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1. Definitions of basic unitary operators on L?(R™) and
their properties

1.1 Terminology. In signal processing, the real line R
is callled the time domain while a copy R of R is called the
frequency domain. For practical applications, a one-dimensional
signal is a square integrable function f from R to R which is at
least piecewise continuous. For the mathematical theory of signal
processing, it's more convenient to regard signals as members of
the Hilbert space L?(R)={a.e. equivalence classes of measurable
functions from R into € which are square integrable with respect
to Lebesgue measure}.

When we move from R to R", n > 2, and discuss higher
dimensional mathematical signals f € L2(R"), it's convenient as in
calculus classes to take R™ to be the space of 1 x nreal column

£
: T : . -
matrices z = | *° | and call it the space-domain. We take (R")
to be the space of n x 1 real row matrices
E=1[& & &1 &, and call it the n — dimensional

frequency domain. These two spaces play very different roles so
"identifying them" by replacing both column and row matrices
with ordered n — tuples is usually not a good idea. Note that the

matrix product x of & € (R") and =z € R™is just > _&;x;, which in
=1

many calculus books is called the "dot product” of n-tuples. We

write dx and d¢ for the increments of Lebesgue measure on R™
and (R™)" .



1.2 Definitions. The basic unitary operators for harmonic analysis
on L?(R") = L?(R",dz) are as follows:

(¢) Translation operators (T, f)(z) = f(z —y), y € R";

(i¢) Modulation operators (M, f)(x) = ec(z) f(z)
where, for £ € (R"), eg(x) = e,(&) = ™7,

(i) Dilation operators (D, f)(z) =
deta| V2 f(a"'z), a € GL(n,R) = group of invertible n x n
real matrices;

(iv) The Fourier transform F = unique extension to a
unitary operator from L2(R") onto L2((R™) " )of the operator
f e f from LY{R") N L2((R™)7) into {bounded, continuous
functions on (R™)" } defined by

F(&) = [af(@)e¢(x)da (1)

Warning : Someauthorsdeletethe 27 factorin
thede finition of the elementary exponentials e. and are

then obliged to multiple the integralin (1) by (ﬁ?r%m inorderto

make F unitary. Also, some authors denote the operator

in (i) by Dy-1.

1.3 Notations: (i) When ¢ is an operator on L2(R™), U
is the operator FolfoF ' on L*((R™)" ). Thus,
for each f € LA(R™), U f = (Uf)".

(43) For f € L*(R™), the support of f, denoted
supp f, is the a.e. well defined set {x € R" : f(x) # 0}.

(#i1) For S a measurable subset of R", L*(S) denotes the
subspace of L2(R"™) consisting of all f € L?(R™) for which,
modulo a Lebesgue null set, supp f C Sor, equivalently,

f = x, fa.e. Here y, denotes the characteristic function of S, 7.e.
the function which is 1 on S and 1s 0 off S.



1.4 Theorem on the Geometric/Algebraic Properties of the
Basic Operators.

() On the Hilbert space L?(R") :

y — T, 1s a unitary representation of the additive group (R™, +)
(thus, T,oT, = T,y forall z, yand 2 — T, f is continuous from
R™ into L2(R") Vf € L}(R"));

& -+ M Is a unitary representation of the additive group (R?)" ;
a — D, 1s a unitary representation of the multiplicative group
GL(n,R) (the determinant factor is what makes makes each

what isneeded to have Dy, = D, Dy).

(i) Forall (a,y,&) € (R\{0}) x R" x (R")" -

D, Ty = T,,D,

DM = Mg,-1D,,

MeTy = epely) T, Me;

(Ty) ™ =M-y;

(Mi)A =T¢

(DY FE) = |det alV*F (€a) (Multiply on the right by
a for (D,) instead of multiplyingontheleftbya™ for D,).

(#i) When S € R™ is a bounded set:
T, maps L2(S) onto L2 (S+y);
M¢ maps L?(S) onto itself;
D, maps L*(S) onto L?(aS) (so supports get multiplied by
a, nota™1);



F maps L2(S) C L' (IR™) into the space of square integrable,
real analytic functions on (R")"  which vanish at oc (real analytic
means described by a converging power series); in the case n = 1,

for f € L2(S)\ {0}, supp f = R\ {countable set}.

Comments on the proof of Theorem 1.4. The last statement in
Theorem 1.4(¢47) is part of the classical Riemann-Lebesgue Lemma
saying that Fourier transforms of L functions are continuous
functions vanishing at co. The statement about real analyticity
follows from expressing e.¢(x) as a power series and integrating
(1) term-by-term. In fact, for n = 1, this power series converges
everywhere on C and extends ? to a complex analytic (or
holomorphic) function on € which can't have more than countably
many zeros. All of the other statements in (¢) — (7i4) are just
elementary computations using only the definitions. It's a very
good exercise to do these computations since the relationships in
Theorem 1.4 are used repeatedly in constructions of different types
of reproducing function systems.

2. Gabor, Haar, and Shannon Reproducing Function
Systems

2.1 Definitions: (i) A signal f € L2(R) is said to be band-
limited if f = F~Y(F) for some F in L2(R) with supp F compact.
Then the frequency band for f is the length of the smallest interval
I for which suppF C I. As in the above comments, every band-
limited function is real analytic, vanishes at oo, and square
integrable--we can regard the everywhere well defined, smooth
function f as a member of L2(R) by identifying it with its a.e.
equivalence class. Of course, we return from [ to I by applying 7




SO f = I a.e. Note that the reason f is so nice is that F is
integrable and compactly supported: but, nice as it is, f need not
be integrable so we need the measure-theoretic extension of F to
get back to the usually not nice F.

(i7) The standard unit interval in Ris I, = [ — 1/2,1/2]
and the standard band limited space of functions on R is
By (R)={ f=F 'F:F € L*(I;)} . The Shannon sampling and
scaling function ¢g is the member of B (IR) whose Fourier
transform is X, Thus,

Ggix) = ff{ifﬂ&)d&where ex (&) = ee(x) = p2mike

By elementary calculus, ¢5(0) = Land, for z # 0,
ds{z) = 3%‘?3—) Another name for ¢s(z) is sinc(z).

2.2 Theorem on the Properties of B, (R) and the sinc
function
(1) {Ti(sinc):k € Z} is an orthonormal basis
of By (R);
(1) T,(By(R)) = B, (R) ¥y € R

(7i7) For each f € B (R)
> f(k)Tk(sinc) converges pointwise unconditionally to f and
kEZ
also converges to f in L?(R). More generally, for each choice of
g € R, > flawg + k) sinc(x — (zy + k)) converges

kel
unconditionally to f(x) for each x. In particular, f is uniquely
determined by its values on Z+ux.

b

(iv) Each real-valued f € By (R) has a unique extension
to a holomorphic function on C satisfying > (f(z — k))? = || ftE‘f
kel :
for every z € C.



Proof. (z) follows from the Fourier series fact that{e_; X, k€

is an orthonormal basis of L*(I;) = image of B, (R) under the
unitary map F and use of Theorem 1.4 to see that
F(Ty(sinc))=e_,x foreach k € Z.

i

(i1) follows from Theorem 1.4 and the observation that L(.S)
is invariant under the modulation operators My, y € R, for every

measurable set S ¢ .

(#¢i) For each f € By(R), we have F=/ in L2(/;)
and, for cach k € Z, f(k) = (F 'F)(k) = [*]3, F(©)er(€)dé =
<Feix, >,.;=< f. 2% (sinc) > . Using (7)

> f(k)Tg(sinc) converges to fin L*(R). In order to show that we
k

.
/

have unconditional pointwise convergence, we fix # € R and note
that, by unconditional convergence in orthonormal basis
expansions of inner products, we have
f(x) = <F, e rx, > =) <F, €—kX, > < €op € kX, >
1 ka7, 3 i
=) flk)sinc(z — k) = ) f(k)(Tgsine)(z) (2
kel kel
The corresponding result using values on Z+xz; in place of values
on Z follows from (77) by applying (2)to g = T_,, f € B{(R) and
replacing x with z — x5 so g(k) = f(zg+ k) and f(x)
= g(z — xy), ete.

(iv) holds for z = x € Rsince, for F=f,

J(x — k) is the ( — k)¥ Fourier coefficient of the function

Fe_,x € L?(1;)and the L* norm of this function is g, =
1 L7 R



7 ’120‘“«)' As we noted above, f has a unique extension to a

holomorphic function on C so (iv) also holds for each = € Cby
analytic continuation.

