, we see that

(id @ A)o A(u) = Z (Peiiu @ Alepgu)

15pg

= Z Cja+jr+breiju ® €apth ® €551
ijabrs

= 3" (T Alepgu) © ergu = (A @id) 0 Alu),
rgrs

and similarly that
(id®e)oAlu)=1= (e ®id) o Alu).
It is straightforward to verify that the anti-algebra map S : A — A determined by S(u) = u, S(e;;) =e_;_;
gives an antipode of A = A;. Finally we see that
(AC) =K < AC KN kCQ
is an extension associated with the matched pair, where ¢ is the natural map and 7 is the Hopf algebra map
determined by
m(ei;) = e(e;)l, m(u) = .

Clearly, (A1) is the split extension. It is easy to see that (A¢) - (A¢r) ~ (A¢er). Moreover, if (A¢) ~ (A1)

then A¢ is cocommutative, and so ¢ = 1. Thus the map

w, (k) — Opext(kCy, K), ¢+ class of (A¢)
is a monomorphism.
It remains to show that any (A) is equivalent to some (A¢). There exist bases uqy = 1, u, in A and
vy =1, v, vg,... in A* with the properties (1)—-(3) in Proposition 3.3. We denote
a = (vs)nv B = (vt)nv T = vt_lvs_lvtvsv
which are units in k“2. Let {eg,e;} C k“2 be the dual basis of {1,2} C kC5. Then a has the form
a=¢ey+cer (cek™)

(the coefficient of eg equals 1 since < v,,1 >= 1). Since (k*)” = k* by assumption, there exists an n-th
root {/c of ¢ in k*. By replacing vs by vs(eg + (/c)"ter), we may suppose that @ = 1, and similarly that
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§ = 1. By computing v, vs---vs in the two ways (using a from one side, and using v n times from the
——
i3
other), it follows that v = 1, and so that v = eg + (ey for some ¢ € p, (k). We may suppose that
vy = viv] (1,5 € Zn).

Then we see that

i Pl ~— itp, e e, [ P (k=1=1)
< Alug ), vovier @ vEvle; >=< uy, gy Poi 1y Pey >= { 0 (otherwise),
and so that
Aug) = Z ijeijux ®) €pgly.
1jpq
Write 6 = u2 (€ K*). Since u,6 = éuy, 6 is of the form § = > ij Cijeij, where ¢;; = ¢j; € k™, coo = 1. Since
A(u,)? = A(8), we have

19+3p,.. . . _ . .
E :C CijCpa€i; X €pg = E :Cz-l—m-l—qew ® €pgq,

ijpg 1Jpq
and hence
Citpjtqg = Ciq—l—jpcijcpq (4,J,0.q € Z/n).
Let £ = ¢10 = co1. Then, £ € p, (k) and

Ciy = Cijciocoj = Cij €10° - C10C01 * * - Co1
é j
= ¢UEH (.5 € Ln).
The K-ring map f: A¢ — A determined by
flwy =037 leue
ij€Zfn
gives an equivalence (A¢) ~ (A). In fact, f is well defined since
flu =3 € ejui = (Ve
We see further that
A(f(u)) = D" P Peiju, @ epguy = (f @ f) o Alu),

1Jpq

and that f is compatible with ¢, 7. O

Exercise 6.2. Let p < q be primes such that ¢ Z 1 mod p. Prove that either if (k* )P = k* or if (k*)? = k*,
then any extension of kC), by kCq is equivalent to the trivial one k% — k% @ kC, — k(.

7. The Kac exact sequence. We fix a matched pair (), ). Recall the double complexes C, D" defined
in Section 5. The dimension shifting C"*t1++1 of " (i.e. the double complex obtained by replacing each
term in the first row and the first column of D by the trivial groups 1) is a sub-double complex of D". The
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quotient complex E~ := D~ /C T+l Jooks as follows:

Map, (G*, k%) 1 1

Map, (G, k") 1 1

Kk Map, (F,k*) — Map, (F? k*) —--- .

The complexes in the edges of this double complex are the standard complexes for computing H (F,k*)
and H(G,k*), respectively (note that the cohomology groups H'(—,k*) for the left trivial module k* and
for the right trivial module k* are the same). Hence,

H"Tot(E™) = H™(F,k*) & H™(G,k*) (n > 0). (7.1)

Recall that D" is obtained by applying Hompwa(—,k*) to B... The next Lemma says that Tot(B..) is a
free resolution of the trivial left F' 0« G-module Z with the augmentation

B6 @7 By = ZG @7 ZFEQSEZ.
Hence we have
H"Tot(D") = Ext%MG(Z,kX) = H"(F G,kx) (n>0). (7.2)

Lemma 7.3 (Weil). In general, let

L

B.. = di1
BOl Bll
o | 4y |
dio
BOO BlO

be a double complex with exact columns, and let

B. =0 — Coker &y, & Coker &}, & Coker d — ---

be the chain complex induced from the bottom row of B... Then the natural epimorphism Tol(B.) — B.
induces isomorphisms

H,Tot(B.)~ H,(B.) (n>0).
Hence, if H,(B.) =0 for all n > 0, then Tot(B..) gives a resolution of Ho(B.) = Coker d;.
Proof. See for example [SS, Thm 10.1.1]. O
If we consider the long exact cohomology sequence arising from the short exact sequence
0 — Tot(C'TH*1) — Tot(D") — Tot(E") — 0
of cochain complexes and apply Corollary 5.3, Exercise 5.4, (7.1) and (7.2), then the next Theorem follows.
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Theorem 7.4 ([K]). We have the following exact sequence
0 — HY(F s Gk HY P %) @ HYG K) — Aut(k® « kF)
—HA(F s G ) T (R KY) @ HY(GLKY) — Opeat(kF, kC)

—H(F s G ) TS 3 (R k) @ HE(GLKY),
where res' (i = 1,2,3) are induced from the restriction maps of cohomology groups for F C F a1 G D G.
Exercise 7.5. Show in the same way as in (7.2) that

Opeat(kF, k%) = Erth o(ZG)T @z (ZF)T,k*),

Aut(k ¥ kF) = Homppc(ZG)* @7 (ZF)T, k%),

where ()T denotes the kernel of the augmentation ¢.

Exercise 7.6. Solve Exercise 6.2 by using the Kac exact sequence. (Hint: use the facts H*(C,,k*) =
kK /(k*)", H3(Cp, k) = p(k).)
We show now some consequences of the Kac exact sequence.

