UNIVERSIDAD NACIONAL DE CORDOBA

FACULTAD DE MATEMATICA, ASTRONOMIA Y FiSICA

SERIE “B”

TRABAJOSDE MATEMATICA

N° 60/2011

Noncommutative invariants

Francois Dumas

Editores: Jorge R. Lauret—Jorge G. Adrover

CIUDAD UNIVERSITARIA — 5000 CORDOBA

REPUBLICA ARGENTINA



Noncommutative invariants

Frangois DUMAS

Université Blaise Pascal (Clermont-Ferrand 2)
Laboratoire de Mathématiques (UMR 6620 CNRS/UBP)
Campus des Cézeaux - BP 80026 - 63171 Aubiere cedex, France

Francois.Dumas@math.univ-bpclermont.fr

1 INVARIANTS OF NONCOMMUTATIVE POLYNOMIAL RINGS 1
1.1 Invariants of noetherian rings under finite group actions . . . . . . ... ... .. 1
1.1.1 Noncommutative noetherian rings . . . . . . ... ... ... ....... 1

1.1.2 Invariant ring and skew group ring . . . . . . ... ... oL L 2

1.1.3 A finiteness theorem . . . . . . . . . . ... ... 3

1.2 Invariants of simple rings under finite group actions . . . . .. .. .. ... ... 3
1.2.1 Simplicity of invariants . . . . . . . ... L L o 3

1.2.2  Central invariants . . . . . . . .. .. 5

1.3 Invariants of Ore extensions under finite group actions . . . . . . . . .. ... .. 6
1.3.1 TIterated Ore extensions . . . . . . . . . . . . ... ... 6

1.3.2 Noetherianity and finiteness of invariants . . . . . . . . .. ... ... .. 8

2 ACTIONS AND INVARIANTS FOR WEYL ALGEBRAS 11
2.1 Polynomial differential operator algebras . . . . . . . .. ... .. ... ...... 11
2.1.1 Weylalgebras . . . . . . . . . 11
2.1.2 Bernstein filtration . . . . . ... ... L 12

2.2 Actions and invariants for Ay . . . . ... 14
2.2.1 A reminder on Kleinian surfaces . . . . .. .. .. ... ... .. ..., 14
2.2.2  Action of SLg on the Weyl algebra Ay . . . .. ... .. ... ... .... 15

2.3 Linear actions on A, . . . . . . . . e 19
2.3.1 Action of Spy,, on the Weyl algebra A,, . . . . ... ... ... ... ... 19
2.3.2  Finite triangular automorphism groups . . . . . .. ... ... ... 20
2.3.3 Dual action of GL,, on the Weyl algebra A4,, . . . . . ... ... ... ... 21
2.3.4 Non linear actions and polynomial automorphisms . . . . . ... ... .. 24

3 DEFORMATION: POISSON STRUCTURES ON INVARIANT ALGEBRAS 26
3.1 Poisson invariant algebras . . . . .. .. Lo oo 26
3.1.1 Basic notions on Poisson structures . . . . . . . . ... ... ... .. 26
3.1.2 Poisson structures on Kleinian surfaces . . . . .. ... ... ... .... 27

3.2 Deformations of Poisson algebras . . . . .. .. .. ... 0. 29
3.2.1 General deformation process . . . . . . . . ... 29
3.2.2  Algebraic deformation process. . . . . . . . ... ... 31
3.2.3 Deformations of invariant algebras . . . . . . ... ... ... ... .. 33

3.3 Lie structure on invariant algebras . . . . . .. .. ... oo L. 35

3.3.1 Finiteness of the Lie structure on Poisson symplectic spaces . . . . . . .. 35



3.3.2 Finiteness of the Lie structure on Kleinian surfaces . . . . . . . . .. ...
3.3.3 Lie structures on deformations . . . . . . . . . . . . ... ...

4 QUANTIZATION: AUTOMORPHISMS AND INVARIANTS FOR QUANTUM ALGEBRAS

4.1 Quantum deformations and their automorphisms . . . . . . .. .. ... ... ..
4.1.1 Quantum deformations of the plane . . . . . ... ... ... ... ....
4.1.2 Induced Lie structures . . . . . . . . . . ...
4.1.3 Rigidity of quantum groups . . . . . . . .. ..o

4.2  Multiplicative invariants . . . . . . . . . . . ...
4.2.1 Actions for multiplicative Poisson structures and deformations . .. . . .
4.2.2 Invariants for multiplicative Poisson stuctures and deformations . . . . .

LOCALIZATION: ACTIONS ON NONCOMMUTATIVE RATIONAL FUNCTIONS

5.1 Commutative rational invariants . . . . .. .. .. .. . L 0L
5.1.1 Noether’s problem . . . . . . . ... ..
5.1.2 Miyata’s theorem . . . . . . . . ...

5.2 Noncommutative rational functions . . . . . . . . . ... ... oL
5.2.1 Skewfields of fractions for noncommutative noetherian domains . . . . . .
5.2.2 Noncommutative rational functions . . . . . . . . . ... ...
5.2.3 Weylskewfields . . . . . ... ..

5.3 Noncommutative rational invariants . . . . . . . ... ... ... ... ......
5.3.1 Noncommutative analogue of Miyata’s theorem . . . . . . ... ... ...
5.3.2 Rational invariants of the first Weyl algebra . . . . . . . .. .. ... ...
5.3.3 Rational invariants of polynomial functions in two variables . . . . . . . .

5.4 Noncommutative Noether’s problem . . . . .. .. .. .. ... ... .......
5.4.1 Rational invariants and the Gelfand-Kirillov conjecture . . . ... .. ..
5.4.2 Rational invariants under linear actions of finite abelian groups . . . . . .
5.4.3 Rational invariants for differential operators on Kleinian surfaces . . . . .

5.5 Poisson structure on invariants and localization . . . . . . .. ... ... ... ..
5.5.1 Poisson analogue of Noether’s problem . . . . . . ... ... ... .. ...
5.5.2 Invariants of symplectic Poisson enveloping algebras . . . .. . ... ...

COMPLETION: ACTIONS ON NONCOMMUTATIVE POWER SERIES

6.1 Actions on skew Laurent series . . . . . . . . . . . . ...
6.1.1 Automorphisms of skew Laurent series rings . . . . . ... ... ... ...
6.1.2 Application to completion of the first quantum Weyl skewfield . . . . . .

6.2 Actions on pseudo-differential operators and related invariants . . . . ... . ..
6.2.1 Automorphisms of pseudo-differential operators rings . . . . . .. ... ..
6.2.2 Extension of an action from functions to pseudo-differential operators. . .
6.2.3 Invariant pseudo-differential operators . . . . . . . .. ... ... ... ..
6.2.4 Application to completion of the first Weyl skewfield . . . . .. ... ...

6.3 Applications to modular actions . . . . . . . ... ... . oo
6.3.1 Modular forms . . . . . .. ... e
6.3.2 Associated invariant pseudo-differential operators . . . . . . ... ... ..
6.3.3 Non commutative structure on even weight modular forms . . . . . . . ..

43
43
43
45
48
o1
o1
52

55
95
95
56
o7
o7
99
60
62
62
63
65
66
66
67
70
71
71
74



FOREWORD

These lectures propose an introduction to various problems about group actions by au-
tomorphisms on noncommutative algebras. The underlying noncommutativity deals with
Poisson structures on polynomial algebras, their deformations into noncommutative as-
sociative algebras, some localized or completed versions, the associated Lie algebras. The
typical objects are noncommutative polynomial algebras (Ore extensions), skewfields of
fractions, noncommutative power series, and specially among them Weyl algebras, quan-
tum spaces and tori, quantum groups. The typical results concern the finite generation
of invariants, in continuity with Noether’s and Hilbert’s theorems in the classical the-
ory. We try to provide a primer on some basic theorems and to give some evidence on
many profounds links between the questions under consideration. It seems difficult to give
within the framework of this course complete proofs of all general results (when they are
known...); our choice is to illustrate the problems studied by concrete developments on the
two-dimensional case, which it is rich enough to carry the whole interest of the situations,
although being open to a direct approach. From this point of view, the following three
diagrams can be seen as constituting parts of a guide through these lectures.

Picture 1: action of SLy(C) on symplectic Poisson two-dimensional
polynomial algebras, associated deformations, and around
F(C) ~ F((C)F < modular action
of finite
completion T' C SLy(C)
Frac A4,(C) := D,(C) —= D, (C)¢
jlocalization localization
A1(C) A (C)F = HHo(A:(C)Y)
gdeformation ?deformation deformation
S = Clz, ] GG > HPy(S) < linear action
K _ _ A ) _ of finite
diff extension diff extension G C SLy(C)
Diff () = A4(C) A5(C)C
localization localization
Upois(Frac S) ~ By (C) B,(C)¢
localization localization
Frac AQ(C) = DQ((C) ~ D2(C>G




Picture 2: action of SLy(Z) on multiplicative Poisson,
two-dimensional polynomial algebras, quantum deformations, and around
F4(C)
jcompletion
FracT, := D{(C) D{(C)“
JA < multiplicative
localization localization .
action
= C [zt y* TG o= HHo(TE) of finite
deformation ? deformation
T = il TG """"""""""" > Hpo(TG)

Picture 3: automorphisms of quantum and jordanian deformations
of the plane, and around

Tq — Cq[ajil,yil] M}Sq C [.T y]% O (MQ) HO (SLQ)

deform.g deform.? oaction ?deform. gdeform.
T = Cla*!, yt) Loz g g, Y O(Mg) — O(SLQ)
deform.g “coaction é deform. é deform.
ST = Cx, y]<—> O (My) — O7(SLy)
coactlon
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1 INVARIANTS OF NONCOMMUTATIVE POLYNOMIAL RINGS

1.1 Invariants of noetherian rings under finite group actions
1.1.1 Noncommutative noetherian rings

Let R be aring (non necessarily commutative). A left R-module M is said to be noetherian
if M satisfies the ascending chain condition on left submodules, or equivalently if every
left submodule of M is finitely generated. The ring R himself is a left noetherian ring if it
is noetherian as left R-module. There is of course a similar definition for right modules,
and a ring R is said to be noetherian if it is left noetherian and right noetherian (i.e.
if every left ideal is finitely generated and every right ideal is finitely generated). It is
classical (see for instance [8]) that: (i) for any submodule N of a module M, we have:
M noetherian if and only if N and M /N are noetherian ; (ii) any finite direct sum of
noetherian modules is noetherian.