Remarks. In the literature, 2.2(iii) is known as the Whittaker-
Shannon-Kotel'nikov Sampling Theorem. As the above proof
indicates,it's merely an application of Fourier series results. In
complex analysis, 2.2(iv) for f = sinc is the basic tool needed to
obtain Mittag-Leffler and Weierstrass expansions of various
trigonometric functions. There are many other properties of sinc
which have proofs analogous to those in (i) — (iv) and are useful
in various ways both in real and complex analysis.

For signal processing, it's enlightening to compare the
properties in Theorem 2.2 for the real analytic Shannon
sampling function ¢ g=sinc with the properties below for the
discontinuous Haar sampling and scaling function

¢H($) = X[G,])(iﬁ).

2.3 Theorem on the Properties of ¢g
(1) {Ix¢g : k € Z}is an orthonormal basis for the
closed subspace Vg ;7 of L#(R) consisting of pointwise well
defined square-integrable functions on R which are constant
on each half-open unit interval [k, & 4+ 1) with integer endpoints.

(it) Fory € R, T,y maps V g into itself < y € Z.

(120) If S={xy : k € Z} with zy, € [k, b+ 1) foreach k € Z,
then, for each f € Vj yand each x € R,
flz) :RZZ Jlar) Ty () (3)
b
and the series in (3) also converges to f in L?(R). Hence, [
is uniquely determined by its values on any sample set of the type



S and it is customary to call (3) the sampling equation.

Proof. Unlike the tricky Fourier series arguments needed to prove
Theorem 2.2, the proof of Theorem 2.3 follows immediately from
the observation that Ty = x,,., is a unit vector in L*(R) whose
support is disjoint from that of T;¢p for £ £ [ and, for each

xr € kyk+ 1), flor) = < fixg,, >, et

2.4 Definition. For g € L*(R),
Gy = {TxM;g: (k1) € Z x Z}is the Gabor system with
integer translations and modulations generated by g.

Note that by Theorem 1.3,
F(Gy) = M T g=TM ;G: (I, — k) € Zx Z} =Gy
since e;(k) = 1for all integers, &, . Since F is unitary,
G, is an orthonormal basis of L*(R) < Gy is an orthonormal
basis of L2(R).

2.5 Theorem. Both G, _and G, are orthonormal bases for
L*(R).

Proof. For any unit interval [ C R, it's clear from Fourier series
considerations that {M;x, : [ € Z} is an orthonormal basis of
L2(I) ¢ L?(R). Since the family of translated intervals [ + k,

k € Z, are, modulo null sets, mutually disjoint with union R,

it follows from Theorem 1.3 that G, is an orthonormal basis of
L*(R). Applying this to the intervals I = [0,1) and ] =

I; =[—1/2,1/2) and recalling that ¢g is the Fourier transform



of x; , 2.6 follows. Indeed, aside from unimodular scaling factors

and identifying R with IR, Gy, can be interpreted as the Fourier
transform of Gy ;.

2.6 Remarks.

(7) One can similarly define higher dimensional Gabor
systems G, generated by g € L*(R"):
G, ={T)\)Myg:keZ" CR" e (Z")* c (R")} where
(Z"): = (e (R &k € Zforeach k € Z"}

= {elements in (R")" with integer entries}.
By n — variable Fourier series, if either g or G is the characteristic
function of a unit cube, then G, is an orthonormal basis for
L?(R™) and G is an orthonormal basis for L2((R")).

(47) A lattice in R"is a subset £ of the form aZ" for
some GL(n,R). Thus, £ is the set of linear combinations with
integer coefficients of the columns of a. The lattice dual £+ of
L is defined to be the set of all £ € (R™)" for which él € Z
foreach | = ak € L. Clearly, £+ =(Z")" a1 is the set of linear
combinations with integer coefficients of the rows of a='. We can
then define (£,£+4) Gabor systems in L(IR") by applying to a
generator g translations by members of £ and modulations by
members of £+ ; then applying the Fourier transform gives us the
(L1, £) Gabor system in L?((R™)") which applies to
translations by members of £+ and modulations by members of £.
We get orthonormal bases when either our generator g is the
characteristic function of a lattice tiling domain C for £, i.e.,

C C R" is a measurable set for which R™ is the disjoint union of
the "tiles" C+I, l € L), orgisthe characteristic function of a
lattice tiling domain C’ for £+, This is not the only way in which
Gabor systems can be orthonormal bases, just the easiest way to
construct orthonormal Gabor systems. With [0,1)" turned into a
subset of R™, a[0,1)" is an easy example of an aZ” — tiling
domain; similarly, with |0,1)"turned nto a subset of




(R™y,[0,1)*a~! is an example of an (aZ™)* — tiling domain R™.
Sadly, one can show there 1s no orthonormal Gabor system whose
generator 1s a smooth, compactly supported function. This is a
very big drawback for applications of Gabor systems to signal
analysis; Gabor systems are simply not efficient in the sense that,
for most signals, we need a large number of coefficients in order to
be able to reconstruct a reasonably good approximation of our
signal.

(ii7) There are also higher dimensional versions of Haar and
Shannon functions with orthonormal basis and sampling properties
analogous to those in 2.2 and 2.3 We won't take the time to
belabor this.

2.7 Definitions.

(i) The basic dyadic dilation operators on L*(IR)
are D=D, ; and D™t =D, with {DJ : j € Z} the group of dyadic
dilation operators generated by D.

(i2) For ¢ € L?(R),

WAVy = {¢; = D' Tyt (4. k) € Z x Z} is the wavelet
system with integer translations and dvadic dilations generated by
Y. If WAV, is an orthonormal basis for L?(IR), we say 1) is a
dyadic orthonormal wavelet,

(i1i) A dyadic, orthonorm_al, multi-resolution analysis

(for short, adyadic ON MRA) for L?(R) is a family (V) ez of
closed subspaces of L?(IR) for which the following properties
hold:

MRA (1) (nested property) V; C V1 Vy € Z;

MRA (2) (intersection property) ﬂ;cz VvV, ={0};

MRA (3) (union property) (.. V;is dense in LA(R);

MRA (4) (dyadic dilation property) V; = D'V, ¥j € Z;




MRA (5) (orthonormal scaling property) There is a function
¢ € Vq for which {T¢ : k € Z} is an orthonormal basis for V.

There are also non-ON dyadic MRASs where we still have
MRA(1) — MRA(4) but replace MRA(S) with a weaker condition.
In higher dimensions, with R and Z replaced by IR™ and Z", we
have to make a choice of ¢ € GL(n, R) for which MRA (4)

with integer entries and with all of their eigenvalues having
magnitude strictly greater than 1.

2.8. Remarks. When (V)7 is a dyadic MRA, MRA(1)-(4)
imply that, for Wy C V; the orthogonal complement of Vo C Vy,
W; = D/Wj is the orthogonal complement of V;in V., and
L2(R) is the orthogonal direct sum of the family of the closed
subspaces W, 7 € Z. In the book The Mathematical Theory of
Wavelets by E. Hernandez and G. Weiss, it's shown that we can
always select v € W for which {T+ : k € Z} is an orthonormal
basis for Wy. Later, we'll go over the details of this

and also will show that #) is unique up to replacement of 1//3 by

3 for y a unimodular, Z-periodic function. It follows that
WAV, is an orthonormal basis for L*(IR) for each such ¢. In this
way, dyadic ON MRA's give rise to dyadic orthonormal wavelets
which are uniquely determined by the MRA modulo unimodular Z-
periodic Fourier domain multipliers. Theorem 2.9 illustrates this
general result.