Proposition 7.7. The abelian group Opext(kF, kG) 1s a torsion group. This is finite if k is algebraically
closed.

Proof. The first statement: this holds since for a finite group T’ of order m, mH™(T', M) =0 (Vn > 0).
The second statement: let I' be a group, and M a trivial I'-module. The universal coefficient Theorem (see
[R, Thm 10.22]) states that

H™T, M)~ Homz(H,(T,Z), M) & Exty(H, (T, Z), M).

If we take M = k*, where k is an algebraically closed field, then M is a divisible Z-module, which implies
Extlz = 0, and hence we have

H™(T,k*) ~ Homg(H,(T,7Z),k").
If I' is finite then H,(I',Z) (n > 0) is finite (since Z is a f.g. I-module, see [R, Thm 10.29]), and hence
H™(I',k*) (n > 0) is finite. The statement follows from the Kac exact sequence. O

In general, Opext(kF, k%) is not necessarily finite, while Aut(k“ * kF") is finite for any k, which follows
from the next Proposition.

If R is any commutative ring, we define analogously the split extension (RG*RF) and the group Aut(RG*
RF) of its auto-equivalences. We obtain in this way a group functor (i.e., a functor from commutative rings
to groups),

Aut(Z%+«ZF): R — Aut(RY x RF).
Proposition 7.8. There is an isomorphism of group functors
Awt(Z+«ZF)~ p, x - xp, (0<n; €ZL),
where p,, denotes the group functor of nth roots of unity, and thus p,(R)={a € R | o™ = 1}.
Proof. In C replace k* by R* to obtain the double complex

| |

C(R) = CNR) —— CNR) ——

QIOO(R)T T

ooy LB copy L
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where CP4(R) = Map, (G7T! x FP*1 R*). Then each C?? gives rise to a group functor, and 9, & are natural
transformations. It can be seen, as in Exercise 5.4, that
Aut(Z% x ZF) ~ Kerd® N Kerd .
We define X, = {(Sg41,---,51521, ..., 2pq1) | 1 # 5, € G, 1 # 2; € F}. Then CP? is represented by the
group ring Z M,, of the free abelian group M,, on X,,, that is,
CP(R) = Homring(ZMpqv k),

where the right hand-side is a group under the convolution product. Since @,d’ are induced from group
maps between the M,,’s (which are induced from maps between the X,, U{1}’s), we see that

Aut(Z% « ZF) =~ Hom,;, (ZM, R),

where M is the cokernel of some group map My, & Mg — Mgg. Clearly, M is finitely generated abelian.
Since one sees, as in Proposition 7.7, that Aut(C% x CF) is finite, it follows that M is a torsion group, that
is,

M~Z/m&---®Z/n. (0<n; €ZL),
for some 0 < n; € Z, which yields the result. O

8. Sample Computation II. Let ¥ =S, (n > 3), a = (12...n) € S,,. ¥ has subgroups
F=C,=<a> G=S,-1={s€8S,]|s(n)=n}.

The factorization F' x G = X makes (F,G) = (C,,S,—1) into a matched pair. Let s € G and 1 <7 < n.
Since a=*Wsa’ € G, it follows that

sova’ =a*"  (while se1=1).

The other action « is trivial if » = 3. If n > 3 it is not trivial, but cannot be expressed easily. Concerning
the Opext group associated with the matched pair just obtained, we have:

Theorem 8.1. k* /(k*)™ <
Opext(kcn,kgn_l) = { kx?gkxgg Ei;z)# !

Corollary 8.2. If (k*)" = k*, Opext(kC,,, k1) = 0.

Let us sketch the proof. We have first the following Lemma, which is slightly weaker than the Corollary
above.

Lemma 8.3. If (k¥)? = kX and (k*)" = k¥, then Opext(kC,, k1) = 0.

If n = 3, this is shown in the way of Section 6 (without the assumption (k*)% = k*).
Suppose n > 4. We apply the Kac exact sequence. It is well known that H?(C,,k*) = k*/(k*)" = 0.
Under the assumption (k*)? = kX, we have that

>
1= (40 524
Moreover, res : H*(S,,k*) — H*(S,_1,k*) is surjective (in fact, this is the identity morphism if n > 4).
By the Kac exact sequence, it is enough to show that
res® 1 H3(S,, k™) — H*(C,, k") @ H*(S,_1,k")
is injective.
Claim 8.4. We suppose (k*)? = k*. Let Z = Ker(res®).

1. Ifn=>5orn>7, then Z =0, so that res® is injective.
2. If n =4, then 7 ~ p,(k).
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3. If n =6, then Z ~ py(k).

Even if n = 4 or 6, one can see that each element in Z vanishes through res : H3(S,,,k*) — H3(C,, k%),
which implies Lemma 8.3.

Proof of Claim 8.4 (sketch). Regard M = Map(S,/S,-1,k”™) as a Z-module under the point-wise product
and further as a right S,-module with the induced action by S, on S,/S,_1 from the left. By Shapiro’s
Lemma (see [R, Thm 10.32]), we have

H(S,—1,k*) =~ H(S,,Map(S,/S,-1,k*)).
Since we have the identification
{1,2,...,0} =S,/S,_1, i—a
of left S,-sets, M is identified with the Z-module P = k* x ... x k* (n times k*) with the right S,-action
(C1yevesn)8 = (Co1)s- -5 Cs(n)) (e €KX, 5 €S,).
Since res : H'(S,,k*) — H'(S,,_1,k*) is identified with the map H'(S,,k*) — H(S,, P) induced from the
diagonal map ¢ : k* — P, we have the exact sequence
H2(S,, k) 22 H2(S,_1, k%) — H%(S,. Q) — HX(S,, k*) 22 H3(S,_1, k%) — H*(S,, Q).
where @) = Coker 4. Since the first res is surjective (as seen before), we have that
7 ~ H*S,,Q).