PrOOF. We suppose that M is noetherian. Any ascending chain of submodules of
N being an ascending chain of submodules of M, it is clear that N is noetherian.
Let C; Cc Cy C --- C C; C -+ be an ascending chain of submodules of M/N. Any
C; is a quotient A;/N where A} C Ay C --- C A; C --- is an ascending chain of
submodules of M. The noetherianity of M implies the existence of n > 1 such that
A; = A, for all i > n. Therefore C; = C,, for any i > n and M/N is noetherian.

Suppose conversely that N and M /N are noetherian. Let Ay C Ay C--- C A; C -+~
be an ascending chain of submodules of M. From one hand, (4; N N);> is an
ascending chain of submodules of NV ; there exists m > 1 such that A;NN = A,,NN
for any ¢ > m. From the other hand, ((4; + N)/N);>o is an ascending chain of
submodules of M/N ; there exists p > 1 such that (4; + N)/N = (A, + N)/N for
any ¢ > p. Take i > n := max(m,p). We have A;NN = A, NN and (A;+ N)/N =
(A, + N)/N. If x € A;, there exists y € A, such that x —y € N. Since 4,, C A;, it
follows that y € A;, then z —y € (A;NN) = (A, N N). So x —y € A, and finally
r € A,. We conclude that A; C A, i.e. A; = A,, and M is noetherian.

If Ny and Ny are noetherian left modules, the submodule N = N; @ (0) in M =
N1® Ny is noetherian by N ~ N; and the module M /N is noetherian by M /N ~ Ns.
Therefore M is noetherian applying the previous property. The result follows by
induction. ]

These properties imply in particular the following useful observation: if R a left noetherian
ring, then all finitely generated left R-modules are left noetherian.

Let P be a finitely generated R-module, and {z1 ..., x,} a generating family of P.
Consider some free R-module M of rank n and {1, ...,&,} a R-basis of M. The R-
module morphism f : M — P defined by f(&;) = x; for any 1 <14 < n is surjective.
So P~ M/ker f. Since M ~ @, ,.,, R& and each R¢; is a noetherian R-module
because R is a noetherian ring, we deduce that M is a noetherian R-module. Then
M/ ker f is noetherian, i.e. P is noetherian. O
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1.1.2 Invariant ring and skew group ring

Let R be a ring and G a subgroup of the group Aut R of ring automorphisms of R. The
invariant ring (or fixed ring) R® is by definition the subring of R:
R¢ ={re R; g(r)=rforall g € G}.

The skew group ring (or trivial crossed product) R+ G is defined as the free left R-module
with elements of G as a basis and with multiplication defined from relation:

Vr,seR, Vg heG, (rg)(sh)=rg(s)gh.
In particular:

VreR, VgeG, gr=g(r)g and rg = gg *(r)

Every element of R x G as a unique expression as y gec g9 With g € R for any g € G
and r, = 0 for all but finitely many g. It is clear that R is a subring of R+ G (identifying
r with rlg), and that R x G is also a right R-module. In the particular case where G
is finite, the left R-module R *x G is finitely generated, then using the last observation of
1.1.1, we deduce immediately that:

if G is finite and R is left noetherian, then R x G is left noetherian. (1)

Note that the noetherianity of R x G' can be proved in the more general context where
G is polycyclic by finite, see [13]. The skew group ring R % G is closely related to the
invariant ring R, as shows for instance the following lemma (from [14]).

LEMMA. Let R be a ring, GG a finite subgroup of Aut R, and S = R+ G.
(i) The element f =3 g of S satisfies S = fR and Sf = Rf.

(ii) If |G| is invertible in R, the element e = ‘—(1;|f of S satisfies € = e, eS = eR, and
eSe = eRY ~ RC.

PrOOF. We have fg = f = gf for all ¢ € G. For any x = deGrgg € S, we compute

fo =23 ccfreg =2 4ec fag7'(rg) = 2_geG fg=t(rg) = 2 gec g~ (rg) € fR. We conclude
that fS C fR ; the converse is clear and so sS = fR. On the same way xf = deg regf =

> gecTef = (O eq ) f implies Sf C Rf and finally Sf = Rf.
It follows from point (i) that e? = ¢, eS = eR, Se = Re and eSe = eRe. For r € R, we compute:
ere = (& Y gec I = 16 2gec 99 (1) = G Lgec €99 (7)
A Y e e (1) = 1 T 0 (1) = 1 Tec 9(r) = er(r),

where 7 : R — RY is the trace map r ﬁ >_gec 9(r). This proves that eSe = er(R). Since any

r € RY can be written r = 7(r), we have RY C 7(R), so R® = 7(R). Hence eSe = ¢R®. Finally,
because er = re for any r € R®, the map r — er defines a ring isomorphism R — eRC. O



1.1.3 A finiteness theorem

The following theorem is due to S. Montgomery and L. W. Small (see [57]) and can be
viewed as a noncommutative analogue of the classical Noether’s theorem.

THEOREM. Let A be a commutative noetherian ring, R a non necessarily commutative
ring such that A is a central subring of R and R is a finitely generated A-algebra, and G
a finite group of A-algebra automorphisms of R such that |G| is invertible in R. If R is
left noetherian, then R is a finitely generated A-algebra.

PROOF. Let us introduce S = Rx G. As we have observed in 1.1.2, S is left noetherian. It is
clear from the hypothesis that A is a central subring of S and that S is finitely generated as
A-algebra (if {q1,...,qn} generate R over A and G = {g1,...,94}, then {q1,...,Gm,91,---,94}
generate S over A).

As in 1.1.2, consider in S the element e = % EgeGg which satisfies €2 = e. In particular, eSe
is a subring of 5, eS is a left eSe-module, and SeS' is a two-sided ideal of S. Observe firstly
that eS is a finitely generated left eSe-module.

Because S is left noetherian, SeS is finitely generated as a left ideal of S. Say
that SeS = ), Sz;, and write x; = Zj vijew;; with v;; € S and w;; € S for all j.
Choose € S. Then er = eeer € e(SeS), and so er = e(D_, s;x;) = ) es;vijew;; =
> es;vije?w;j. Thus the finite set {ew;;} generates eS as a left eSe-module.

Denote more briefly eS = Y " | eSex; with z; € S, and take t1,to,. .., ¢, generators of S as a
A-algebra. Now write et; = Y I | eyijex; and exyt; = > 1 | ezjjrex; with y;; € S and z;, € S
forall 1 <j <mand 1<k <n. Consider the finite set £ = {ex;e, ey;je, 6Zijk€}1gi,k§n,1§j§m~
We compute:

n n n n n n

etitoe = (D eyiex;)tae = > eyire(exita)e = > eyine( Y ezpiexp)e = Y eyie( D ezpeexpe),
i=1 i=1 i=1 =1 i=1 =1

and prove so inductively that any monomial et t;,...t;, e with 1 < j1,72,...,5k < m can be

expressed by a finite sum of products of elements of E. As any element of eSe is a linear
combination of such monomials with coeflicients in A, we conclude that E generates eSe as a
A-algebra. By point (ii) of lemma 1.1.2, the proof is complete. O

This theorem will apply in particular to the iterated Ore extensions (see further 1.3).

1.2 Invariants of simple rings under finite group actions
1.2.1 Simplicity of invariants

DEFINITIONS. Recall that a ring R is simple when (0) and R are the only two-sided ideals
of R. An automorphism g € Aut R is said to be inner if there exists a € R invertible in R
such that g(z) = axa™" for all z € R, and is said to be outer if it is not inner. A subgroup
G of Aut R is outer when the identity map is the only inner automorphism in G.

We start with the following lemma (from [14]) about simplicity of crossed products.

LEMMA. Let R be a simple ring and G a finite outer subgroup of Aut R. Then the ring
R x GG is simple.
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PrOOF. We denote S = R+ G. For any nonzero element z = deG’ rgg in S, define the length
of x as the cardinal of the support {g € G; 74y # 0} of z. Let I be a two-sided nonzero ideal of
S = R*G and ¢ be the minimal length of nonzero elements of I. Because I is a two-sided ideal
and ¢ is minimal, it is clear that the set K of all elements r € R appearing as a coefficient in
the decomposition of some element of I of length ¢ is a two-sided ideal of R. Since R is simple,
we have 1 € K. So there exists in I some element with decomposition 1.gy + EgEG’,g;égo rg.9-
Multiplying at the right by 90—17 we deduce that I contains an element x = 1'1G+Zg€G,g;ﬁ1G Tg.9
of length /.

If + = 11g (i.e. £ = 1), then I = S and we are done. Assume that r, # 0 for some
h € G,h # lg. For any r € R, the bracket rz —ar = 3 o . (rrg — 1gg(r))g lies in I
and has shorter length than x. Since £ is minimal, it follows that rx — xr = 0. In particular:
rry, —rph(r) = 0 for all » € R. Therefore r, R = Rry, is a two-sided ideal of R. The simplicity of
R implies that 1 € r, R, and so ry, is invertible in R. Hence h(r) = r;lrrh for all » € R, which
says that h is an inner automorphism of R, which is impossible since G is outer and h # 1. O

We need now a brief account on the notion of Morita equivalence. Two rings S and 1" are
Morita equivalent when their categories of modules are equivalent. There exist several
methods to characterize such an equivalence. None is obvious and we refer for instance
to [1] or [13] for a serious presentation of this classical subject. In the limited frame of
this notes, our basis will be the following concrete criterion (see [13], proposition 3.5.6):
S and T are Morita equivalent if and only if 7" is a corner in some matrix algebra with
entries in S, that is if and only if there exist an integer n and an idempotent element
e € M, (S) such that T~ eM,(S)e and M, (S)eM,(S) = M,(S).

THEOREM. Let R be a simple ring and G a finite outer subgroup of Aut R such that |G|
is invertible in R. Then:

(i) RY and R G are Morita equivalent,
(i) the ring RY is simple.