2.9 Theorem on the Haar and Shannon wavelets.

(i) The Haar wavelet function ¥y = X, 0 =X .,

is an ON dyadic MRA wavelet with scaling function ¢z,

(4¢) The Shannon wavelet function s = F (X, | ypn)



is an ON dyadic MRA wavelet with scaling function ¢g,

Proof. (i) As we saw in Theorem 2.3, V; 5 consists of the
functions in L?(R) which are constant on half-open intervals

with integer endpoints and has {T; @, : k € Z} as an orthonormal
basis. Define V; y to be Dj(VO;H) for j € Z. The members of V,
are the functions in L?(IR) which are constant on intervals of the
form L, = [k/2,(k+1)/27]. For j = 1, each such interval is
contained in an interval with integer endpoints so Vo iy C Vi 5
and it follows that V,; iy C V. g forall y € Z. This checks the
MRA conditions (1), (4), and (5) for (V; ) ez For j <0,
members of V; z are constant on the half-open interval

[217=1 2li+1Y centered at 0 and having length 27, As j— — oo,
these intervals exhaust R and it follows that MRA(2) is satisfied.
Finally, MRA (3) follows by the ability to get increasingly good
approximations to any function in L*(IR) by simple functions in
V. as j=o0. Clearly 1y isin Vy g and is perpendicular to T, oy
for each k£ € Z, so, in the notations of 2.9, ¢; € Wy .

Fasy direct computations show that {730 : k € Z}is an
orthonormal basis of Wo g so ¢y 1s a member of the family of
orthonormal, dvadic wavelets determined by the Haar MRA system

(Vj,H)jEZ.

(#4) Here we must do all of our checld/\ng in the Fourier
domain, remembering that D=D ;5 implies D = D,. Hence, for
7 > 0, application of D’ dilates supports by 27, while, as in (4),
application of D’ contracts supports by %3 By Theorem 2.3, Vis
=B;(R) has {Ty¢s : k € S} as an orthonormal basis
and (Vo5) = F(Vys) = L (I1) € L*(R). Let
[ =200 = [ =271, 271}, We then have (V; o)~ = D' (Vos)
= L%(I;) and we readily deduce from this that (V; s );cz satisfies



MRA(1)-(5). Furthermore, it's obvious from Fourier series
considerations that (Wy )" =L*([— 1, — 1/2) U[1/2,1)) has
{e—x{¥s)” : k € Z} as an orthonormal basis so W, , has
{Ti1vs + k € Z} as an orthonormal basis and hence v is in the

family of orthonormal, dyadic wavelets defined by the Shannon
MRA (Vj: S)je’Z.

2.10 MRA Wavelet Applications.  When (V) <z is a dyadic
MRA with scaling function ¢ and wavelet function 1, we have, for
680hj> O, X/]: %@W@Q}/W/} @@ijl FOI.'f Efj & {/}',
let fy be the component of fin Vgand F;,0 <4 < j—1, the
component of f in W,. Then f;is the orthogonal projection of f
toVoand, forl <¢ <4531, fi=fo+ Ey+---+ E;_is the
orthogonal projection of fto V;. We think of f; as the i
resolution level approximation of f and think of E, = £, — f;

as the error term in passing from f; | down to f;.

For the Shannon MRA, we pass from f; to f,_; by "filtering
out" the frequencies in .J; = L\ [, 1; thus (f,_1)" = Xjﬁ For
the Haar MRA, each of the intervals
Liyg = [k/2" %, (k+1)/2° ) is the disjoint union of the
intervals I; o5 and I; o541 so, for each k, the constant value of f;_;
onl;_y 1 is the average of the constant values of f; on 1, o5
and [, 5, ,. This makes it very easy to pass from f; to f;_; and to
calculate F;,_1 = f; — f,—: for both the Haar and Shannon MRAs.

In practical applications, the only information we have about
a one-dimensional signal f is a finite collection of data values. We
then pick a convenient dyadic ON MRA (Vj)j _ with scaling

function ¢ and associated wavelet function 1. For areasonably
large j > 1, we assume our signal 1s in V;and turn our data values
into the coefficients for f in terms of the orthonormal basis
(DT, : k € Z} for V. As we'll discuss below, there is a very
fast way to calculate the coefficients of each I relative to the
orthonormal basis {D'T¢ : k € Z} for W; and to



calculate the coefficients of fyrelative to {T¢ : k € Z}; in brief,
we never have to compute inner products to find these new
coefficients but instead can use algebraic manipulations on our
initial collection of coefficients. We can then store all of these
coefficients in our "home" computer and, when asked by someone
to send information from which a low level approximation to f
can be reassembled, we transmit only the coefficients needed to
reproduce f; for a fairly small value of 7 : only rarely do we need
to pull out and transmit the error coefficients needed to correct f; to
fi for a "moderately"” large value of 7'. In practice, we almost never
need to go back to the data used to obtain V; coefficients of our
original f. Also, given a signal for which we have data values, we
can go to a library of MRA systems to select a system well adapted
to our signal, 7.c., one for which it seems reasonable to regard our
data values as giving us coefficients for a member of V; for some
reasonable large j. This brief explanation of efficiency in coding
(small number of coetficients needed for low level resolution
approximations) and flexibility (ability to use systems well adapted
to the signals of interest) is why wavelet systems have been
adopted by engineering journals and engineering associations as
the industrial standard for data analysis and all earlier systems are
considered outmoded and unacceptable for use in publications. In
particular, although Gabor systems are mathematically appealing,
they are of little practical use for data analysis since they're not
efficient and don't have the features just discussed for wavelet
systems. The Haar and Shannon wavelet systems are relatively
easy to describe but there are other wavelet systems with much
better features for certain applications. In particular, Y. Meyer
constructed a large family of dvadic ON MRA wavelets whose
Fouriler transforms are smooth and, like the Shannon wavelet, have
compact support. I. Daubechies constructed, for each & € N, a
dyadic ON MRA wavelet having k& continuous derivatives and, like
the Haar wavelet, having compact support in the time domain. The
Daubechies wavelets are the wavelets now most commonly used in




applications. Because of a large host of theorems, one-
dimensional mathematical wavelet theory is now "nearly”
complete. However, there remain many open questions in higher-
dimensional wavelet theory; this is a very active research area.

3. Shift Invariant Spaces

3.1 Overview. We saw in Section 2 that the starting point for
construction of Gabor and dyadic wavelet systems on L2(IR) is the
set of translates T ¢, k € 7Z for some generator ¢. When we apply
D’ to each of these translates and use the Theorem 1.4
transformation formulas,we are looking at the translates

Ty, (D?¢) of the dilation D’¢ of ¢; in effect we replace the
lattice Z of R with the lattice %—IZ whenever we apply D7,

Similarly, in higher idimensions, we could start off looking at the
set of translates of some generating function ¢ € L?(R") by
members of Z" but then when we apply D, and use

D, T = TyD, ¢, we are translating the new generator D¢ by
members of the lattice aZ™. In principle, we could use a change of
coordinates in which aZ™ is expressed by Z" in the new
coordinate system. [t's much better not to keep changing
coordinates but, instead, to use coordinate-free techniques.

3.2 Definitions

(1) When L is a lattice in R™, an £ shift-invariant space
is a closed subspace V of L2(R™) for which T;(V)=V for each
[ € £Land V is then said to be a principal (or ¢yclic) £ shift-
invariant space if there is some non-zero ¢ € V for which
V=< ¢ > , = smallest closed subspace of L*(IR") containing
ITi¢ : 1 € L}. Then each such ¢ is an £ shifi-invariant space

generator for V.




(72) When V = < ¢ > _ is a principal £ shift-invariant
space, V. = F(V)is the image in L2((R")") of V under the
Fourier transform F. Since (T;¢)" = em;&é‘, ¥ is the smallest
closed subspace of L2((R™)") containing {¢;¢ : [ € £L}. Hence
{ma : n 1s a finite linear combintion of the elementary
L+ — periodic functions ¢;, ! € L} is a dense linear subspace of
V.

(¢77) For £ alattice in R and ¢,7) in L*(R"), the £ bracket

[¢.0], is the £+ periodization of ¢ 1, 7.e. [0,0], is the £1-
periodic function on (R™)” which is a.e. well defined by

[9.0]2(§) = Zﬁj (Qw)(€+7). (4)

je ot

Note that (¢,1) — [¢,¢], is C-linear in ¢, conjugate C-linear in 1,
[10,01c=[0,¢] , and [¢,0]z > 0 a.ce. with [¢,0],=0 a.e. < @ is
the zero element in L2(R™). Aside from the fact that [¢,2)] is a
function rather than a complex number, these are the properties of
an inner product. By applying the Cauchy-Schwartz inequality
for 1*(£+), we also have a Cauchy-Schwartz inequality for
brackets:

[l < (6,015 [00]E  ace. (5)

As we'll see, | -, - ] has many other properties analogous to those
of inner products.