In general, for a fixed right S,-module N, H*(S,, N)is in 1 — 1 correspondence with the equivalence
classes of the group extensions N — FE — S, giving rise to the given S,-action on N. In [B], Blackburn
classified such extensions in terms of some data associated with each extension (such as the a,3,v in the
proof of Theorem 6.1). By applying his results, we see that, if char k = 2 and n > 5, then Z = 0. Using the
same results, Kleshchev and Premet [KP] computed H%(S,, [*), where I* is the right S,-module obtained
by modifying the definition of @, replacing k* by Z /p with p a prime. We suppose p = 2 and apply the
result. Suppose char k # 2. One sees that if n > 5 the map

H*S,,I*) — H*S,,Q) (~7)

induced from Z/2 = {1} — k* is surjective. Since it is shown in [KP] that if n = 5 or n > 7 then
H*(S,,I*) = 0, we have that Z = 0 in this case. In other cases, we compute H%(S,,Q) by modifying or
correcting results in [KP] and reach the claim. O

For the (sketchy) proof of Theorem 8.1, let H, K be finite-dimensional Hopf algebras. All (cleft) extensions
(A) of H by K form an algebraic system whose structure is given by the linear maps

prod unit

Ao AT A k™A KL A AL

The base extension (A ® R) is naturally defined. For a field extension 1/k, we say that (A) is an 1/k-form
of a fixed extension (Ag) if (A® 1) ~ (4o ® 1).

Lemma 8.3 implies that every extension (A) associated with the matched pair (F,G) = (C,,,S,—1) is a
k/k-form of the split extension (Ag) = (k * kF’), where k is the algebraic closure of k. Conversely, such a
k/k-form is associated with (F,G). Hence the faithfully flat descent Theorem A.5 gives a bijection

HY(k/k, Aut(k®  kF)) ~ Opext(kF, k), (8.5)

where H! denotes the Amitsur 1st cohomology group and Aut(k“+kF') denotes the k-group functor (functor
from commutative k-algebras to groups) defined by

R — Aut(R® x RF).

This arises from Aut(Z% + Z F) defined over Z. This bijection is seen to be a group isomorphism (see the
proof just below).
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Proposition 8.6.

Snct o, 3<n#£4)
AT+ T _{ R

Proof. By Proposition 7.8, it is enough to show

Z (3<n#4)

Aut(COn—1 4 CC,, ) ~ { T (n=4)

The Kac exact sequence applies in the case where k = C. For a group I' and a trivial I'-module N, we have
HY(T,N) ~ Homgroup(T', N).

Hence, HY(S,,C*) ~ Z/2 (generated by sign) and H'(C,,C*) ~ Z/n. The morphism res! is identified
with Z /2 — Z,, & Zs given by
1—(0,1)(nodd), 1+ (g, 1) (n even).

In any case, Coker (res!) ~ Z/n. On the other hand, as seen before,

0 (3<n#4)
Z]2 (n=4).

The result follows immediately, if 3 < n # 4. If n = 4, there are two posibilities:
Aut(C%2 « CCy) ~ Zg or Ty & Ly

Ker(res?) ~ {

But, since we can find an element of order 8 in the group, we have Aut(@% * CCy) ~ Zs. O

The proof of Theorem 8.1 completes, if we prove that the bijection (8.5) is a group map. In fact for any
matched pair (F, &), there is a natural injection 2

H'(k/k, Aut(k® « kF)) — Opext(kF, k) (8.7)
which is seen to be a group map as follows. Note that

HTot(C (ko k)) ~ Aut((k@k)?* (ko k)F)
U
7Y (k/k, Aut(kY « kF)),

where Z! denotes the Amitsur 1-cocycles. Denote by C"(k/k) the double complex obtained by replacing
kX in C~ by k*/k*. Then, the map k*/k* — (k @ k)* given by 2k* — 2 @ z~! induces an isomorphism

HOTot(C(k/k)) ~ Z'(k/k, Aut(k” « kF).
Now the connecting map
HTot(C"(k/k)) — H'Tot(C"(k)) (8.8)
arising from the short exact sequence 0 — kX — kX — k*/k* — 0 is identified with
ZH(k/k, Aut(k® « kF)) — Opext(kF, k%),
which induces (8.7).
It is possible to describe explicitly, by using (8.8), the extensions associated with (C),,S,—1).

2This is naturally extended to the exact sequence

0 — H'(k/k, Aut(k“ « kF)) — Opext(kF,k“) — Opext(kF, k).
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A. Appendix. The faithfully flat descent Theorem. Let k be a commutative base ring, and write
® = ®k. Let G be a k-group functor. Let

ds !
" ZZROR—D>RIRQR
d2 d3

be a diagram of commutative k-algebras, where d; is the k-algebra map inserting 1 in the ¢ place (e.g.,
ds(z @y)=2®y®1). We apply G and obtain the diagram of groups

s 61
G(R)—= G(R®R) =2 G(R® R® R),
&o 8

where §; = G(d;).

Definition A.1. An element ¢ in G(R ® R) is called an Amitsur 1-cocycle for G in R/k, if
82(¢) = b63(¢)01(¢).

The group G(R) acts on the set Z'(R/k,G) of such 1-cocycles by

70 =8(7)00(7)7" (v €G(R), € 7).

The quotient set G(R)\Z'(R/k,G) is denoted by H'(R/k,G), and is called the Amitsur 1st cohomology
set for G in R/k. If G is abelian (i.e., each G(R) is abelian), then Z1, H! are abelian groups.

Example A.2. Suppose that k is a field and let k be its algebraic closure. Let G = w,, be the k-group
Sfunctor of nth roots of unity. We have an isomorphism

k*/(k*)" ~ 0 (k/k. p,)
given by (class of v € k) (class of Yz @ (Yx)71).
Proof. See [W, Sect. 18.2]. O

Fix an algebraic system (e.g., module, algebra, Hopf algebra, cleft Hopf algebraic extension, ...) whose
structure is given by linear maps between tensor products so that the base extension is naturally defined.
Denote by Cx the category of its objects defined over k (e.g., the category of k-modules, the category of
k-algebras, ...). Let A € Cx and let R be a commutative k-algebra. Then A® R € Cr. Fix an object C' € Ck.

Definition A.3. An object A in Cy is called an R/k-form of C, if
A R~C® R in Cp.