PROOF. We denote S = R+ G. By point (ii) of lemma 1.1.2, the element e = |—é| > gecgof S

satisfies 2 = e and we have a ring isomorphism eSe ~ RY. It is clear that SeS is a two-sided
ideal of S. Thus SeS = S since S is simple by the previous lemma. We just apply the above
Morita equivalence criterion (with n = 1) to conclude that S and R“ are Morita equivalent.
Point (ii) can be deduced from the simplicity of S using the fact that simplicity is a Morita
invariant. We give here a direct proof (which doesn’t use Morita equivalence) of the simplicity
of R®. By point (iii) of lemma 1.1.2, it is equivalent to prove the simplicity of the subring
eSe of S. Let I be a two-sided nonzero ideal of eSe. Denote by J the set of element u € S
such that eue € I. Thus eJe = I. Because e> = e and I is right ideal of eSe, we have
euese = (eue)(ese) € I for any u € J, s € S ; then ues € J. On the same way on the left
eseue = (ese)(eue) € I implies seu € J. Hence for any s,s' € S and u € J, we deduce that
seues’ = (seu)es’ with seu € J from the second argument and then seues’ € J from the first
one. Therefore sxs’ € J for any x € I = eJe. In other words SIS C J. By simplicity of S
(previous lemma), the two-sided nonzero ideal SIS of S equals to S. Finally S C J, thus J = S
and then I = eSe. We conclude that eSe is a simple ring and the proof is complete. O
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This theorem, from [14], is a fundamental argument in all homological studies of invariants
of Weyl algebras (see further 2.2.2 and 2.3.1).

1.2.2 Central invariants

It is clear that the center Z(R) of any ring R is stable under the action of any subgroup
G of Aut R, and that Z(R)Y = Z(R)NR® C Z(R®). Our aim here is to prove (following
[14]) that equality holds when R is simple and G outer. We need the following preliminary
results.

LEMMA. Let R be a simple ring and G a finite outer subgroup of Aut R. Then we have
a ring isomorphism between Z(R) and the centralizer of R in Rx G.

PROOF. We denote S = R*G. Let v = 3 .;rgg be an element of S such that zr = rx
for any r € R. Since zr —rx = deG(rgg(r) —174) g, we deduce that any ¢ in the support
{9 € G; ry # 0} of x satisfies ryg(r) = rry for all r € R. Hence rgR = Rry is a two-sided ideal
of R. It follows by simplicity of R that r, is invertible in R and g is the inner isomorphism
T 7“_17“7“9. Now the assumption on G implies ¢ = 1g. We conclude that x = r11g with

g
r1 € Z(R). Up to the canonical embedding of R in S, we have proved that Cents(R) = Z(R). O

LEMMA. Let R be a simple ring and G a finite outer subgroup of Aut R. Then we
have a ring isomorphism between R x G and Endre R for the canonical structure of right
R%-module of R.

ProOOF. With our usual notation S = R x G, we define a left S-module structure on R by:

Tr=3eare9(r) foranyreR, z=3% 19 €S.

It is clear that (y - (z-7)) = (yz) - r for all z,y € S,r € R. For the particular element f =
deGg € S, we calculate fx-r for any x € S,r € R. Since fS = fR (see lemma 1.1.2), the exists
r" € Rsuch that fz = fr'. Therefore fx-r = fr'-r = f-(r'-r) = f-(r'r) =3 cq9(r'r) = 7(r'r)
which is obviously an element of R®. We have finally proved that fz-r € R forallz € S,r € R.

We introduce for any = € S the map ¢, : R — R, r — z -r. By an easy calculation, we
have t,(ra) = v,(r)a for all » € R,a € RE. Therefore 1), is an endomorphism of R as
a right R%-module. The map ¢ : = + 1, is clearly a morphism of rings S — EndgcR.
By the lemma 1.2.1, S is simple, hence 9 is injective. In order to prove the surjectivity, we
consider the two-sided ideal SfS ; using again the simplicity of S, we have SfS = S. In
particular, 1g = > 7" | u; fv; for some uy,...,up,v1,...,0, in S. Since Sf = Rf (see lemma
1.1.2), any u; f can be written w; f with w; € R, and then 1g = >""" | w; fv; with w; € R,v; € S.
We fix any h € EndgeR and associate = = > ., h(w;)fv; € S. For r € R, we compute
zor= (30 h(w;)fv;) -7 =31 h(w;)(fv;-r). We know from the beginning of the proof that
fui -7 € RY, and h is a right RS-module endomorphism, hence:

éh(wz)(fvz . 7“) = h(i wi(fvl- . 7‘)) = h(i(wzfvz) . »,n)) — h(lg . T) _ h(T)

=1 =1

We have proved that h = 1), therefore ¢ is an isomorphism. O

THEOREM. Let R be a simple ring and G a finite outer subgroup of AutG. Then
Z(RY) = Z(R)“.
5



PrOOF. For any r € R, we denote by p, : R — R the left multiplication ¢ — rt by r. It is
clear that p, is right R“-module endomorphism of R and the subset R := {pr ; 7 € R} of
Endgpc R is a subring which is isomorphic to R via p : r — p,. Moreover, by the definition of
the isomorphism 9 : § — Endgc R in the previous lemma, the image v, of an element r € R
(identified canonically with r1g € S) is no more than p,. Hence 1(R) = R and recalling the
first lemma:

Centgnd, r(1) = Cents(R) = Z(R).

For any r € R, we denote by v, : R — R the right multiplication ¢ — ¢r by r. An easy
calculation proves that, if r € Centp(RY), then v, is a right R“-module endomorphism of R;
since v, o g = ps o vy for all r; s € R, it follows that v restricts into a map

v : Centp(RY) — CentEndRGR(R).

It is clearly a morphism of rings (with values in a commutative ring). The injectivity is obvious.
For the surjectivity, we fix an element h € Centgnq . r(R). By the previous lemma, there exists
R

an element z € S such that h = ¢, € EndpcR, satisfying in particular ¥, o p, = p, 0 9y
for all » € R. In other words, = - (rt) — r(x -t) = 0 for all r,¢ € R. Using the development
T =) ,eqrggs it follows that >0 crgg(rt) — >0 cqrreg(t) = 3 ca(rgg(r) —rrg) g(t) = 0;
denoting y, = > cq(rgg(r) —1rg) g € S, we obtain y, - ¢t =0 for all r, € R, that is ¢, =0 in
Endgc R, or equivalently v, = 0 in S, for any » € R. As seen previously in the first lemma, this
implies that = r11¢ for some 1 € Z(R). Therefore h = 1, = 9,1, = pr,. Since 1 € Z(R),
we have p,, = v, and the proof of the surjectivity of v is complete.

So we have proved that Centr(R%) ~ Centg(R). We conclude that Z(R%) = Centr(R%)NRY =
Z(R)N RY = Z(R)“. O

1.3 Invariants of Ore extensions under finite group actions
1.3.1 Iterated Ore extensions

Let A a non necessarily commutative ring. For any ¢ € Aut A, a o-derivation of A is an
additive map § : A — A such that 6(af) = o(«)d(B) + d(a)S for all a, § € A.

For any automorphism o of A and any o-derivation § of A, it is a technical elementary
exercise to verify that there exists a ring R containing A as a subring and an element
x € R such that R is a free left A-module with basis {z™,n > 0} and:

ra=o(a)r+6(a) forany o€ A. (2)

The ring R is called the Ore extension of A defined by ¢ and ¢, and is denoted by R =
Alx; 0,0]. Any element can be written uniquely as a finite sum y = Y, aya” with o; € A.
The addition in R is the ordinary addition of polynomials, and the noncommutative
multiplication in R is defined inductively from the commutation law (2). For y # 0, the
nonnegative integer n = max{i, «; # 0} is called the degree of y and denoted by deg, v,
and the corresponding «,, is the leading coefficient of y. By convention 0 has degree
—oo and leading coefficient 0. It is clear that, if y, z are two non zero elements of R of
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respective degrees n, m and leading coefficients «, 3, then yz has degree n+m and leading
coefficient ao™(3). We deduce in particular that:

if A is a domain, then A[z; 0,¢] is a domain.
In the particular case where 6 = 0, we simply denote R = Alx; ¢]. The commutation
relation becomes:
ra=oc(a)r for any a € A. (3)

In the particular case where o = id4, the map § is an ordinary derivation of A and we
simply denote R = Afz; 0]. The commutation relation becomes:

ra=ar+6(a) forany a€ A. (4)

When the coefficient ring A is a field, we have as in the commutative case an euclid-
ian algorithm in A[x; o,d]; the proofs of the following two results are straightforward
adaptations of their commutative analogues and left to the reader (see for instance [3]).

PROPOSITION. Let R = K|[x; 0,0] where K is a non necessarily commutative field, o is
an automorphism of K, and ¢ is a o-derivation of K. For any a,b € R, with b # 0, there
exist q,r € R unique such that a = qb + r with deg, r < deg, b, and there exist ¢',r" € R
unique such that a = bq’ +r' with deg, 1’ < deg, b.

COROLLARY. For K a non necessarily commutative field, all right ideal and all left ideals
of R = K|[x; 0,0] are principal.

ExAMPLES. Take A = k[y] the commutative polynomial ring in one variable over a
commutative field k.

i) For § = 0, the usual derivative, kly||x; 0,] is the first Weyl algebra A;(k), with
Y Y
commutation law zy — yzr = 1.

(ii) For 6 = y0,, kly][z; y0,] is the enveloping algebra U;(k) of the non abelian two
dimensional Lie algebra, with commutation law xy—yz = y. Note that yx = (z—1)y
and then U;(k) can also be viewed as k[z][y; o] for o the k-automorphism of k|z]
defined by = +— = — 1.

(iii) For 6 = y20,, k[y][x; y*d,] is the jordanian plane, with homogeneous commutation
law 2y — yx = 3>

(iv) For o the k-automorphism of k[y] defined by y — gy for some fixed scalar ¢ € k*,
kly][x; o] is the quantum plane, denoted by k,[x,y|, with commutation law xy =

(v) Consider again o the k-automorphism of k[y| defined by y — ¢y for some fixed
scalar ¢ € k*,q # 1. The Jackson derivative is the additive map ¢ : k[y] — k[y]
defined by 6(f) = %; it is a o-derivation. The algebra k[y|[x ; o, 0] is then the
first quantum Weyl algebra, denoted by A, with commutation law zy — qyx = 1.
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Starting with a commutative field k and the commutative polynomial ring R; = kz4],
and considering an automorphism o, and a o9-derivation ds of Ry, we can build the Ore
extension Ry = Ri[xg; 09,05]. Taking an automorphism o3 and a oz-derivation d3 of R,
we consider then R3 = Ry[z3; 03, d3). Iterating this process, we obtain a so called iterated
Ore extension:

R, = Kk[z1][xe; 09, 00)[x3; 03,03] -+ [Tim 5 Oy O] (5)

It is clear from the construction that {xlfxé? .. -wﬁ}(il,ig,‘..,im)eNm is a left k-basis of R,,,

and that R, is a domain. We give here some elementary examples (see also 2.1.1 below).