3.3 Elemenary Properties of £ brackets and principal £-shift
invariant spaces.

Fix a lattice £ in R" and let T ,, be the compact Abelian group
(R™)™ /L4, As aset, we can identify T ., with any £~ tiling
domain C and we can regard integrable functions on T . as locally
integrable , £--periodic functions F on (R™)". We denote by



[ F d¢ the common value of [, F(€)d¢ for C any £+ tiling
ol

domain. From the theory of Fourier series, we also know that
{er : k € L} s an orthonormal basis for L( T, ).

(i) For ¢p,p in L2(R™), [¢,20] is the unique member of
L' (T ,.) whose k% Fourier coefficient f. e z[¢.].d€
o

is <Tpo, v > .

Proof. By the Plancherel theorem for R™, (:5 'z,/E 1s an integrable
function on (R™)" and its integral over (R™)" is equal to

< ¢, > . Choose an £ tiling domain C. Using (4), the
translation invariant property of Lebesgue measure, and the Fubini
Theorem to interchange [ and ), we obtain

Sy 0 (©AE=Y [ ( S D& + e = [ [d:1c(E)dE. (6)

el
Using (5), (6), and the Cauchy-Schwartz inequality for L2 (”’ﬂ‘ ﬁi);
it follows that [¢,¢], is in LY(T,, ) with

fm [6.40]c dé = [igay 30 (§)dE = <o, > (7)
and | [669cl,, < 0]

We now recall that (Tz¢)™ = e_1.¢~. Since e_;, is L+ -periodic,
we obtain from (4) that

[Tedble = e (6.0 (8)
so substituting Tr¢ for ¢ in (6) completes the proof of (7).

*l iLZ wn

(22) Bey = {Tr¢ : k € L} is an orthonormal basis of <¢>,
< |ple = 1a.e.

Proof. Using (i), [¢,¢]r = 1a.e. < its 0" Fourier coefficient
is 1 and all of its other Fourier coefticients are 0



S Vkilel, <T.p,Tip > =<Tp 10,6 > is1 whenk =1
and i1s 0 whenk # [
& B4 1s an orthonormal basis for the closure <¢>, of its span.

(¢4%) For ¢,p in L2(R™), [p,0]s = Oa.e. <> <¢>. and
<ap>. are perpendicular subspaces of L2(R"?).

Proof. This follows from (i) since <¢>, and
<a)>p are perpendicular subspaces
&S 0=<To, TiY > =<Tp 0,9 >VEk,le L.

(iv) When ¢ is a generator for a principal £ shift-invariant

space V, then V = {me¢ : mis measurable and L-"-periodic
. 2

with || [¢,¢]c € LY (T .0)}-

Proof. When md is in the set described above, the £--
periodicity of m gives 3° [m(€ + /) (€ + 5)[> = |m(&)]?

jeLt
[¢.0]-(&) a.e. and hence the same integral periodization as in ()
impliesthat f = m¢isin L?((R™)" ) so f isthe Fourier transform
of some f € L2(R") with

h < 2 ,
17112 = gy, = ,f'fﬁi i [¢,0]cdé (9)

L2 (R
It's obvious that the collection of these functions f = mao
is a closed subspace of L?({R™)" ) and is the closure of the dense
linear subspace of V described in 3.2(77).

(v) Each principal £ shift-invariant space V uniquely
determines, modulo a set of measure zero, a measurable subset
=0y of T ., such that, for any ¥ € V, [¢),3)]cis 0 a.e. off §2

and 1) generates V < [1,0] >0 a.e. on (2. Furthermore,
we can always choose generators i for V with [,0] =X, a.e.
and then B, is a Parseval frame for V in the sense that




U< £ Tep > 2= || fllf2@y VF € V. (10)

JEL

Proof. Choose any generator ¢ for V and define 2 to be

supp (9, ¢le = {€+ L7 : [¢,0]2(£) > 0}. Fory € V, (iv)
tells us that 1»=m¢ with |m|* [¢, ¢, integrable on T,..
Using (4) and periodicity of m, [, ¥]z = |m|* [¢, &],

50 [, ¥l = 0 a.e. off . When [, 4] ,>0 a.e. on Q,

we have mnon-zero a.c. {); for f € V', we can then use (3v)

to describe f either in the form m/d or the form 1/’  with

m'’ = ™y, and to deduce that v generates V.

™"

When we define v to be the member of 'V for which

U= ; g}” 1/235, we have [¥,¢],=x,a.e. Using (i), forany f € V,
LAY

7 =mpwithm € L*(Q2) = {members of L*(T . ) vanishing a.e.
off Q}. By (¢) and the Plancherel Formula for Fourier series,

LFI2 = 712 = HmHQ[z(@ | = sum of the squares of the Fourier
AT,

coefficients for m = > | < f, Ty > |, Hence, B,y is a Parseval
kel
frame for V.

Note : GivenVasin (v), (ii) implies thatthere existsa
generatory for V withBe yan ON basisof V & Q,, = T,
modulo anull set. In general, the best we candoisusea
Parseval frame generator for V. Thisis still very nice
since, among other properties, foreach f € V., we have
F=1f ], Yandit followsthat, for f € L*(R"), the
orthogonal projectionof fontoV istheunique function g

forwhichg = [f, '@bh@-

Definition. When V is an arbitrary £ shift-invariant subspace of



L2(R"), a countable subset U={¢, : 1 € I'} is an orthogonal
Parseval frame generating set (OPFGS) for V ifthe following
hold:

(1) V=EB,.; < i >  (orthogonal direct sum);

(12) Foreach i € I, By, is a Parseval frame for < 4; > ,
and, hence, by (i), Bry = J,.;Be.y, is a Parseval frame for V.
Noting that the orthogonal complement in V of any £ shift-
invariant subspace W C V is also a £ shift-invariant subspace
(because T, is a unitary operator on V for each k € L), the
existence of OPFGSs for V follows by Zorn's Lemma.
Alternatively, one can use a bracket version of the Gram-Schmidt
process to convert any countable generating set for V to an
OPFGS.

We denote by 7, . the smallest cardinal number for which V
can be described as the orthogonal direct sum of r,, , principal £
shift-invariant spaces. Borrowing some terminology from abstract
algebra, we call ., the rank of V over L.

3.4 Dimension Theorem for Shift Invariant Spaces. Fix £ as in
3.5 and let V be any L shift-invariant subspace of L2(IR™).
Then there exists a measurable function
dim, .:T . =N U {0,0c0} with the following properties:

(¢) For any OPFGS U={¢; : ¢ € T} for V,

dim, , = Sl il ae. (11)

el

(@) ||dim,  lloo =7y 5

(¢22) When r, =N € N and, for1 < 5 <N,
Q; ={£ €T, :dim, () = j}, we can choose an
OPFGS W={1; : 1 < j < N} for V such that [;,;],=x,

for each 7.



Proof. (z) We merely need to imitate the easy proof using inner
products of the dimension theorem for Hilbert spaces. Thus,
suppose @={¢; : i € I} and U={v; : j € J} are OPFGSs for V.
From the Note after 3.3(v), we have another parallel between
brackets and inner products, namely, for each fev,

f, Fle = I 602 = I Ll (12)

=3 jeJ
We can then apply (12) to each member of © (respectively, W)
using brackets with members of W (respectively, ®) and add up
the results in either order with the aid of the Hermitian symmetry
property for brackets :

Nlondl, =% X ldnl,]

el el ged
= Z Z[[wj?¢i]z:[2 = z [?f/’jﬂ/)j]c'
jeJ il JEJ
Clearly, (¢) follows.

Sketch of the Proof of (¢¢) and (¢42). (7i7) follows from a
somewhat lengthy "rearrangement” process based on checking
that <y>, + </ >, = < ¢+ ¢ >, when
(supp [, ¥],) N (supp[¢/,4'],) is a null set. There is actually
a version of (#27) when r, ,=cc. Then (i4) follows easily from

(iii).

3.5 Corollary. LetV be as in 3.4,
(z) It r, , is finite, there exists an OPFSG ¥ for V
such that By  is an orthonormal basis of B < dim,, . =
7y . a.e.and then the OPFGSs with this orthonormal property
are precisely those with 7, . members.

(¢22) When V', V'’ are L shift-invariant subspaces of V
for which V=V' & V'’ then dim, ,=dim ,  +dim,,,  a.e.