Definition A.4. Let Aut C be the k-group functor defined by

AutC : R — Autgp(C ® R) := {automorphisms of C @ R in Cr}.
It is called the automorphism group functor of C.
Theorem A.5. If R is faithfully flat over k (this means R # 0, if k is a field), then there is a natural
bijection

HY(R/k, AutC') ~ {isomorphism classes of all R/k-forms of C'}.
Proof (sketch). For ¢ € Z'(R/k, Aut (), we define

A= @02, € CORID Plc;@1@z) =) c;®2;®1in C QRO R}

One sees that A is an object in Cx with the structure induced from C'® R, and further that it is an R/k-form
of C'. The correspondence ¢ — A induces the bijection. See [W, Sect. 17.6] for a detailed proof. U
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II. HOPF ALGEBRA EXTENSIONS ARISING FROM LIE ALGEBRAS

1. Generalities on Hopf algebra extensions. Let H be a cocommutative Hopf algebra, K a commuta-
tive Hopf algebra.

Definition 1.1. A cleft (Hopf algebra) extension of H by K is a sequence (A) = K - A= H of Hopf
algebras and Hopf algebra maps such that there exists a left K-linear and right H-colinear isomorphism
0: A=K @ H, where A is regarded as a left K-module along ¢ and as a right H-comodule along 7. In
this case, ¢ is necessarily an injection and 7 a surjection. Furthermore, # can be chosen to be unit and
counit-preserving. Two cleft extensions (A),(A’) of H by K are said to be equivalent if there is a Hopf
algebra map (necessarily an isomorphism) f: A — A’ which makes the following diagram commute

K A H
[ |
K Al H.

Definition 1.2. The pair (H, K') together with linear maps
— HoK —-Kandp: H— H®K, p(z) = ZQCH@QUK

is called a Singer pair®, if K is a left H-module algebra under —, if H is a right K-comodule coalgebra
under p, and if

L p(zy) =32 plea)(yr @ (22) — ¥k ),
2. A(z —p) = Y(zym — P)) @ 2k (T(2) = P2))
for 2,y € H, p € K. We regard (—, p) as the structure of the Singer pair (H, K, —, p).

A cleft extension (A) of H by K gives rise to a structure of a Singer pair on (H, ) as follows. First we
choose an isomorphism 6 as in Def. 1.1 and define a right H-colinear map ¢ : H — A and a left K-linear
map v: A — K by

$le)=0""1ow) (x€H), y(a)=(idae)f(a)(a€A).
These are convolution-invertible morphisms (see [Sch, Thm 2.4] or [MD, Thm 3.5]). Next, we define linear
maps —: H® K — K, p: H— H ® K by the equations

Wz —p)= Z(b(x(l))L(p)(b_l(w(Q)) (x € H,pe K),
(pom)(a) =" m(am) @7 (amy)r(ag) (ac A),

where ()~! indicates the convolution-inverse. Finally, we can see that —,p are independent of choice of ¢
and that they give a structure of a Singer pair on (H, K'). In this case, (A) is said to be associated with the
Singer pair (H, K'). We fix now a Singer pair (H, K, —, p). We denote by

Opext(H, K) = Opext(H, K,—, p)

the set of all cleft extensions associated with it.

We define the product (A)-(A’) of two cleft extensions associated with the fixed (H, K') as follows. First,
we take the tensor product A @x A’ of the left K-modules A, A’. Next, we define the bi-tensor product
A ®£{ A’ to be the equalizer of the two right H-coactions A @ A’ = A @k A’ @ H arising from the right
H-coactions on A and A’. Now, the Hopf algebra A @ A’ induces on A ®£{ A’ a Hopf algebra structure, and
we form thus a cleft extension (A @1 A’) associated with the fixed (H, K), where ¢, 7 are the natural maps.
(If we take first the cotensor product AOg A" of the right H-comodules A, A and then form the coequalizer
of the two left K-actions on AOg A’, we obtain a naturally equivalent cleft extension.) We define then the

product by
(4) - (A) = (A Qg A),

®In literature, this is usually called an abelian matched pair, see [Si]. We would propose here this term to avoid confusions
with the notion defined in Definition 3.1.
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The product makes the Opext(H, K) into an abelian group, which is called the Opext group associated with
the Singer pair (H, K).
A cohomological description for the Opext group is given by the following double complex

d d

Ch = Reg, (H, K%%) —2— Reg, (H®?, K®?) —2—

o] o]
Reg (H,K) —— Reg, (H®* K) —— ...,

whose precise definition will be given in Section 5. Here we remark only that Reg, denotes a certain subgroup
of the abelian group Reg of (convolution) invertible linear maps. Let 6 : H@ H — K, 7: H — K ® K be
invertible linear maps which form a 1-cocycle in the total complex Tot(Cy;). Then the vector space K @ H,
with the structure given by

product (p#a)(q#y) =D pleay — O)o(2) © ya) # 3y,

unit 1#1,
counit e(p#a) = e(p)e(z),
coproduct A(p#z) = > (payzayi#em) © (DTt r#),
where 7(z) = Y a5 ® 277, forms a Hopf algebra. We denote it by K#, ,H. We obtain furthermore a cleft
extension (N #, ,H ) associated with the fixed (H, K'), where ¢(z) = 1#2 and n(p#z) = e(p)z.
Proposition 1.3. The correspondence (o,7) — (K#,,H) induces an isomorphism
H'Tot(Cyy) ~ Opext(H, K).

Suppose that ¢ and 7 are both trivial, i.e., o(z ® y) = e(2)e(y)l and 7(2) = ()l ® 1. Then K#, H
is denoted simply by K#H, and is called the bismash product constructed from (H, K,—,p). The cleft
extension (K#H ) is called the split extension, which represents the unit of the Opext group. caca Define

Aut(K#H )= the group of the auto-equivalences of (K#H ).
For a 0-cocycle v : H — K in Tot(Cy), the map pftz w— > pv(z))#a@), K#H — KH#H gives an
auto-equivalence of (K#H ).

Proposition 1.4. The correspondence just obtained gives an isomorphism

HOTot(Cyy) ~ Aut( K#H).
Exercise 1.5. Show that the group Aul(K+#,,H) of the auto-equivalences of (K+#,,H), where (o,7) is
any 1-cocycle in Tol(Cy;), is naturally isomorphic to Aut( K#H ). (Hint: apply (— e (I(#U/J/H)) to an
element in Aul( K#,-H). Then one obtains an element in Aul( K#,,1 -1 H).)

Let F, G be groups, where G is finite (and F' may be infinite) and consider the special case where
H=kF, K=Xk".