1. The Lie algebra sly(k) is ke @ kf @ kh with Lie brackets [h,e] = 2e, [h, f] = =2f
and [e, f] = h. By Poincaré-Birkhoff-Witt’s theorem, its enveloping algebra U (sls)
admits (h'e? f*); ; ren as a left k-basis. Then Ul(sly) = k[h][e; ¢’][f; 0,d], where o
is the k-automorphism of k[h| defined by h — h — 2, ¢ is the k-automorphism of
klh|[e; 0’| defined by h — h + 2,e — e, and ¢ is the o-derivation of k[h|[e; o]
defined by §(h) = 0 and d(e) = —h.

2. The Heisenberg Lie algebra sl (k) is kr ©kyDkz with Lie brackets [z, 2] = [y, 2] = 0
and [z,y] = z. Then U(sl3) = k[z][y][x; 6] for 6 = 20,. It can be proved much more
generally that the enveloping algebra of any nilpotent Lie algebra of dimension n is
an iterated Ore extension on n variables (with oy = id for all ¢’s in the formula 5).

3. Let @ = (¢i;) a m X m matrix with entries in k* such that ¢; = 1 and ¢;; = Qj_il
for all 7,j’s. The quantum m-dimensional affine space parameterized by @ is the
algebra kolz1, ..., x,] generated over k by m generators z1, ..., z,, satisfying the
commutation relations x;x; = g;;x;x;. It is the iterated Ore extension:

kolxt, ..., xm] = Kk[z1][z2; 02][zs; 03] -+ - [T O

with o; the k-automorphism of k[z1|[z2; 09,] - [i—1; 0;—1] defined by oy(z;) =
gijwj forany 1 <7 <i—1.

1.3.2 Noetherianity and finiteness of invariants

The important following theorem (from [8]) can be viewed as a noncommutative version
of Hilbert’s basis theorem (see the historical note of [8] p. 20).

THEOREM. Let A a non necessarily commutative ring, o an automorphism and § a o-
derivation of A. If A is right (resp. left) noetherian, then Alx; o,d] is right (resp. left)
noetherian.

PROOF. Assume that A is right noetherian. Let J be a non zero right ideal of R = A[z; o,4].
We claim that the set L of leading coefficients of elements of J is a right ideal of A.

Take a, 0 € L. If a + 8 = 0, we have a + 8 € L obviously. So we assume
a+ B # 0. Let y,z € J of respective degrees m,n € N with respective leading
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coefficients «, 8. In other words, y = az™ 4+ --- and z = Bz" +---. If n > m,
then yz" ™ + 2z = (a + B)a™ + --- lies in J, thus a + 8 € L. If m > n, then
y+zz™ " = (a+ p)a™ +--- liesin J and o + S € L. Now take v € A such that
ay # 0. We have yo~™(v) = ayx™ +---. As yo~"(~) € J, it follows that ay € L.
We conclude that L is a right ideal of A.

A being right noetherian, introduce nonzero generators aj,...,ar of L as a right ideal of A.
For any 1 < i <k, let y; be an element of J with leading coefficient «;. Denote n; the degree
of y; and n = max{ni,...,ng}. Each y; can be replaced by y;z" ™. Hence there is no loss of
generality in assuming that i, ..., yx all have the same degree n. Set N the left A-submodule
of R generated by 1,z,22,...,2" (i.e. the set of elements of R whose degree is lower or equal
than n). Using the commutation law ax = o~ !(a) — (o1 (a)) for any o € A, we observe that
N is also the right A-submodule of R generated by 1,z,22,...,2". So N is a noetherian right
A-module (any right module finitely generated over a right noetherian ring is right noetherian,
see the last observation of 1.1.1). It follows that the right A-submodule J N N of N is finitely
generated, say generated by zi,...,2:. Thus we have J NN = 1A+ 204 + --- + 2z A. Set
I=yR4+ypR+ - 4+yoR+21R+ 2R+ -+ zR. We will show that J = 1.

The inclusion I C J is trivial (all y; and z; are in the right ideal J of R). For the converse
inclusion observe first that, A being a subring of R, we have: JN\N = 21A+ 20A+ -+ 2t A C
z71R+ 2R+ -+ zzR C I. Thus I contains all elements of J with degree less than n. We will
prove by induction on m that, for any integer m > n, we have: {p € J; deg,p < m} C I.

The assertion is right for m = n. Assume that it is satisfied up to arank m—1 > n.
Take p € J with degree m and leading coefficient a. We have o € L, then there
exist £1,...,0r € A such that « = o181 + --- + apfBk. Set ¢ = [ylafn(&) +
Yoo "M(B2) + -+ yroT" (ﬁk)}ﬂ”_”, which lies in I by definition of I. Each y; being
of degree n and leading coefficient «;, the degree of ¢ is m and its leading coefficient
is a1 + -+ + apfr = a. It follows that p — ¢ is of degree less than m. We have
peJand qge I C J, thus p—q € J and we can apply the induction assumption to
deduce that p — ¢ € I, and then p € .

So we have proved that J = I. Since J was any right ideal of R and [ is finitely generated as a
right ideal of R, we conclude that R is right noetherian.

Now if A is left noetherian, the opposite ring A°P is right noetherian. It is easy to observe that
Alz; 0,6]° is isomorphic to A°P[x; 0=, —§0~!]. Then the left noetherianity of R follows from
the first part of the proof. O

COROLLARY. Every iterated Ore extension over a commutative field k is a noetherian
domain.

PROOF. We have seen in 1.3.1 that A[x; 0, ] is a domain when A is a domain. We apply this
argument and the previous theorem inductively starting from k. O

From the previous corollary and theorem 1.1.3, we deduce immediately the following
practical result:

THEOREM. Let R be an iterated Ore extension over a commutative field k. Let G be a
finite group of k-automorphisms of R. We suppose that the order of GG is prime with the
characteristic of k. Then RC is a finitely generated k-algebra.
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ADDITIONAL RESULT: skew Laurent polynomials. Let A be a ring and o € Aut A.
The ring S = Az*!; o] is the set of finite sums > 7 «;z’ where m < p in Z
and o; € A, with usual addition and noncommutative multiplication defined from
relation (3) extended by 27 'a = 07! (a)xz~! for any a € A.

PROPOSITION. If A is right(left) noetherian, then A[z*!; o] is right (left) netherian.

PROOF. It is clear that R := A[x; o] is a subring of S := A[z*!; o]. Consider a
right ideal I of S and denote J = I N R, which is a right ideal of R. Obviously
JS C I. Any element y € I may be written as y = > a2’ for some n > 0 and
the a;’s in A. Then yz™ € J and so y = yx"x~"™ € JS. Hence we have I = JS.
The ring A being right noetherian, then so is R be previous theorem, whence J is a
finitely generated right ideal of R, and consequently I = JS is a finitely generated

right ideal of S. We conclude that S is right noetherian. O
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2 ACTIONS AND INVARIANTS FOR WEYL ALGEBRAS

2.1 Polynomial differential operator algebras
2.1.1 Weyl algebras

We fix an integer n > 1 and a commutative base field k. Let S = k|[q1, ¢o, - . ., ¢s] be the
commutative polynomial algebra in n variables. We denote by End;S the k-algebra of
k-linear endomorphisms of S. The canonical embedding p : S — End;S consisting in the
identification of any polynomial f with the multiplication py by f in S is a morphism of
algebras. We consider in End;S the k-vector space DerpS consisting of the k-derivations
of S. It is a S-module with basis (0, , Oy, - - - , Oy, ), Where 9, is the usual derivative related
to g;. Then the algebra Diff S of differential operators on S is the subalgebra of EndS
generated by fig,, ..., fg,, Ogys - - -, Oy, This algebra Diff S = Diffk[qy, ..., ¢,] is called the
n-th Weyl algebra over k, and is denoted by A, (k). For all d € Der;S and f,h € S, the
ordinary rule d(fh) = d(f)h + fd(h) can be written duy = pgd + pq(y in EndpS or, up
to the identification mentioned above, df — fd = d(f). Denoting by p; the derivative 0,,,
we obtain the following formal definition of A, (k):

DEFINITION. The Weyl algebra A, (k) is the algebra generated over k by 2n generators
qis---Gqn, P1,---,Pn With relations:

where [.,.] is the canonical commutation bracket (i.e. [a,b] = ab — ba for all a,b €
A, (k)). The monomials (qi" ... ¢ D" .. DL ) (g, jmyenzn are a k-left basis of the
algebra A, (k), which can be viewed as the iterated Ore extensions:

An(k) = An71<k> [QH] [pn ) aQn]7 (7>
An(k) =K[q1, g2, - qul[pr; Og][p2s 9go] - - - [P Og]. (8)

It follows in particular that the invertible elements of A, (k) are only the nonzero scalar
in k*, and so that any nontrivial automorphism of A, (k) is outer.

PROPOSITION. Ifk is of characteristic zero, A, (k) is a simple noetherian domain of center

k.

PROOF. By 1.3.2, A,(k) is a noetherian domain independently of the characteristic. Let a =
Zi,j aiﬁqup‘% be any element of A, (k), with a; ; € A,,—1(k). We have:

pnra] =Y iaijay ‘vl and  [a,q) =) jaijdph " (9)
1, .3
If a is central in A, (k), we have [py,, a] = [a,¢n] = 0. Since k is of characteristic zero, we deduce

from (9) that a reduces to agp, and then a € A,_;(k). As a must be central in A,_(k), it

follows by induction that a € k. Now consider a two-sided ideal I of A, (k) and a a non zero

element of I. We must have ag, € I and ¢,a € I, thus [a,q,] € I. Similarly, [p,,a] € I.
11



Applying (8), we deduce after a finite number of steps that ago € I. We repeat the process with
the element ag in A,—1(k), and then inductively up to obtain 1 € I. This proves that the only
two-sided ideals of A, (k) are (0) and A, (k). O

PROPOSITION. Ifk is of characteristic zero, then A, (k)% is a simple noetherian domain
of center k for any finite subgroup G of Aut A, (k).