V”,,C



Proof. Both (¢) and (ii} are immediate from Theorem 3.4.
3.6 Zak Transforms and L? — Sampling Functions

(¢) Definition. Relative to the lattice Z", the Zak Transform
Zfof f € L2(R")is the a.e. well defined function from

R" into L*(T ) described by the Fourier series

(), =) = fle+k)e () (13)

kel
Thus, as we used above for f, ((f(z + k)) ez iS a square
summable sequence for a.e. z. By an easy change-of-summation-
index computation, (Zf)(z +1, - )= e (- WZf)(z, - )a.e.
so |Zf|is Z" x (Z™)* periodic. A routine computation shows that
for C any Z" tiling domain in R" and C ' any (Z")* tiling domain
in (R")",

One can then show that f — Zf isunitary from

L2(R") onto the Hilbert space of functions satisfying the above
transformation condition and having magnitudes which are square
integrable on C x C’. It's clear from (13) that Z can be interpreted
as a discretized Fourier transform. In fact, there is an elementary
proof of the Plancherel Theorem for R™ based on interpreting

(F £)(€) as the average over x of the quantitities

e~z (7 £ (x, €). For many purposes, Zak transforms
"accomplish" the same things as Fourier transforms but are much
easier to compute and to invert. As an example of this,

“ded (14)

Lf

fi2d93 = fcfc*f

91z (&) = [ (Zf ). &) (Zg)(w, &) d (15)



in view of the uniqueness characterization of brackets in

3.2 and an easy calculation showing that < T, f, g >

is obtained by multiplying the right side of (15) by

e—(&) and integrating over C’.  There are many other uses for
Zak transforms in the theory of harmonic analysis and in applied
harmonic analysis. In (iv), we will mention one of these
applications.

(72¢) We observed in Section 2 that the Haar and Shannon
scaling functions ¢ and ¢ are also sampling functions in the
sense that members of Vg i and Vs are uniquely determined by
their values on Z and these values can be used as coefficients in
expressing functions in these spaces as linear combinations of the
Z translates of ¢ and ¢ . This leads to the following definition.

(iv) Definition. A square integrable function ¢: R" — C is a
7"~ sampling function if the following hold:

(S1) ¢is bounded on R™and is continuous on a dense open

subset i/ C R" (e.g., U might be the complement of finitely many
smooth surfaces having dimensions <n) ;

(S2) By = {Typ¢: k € Z"}is a frame for <¢>z, i.c.,
there are positive constants A and B for which

AIfIE,, S5 < £ Teo > P <BIfI2,

o kez™ S

(16)

(S3) Changing notation, for each of the a.e. equivalence
classes comprising <¢>z» we can pick a specific representative
f in the class such that, for cach z € R",



> J(k)d(x — k) converges unconditionally to f(x) and the

;CGZ“

convergence is uniform on compact subsets of I/ so f is continuous
onU.

"Essentially”, one can show that, when (S1) and (S2) hold,
then (S3) holds < Z¢(0, -) X e, We Will not bother to

discuss the added technical conditions needed to make this
statement correct nor will we take time to go into the details of the
proof. In an obvious way, one can define Zak transforms

with an arbitrary lattice £ C R” replacing Z™ and use them to
characterize square integrable £ -sampling functions.

There are also sampling functions where, as with ¢, the
sample set need not be the points on a lattice; these are closely
linked to the theory of reproducing kernel spaces. Finally, one can
forget about square integrability and look just at functions
satisfying a version of (S3). It should be clear that the subject of
sampling functions is of great interest in applications since
members f of a sampling space determined by a sampling function
¢ are uniquely determined by their values on a countable sample
set and there is an explicit way to reconstruct each f from its
sample values and certain translates of ¢.

3.7. Summary. As mentioned in 3.1, all of the standard
reproducing function systems, including Gabor and wavelet
systems as well as other more general systems, rely on

lattice translations of certain generating functions. In this sense,
the theory of shift invariant spaces is fundamental for construction
and implementation of reproducing function systems. We have
discussed all of the basic ingredients of this theory, culminating in
the very important Dimension Theorem and a preliminary
discussion of L2 sampling functions We could go on at great
length to develop more ingredients of shift invariant space theory
and sampling theory but it's better to develop new ingredients as



they are needed for specific problems and applications. In effect,
every researcher in applied harmonic analysis needs to know the
basic ingredients in order to apply them to his/her research agenda
and, as necessary, prove new theorems and develop new
computational techniques. It's not an exaggeration to say that, in
the same way that multi-variable calculus is impossible to fully
understand without linear algebra, modern applied harmonic
analysis is impossible to fully understand without shift invariant
space theory.

4. Applications of Shift Invariant Space Theory to Wavelet
Systems

4.1. Let us return to the discussion in Section 2 of dyadic ON
MRAS (V) ez for L*(R), focusing our attention on the 7Z shift —
invariant space V, = < ¢ > 7z, the dilated space

V1 = D(Vg) with D =D, s, , and the orthogonal complement

Wgof Vyin Vy. Recall that Vi C V; by MRA(1) and, by MRA(4),
By = {Tp¢ : k € Z}is an orthonormal basis of V. From Section
3, this tells us that [¢,¢]z = 1 = dimVD,Z a.e. Since

DTyr¢ = Tj;2D¢ and D is a unitary map, D quzzxgm,%z 18

an orthonormal basis for V, = < D¢ > 17- On the other hand,

Z C %Z so Viis also a Z shift-invariant space. Because

DTy;¢ = T;D¢and DT»;.,¢ = T,DT, ¢, BD@,F;Z is the union of
the orthonormal basis Bp, 7z for < D¢ > 7 and the orthonormal
basis Bpr,g, 7z for < DTi1¢ > z. Also Vi is the orthogonal direct
sum of these two Z shift invariant spaces so dim,, , =2 a.c.

and we read off from Corollary 3.5 that

dim,, , =dim, , —dim, , = la.c. Aswe claimedin
Section 2.9, this means there is a function vy € W, for which

B 7 is an orthonormal basis for Wy. From MRA(1) — MRA(4),
it follows that L*(R) = €D jez D’ W and, because D is unitary



{iw = DTy : (4, k) € Z x Z} is an orthonormal basis for
L?(R). Note that 1/ is unique up to a unimodular multiplier

in the sense that, for each f € W, f = mi with m = .Yz
in L2(R/Z)and [f, flz = |m[* [, ¥}z = |m|?so B} is an
orthonormal basis for Wy < 1 = [f, flz = |[m/?a.e.

4.2. Suppose we start with ¢ € L2(R"),n > 2 for, which [¢,¢]4
= 1 a.e. and define Vyto be <¢>z.. Also suppose we have
a € GL{n,Z) = {members of GL(n, R) with integer entries}
for which Vo ©D_ Vg = V. Asin4.1, V, is a principal
a~1Z" shift invariant space with the orthorl_ormal basis

BD By a standard result in linear algebra,

Z" C a~'Z" and the quotient group a ™t Z™/Z" is finite
with |det a| members. Just as in 4.1, we deduce that, for W
the orthogonal complement of Vyin Vy,

dim,, .. =dim, ,, —dim, ., =|deta] —la.e.

so, with N=|det a| there exist choices of OPFGS sets

I={p'V D for W, whose Z" translates form an
orthonormal basis for Wy. There is a theorem giving necessary
and sufficient conditions on ¢ and « in order that we have the
R™analog of the MRA(2) union property and it turns out that the
analog of the MRA(3) intersection property automatically holds.
When these condmons on ¢ and q are satisfied, defining V; to
be D,-;Vyfor j € 7z, W; = D, Wy is the orthogonal complcmum

of V;in V44, L2 (R™) = D <z W, and the multi-generated
wavelet system {D, T,V 1 j € Z, k€ 2™, 1 <1 < N-1}

is an orthonormal basis for L*(R™). For obvious reasons, we say
all of the wavelet systems obtained from some choice of W are
associated with the MRA (V) 2z and the scaling function

¢ for this MRA. All of this is fine when N=2 and we then have
only a singly generated system with ¢=v!) uniquely determined
by ¢ modulo a unimodular multiplier. It's not so good when N>2.

s o 17n -
(1.71-('!)’(1 Z
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For one thing, there's no canonical choice for ¥ and any two
choices W, W' are related by an (N-1) x (N-1) matrix of brackets
which, for a.e. &, is unitary. Even if one gets around this difficulty
by using special properties of ¢ to obtain what seems to be a nice
choice for ¥, the resulting reproducing function system is very
likely to be inefficient, i.e., many coefficients need to be saved in
order to obtain reasonable good approximations for signals.