Note that the module actions —: H ® K — K are in 1-1 correspondence with the actions of permutations
4:Gx F— G sothat ¢ — e5 = e, -1 (@ € F,s € (). The comodule coactions p: H — H @ K arein 1-1
correspondence with the actions of permutations > : G x F — F, so that p(2) = > calsv ) @e, (z € F).
Furthermore, —, p give a structure of a Singer pair on (H, K') iff the correspondence >, < give a structure
of a matched pair on (F,G). Replace “associated with a Singer pair (kF,k%)” by “associated with the
corresponding matched pair (F, )", and regard invertible linear maps o : kF@kF — k%, 7 :kF — k“@k%
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asmaps 0 : G X FX F —k*, 7:G x GXx F — k*. Then the results mentioned so far are specialized to
those in Sections 4-5 of Part I, where the “classical” notation k& ¥ KI' is used for kG#gﬁkF. Without
the assumption for I to be finite, the results in those sections hold true, except Exercise 5.5 and Theorem
7.4 (the Kac exact sequence).

Exercise 1.6. Let

F = the free abelian group generated by two elements x, vy,
G =0y =< s>,
and let (F,G) be the matched pair defined by the trivial action <« : G X F' — G and the action of group-
automorphisms > : G X I — F determined by
svaty! =ty (i,j € Z).
Show that, if (k*)? = kX, the Opext group associated with the matched pair (F,G) or with the corresponding
Singer pair (kF, k%), is the isomorphism to k*.

2. Lie bialgebra extensions. Let us define the Opext group for Lie bialgebra extensions and present a
Lie bialgebra-version of the Kac exact sequence.
Let f, g be Lie algebras of finite dimension.

Definition 2.1. The pair (f, g), together with linear maps g g @ §=1, is called a matched pair of Lie
algebras if fis a left g-Lie module under &, g is a right f-Lie module under <« and

1. selz,yl=[sea,yl+[z,spy]+(s<aa)py—(s<y)va
2. [s,t]az =[s,tax]+[s<a,t]+sa(tva)—ta(s>a)

forz,y €f, s,t€qg.

These conditions hold iff the direct sum f & g of vector spaces forms a Lie algebra, denoted by § s g,
under the bracket defined by

[zas,yot] = ([z,y] + spy—toz)a([s,t] +say —t<a).

In this case, we denote this Lie algebra by e« g. If (f,g) is a matched pair, f =f & 0 and g = 0§ g are Lie
subalgebras of f 0« g such that f & g = f < g (as vector spaces). Conversely, if f and g are Lie subalgebras of
a Lie algebra L such that f & g = L then (f, g) forms a matched pair with the structure maps determined by

[s,z] =spadsaa (s€gax€f),

so that f >« g = L (as Lie algebras).

We say that a finite-dimensional vector space [ is a Lie coalgebra with co-bracket ¢ : [ — [® [if the dual
vector space [* is a Lie algebra with bracket ¢* : [* @ [* = ([® [)* — [*. [is called a Lie bialgebra if [ is a Lie
algebra with bracket [,] and a Lie coalgebra with co-bracket 6 satisfying

8[a,b) =3 [a,bpuy) @ by + > by @ [as bl + > lapy, 0] @ ay + > ap (2.2)

for a,b € [, where é(a) = 3" ap) ®@ afg. Any Lie algebra (resp. Lie coalgebra) of finite dimension is a Lie
bialgebra with zero co- bracket (resp zero bracket). We regard f as a Lie bialgebra with zero co-bracket.
Naturally, g* is a Lie coalgebra, which is regarded as a Lie bialgebra with zero bracket.

Deﬁnition 2.3. The pair (f,g"), together with linear maps —: f@ g* — g* and p : f — f® g*, p(z) =
> T[] ] gives rise to (f, g, >, ), where

8[>$IZ$[O] <s,ap) >, <848t >=< s, — 8T >, (z €f,s€g,s €g¥).

We say that (f,g%) is a Singer pair of Lie bialgebras if (f, g,>, <) forms a matched pair of Lie algebras.
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Definition 2.4. A Lie bialgebra extension of f by g* is a sequence ([) = g* — [ — f of Lie bialgebras and Lie
bialgebra maps such that 0 — g — [ — f — 0 is an exact sequence of vector spaces. Two such extensions
(1), (') are equivalent, if there is a Lie bialgebra map (necessarily, an isomorphism) f : [ — [’ which makes
the following diagram commute

Fach Lie bialgebra extension ([) of f by g* gives rise to structure maps —: f® g* — g*, p: f — f @ g* of
a Singer pair on (f,g*) as follows. First, ([) may be identified as a vector space extension with the trivial

g —g* B f— . We define — by

v — s =[xz, (z€f,s €g),
where the bracket is of [ = g* @& g. Next, we define —: f* P g— " in [* = gP § by
2t —s=[z%s] (2¥€f,s€q)

and put p = (—)*. Then one sees that —, p give a structure of a Singer pair on (f, g*) which is independent
of the way of identification [ = g* & f. We say that ([) is associated with the Singer pair (f, g*, —, p).

Let now (f,g*,—, p) be a Singer pair of Lie bialgebras. We denote by Opext(f, g*) = Opext(f, g, —, p) the
set of equivalence classes of all Lie bialgebra extensions associated with it. For such two extensions (I), (I'),
we define the product (I)O(l') as follows

(e l) = g og——I1al —faf
H J p.b. JA
(lo) = g Do lo f
P |
() = g [y f

We construct first of all the Lie bialgebra extension (I I'). Next, we regard f as a sub-vector space of f & f
via ¢ — x @ x, and let [y be the pull-back of f along [ & [ — & f, which is seen to be a Lie sub-bialgebra
of [@ I'. Then we obtain the Lie bialgebra extension (lp). Finally, regard g* as a quotient vector space of
g* @ gt via sFP* — s* + 1%, and let [y be the push-out of g* along g* ¢ g* — lp, which is seen to be a
quotient Lie bialgebra of lj. We define then ([)&(l) to be the Lie bialgebra extension ([;) just obtained,
which is associated with the fixed Singer pair. (A naturally equivalent extension is obtained by forming first
the push-out and then the pull back.) The product & makes Opext(f, g*) into an abelian group, which is
called the Opext group associated with the Singer pair.