PRrROOF. A, (k)% is simple by point (ii) of theorem 1.2.1 and noetherian by point (i) of theorem
1.2.1 and observation (1) of 1.1.2. Any nonzero central element, of A, (k)¢ generates a two-sided
principal ideal in A, (k)%, so is invertible since A, (k)¢ is simple, and then belongs to k. O

2.1.2 Bernstein filtration

We refer for the results and proofs of this paragraph to [13] or [5]. Let us recall the
following well known preliminary notions. Let R be a k-algebra. We say that R is graded
if there exists a sequence (G;);>o of k-vector spaces satisfying the following two conditions:

(i) R=Di0Gi; (ii) GiG; C Giyj-
Each G; is called the homogeneous component of degree i of R. The must simple example
of commutative graded k-algebra is the commutative polynomial ring k[xy, ..., z,| where

the monomials x5 252 .. 2% such that ky + ky + - 4 -- -k, = i form a k-basis of the
homogeneous component of degree i. Similarly the quantum space (see example (iv) and
example 3 of 1.3.1) gives an easy noncommutative example.

A family F = (F;);>0 of k-vector spaces of R is a filtration of R when the following three
conditions are satisfied:

i) FCFARCHRC - CR; (i) R=UzoF; (i) FiF; C Fiey

In this case, we consider the k-vector space grz(R) := @;5((Fi/Fi-1), with convention
F_1 =0. In order to make it into a graded algebra, it is enough to define the product on
the homogeneous component (then extend by linearity), and we do it by:

(T + Fn1)(@m + Fine1) = Ty + From—1, for any n,m > 0,xz, € F,, Tm € Fp.

A straightforward verification shows that gr-(R) is a graded k-algebra whose homoge-
neous components are the G; = F;/F;_1. This is called the graded algebra of R associated
to the filtration F. Our first important application of this process is for Weyl algebras.

THEOREM. For any nonnegative integer m, denote by J,, the k-vector space generated
in A,(k) by monomials ¢ ...qrp}"...pi» such that iy + -+ i, + j1 + - + Jo < m.
Then:

(1) F = (Fin)men Is a filtration of A, (k), called the Bernstein filtration.

(ii) The associated graded algebra gr(A,(k)) is the commutative polynomial algebra
in 2n variables over k.

12



PRrROOF. Point (i) is clear. For (ii), we consider the graded algebra T := grr(A4,(k)) =
@i>0 Fi/Fi—1 associated to the Bernstein filtration. For any k& > 0, we introduce the canonical
surjection 7, : Fi — Fi/Fr—1. By definition of the product in 7', we have:

T (X)) T (X)) = Tnpm (TnTy) for any n,m > 0,2, € Fp, T € Fon.
In particular, for any monqmial Uk :'qi1 .. .qf;p{l .. .p{l" With i+ tipt+ i+t i =k,
we have m(ug) = m(q1)" ... m1(qn) 71 (p1)’* ... 71 (pp)’». We define in T the 2n-elements
t; = m1(q;) and t;4p, := w1 (p;) for any 1 <i < n. Any element of Fy/F_1 can be written mx(xy)
for some zy € Fj, ; there exists a monomial uy, of degree k as above such that zp = ug+x—1 with
Tp—1 € Fr—1, then my(wg) = mp(ug) =1 .. tintl ) withip 4+ + i +j1 + - + jn = k.
We conclude that T is generated by t1, ..., %2, as k-algebra.
Since [pi, ¢j] = [pi,pj] = (@i, 95] = 0 1in Ap(k) for all 1 < i # j < n, it is clear that t;t; = tit; in
T when |k —i| # n. Moreover, p;q; = ¢;p; + 1 implies ma(p;q;) = ma(qips) then ¢ty = tiynt;
for any 1 < i < n. It follows that the k-algebra 7' is commutative.
So we can consider the surjective morphism of rings ¢ : S := k[z1,...,29,] — T, where S
is the commutative polynomial algebra in 2n variables over k, defined by ¢(z;) = t; for any
1 <4 < 2n. In order to prove the injectivity, we consider f € S such that ¢(f) = 0. Because
¢ maps each z; to the corresponding ¢;, the degrees from S to T' are respected by ¢ (i.e. ¢ is a
graded morphism) and we can suppose without any restriction that f is homogeneous. We write
f=> i j zil .. .zflnzfllﬂ ... zgz with 41+ - -4ip+Jj14+---+Jjp = k and \; ; € k for each monomial
in the sum. Defining in A, (k) the corresponding element g = > \; ; qlf e qf{bp{} ...plr, we have:

Ti(g) = S Nig ittt = o(f) = 0.
Thus g € Fi_1. But by definition ¢ is a sum of monomials of total degree k, then all the
coefficient \; ; above are zero. We conclude that f = 0 and ¢ is injective as required. 0

Although the Bernstein filtration and associated grading play a main role in many studies
about the Weyl algebras (see in particular further the important proposition and theorem
in 3.2.3), it could be sometimes usefull to consider other filtrations or graduations:

1. For any integer r > 0, define C, to be the set of elements in A, (k) which can
be written as a finite sum ZjeNn fila, ... ,qn)p{1 Pl with e < 7
where f; € klq1,...,qn). It is easy to prove that (C,),>0 is a filtration of A4, (k).
Note that in particular Cy = k[q1,...,qn] is an infinite dimensional k-vector
space (any F; is finite dimensional in the case of the Bernstein filtration). This
filtration “by the order of the differential operators” can be defined (unlike the
Bernstein filtration) for other kinds of differential operator algebras.

2. We consider here the Weyl algebra A;(k), with generators p,q and relation
[p,q] = 1. For any integer m € Z, define V;,, to be the set of elements in A4; (k)
which can be written as a finite sum Zi,jEN fij p'¢? with i — j = m, where
fi; € k. In particular Vy = k[pq] contains all monomials p’¢’ with j > 0
because of the formula:

Pd =pglpg+1)(pg+2)...(pg+j—1)
For i > j, we have p'¢/ = p'~J(p/q') € Vi—j, and for j > i, we have plgd =
(P'q" )¢’ =" € V_(;_;). Hence
Vo =k[pq], Vin =p"k[pq] and V_,, =k[pg|q"™ for m > 0.
13



Then Ay(k) = @,,c7 Vin and, up to a natural extension of the definition,
V = (Vin)mez is a Z-graduation of A;(k) (see further the second comment at
the end of 2.2.2 for an application of it).

2.2 Actions and invariants for A;
2.2.1 A reminder on Kleinian surfaces

We consider the group SLy(C) (briefly denoted by SLs if there is no doubt about the
base field) and the trivial two dimensional representation p : SLy — GL(V') defined on a
complex vector space V = Ce; @ Cey by

Vg= (f: §) € SLy, g.e; = ae; +vey and g.e; = Bey + des.
It defines on C[V]| ~ S(V*) = Clz, y| with x = e} and y = €5 the canonical left action :
VgeSLy, ¥ feCV], VeV, (g.f)w) = flgv) = Flplg ). (10)
which is equivalent to:
Vg:(f:g)ESLg, g.x=0d0xr— Py and g.y=—yr+ay (11)

extended by algebra automorphism to any polynomial.

The description of the algebras Clz,y]“ for G a finite group of SLs is a classical topic
in algebraic and geometric invariant theory. Let us recall that finite subgroups of SL,
are classified up to conjugation in five types, two infinite families parameterized by the
positive integers (the type A,_; corresponding of the cyclic group of order n and the type
D,, corresponding to the binary dihedral group of order 4n) and three groups Eg, E7, Es
of respective orders 24, 48, 120. They can be explicitly described in the following way.
Let us denote ¢, = exp(2im/n) € C for any integer n > 1 and consider in SLy the matrices:

. _ 3
9n2<%<§1>, ,u:(?[z))a V:(_Ol(l)>7 80:(55_%§>5
1

_ 1 <§§ Cg) = 1 (C5+Cg1 1 )
"=n\¢ge) -G 1 =Gt hH )

We define the following subgroups of SLs:

e type A,,_1 : the cyclic group C,, of order n, generated by 6,

o type D,, : the binary dihedral group D,,, of order 4n, generated by 6, and pu,

o type Eg : the binary tetrahedral group 7', of order 24, generated by 64, 1 and 7,
« type E7 : the binary octahedral group O, of order 48, generated by 6s, v and 7,
o type Eg : the binary icosahedral group I, of order 120, generated by ¢, v and .

Since any finite subgroup G of SL, is conjugate to a subgroup G’ of these types (then
Clz,y]% ~ Clz,y]%), we can suppose without restriction in the determination of the
algebra of invariants C[z,y] for the natural action (11) that G is C,,, D,,, T, 0 or I. In
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each case, one can compute (see [17]) a system of three generators f1, fa, f3 of the algebra
of invariants C[z,y|® for the natural action.

type | generators of C[z,y]¢ equation of F
Apo1 | fr =zy, fa=2a", fa=y" X"=YZ=0
Dy, =222 fa=a""+ (-1)"y*",
f3 = a?tly — (=1)ngy?ntl Xl Xvy24+22=0
Es | =2y =2,  fo=2%+Ua'y’ 447
fy = 212 — 330844 — 33248 4 y12 X44y34 2220
B, F1= 28+ Uatyt + o, fo = 210y2 — 22545 4 22410
f3 = 21Ty — 34x13y5 + 3425y1? — ayl” X3Y +Y34+2%2=0
Eg fi = a My + 112595 — xytt,
fo = 220 — 29871545 | 494210410 | 9987515 | 420 X5 4y34 72 =0
f3 = 230 4+ 5229625315 — 100059620y10 — 10005:10101/20 — 522m5y25 + y30

In all cases, the algebra C[z,y]® = C[fi1, f2, f3] appears as the factor of the polynomial
algebra C[X,Y, 7] in three variables by the ideal generated by one irreducible polyno-
mial F (of degree n, n + 1, 4, 4, 5 respectively). The corresponding surfaces F of C?
are the Kleinian surfaces, which are the subject of many geometric, algebraic and ho-
mological studies. It is proved in [17] that, for G and G’ two groups among the types
An_1, Dy, Eg, E7, Fg, the algebras Clz,y]® and Clz,y]® are isomorphic if and only if
G=0aG.