4.3 Example: The two-dimensional dyadic Haar system.
Recall that the 1-dimensional Haar scaling function is
b = X and the associated 1-dimensional Haar wavelet function

1S 'y =Xj0.3) "X, When f and gare functionson R, f @ ¢

denotes the function on B2 whose value at (z,y)is f{x)gly). In

particular, qﬁfpf) = Qg @ oy :'X!_wgand Vo= < @fr? > 73 has the

72 translates of qbg) as an orthonormal basis and consists of the

functions in L?(IR”) which are constant on each Z2-translate of the
square [0,1)2. The dyadic dilation operator in two dimensions is

N

with Vg C V1 = D(Vy}. From our discussion above, dim =
a5

Juw B NI
Boi= D

=4-1=3 a.e. One can easily check that a choice for W is

Yo @ Yy, vy @ op, vy ® ’U/‘H} Along all of the boundary
edges for the 4 squares of side 1/2 which comprise [0,1),

we have discontinuities for the scaling function gb(Hg) and the
members of V. Certainly these discontinuities lower the efficiency
of the system. But, even if we replace ¢ and ¢ by one of the
Daubechies scaling functions and associated wavelet function, it
turns we still have resolution problems along the line ¥ == x and
these resolution problems are just unavoidable with tensor product
wavelets.



4.4. The twin-dragon example. For wavelet purposes, one of the

gasiest 2 x 2 integer matrices with determinant 2 is the quincunx

: 11 : :
matrix q = (_1 1 ) Taking D to be D, 1, it's easy to construct

Shannon-like wavelet systems using dilations by powers of D and
the lattice Z2. But, as Grochenig and Madych showed,

the only Haar-like wavelet system using these operators has

1 the difference of the characteristic functions of two congruent
parts of a fractal set called the twin dragon. [Likely, a Googol
scarch with the code phrase twin dragon will identify some
websites showing pictures of the twin dragon and, perhaps, some
other wavelets supported on fractal sets.] It's unknown whether
there any Daubechies-like systems using just dilations by powers
of ¢ and lattice translations. This is more evidence that wavelet
theory in higher dimensions is much more difficult than the one-
dimensional theory.

4.5. Composite wavelets. The difficulties discussed above with
higher dimensional wavelet systems using only lattice translations
and integer powers of a fixed matrix a provided part of the
motivation for our research group at Washington University in St.
Louis to introduce a new type of wavelet systems which we call
composite wavelets. These have the form {D'D,T; 1 i € Z,

b & B,l e L}wherea € GL(n,R), £ is a lattice in R", and B

is a group of matrices taking £ onto L. In particular, |det b

= 1forall b.

¢ 0
(1) When L = ZQ, a=1q \/E for some ¢ > 1,

and B:{ (é ‘i) rje Z}, the resulting wavelet systems



are called shearlets since the action on R? of the members of B is
by shearing transformations (the terminology comes from an
analog of wind shearing forces in physics). One can construct
orthonormal MRA shearlets with multiple generators but much
better is to constract Parseval frame MRA shearlets with a single
generator. Along with somewhat similar but more complicated
systems called curvelets (invented by Candes and Donoho),
shearlets have been recently shown to have close to optimal
efficiency for two-dimensional signals ("photographs" of two-
dimensional objects) having discontinuities only along a finite
number of C* curves (intuitively, the edges of the objects in the
photograph). In particular, curvelets and shearlets out perform all
other known reproducing function systems for signals of this type.

(¢i) When £=77, a = q, and B is the 8-clement group of
symmetries of the unit square (4 rotations by integer multiples
of 7/2 plus 4 orthogonal reflections), our group showed that there
is a very easy orthonormal Haar-like MRA composite wavelet
system with ¢ a constant times the characteristic function of an
isosceles right triangle and + the difference of the characteristic
functions of two congruent subtriangles. Obviously, this is a huge
improvement over the twin dragon example. Our former Ph.D.
student J. Blanchard and his collaborator K. Steffen recently
generalized our result to 11 of the famous 17 crytallographic
groups of plane rotations and reflections. There is evidence that it
may be possible to replace characteristic functions with compactly
supported functions having a certain amount of smoothness, hence
analogous to the Daubechies wavelets in one dimension.

(#47) There are many open questions concerning composite
wavelets. Because of the success mentioned in (7) and (%),
composite wavelets appear to be very promising as an address to
the problems mentioned previously for higher dimensional wavelet
theory.



4.6. Low and high pass filters, Smith-Barnwell equations,
and the filter bank technique for dyadic ON MRAs

Let's return to the 2.10 and 4.1 context of a dyadic ON MRA
(V;)jez = (D?Vp) ez for L*(IR) with scaling function ¢ and
associated wavelet function ¢. Recall that (Df)(x \f 2 f(2x),
Vi=Vy @ Wowith {DTy¢ : k € Z} an orthonorma basm for Vy,
{Tr¢ : k € Z} an orthonormal basis for Vi, and {Tp1) : k € Z} an
orthornormal basis for W

(4) It's convenient to use instead the orthogonal basis for V,
consisting of the functions /2 (DT_po)(x) = 2¢(2x + 2k) and
to similarly replace £ with — & in the bases for Vi, and W. For
each f € Vy, we then have square summable coefficient sequences
(ax)kez, (b )rez and (¢, ez uniquely determined by f such that,
in the sense of L?(R) convergence,

flz) =5 ard(ec+ k) + > bp(z+ k)

kel keZ

— 25 (2 + B) (12)

kel
It's convenient to replace x by /2 in the second equation in (12)
and to divide both sides by %, thereby recasting this equation as

S(@/2) = Soadla+k) (13)

LeZ

[I'or the special cases f = ¢ and f = 1, the two equations of the
form (13) are called the refinement equations for ¢ and ¢.]




Now let py(&) = ]%;Za; er(€), q(&) = A%:Zb;bek( ), and

(&) =3 cpex(€) be the members of L2 (IR /7Z) whose Fourier
kel

series expressions are given by our three coefficient sequences.

By applying the Fourier transform F to both sides of the top

equation in (12) and to both sides of (13), a routine change of

variable computation gives

F(26) = pi(O)(€) = po(26)B(2) + q(26) P(2€) ave. (14)

When each of ¢,10, and f have compact support (assumed in many
applications), we obviously have only finitely many non-zero
coefficients in each of the sums in (12) and the functions py, py,
and ¢ are trig polynomials. As we'll see below, (14) is the key to
the very fast filter bank technique for calculating the a,'s and b}, s
in terms of the ¢,’s and this technique doesn't need closed-form
expressions (formulas) for ¢ and 1), only that ¢ and ¢ are known to
exist! In fact, for the very popular Daubechies systems,

we don't have closed-form expressions for ¢ and + and it's very
dubious whether such expressions will ever be found.

(i7) Definition. The low pass filter mo and high

pass filter m, determined by ¢ and ¢ are the members of L2(R/7Z)
for which

$(26) = mo(£)p(&) a.e., $(26) = mi()p(E)ae.  (15)

The existence of these filters is provided by the first part
of (14) for the special cases [ = ¢pand f = .

(77) Lemma : Using the above notations, mg and m;



satisfy the three dyadic Smith-Barnwell equations necessary

and sufficient to have M(£€)= ( zjgg T;Z’?E:Vj;) ) be a

unitary matrix for a.e. £.

Proof. The dyadic Smith-Barnwell equations arise by
remembering that a 2 x 2 complex matrix is unitary precisely when
its rows are perpendicular unit vectors. Thus, the three equations
are:
0= |mo(&)P +[mo(£+1/2)7 —1

= [ma (P +lmi (E+172)P —1

= (moT)(§) + (momit)(§ +1/2). (16)

Recall that, for fand gin L*(R), [f, g]z(€) is the sum over
k € Zofthe terms ( £5)(£ + k). We can then break this up into
the sum over the even integers k& = 27and the sum over the odd
integers k = 27 + 1. For convenience, we can also replace the
variable & with 2¢. Taking separately the 3 cases
(f+9) = (6,6), (1,40, or (¢,0/) and using (15) along with
(O, dlz=l ]y = La.e., [0,¢]z = Oa.e. (by the 3.3 properties for
brackets), an easy computation shows (16) holds for a.e. £.