Let () be as above and identify [ = g* & f. Since [is in particular a Lie algebra extension, it follows as is
well known that the bracket of [ is defined by

[s"@a, "Dyl =((x = t7) = (y = ")+ o(z Ay)) @ [2,9],

where ¢ : f A f — g* is some 2-cocycle for the left f-Lie module (g*, —). Dually, the bracket of [* = g f* is
described by using some 2-cocycle for the right g-Lie module (f*, p*). Regard o, 7 as linear maps

c:g@(fAf)—k, T:(ghg)@f—k
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The 2-cocycle conditions for o, 7 and the compatibility condition (2.2) for [ can be joined by the condition
for (o,7) to be a 1-cocycle in the total complex Tot(C) of the double complex

Q’T a/T
Cp = Hom((A%g) @ §, k) SN Hom((A%g) @ (A%f),k) 2.
Q’T a/T
Hom(g® f.k) ——— Hom(g® (A%f),k) ——— -,

whose differentials will be defined in Section 5. Conversely, a 1-cocycle (o, 7) in Tot(C}) constructs on the
vector space g* @ f, as above, a Lie bialgebra extension associated with the Singer pair, which is denoted by
(g*pay,+f). Its co-bracket 6 is the dual of the bracket on g @& f* given by 7.

Exercise 2.5. Let {s;},{s’} be bases of g, g* dual to each other. Show that
0(s"Pa)=06(s")+ Z(‘SZ bx)® s — Zsf @ (s;> )+ ZT((SZ' Asj)@a)s; @ s,
7 7 1,]

where > is defined from p as in Definition 2.3.
Proposition 2.6. The correspondence (o,7) — (g*pa,-f) induces an isomorphism
H'Tot(C}) ~ Opext(, g*).
O

If o,7 are both zero maps, we write simply (g*p<f) for (g*ma, -f) and call it the split extension, which
represents the unit of Opext(f, g*). Let

Aut(g*»<f) = the group of the auto-equivalences of (g*pf).

*

Let v : g®f — k be a 0-cocycle in Tot(C5), and regard it as a linear map v : f — g*.
s @ (" +rv(x)) D, gief — g pf gives an auto-equivalence of (g*m<f).

Then the map

Proposition 2.7. The correspondence just obtained gives an isomorphism

HOTot(C}) =~ Aut(g*wf).

Exercise 2.8. Give a result parallel to Frcercise 1.5.

Recall that the Lie algebra f 0« g is constructed from the matched pair (f,g,®, <) which corresponds to
the Singer pair (f, g*, —, p).

Theorem 2.9. We have the following exact sequence
0— H'(foag, k) — H'(f,k)® H'(g,k) — Aut(g"»])
— H*(feag. k) — H(f,k) & H*(g,k) — Opeul(f, g")
— H3(fea g, k) — H(f,k) & H(g, k),
where H'(—,k) indicates the Lie algebra cohomology with coefficients in the trivial Lie module k. [

Corollary 2.10. If either
1. f is semisimple and — 1is trivial, or
2. g is semisimple and p is trivial,
then Aut(g*w<f), Opezt(f,a*) are both trivial. O
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3. From Hopf algebra extensions to Lie bialgebra extensions. H,J cocommutative Hopf algebras.

Definition 3.1. The pair (H,.J) together with linear maps .J S J@H = H is called a matched pair of Hopf
algebras if H is a left J-module coalgebra under », J is a right H-module coalgebra under <« and

Loseay =Y (suy > 21))((52) 4 22)) > ),

2. stax = Z(S < (t(l) &> $(2)))(t(2) < $(2))
for z,y e H, s,t € J.

These conditions hold iff the tensor product coalgebra H @ J forms a bialgebra (then necessarily a Hopf
algebra) with unit 1 @ 1 under the product defined by

(z@s)yot)=> w(sa)>ya) @ (s 9yt (z,y€ H, s,t€J).
In this case, we denote the Hopf algebra by H v« .J,

Definition 3.2. A set J of ideals in J of cofinite dimension is said to be admissible if
i. J is directed downward, i.e., VI;, I, € J; 31 € J such that I C Iy N Iz,
ii. JT:=Ker(e:J —k)eJ,
ili. VIh,I, € J; 31 € J such that A(J)C L ®J +J ® Iy,
iv. VI € J; 3I' € J such that S(I") C 1.

For a given admissible set [J of ideals, we define

J% = |J I, where I = {p € J*|p(I) = 0}.
Ieg

Note that if 7 = {all cofinite ideals in J}, then J% = J°, the dual Hopf algebra of J, which is commutative.
In general, J% is a Hopf subalgebra of J°.

Definition 3.3. A topological vector space is a vector space with a topology such that

1. for each w € V, the translation v — v 4+ w is continuous, and
2. V has a basis of neighbourhoods of 0 consisting of sub-vector spaces, which we call a topological basis.

Any vector space is a topological vector space with discrete topology. For a topological vector space V'
and a discrete vector space Z, we identify V ® Z = Bqim zV, the direct sum of dim Z copies of V', in order
to regard V @ Z as a topological vector space, denoted by V @ (Z), with the direct sum topology. Thus,
if {Vi\} is a topological basis of V' and {z,} is a (linear) basis of Z, then V ® (Z) has a topological basis
consisting of all ©,V, @ kz,, where V), is an arbitrary element in {W"\}.

J is a topological vector space (and is further a topological algebra in the sense of Takeuchi) with topo-

logical basis J. We regard k as a discrete vector space, so that J% = Hom,(.J, k), the continuous linear
maps J — k.

Lemma 3.4. Let M be a discrete vector space. There is a 1-1 correspondence between the continuous left
J-module structure maps > :J @ (M) — M and the right J%-comodule structure maps p: M — M @ J.

Proof. Note that M © J% ~ Hom,(J, M ). Then one sees that the correspondence arises from the natural
isomorphisms

Hom,(J ® (M), M)~ Hom(M, Hom.(J, M)) ~ Hom(M, M @ J7%).

We regard now H as a discrete vector space.

Proposition 3.5. Suppose that (H,J) is a matched pair whose structure maps J < .J @ (H) = H are both
continuous. The transpose —: H @ J* — J* of < stabilizes J% and hence induces an action H © J5 — J%,
which is denoted by —, too. Furthermore, (H,J%,—,p) is a Singer pair of Hopf algebras, where p : H —
H @ J% 1is the coaction corresponding to », as in Lemma 3.4.
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We suppose in what follows that char k = 0. Let f, g be finite dimensional Lie algebras. We consider the
case where

H=Uf, J="Us

the universal enveloping algebras. These are cocommutative Hopf algebras in which elements in f or in g
are primitive.