2.2.2 Action of SL, on the Weyl algebra A

We consider now a analogue of the commutative context of 2.2.1 for the first Weyl algebra.
Here we take n = 1 and k = C. We denote simply p for p; and ¢ for ¢;. Thus, A;(C) is
the algebra generated over C by p, ¢ with the only relation [p, q] = 1.

A1(C) = Clql[p; 9] = Clpllg; —0p]- (12)

Any element of SLy = SILy(C) gives rise to a linear algebra automorphism on A;(C)
defined by:

Vg=(25) €SLy, g(p)=ap+Bq and g(q) =p+ dq. (13)

We start with some elementary examples of calculation of A;(C)% for G an infinite sub-
group of SLs.

1. For T={(2.%) ; o€ C*}, we have 4;(C)" = Clpq].

PROOF. Choose § € C* of infinite order and denote by ¢ the automorphism p +— dp

and ¢ — 6~ 'q. For any monomial \; ;p'¢’ with )\;; € C, we have g(\; jp'¢’) =

X ;6°7Ipig. Then a polynomial Ei,j Aijp'q? lies in A1 (C)T if and only if \;; =0

for i # j. O
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2. For U={(}?) ; B €C}, we have A;(C)Y = C[q].

PrOOF. Choose 5 € C* and denote by g the automorphism p — p + 8¢,q9 — q.
Any nonzero polynomial f € A;1(C) can be written f = hy,(q)p™ + hm—1(q)p™ ! +
-+ + ho(q) with hi(q) € Clg], hm # 0. Then g(f) = hn(q)(p + BO)™ + hm—1(q)(p +
Bg)™ 14+ ho(q). It follows from (12) that (p+Bq)F = p*+kBgp*~1 +- - for any
k > 1. Therefore g(f) = hm(q)p™ + [hn—1(q) + mBqhm(q)lp™* + ---. Supposing
g(f) = f, we observe by a trivial identification that mBqh,,(¢) = 0. We conclude
that f = ho(q) € Clq]. O

3. We deduce in particular that (A4;(C))%2 = C.

We consider now the more interesting case of finite subgroups of G. Denoting by ¢ :
SLy; < Aut A;(C) the canonical injection defined by (13), a subgroup of Aut A;(C) is
said to be linear admissible if it is the image by ¢ of one of the five types A,,_1, D,, Es,
E;, Eg defined in 2.2.1. We can now formulate (from [27]:

THEOREM.

(i) Any finite subgroup of Aut A;(C) is conjugate to a linear admissible subgroup.

(ii) If G and G’ are two linear admissible subgroups of Aut A;(C), then A;(C)¢ =~
A (C)Y" if and only if G = G'.

PROOF. It is not possible to give here a complete self contained proof of this theorem, which is
based on many non trivial theorems from various papers. We indicate the structure of the main
arguments and refer the interested reader to the original articles for further details.

First, we can naturally introduce two kinds of automorphisms of A;(C). The linear ones
(preserving the vector space Cp @ Cq) correspond to the action (13) of SLy. The triangular ones
are of the form: p — ap + B,q — a~ ¢+ f(p) with a € C*,3 € C, f(p) € C[p|, and form a
subgroup denoted by J. It is proved in [40] that Aut A;(C) is generated by the subgroups J
and SLo (in fact the image L of SLy by the canonical injection ¢). More precisely, it is shown
in [19] that Aut A;(C) is the amalgamated free products of L and J over their intersection. (i.e.
if g; € J\ L and h; € L'\ J, then g1h1g2h2...gnhngn+1 ¢ L). It follows by a theorem of Serre
(see [15], théoréme 8 p. 53) that any finite subgroup G of Aut A;(C) is conjugate either to a
subgroup of L or to a subgroup of J.

Suppose now that G is a finite subgroup of J. It acts on Cp & C fixing C. By semi-simplicity
of G (see the lemma below), there exists p’ € Cp @ C such that G stabilizes Cp’ and Cp & C =
Cp' @ C. Then G acts on Cq & C[p] = Cq & C[p'] stabilizing C[p']. Again by semi-simplicity
of G, there exists ¢ € Cq @ C[p/] such that G stabilizes Cq¢’ and Cq & C[p/] = C¢' @ C[p'].
Denoting by h the triangular automorphism defined by h(p) = p’ and h(q) = ¢', we conclude
that h~'Gh acts diagonally on Cp @ Cgq. In particular, G is conjugate to a subgroup of L.

Thus any finite subgroup of J is conjugate to a subgroup of linear automorphisms. Since
the finite subgroups of SLs are classified up to conjugation in the five types A,, Dy, Eg, E7, Eg
(see 2.2.1), point (i) follows. The separation (ii), which cannot be obtained by the standard

16



dimensional invariants, was first proved in [27] by an original method of “reduction modulo p”.
It can also be obtained from the argument of the second additional comment below. O

In order to be complete, we recall in the following lemma the semi-simplicity argument
used in the proof of the proposition.

LEMMA (MASCHKE). Let p : G — GL(V) a representation of a finite group G
whose order doesn’t divide the characteristic of the base field k, with V a non
necessarily finite dimensional vector space. Suppose that V.= W & Wy with W
and W1 subspaces such that W is G-stable. Then there exists a GG-stable subspace
Wo ~ W7 such that V. =W @ Ws.

PROOF. Denote by m the canonical projection 7w : V. — W and define f : V — V
by f(v) = ﬁ > geG p(9)(7(p(g)~1(v))). Because W is G-stable, we have f(v) € W
for all v € V and f(w) = w for all w € W. Then Im f = W. An easy calculation
shows that f(p(h)(v)) = p(h)(f(v)) for any h € G and v € V. It follows that Ker f
is G-stable. Then the lemma is proved with Wy = Ker f. O

e First additional comment: finite generation of A;(C)¢. By theorem 1.3.2, A;(C)% is
a finitely generated C-algebra, and we can ask for explicit generators of A;(C)% for any
type of admissible GG, similarly to the commutative case in 2.2.1.

EXAMPLE: consider the action p ~— (p, ¢+ (~'q of the cyclic group C,, on A;(C),
with ¢ a primitive n-th root of unity in C. Each monomial p’q’ being an eigenvector
for the action, it is clear that A;(C)" is generated by invariants monomials. We
recall now the calculations of the last example of 2.1.2: for j > i, we write p'¢’ =
(p'q*)¢?~" and observe that p'q’ is invariant to deduce that j — i = kn for some
k > 1, and then p'¢? = (p'¢*)¢*". Similarly, p'¢? = p*"(p?¢?) if i > j. We conclude
with the formula pi¢’ = pg(pg+1)(pg+2)...(pg+7—1) that A;(C)“" is generated
by ¢", p" and pq. This result is formally similar to the first case (type A,—_1) of
2.2.1, but we must of course take care that the generators don’t commute here.
More precisely we have: pgp™ = p"(pqg —n), q"pq = (pg —n)q", and

pq" = q"p" = Ilisi(pg +i = 1) = (=1)" [IiLy (=pg + ).
We refer to [38] for calculation of generators for each of the five types of admissible G.

e Second additional comment: dimension of the first Hochschild homology space of A1(C)%.
For any C-algebra A, we can consider the C-vector space HH(A) = A/[A, A] where [A, A]
denote the subspace generated by all brackets [a, b] = ab—ba with a,b € A. The paper [28]
proves (using the Morita equivalence of A;(C)¢ with A;(C)* G and a general result from
[53] on Hochschild homology of crossed products) that dime HHy(A;(C)%) = s(G) — 1,

where s(G) is the number of conjugacy classes in G. Calculating case by case, it follows:

type Ap1 | Dy Ee¢ | B7 | Eg
dime HH (A, (C)9) | n—1|n+2|6 |7 |8
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EXAMPLE: a direct elementary proof in the cyclic case. The cyclic group C, acts
by p — (p, q— (~'q with ¢ a primitive n-th root of unity. The invariant algebra
R, := A;(C)%" is generated by pq,p™,¢". This action respects the Z-graduation
A1(C) = @,,,cz Vi where Vo = Clpq|, Vi = p™ Vo and V_,, = Vp ¢ for any if m > 0
(see example 2 at the end of 2.1.2). Hence R,, can be decomposed into:

Ry=- &V @Vq" @V p" Voo p"Vhd -

For integers i > 0,k > 1, we have [pk”(pq)i , pq) = kn p*"(pq)? and [pq , (pq)iqk"] =

kn (pq)'q™™, thus clearly:
(oW o) © @ Vo@p"Vo® ) C [Ry, Ral-

Therefore HHy(R,,) ~ Vo / ([Rn, Rn] NVp ) and our aim is to identify [Ry,, R,] N Vj.
Let v(X)= (X —1)(X —=2)...(X —n) € C[X] and

L:={f(pa) = f(pg+n); f(X) € v(X)C[X]} C V.
We claim that [R,,, R,] NV = L. Observe first that a C-basis of L is (¢;);>¢ where:
t; = (pa)'v(pq) — (pg +n)'v(pg +n).
Since ¢"p" = v(pq) and p"q" = v(pg + n) (see for instance [40] p. 216), it follows

n N PN

that ; = (pq)'q"p"™ — (pq +n)'p"q" = (pa)'¢"p" — p"(pa)'q" = [(pa)'q",p"]. Hence
l; € ([Rn, Ry) N Vp) for any ¢ > 0 and so L C [R,,, R,] N V.

For the converse inclusion, note theta an arbitrary element of [R,,, R,]NV} is a sum
of commutators of the form:

C(f,9,k) = [f(pq)d"™, p*"g(pq)] with k >1 and f, g € C[X].