(1v) Filter Bank Technique. Let us return to (14) in
4.6(7). Using (15), the uniqueness of periodic multipliers
for members of shift invariant spaces tells us that

pi(&) = po(28)mo(&) + q(26) my(§ae.  (17)

When we replace the variable & in (17) with £+1/2,
2¢ 1sreplaced by 2¢+1. However, since py and ¢

are Z-periodic , po(2&+1) =pp(2£) and similarly for ¢.
This allows us to turn (17} into the matrix equation



(p(&) pu(€+1/2)) = (p,(28) q(26))M(€) ace. (18)

for pyand ¢ which we solve simply by multiplying both sides

N1 . mo(€) mi (&)
oy ME) = ME" = <mo<e+ 173 e+ 1./2>>'

This determines the Fourier coefficients (az),_, for py and

(Di)rez for ¢ in terms of the Fourier coefficients (c;.), . for p; and
the Fourier coefficients for mg and m,. When each of p,,myg, and
my 1$ a trig polynomial (has only finitely many non-zero
coefficients), py and ¢ also are trig polynomials. In the language
used in 2,10, we have just explained how the filter bank technique
converts the coefficients expressing a first resolution level
approximation f; in terms of the basis for V; into the coefficients

needed to express the zeroth level approximation f; and the error

term Eg = f, — fo. Forany ¢ > 2, the i'" resolution level
approximation f; € V; for asignal f € V,, j > i, is just the image
under D' of a member g1 0of V. Using our technique

to convert coellicients g to coefficients for g, € V, and for

g1 — go € Wy Is equivalent to converting coefficients for f; to
coefficients for f; 1 € V. jand B, 1 = f; — fi_;

There are variations on the filterbank technique in higher
dimensions with larger matrices and for situations where ¢ and 1)
aren't compactly supported but vanish very rapidly at =+ oc where
truncation methods are used which, in practice, don't significantly
impair resolution. Also, with some technical fussing, the filter
bank technique adapts to the case of dyadic Parseval frame MRA
scaling functions ¢ and associated dyadic Parseval frame MRA
wavelets ¢, i.e. {Tp¢ : k € Z}is a Parseval frame for V, and
{Tipeo : k € Z}is a Parseval frame for W,. Very likely, the magic
of filter banks was as big a factor as increased efficiency in the
decision arrived at in the late 1990's to make wavelets the
industrial standard for data analysis.



4.7 Construction of dvadic MRAs

Reversing the arguments in 4.6(iii) , suppose we start with a
Z-periodic function my, satisfying the first of the 3 equations
in (16). Defining m; by m; (&) =e*™my (€ + 1/2), it's simple to
check that all three of the equations in (16) are satisfied. There's
no guarantee that there exists a function ¢ satisfying the first of the
equations in (15), but, if it exists, we can define 9 by
insisting that the second equation in (15) holds. It's not hard to see
that the only "reasonable” candidate for ¢ is given by

O .
B(€) = [[my (€/27) so we have to limit attention to choices
=1
for m, not only giving a.c. convergence of this infinite product
but also yielding [¢,¢], = x, a.e. for some subset Q of R /7Z.
The point of this very round-about procedure is that all dvadic
Parseval frame MRA wavelets arise this way with gg satisfying
a technical condition called dyadic continuity at 0 which turns out
to be necessary and sufficient for MRA(2). Moreover, it was by
exactly this procedure that Daubechices used to demonstrate the
existence of her compactly supported orthonormal scaling and
wavelet functions when my is taken to be one of a very special
class of trig polynomials.

5. Continuous Wavelet Transforms and the Unified Theorem

5.1 Continuous Translation Systems,

(1) For fand ¢ in L2(R") with ¢*(z) = ¢( — «) and
gly) = < f,Tyy >, the definition of the convolution operation



gives g = f+(3)*) and it follows that§ = /f@so
Hg”iz(ﬁﬂ) - !@!Pz{(Rn)“ = IR“ !fl Wjizdg (1)

Note that g 1s a bounded, continuous function for every
choice of f and . Forn =1landN > 1, 3" 4| < Iy Tyt > [2
kEZ
is a Riemann sum approximation with increments of 1/N for
g7 ®"): If g happens to be uniformly continuous, the limit
of these Riemann sum approximations as N—oo is equal to
g l%z (R On the other hand, the N approximation is a shift

invariant space expression for the lattice L 7 and, from 3.2 is
equal to 1/ NJ|[ f, 1/)}1{]2 n “1/Nj0 If, (/ . We can

eleminate the 1/N factors by replacing 1 with ¢™=4//1/N and then
Y=1/N ¢™ . Obviously 1/N is the length of every +7 tiling
domain and N is the reciprocal of 1/N. For £ =aZ" a lattice in R"
we denote by |£] = | det a| the Lebesgue measure of every

L — tiling domain. The above remarks suggest the properties of

an L shift-invariant space system {1;¢ : | € L} should be
compared with those of the continuous translation system

1T, (i Vil )y € R"}. Below, we'll state a very general theorem

that illustrates this rescalin g principle. But first, let's look at some
examples of continuous translation systems.

(#1) Definition. Suppose / is a countable index set and

U={1; : i € I'}isasubset of L2(R"). Then the R™ -translates of
the members of ¥ are a continuous reproducing function svstem

for LZ(RWJ) if, for every f € L,Q(Rn)7

TE

ie]

< f, Tyt > 4 dy (2)



Using the polarization identity, (2) is equivalent to

< f,g>Lg(Rnﬁ_eZI Jor < . Tyth > <Tyapu, g > dy (3)

Vf,g € L3(R") and it's customary to describe (3) by saying that
the continuous reproducing formula

f@) =20 o < [Tyt > il — y)dy (4)

il

holds in the weak sense.

In view of (1), elementary measure theory shows that
(2) holds <«
SIB (O] = Lfora.e.é € (R?) (5)
ie]
For reasons we'll explain below, (5) is said to be an example of a
Calderon equation,

(¢7i) Definition. Suppose A = {a; : i € I} is a countable
subset of GL(n, R) and v» € L%(R"). Then {D,, T4 : y € R"}is

a continuous Parseval frame wavelet system for L2(R") with
discrete A-dilations if

I1f

L L el < FDaTy > [Py f € LR (6
1

Using D, T,= T, ,D,,, we can, for each ¢, introduce the change of
integration variable ¥’ = a;y ory = a;'y’. Then, by (1) and the
formula (D,,%) ~ (€) = |det a;|'/*¢(Ea,) from Theorem 1.3,

Jorl < £:DuTyt > Py = fou| < £.1,D00 > [ A—dy

d(ia



= fa [FOPIP(Ea) e (7)

Using (7) foreach i € I, we deduce as in (47) that (6) holds <«
1 satisfies the discrete Calderén equation.

> da) = 1ae. (8)

el

3.2 Admissible Affine Groups

(¢) Definitions: The full affine group on R™ is the group of
transformations on R” of the form 2 — (a,y) - o = a(z + y)

for {a,y) € GL(n,R) x R". It's convenient to denote this

group by Aff(n,R) = {g = (a,y) : (a,y) € GL(n,R) x R"}
with the group multiplication law on Aff{(n, R) determined by
insisting thatg; - (g2 - ) = (g192) - = for all

(g1, g2, x) € Aff(n,R) x Affin,R) x R*. Then, with id,, the

n x nidentity matrix, @ — (a, 0} is an isomorphism from
GL(n,R) onto a subgroup of Aff(n,R) and y — (id,,y) is an
isomorphism from K™onto a normal subgroup of Aff{n, R). In this
sense, Aff(n, R} is the semi-direct product of GL(n, R) and R".

By an affine group, we mean a subgroup G of Affin, R) of the
form {(a,y) :a € A, y € R"} where Ais a not necessarily
connected Lie subgroup of GL(n, R}, e.g., any closed subgroup of
GL(n,R). Then G is the semi-direct product of 4 and R". In this
case, for any left Haar measure ;1 on A, we have an associated left
Haar measue v on G defined by dv(a,y) = du(a)dy [Recall that
left Haar measures on topological groups are Borel measures
invariant under left translation and any two left Haar measures on a
group are positive scalar multiples of each other].