Proposition 3.6. There is a natural 1-1 correspondence between the structures of a matched pair of Lie
algebras on (f,q) and the structures of a matched pair of Hopf algebras on (Uf,Ug). O

Proof. The correspondence is given as follows. If (f, g) is a matched pair, then a matched pair (Uf, Ug) arises
from the factorization Uf ® Ug = U(f < g). Conversely, if (Uf,Ug) is a matched pair, then a matched pair
(f,9) arises from the factorization f& g = P(Uf < Ug), the Lie algebra of the primitives in Uf < Ug. O

We fix now an admissible set J of cofinite ideals in Ug and regard Ug as a topological vector space
with topological basis 7. We regard further Uf as a discrete vector space. Let Ug< Ug ® (Uf)l Uf be
continuous linear maps with which (Uf, Ug) is a matched pair of Hopf algebras. Then, by Proposition 3.5
there arises a Singer pair (Uf,(Ug)%, —, p) of Hopf algebras. By Proposition 3.6 there arises a matched
pair (f, g,»,<') of Lie bialgebras. The relation between the structures (—,p) and (—',p’) is given by the
following commutative diagram, where w : (Ug)% — g* denotes the restriction map.

f@(Ug)s—Uf® (Ug)s —(Ug)%

id®wl lw
f©g" g

o d®w

Ui L= Uto (Ug)y == Uf o g*
\1 p/

Theorem 3.7. Consider the cleft extensions associated with (Uf,(Ug)%,—, p) and the Lie bialgebra exten-
sions associated with (f,g*,—', p’). There are natural group maps

ko : Aut((Ug)5#Uf) — Aut(g™w<f),
k1t Opext(UF, (Ug)%) — Opext(f,g”).

If (HY): H'(g,(Ug)%) =0, then kg is an isomorphism.
If in addition (H?): H?*(g,(Ug)%) =0, then ky is an isomorphism. [

f &g

In (H') and (H?), (Ug)% has the (continuous) left or right Ug-module structure corresponding to the
natural right or left (Ug)%-comodule structure. The choice of “left or right” makes no difference between
the cohomology groups.

The maps kg, k; are given as follows. Identify the Aut groups with the H® groups. For a 0-cocycle
v:Uf — (Ug)% in Tot(Cyy), ko(v) is the composite f — Uf=(Ug)% - g*. On the other hand, #; is induced
from the correspondence

((UG)‘?#U,T Uf) = (g*Nﬁ,?f)v

where & : g ® A?f — k, regarded as a linear map A?f — g*, is determined by
<a(zNy),s>=<o(e@y—y®a),s> (z,yef, s€g)

and 7 : A%g @ f — k, regarded as a linear map §f — (A?g)*, is determined by
<T(a),sAt>=<71(2),s@t—t®s> (x€f, s,t€q).
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Remark 3.8. 1. If J satisfies
. VI, Iy € J; 31 € J such that I C I1 15,

(which implies i in Definition 3.2), then (H!) holds true.

2. It is not difficult to see that g,k are not necessarily isomorphisms. Suppose J = {(Ug)*}. Then
(Ug)% = k, and hence the groups Aut((Ug)%#Uf), Opext(Uf,(Ug)%) are both trivial. One has only
to find a Singer pair (f, g*) with trivial structure for which the groups Aut(g*»<f), Opext(f, g*) are not
trivial.

Exercise 3.9. Find such an example.

Corollary 3.10. Suppose that (H') and (H?) hold. Construct the Lie algebra f >a g from the matched pair
(f,a,0',<") of Lie algebras obtained above. Then we have the following exact sequence.
0— H'(feag,k)— H'(f. k)& H'(g.k) — Aut((Ug)7#Uf)
— H*(feag. k) — H*(f, k)& H*(g.k)
— Opeat(Uf, (Ug)y) — H*(Fo< g, k) — H3(f,k) & H(g,k).
O

4. Two special cases. Suppose as above that char k = 0 and let f, g be finite-dimensional Lie algebras.
We shall consider 7 in two cases.

Case 1. J = {all cofinite ideals in Ug}.

In this case, (Ug)% = Ug®, the dual Hopf algebra. We see that any structure maps Ug SUge Uf=>Uf
of a matched pair on (Uf, Ug) are continuous. From Propositions 3.5 and 3.6 the next Proposition follows.

Proposition 4.1. There is a natural injection from the set of structures (—',p') of a Singer pair of Lie
algebras on (f,g*) to the set of structures (—, p) of a Singer pair of Hopf algebras on (Uf,Ug®). This is a
bijection if g = [g, g]. O

Remark 4.2. Suppose that k is algebraically closed. A commutative Hopf algebra is in the form Ug®, where
g is a finite-dimensional Lie algebra with g = [g, g] iff it is isomorphic to the coordinate Hopf algebra O(G)
of a connected, simply connected affine algebraic group G with G' = [G, G].

Since J is closed under product, it follows by Remark 3.8(1) that Hl(g, Ug°) = 0. Furthermore we have
Proposition 4.3 (Schneider).
H*(g,Ug% = 0.
O

Hence the conclusions of Theorem 3.7 and Corollary 3.10 hold true with (Ug)% = Ug®, where
(f, g%, —',p) is an arbitrary Singer pair of Lie bialgebras and (Uf,Ug®, —,p) is the corresponding Singer
pair of Hopf algebras. We shall have two consequences. The first follows from Corollary 2.10.
Proposition 4.4. Consider a Singer pair (Uf,Ug®, —, p) of Hopf algebras such that either

1. f is semisimple and — is trivial or

2. g s senusimple and p is trivial.

Then, Aut(Ug°#Uf), Opext(Uf,Ug®) are both trivial. O
We define

Ext(Uf, Ug®) = {

the set of the equivalence classes of
all cleft extensions of Uf by Ug® ’

the set of the equivalence classes of }

Ext(f, %) = { all Lie bialgebra extensions of § by g*

Since these equal the disjoint union of all the Opext groups, we have
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Theorem 4.5. If g = [g,q], there is a natural bijection
Ba(UF, Ug®) ~ Bei(f, ).

Case 2. J = {(Ug")*In=10,1,2,...}.