We have: C(f,g,k) = f(pa)d"*"p""g(pa) — p*"g(pa) f(pa)d*" = f(pa)g(pa)g*"p*" —
g(pq + kn) f(pq + kn)p*"¢*™. By induction on k from the fundamental identities
¢"p" = v(pq) and p"¢" = v(pq + n), one checks easily that ¢"*"p*" = w(pq) and
P gF = w(pg + kn) for w(X) = Hf:_ol v(X —in) which lies in the ideal v(X)C[X].
Hence: C(f,g,k) = f(pa)g(pa)w(pq) — g(pq + kn)f(pq + kn)w(pg + kn) € L.
Finally HHy(R,,) = Vo/L with Vj = C[pg| and L the subspace of V{ with basis (¢;);>0
such that deg,,¢; = n+i— 1. We conclude that a basis of Vo/L is {(pq)’ bo<j<n—2
and the dimension is n — 1.

e Third additional comment: A1(C)% as a deformation of the kleinian surfaces. The linear
action of the finite group G' on the noncommutative algebra A;(C) induces canonically
a linear action on the commutative graded algebra S = gr(A;(C)) = C[z,y] associated
to the Bernstein filtration, which is the standard action considered in 2.2.1. We have
then gr(A;(C)%) = SY (see the last proposition of 2.1.1) and therefore the invariant
algebra A;(C)% can be seen as a noncommutative deformation of the algebra S of regular
functions on the associated kleinian surface. This point of view will be developed further
in 3.2.3.
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2.3 Linear actions on A,
2.3.1 Action of Sp,, on the Weyl algebra A,

An automorphism g of A, (k) is linear if the k-vector subspace W = k¢ @ - - - ©kq,, Dkp; @
---@kp, is stable under g. The restriction to W of the commutation bracket in A, (k) de-
fines an alternated bilinear form and relations (6) mean that B = (p1, ¢1,02,92 - - -, Pn, @n)
is a symplectic basis of W. Then it is clear that the group of linear automorphisms of
A, (k) is isomorphic to the symplectic group Sp,, = Sp,, (k). The previous example 2.2.2
is just the case n = 1. For finite abelian groups of linear automorphisms and for k = C,
the following result (from [24]) simplifies the situation in a way which is used as a key
argument by many studies of this kind of actions (see [30], [29], [25], and further 5.4.2).

PROPOSITION. Any finite abelian subgroup of linear automorphisms of A, (C) is conju-
gated in Sp,, to a subgroup of diagonal automorphisms.

More precisely, with the above notations, for any finite abelian subgroup G of Sp,,,,
there exist a symplectic basis C = (x1, Y1, T2, Y2, - - -, Tn, Yn) of W and complex characters
X1, X2, - - -y Xn Of G such that:

9(z;) = x;(9)x; and  g(y;) = x;(9)"'y;, forallgeG.

PROOF. By Schur’s lemma and total reducibility (see below), there exists U = (u1,ua, ..., u2p)
a basis of W and complex characters ¢1,¢2,..., ¢, of G such that g(u;) = ¢;(g)u; for any
1 <j <2n. Set w;; = [u;,u;] for all 1 < 4,5 < 2n. Up to permute the u;’s, one can suppose
that wy 2 # 0. For any 3 < j < 2n, let us define:

Vj = W12U5 — Wj2U1 + Wj1U2.

Denote 1 = u1 and y; = wi%uz. Then (x1,y1,v3,v4, ..., V2,) is a basis of W satisfying [x1,y1] =
1 and [z1,v] = [y1,v;] = 0 for any 3 < j < 2n. The action of G on this new basis can be
described on the following way. It is clear that g(z1) = ¢1(g9)z1 and g(y1) = ¢a(g)y1 for any
g € G. Since wy 2 # 0, we have p2(g) = ¢1(g)~L. For 3 < j < 2n, it follows from the definition
of v; that:
9(v5) = j(9)v; +wj2(i(9) — ¢1(9))ur — wji(w;(9) — p2(9))ua.

If wjs # 0, then ;(g9) = ¢2(9)~" = ¢i1(g). Similarly wj; # 0 implies ;(g) = ¢2(g). Hence
g(vj) = ¢j(g)v; for any 3 < j < 2n. Finally we conclude that the basis (21, y1,vs,v4,...,v2,)
of W satisfies [z1,y1] =1 and [z1,v;] = [y1,v;] = 0 for any 3 < j < 2n, and that G acts by:

g(x1) = e1(9)z1,  g(y1) = p1(9) 'y, g(v;) = pj(g)v; for 3<j < 2n.

We repeat the process with the subspace generated by wvs,...,vs,. As W doesn’t contain any
totally isotropic subspace of dimension > n + 1, we can iterate this construction n times to
obtain the basis C and the characters x1 = ¢1, X2 = ©3,..., Xn = Yan—1 of the proposition. [

In order to be complete, we recall in the following lemma two classical arguments on
representation theory used at the beginning of the proof.
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LEMMA.

(i) (Total reducibility). Let p : G — GL(V') be a representation of a finite group G
whose order doesn’t divide the characteristic of k, with V' a finite dimensional
vector space. Then V=V, & --- @& V,, with V; G-stable and irreducible (i.e.
V; doesn’t admit proper and non zero G-stable subspace) for any 1 < i < m.

(ii) (Schur’s lemma). Ifk is algebraically closed and G is abelian, then any finite
dimensional irreducible representation of GG is of dimension one.

PROOF. Because V is finite dimensional, (i) just follows from Maschke’s lemma
(see 2.2.2). For (ii), consider a finite dimensional irreducible representation p : G —
GL(V) of an abelian group G. Fix s € G and set t = p(s). For any g € G,
gs = sg implies p(g)t = tp(g). Let A € k* be a eigenvalue of ¢ and denote W =
{v e V;t(v) = A} # (0). For any v € W, we have: t(p(g)(v)) = p(g)(t(v)) =
p(g)(Av) = A(p(g)(v)) so p(g)(v) € W. Hence W is G-stable and then W = V. We
have proved: for all s € G, there exists A € k* such that p(s) = Aidy. In particular
any one-dimensional subspace of V' is G-stable. Since V' is irreducible, we conclude
that V is of dimension one. O

This proposition applies in particular to the subgroup generated by one automorphism
of finite order. Under this form, it appears in [29] and [30] as an ingredient for the ho-
mological study of A, (C)¢ when G is finite not necessarily abelian (another fundamental
ingredient is the Morita equivalence between A, (C)¢ and A, (C) « G by theorem 1.2.1,
as A, (C) doesn’t admit nontrivial inner automorphisms). We cannot develop here the
elaborate proofs of these papers leading in particular to the following theorem, which
describes very precisely the Hochschild (co)homology and Poincaré duality: for any finite
subgroup of linear automorphisms of A, (C), we have for all nonnegative integer j:

dim¢ HH, (A, (C)¢) = dime HH*"7/(A,,(C)%)) = a;(G)
where a;(G) is the number of conjugacy classes of elements of G' which admit the eigen-
value 1 with multiplicity j.

2.3.2 Finite triangular automorphism groups

Let g be an automorphism of A, (k) and suppose that g is triangular with respect of the
iterated Ore extension:

An(k) = k[q1][p1; alh][qQ][pQ 3 8qz] gl pn s 8%]- (14)

By straightforward calculations from relations (6), we can check that g stabilizes in fact
any subalgebra k[g|[p;; 0,,] ~ Ai(k), for 1 <14 <n, acting on the generators by:

9(q;) = uqi +vi, 9(pi) = Oéflpz' + fi(q:), with a; € k*, v €k, f; € klg]. (15)

So, similarly to the semisimplicity argument used in the particular case n = 1 in the proof

of the main theorem of 2.2.2, we have:
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LEMMA. Any finite subgroup of triangular automorphisms of A, (k) is conjugated in
Aut (A, (k)) to a finite abelian subgroup of diagonal automorphisms.

PROOF. Let G be a finite subgroup of triangular automorphisms of A, (k). In each subalgebra
klgi][pi; 04), 1 <1i < mn, consider the k-vector spaces F; = k @ kg; and E; = k[g;] ®kp;. By (15),
G acts on F; fixing k and on E; stabilizing k[g;]. By the semi-simplicity lemma 2.2.2, there exist
y; € F; with F; =k @ky; and z; € E; with E; = k[g;] ® ka; such that ky; and kz; are G-stable.
By construction, y; = Ajq; + pu; where A\; € k* and p; € k. Up to multiply by a nonzero scalar,
we can suppose that z; = A; Loi + si(q;) with s; € k[g;]. Let h be the triangular automorphism
of A, (k) defined by h(g;) = y; and h(p;) = z; for all 1 < i < n. Then h~'Gh acts diagonally on
the vectors of the basis ¢1,p1,-- ., qn, Pn- ]

As seen by previous results, some favorable situations reduce to diagonal actions, i.e.
actions of subgroups of the torus (k)" by g(¢;) = asq; and g(p;) = a; 'p; with a; € k*.
This is the most simple case of the following construction.

2.3.3 Dual action of GL, on the Weyl algebra A,

We consider here the case of a linear action on A, (k) which extends an action on the
polynomial functions by the following classical duality splitting process.

e We start with a vector space V of finite dimension n over k, (ej,...,e,) a k-basis
of V, and (xy,...,x,) its dual basis in V*, S := k[V] ~ S(V*) ~ k[zy,...,x,]. Let
p: G — GL(V) be a representation of some group G on V, with the corresponding left
action:

VgeG, YuveV, guv=p(g)(v), (16)
extended canonically in an action by automorphisms on S by:
VgeG, VfeS YveV, (g.f)v) = flg~"v) = flolg™) (). (17)

The restriction of this action to the subspace V* = kx; ® kxs @ - - - kz,, just corresponds
to the dual representation of p [recall that p* : G — GL(V*) is such that, for any f € V*,

the linear form p*(g)(f) is given by v — f(p(g~1)(v))].

We put W =V @ V*. Any element of W can be written uniquely w = v + x with v € V
and f € V*. Then we denote w = (v, f). Combining the action (16) of G on V' and the

associated action (17) on V*, we define the action:
VgeG, Vw=(v,f)e W=VaV" gw=(g.v,9.f). (18)

We define the following bilinear form ¢ : W — k:

Y (v, f) €W, q(v, f) = f(v). (19)

Considering the basis (e1, . .., €, 21, . . ., T,) of W and its dual basis (z1,...,2,, (1, .-, ()
in W*, we claim that

g =11(1+ -+ TG € KO, (20)
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PROOF. From one hand, by definition of the x;’s and (;’s, we have x;(v, f) =
x;(v,0) = z;(v) and (v, f) = G(0, f) = G(f) for all (v, f) € W. It follows that
the polynomial function ¢’ = x1(; + -+ + x,(, is a bilinear form W — k. For any
1 <i,j <mn, we have: ¢'(e;, ;) = > p_; x(es, xj)Ck(es, zj). Since xp(ei, z;) = i
and (x(e;,x;) = 0k, we obtain ¢'(e;,z;) = 0;; = xj(e;) = q(ej, x;). Using the
bilinearity of ¢ and ¢/, this proves that ¢’ = q.