(42) More definitions. Suppose G is as in (7). Then
(a,y) = T4y = D, T, defines a unitary representation 7 of G on
L2(R") [Group theorists call T the quasi left reeular representation
of G acting on square integrable functions on the homogeneous
space R” ~ A\G].
An admissible vector for 7 is a non-zero member ¢ of L2(R")
such that, with

(W’lﬂf)(a’a y) = < f T{a,y)'l/b >
Wy is an isometry from L?(R™) onto a closed subspace
of L*(G, v). [Group theorists say that 7 is square integrable
1f admissible vectors exist]. Unraveling this, ¢ is admissible for
T & Vf e L?(R"), we have

Hfif%Z(Rn):fA(fRn | < DTy > igdy)du,(a,) (9)

(¢4¢) Theorem. Using the definitions and notations in (3 ) and (1),
y 1s an admissible vector for 7 < the orbit integral

0u(€) = [,|0(¢a) dp(a)

satisfies the Calderdn equation o,=1 a.e.

Proof. We merely need to apply, foreacha € A, the
same trick that we used above in 5.1(74), namely, DT,

= Ty, D, so the change of variable ¥ = ayin (9) makes the
determinant factor in (D))~ disappear and the result is that
(9) holds for each f <

; > 2, g - 2
Hf'li‘z(ﬁn) - f(;ﬁny{f(@[ d§ = j(l’;@n)/«!.f (f)‘ Ow(&)df (10)
By elementary measure theory, the second equation in (10) holds
Ve LA(R")) © o=l a.e.

Note: Because p is left invariant, o4(£0) = oy (€) for each € and
each b € A. Hence oy is constant on A — orbits. In the early
1960's, Alberto Calderdn devised the above proof for the case



n = 1lwith A = GL(1,R) the multiplicative group R\{0} where
the casiest choice for p is described by du(a) = %‘f Since R is the

union of the trivial orbit {0} and the orbit of 1, the Calderdn
equation for this special case of the theorem reduces to

jé\{o} G %‘3 = 1 and the solutions of this equation clearly span

a dense subspace of L*(R). Since the proof for the general case

is identical with that for the special case and, as we observed in
5.1, adapts easily to other situations where we just have a set

of dilations rather than a group, every equation of this sort arising
from a continuous translation system is called a Calderon equation.

(¢v) Remarks. Roughly 10 years ago, R. Laugesen, N. Weaver,
G. Weiss, and the author of these notes showed that the subgroups
A C GL(n,R) for which admissible vectors for 7 exist necessarily
have, for a.e. z € R", compactness of the stability subgroup
K,={a € A:ax =z}, and the semi-direct product G of A
and R™ must be non-unimodular (so the left Haar measure v on G
is not invariant under all right translations). We also showed
that, when G is non-unimodular, a sufficient condition for the
existence of admissible vectors is compactness of an e-stabilizer
for a.e. z (roughly speaking, this means that almost all orbits of A
don't return to a small neigborhood of z infinitely often). It's still
unknown whether or not compactness of e-stabilizers is necessary
for existence of admissible vectors. Recently, Hartmut Fiihr took a
different approach and used a very general measure theoretic
argument to show that admissible vectors exist < the action of A
on [R" satisfies certain regularity conditions (roughly speaking, this
means that, after discarding a Lebesgue null set, the action admits
measurable cross-sections containing one point from each orbit).
In brief, the topic of square integrable representations is of
great interest in abstract harmonic analysis and it is amusing how
one 1s led into this topic by replacing lattice translations in wavelet




and other discrete reproducing function systems by
R™ — translations.

5.3 The Unified Theorem. Approximately 10 years ago E.
Hernandez, D. Labate, and G. Weiss proved what they called a
unified theorem characterizing most Parseval frame lattice-based
reproducing function systems by a set (usually countably infinite)
of equations, one of which is a Calderén equation. One of the
immediate consequences is that a continuous translation system
results merely by replacing each lattice with IR, In this sense,
discrete Parseval frame systems are also continuous Parseval frame
systems, but the converse of this statement is not true. It makes no
sense to try to find all solutions of the Hernandez-[.abate-Weiss
characterizing equations since there are no available technigues

to handle infinitely many complicated equations in infinitely many
unknowns. We know lots of tricks for constructing particular
sorts of Parseval frame systems (including Gabor systems, ordinary
and composite wavelet systems, and more general systems called
wave packets). One of the big challenges of the mathematical
theory of wavelets is to considerably broaden this "bag of tricks"
to obtain many more Parseval frame systems. One way to get
started on this is to use perturbations of a Parseval frame system.
If one can show that the fact that the original system satisfies

the characterizing equations dictates that the perturbations

also satisfy these equations, then the result is a family of new
Parseval frame systems. Our group used this approach to handle
certain perturbed wave packet systems.

(22) Setting for the Unified Theorem. Let I be a countable index
set, n. a fixed member of N, {£; : i € I} a countable family of
lattices indexed by I and {1); : © € T} a subset of L?(R")\ {0}
indexed by 7. We are then interested in whether or not

U={Tp; : i € I}is aParseval frame for L*(R", i.e. whether or not



2 2
ey =22 201 < f, Ty > | (11)

€] el
holds for each f € 1.>(R™). It's enough to show that (11) holds
on a dense subset of L?(R™), a convenient choice being the
collection of functions for which f is continuous and compactly

supported with f(0) being non-zero. Furthermore, || f | lig(Rn)

= || T, f! EEQ(RH) for each x so (11) holds < the function

. . 2
wlz) =32 > 1 <Tof, Ty > | (12)
el el

has the constant value || f] iiz (R

Using bracket functions as in Section 3 and compactness of

f, each ofthe terms S | < T_f, Tpp; > |*in (12) is Lt
L, |

periodic with only finitely many non-zero Fourier coefficients,
hence can be written as a trigonometric polynomial
The conclusion below of the Unified Theorem follows provided
that it's legitimate, when we sum over ¢, to add up all of the
coefficients of e, () for each A € |J,_;(£;)*. This is justified
if the sum of the trig polynomials converges absolutely.
Hernandez, Labate, and Weiss show show that absolute
convergence is guaranteed by a very technical property
called the Local Integrability Condition (LIC)

(¢4¢) Unified Theorem. (see [9]) Suppose W is as in (4¢) and
satisfies the LIC. Let A={J,.,(£;)* and, for each A € A, let
Iy={iel:xe& (L)} Alsolet 6, be the usual Kronecker 6
function--equal to 1 when A=0 and otherwise equal to 0. Then ¥ is
a Parseval frame for [.2(R") & VA € A

> OUEFA) = forae £ e (R (12)

iely



Note: For A=0, Iy = I and (12) is then the Calderon equation

> r%;;l%(f)"? =la.c

icl
so, as we mentioned above, at least when the LIC holds, every
discrete Parseval frame ¥ as in the Theorem converts to a
continuous translation reproducing function system by rescaling.

Remarks: In all of the cases where ¥ can be shown directly to
be a Parseval frame by other techniques, e.g., Gabor systems and
wavelet systems where ¢; = D, ¢ with A = {a;:i1 € [}a
discrete group acting "nicely" on R", it turns out that the LIC is
automatically satisfied so the characterizing equations hold. There
are no examples known where the chararacterizing equations fail to
hold and one still has a Parseval frame. Hence, it's unknown
whether some other proof could somehow establish validity of the
characterizing equations without needing to assume the LIC.

6. Conclusion

Although construction of the Haar wavelet system dates back
to the early part of the 20th century and construction of the
Shannon system was achieved in the mid 1940s, modern wavelet
theory essentially dates back only to the work of 1. Daubechies,
A. Grossman, S. Mallat, and Y. Meyer in the late 1980s. Since
then, a very large literature on wavelets has developed. These
notes have discussed only the fundamental ideas in wavelet theory
and have overlooked many of the deeper ideas discussed in the
literature. As we've mentioned, there are many open research
questions on higher dimensional wavelets and it's therefore
premature to speculate on the "final form" of the
higher dimensional theory. Even more speculative is a theory



of wavelets on manifolds, e.g. on the unit sphere in R". Several
authors have constructed very interesting wavelets on certain
special manifolds. The extent to which their work and that of
others will lead to a satisfactory manifold wavelet theory is, to say
the least, unclear. Suffice it to say that continued development of
wavelet theory will keep a number of researchers very busy for
quite some time.
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