In this case, (Ug)% is the irreducible component of Ug® containing 1 (the largest irreducible Hopf subal-
gebra of Ug®), which is denoted by Ug’. We are interested in the case where g is nilpotent in view of the
following fact.

Proposition 4.6 (Hochschild). There is a category equivalence between the finite-dimensional nilpotent Lie
algebras g and the unipotent affine algebraic group schemes G, given by

g+ Spec(Ug'), G+ Lie (.
]

Proposition 4.7. Suppose that g is nilpotent. There is a natural 1-1 correspondence between the structures
(—,p) of a Singer pair of Hopf algebras on (Uf,Ug’) and the structures (—',p') of a Singer pair of Lie
bialgebras on (f,g*) such that the action o' : g ® f — § corresponding to p' is nilpotent (i.e., Im > 0 such
that g™ o' §=0). O

Since J is closed under product, H'(g,Ug’) = 0. On the other hand, we have
Proposition 4.8 (Koszul). If g is nilpotent, H™(g,Ug’) = 0 for all n > 0. O

Hence, if g is nilpotent, the conclusions of Theorem 3.7 and Corollary 3.10 hold true with (Ug)% = Ug’,
where (Uf,Ug’,—,p) is an arbitrary Singer pair of Hopf algebras and (f,g*,—',p’) is the corresponding
Singer pair of Lie bialgebras.

Example 4.9. Let f = ka, g = ks be 1-dimensional (abelian) Lie algebras. Then
Uf = k[z], Ug = k[s], Ug" = k],

the polynomial algebras with x, s, p primitive, where <p,s" >= 6y ,. For arbitrary {,n in k, the actions v, <
determined by

spr=£&x, s4x=mns

give a structure of a matched pair of Lie algebras on (f,g). The action v is nilpotent iff € = 0. The module
action —: k[z] @ k[p] — K[p] arising from < is determined by x — p" = nnp™ (n = 0,1,...). Hence this
— and the trivial coaction k[z] — k[z] ® Kk[p] exhaust the structures of a matched pair of Hopf algebras on
(k[z],Kk[p]). Further, for such a pair we have

Opeat(K[z], K[p]) = 0,
since obviously H' Tot(C}) = 0.
Exercise 4.10. Show that Aut(k[p]#k|[z]) ~ k.

From Corollary 2.10 we obtain:

Proposition 4.11. Consider a Singer pair (Uf,Ug',—,p) of Hopf algebras, where § is semisimple, g is
nilpotent and — is trivial. Then, Aut(Ug'#Uf), Opext(Uf,Ug') are both trivial. O

There seems so far to be no computational result for the non-trivial Opext groups of this kind. We refer
mainly to [K, M1, M2] for Part I, and to [M3] for Part II.

5. Supplements.
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5.1. Let (A) = K% A~ H be a sequence of Hopf algebras and Hopf algebra maps, where ¢ is injective
and 7 is surjective. In order to call (4) a (non-necessarily cleft) extension, assume that A is injective as
a right H-comodule (via 7) and that K = A®H. If H is, in addition, irreducible (for example if H is the
universal enveloping algebra of some Lie algebra), then (A) is a cleft extension in the sense of Definition 1.1.
In fact, the unit k — A is extended to a right H-colinear map ¢ : H — A, since A is right H-injective. One
sees that ¢ is convolution-invertible since its restriction on the coradical Corad H = k is. It follows that
p@a— pp(z), K@ H — A gives an isomorphism required by the definition.

5.2.  Let us give the precise definition of the double complex Cj; in Section 1. Let (H, K, —, p) be a Singer
pair of Hopf algebras. Let w : k — H, ¢ : K — k denote the unit of H and the counit of K, respectively.
Recall that Reg denotes the invertible maps in the Hom space. The term Reg, (H®?, K®7) denotes the
intersection of the kernels of the following p + ¢ codegeneracy operators (¢ = 1,...,p;7=1,...,q):

0i : Reg(H™, K97) — Reg(H®~V, K51),  aif = fo (1® @ w100,
7 s Reg(H®P, K®1) — Reg(H®P, K€1) 7 f =120V g e 12090 f.
For a left H-module V, regard ®(V') := V @ K as a left H-module by

(v @ p) = (xa)ov @ (@a))Kk(T@) — )

where € H, v®@p € V @ K. Apply this construction ¢ times iteratedly to V' = k, the trivial left H-
module, and obtain the left /-module ®7(k) = K®7. Define d' : Reg, (H®", K®7) — Reg, (H®F+1), [©1)
(i=0,1,...,p+ 1) by

d°f = (H-action on ®4(k) = K®%)o (1® f),
d'f = fo (180D @mult @ 12P=9) (1< i< p),
A= f@e.
The differential @ is defined by
Of =dfxd f w.xdPTfEL

where * denotes the convolution-product.
For a right K-comodule W with structure w +— w(g)@w(q), regard ¥(W) := H @ W as a right K-comodule
by

@ w e (T))r @ wo® (21K (T@) — wa))-

Apply this construction p times iteratedly to W = k, the trivial right A-comodule, and obtain the right
K-comodule ¥P(k) = H®P. Define d"/ : Reg (H®", K®1) — Reg, (H®, K®+1)) (j =0,1,...,¢+ 1) by

d°f = (f ®1)o (K-coaction on ¥F(k) = H®P),
df= (19D o A1®i)e f (1<) <q),
A f=u@ f.
The differential ¢’ is defined by
Of =[d°f «d™ f7x e d0 R DT,

5.3. Finally, let us define the differentials

0 : Hom((A"g) ® (AFf), k) — Hom((A%g) @ (APF1f), k),
0" : Hom((A%g) @ (AFf), k) — Hom((A""'g) ® (Af), k),
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as follows:

(_

Here™

Of(Sgseve 8132150, Tpy1) = Z(—l)”’lf(sq,... S ALy ST 8y e e Ty e s Tp)
'7‘74

‘|‘Z Z+]f "781;[$i7$j]7$17"'7$Ai7"'7@7"'7$p+1)7
1<J

DPO f(Sg1svn s S13 00, n.,Tp) = Z(—l)j+1f(sq+1,... e ST By e S DT, D)

]

—I—Z Z"']f (Sqadsevs8gsen s Siyenn s 81,85, 8581, 0, Tp).
1<j

denotes an ommited term.

We refer mainly to [K, M1, M2] for Part I, and to [M3] for Part II.
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