From the other hand, for any ¢ € G and (v, f) € W, we have ¢(g.(v, f)) =

(9-1)((gv)) = f(p(g~")(p(9)(v))) = f(v) = q(v, f). Therefore g.¢ = q in k[W]
for any g € G. O

e We start again with a vector space V' of finite dimension n over k, (qi, ..., ¢,) a k-basis
of the dual V*, S := k[V] ~ S(V*) ~ k[q1,...,q,). As in 2.1.1, we denotes by End;S
the k-algebra of k-linear endomorphisms of S, p : S — End;S the canonical embedding
defined by the multiplication, Der; S the subspace of End S consisting of the k-derivations
of S, and A, (k) = Diff S the subalgebra of End;.S generated by fig,, -, fgns Ogys - - - 5 Og,-

Let G be a subgroup of GL, (k) acting by linear automorphisms on V', via the natural
representation p : G — GL(V). By (17), this action extends canonically in an action
by automorphisms on S whose restriction to the subspace V* = kq; & kqy & - - - kq,, just
corresponds to the dual representation of p. Let us define the application:

G x EndS — EndS, (g,9) — g.¢ = gog . (21)

For any f € S, we have g.uy = pgr). So we obtain an action of G on EndS which
extends the action on S making covariant the morphism p. We observe easily that the
subspace DeryS' is stable under this action. We conclude that the restriction to Diff S
of the action of G determines an action of G on the Weyl algebra. We claim that the
restriction of this action to the vector space U = kd,, ®kd,, ® - - -kJ,, corresponds to the
initial representation p.

PROOF. Denote by (53;;) the matrix of g~ in the basis (qi,...,q,) of V*. For all
1<i,57<nand g€ G, we compute

(9-04:)(a5) = 905,9~ () = 984 ( Znil Bm.jtm) = Bij = 0q,(97(¢5)) = 04, (97 .q5)-

By (17), it follows that the action on U is dual to the action on V*, which is itself
dual of the initial action on V. [

In other words, the so-defined action of G on A, (k) is obtained from the linear action
of G on S applying the duality splitting process exposed above. In particular, assertion
(20) applies. We summarize this results in the following proposition, with the notation
bi = aqi‘

PROPOSITION. For any subgroup G of GL, (k), the action of G by linear automorphisms
on S =K[q,...,q,) extends in an action by linear automorphisms on the Weyl algebra
A, (k) by:
l9(pi), q5] = [pis g™ (g)] forallg € G, 1<i,j <mn, (22)
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or equivalently
9(p:) = Zlaqi(g_l(qy'))pj forallg e G, 1 <i<n. (23)
j:

In this action, the element w = qip; + qapa + - - - + qupy lies in A, (k)C.

o First example: diagonal action. The most simple situation (but interesting as we have
seen before) is when G acts as a diagonal subgroup of GL,,(k), and then acts on A, (k) as
a subgroup of the torus (k)" by:

(%) = asqi, g(ps) = a; 'p;, with g = (o, ..., ) € (K*)™. (24)
If G = (k*)", then A, (k)" =k[qip1, g2p2, - - -, G-
PROOF. Any monomial y = q{l . .q%"pi1 ...pin is an eigenvector under the action,
and any element of A, (k)% is a k-linear combination of invariant monomials. If
we choose g = (Aq,1,...,1) with A\ of infinite order in k*, the relation g.y = y

implies 71 = j1. Proceeding on the same way for all diagonal entries, we obtain
y = (q1p1)™ (q2p2)™ . .. (qupn)™. The result follows. O

If G is a finite subgroup of (k*)" acting so, the invariant algebra A, (k)¢ is finitely
generated over k (by theorem 1.3.2). Since every monomial in the ¢;’s and p;’s is an
eigenvector under the action of G, it’s clear that we can find a finite family of k-algebra
generators of A, (k)¢ constituted by invariant monomials. The case where n = 1 is detailed
in the example of the first additional comment of 2.2.2. For n > 1, the determination
of such a family becomes an arithmetical and combinatorial question depending on the
mixing between the actions on the various copies of A;(k) in A, (k). We shall solve it
completely at the level of the rational functions further in 5.4.2. For the moment, we only
give the two following toy illustrations:

Example. For G = (g) the cyclic group of order 6 acting on As(C) by:
g: pL— =Pl @ —qu, P2 P2, G2 = §Rge,

A5(C)Y is generated by p?,p1q1, 4¢3, p3, p2q2, 6.

Example. For G = (h) the cyclic group of order 2 acting on As(C) by:
h:pr=—p1, = —q, p2— —p2, @+ —q,

A3(C)Y is generated by p2, p1g1, P1p2, P12, G35 1P2, G142, D3, D242, 43

e Second example: differential operators over Kleinian surfaces. We take k = C, n = 2,
G a finite subgroup of SLy acting on A5(C) by:

o = oqy + , = Jp: — ’
Vg= (7 g) € SL, { 9(q) q + Bgs 9(p1) P1 — VD2 (25)

N 9(@) =y +0qs  g(p2) = —Bp1 + aps.
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This action is the extension, following the process described at the beginning of this
paragraph, of the canonical action (11) on Clgy, ¢2] (don’t mistake with (13) corresponding
to the action on A;(C) described in 2.2.2). Applying theorem 5 from [52] (since G' doesn’t
contain non trivial pseudo-reflections), we have Diff(S)¢ = A,(C)Y ~ Diff(SY), the
differential operator algebra over the Kleinian surface associated to G. As an application
of the main results of part 5, we will prove further in 5.4.3 that A;(C)Y is rationally
equivalent to As(C).

o Third example: dual action of the Weyl group on a Cartan subalgebra of a semi-simple
complex Lie algebra. Let g a semi-simple Lie algebra of rank ¢ over C and h a Cartan
subalgebra. The Weyl group acts by linear automorphisms on C[h*] ~ S(h), and then on
Diff(h*) ~ A,(C) following the process that we described above. The interested reader
could find in [30] homological results and calculations concerning this action.

2.3.4 Non linear actions and polynomial automorphisms

Of course, the classical questions about invariants under subgroups of non necessarily
linear automorphisms of a commutative polynomial algebra make sense for noncommu-
tative polynomial algebras. It is not possible to give here a complete survey of the many
papers devoted to the determination of such automorphism groups (see for instance the
bibliographies of [19], [20], [21], [23], [40], [44],...). With the contents of the following
sections in mind, we focus here on the iterated Ore extension in two variables over C, for
which we have a complete answer.

CLASSIFICATION LEMMA. Let o be a C-automorphism of Cly] and § a o-derivation of
Cly]. Set R = Cly][z; 0,0]. Up to C-isomorphism, we have one and only one of the
following five cases.

(i) R = Clz,y| is commutative;

(ii) there exists some q € C*, q¢ # 1, such that R = C,[z,y|;

)
)

(iii) there exists some q¢ € C*, q # 1, such that R = A}(C);

(iv) ¢ is an ordinary k-derivation such that 6(y) ¢ C and R = Cly|[x; §];
)

(V R = Al( )

PROOF. There exists ¢ € C* and s € C such that o(y) = qy +s. If ¢ # 1 we set ¢y =
y + s(g — 1)~ and obtain R = C[y/][z; o,d] with o(y') = qy’ and 5(y') = 6(y) € Cly]. In C[y/]
write 6(y') = ¢(y')(1—q)y'+r with ¢(y') € C[y/] and r € C. It follows that 2’ = z—¢(y') satisfies
2y — qy'a’ =r. Hence R = Cly/][2’; 0,¢'] with 0'(y/) =r € k. If r =0, then R = C,[2/,y/]. If
r # 0, we set 2 = r~'2’ and conclude that R = A{(C). Assume now that ¢ = 1. If s = 0 then
o =1id and R = C[y|[z; ¢]; we are in case (i) when § = 0, in case (v) when 6(y) € C*, and in case
(iv) when § # 0. If s # 0, we set first 3’ = s~y to reduce to R = k[y/][z; 0,6] with o(y/) =y +1
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and 0(y') = s716(y). Then we denote 2’ = = + §(y'), which satisfies 2’y = (y' + 1)z, so that
R = C[y/][«"; o] is the enveloping algebra U;(C) introduced in example (v) of 1.3.1. We write
Ui(C) = C[2'][y ; —2'0,/] and are then in case (iv). O

MAIN OBSERVATION. The group Aut R is explicitly known in each of the five cases above.

e The description of the group Aut R for R = Clx,y] is a classical nontrivial problem.
Its structure is very explicitly known. Papers by Jung, Van der Kulk, Rentschler, Makar-
Limanov (see [18] for more complete references) led to prove that Aut R is generated
by the subgroup L(R) of linear automorphisms (corresponding to the linear action of
GL; on Cz @ Cy) and the subgroup J(R) of triangular automorphisms (of the form:
yr— ay+ B,x— e+ fwith a,\ € C*,5 € C,f € Cly]). More precisely, Aut R is
the amalgamated free product of L(R) and J(R) over their intersection and it follows
from a theorem of Serre and a semisimplicity argument (already cited in the proof of
theorem 2.2.2) that any finite subgroup of Aut R is conjugate to a subgroup of linear
automorphisms.

e The automorphism group of A;(C) is also described from the works of [40] and [19] as
a amalgamated free product of the subgroup of linear automorphisms and the subgroup
of triangular ones (see above the proof of theorem in 2.2.2). Is structure is indeed as rich
as in the commutative case.

e This is not the case for the quantum plane C,[z,y] (with commutation rule zy = gy,
see example (iv) of 1.3.1), and for the quantum Weyl algebra A}(C) (with commutation
rule zy — qyr = 1, see example (v) of 1.3.1). Will shall prove further in 4.1.1 that
the automorphism group of the quantum plane C,[z,y] is isomorphic to the torus (C*)?
acting by (o, 8) : x — ax, y — By. And the automorphism group of the quantum Weyl
algebra A%(C), reduces to (C*) acting by o : x + az, y — a 'y, see [21]. In both cases
the automorphism group is very “small” which is an example of the general principle of
“quantum rigidity” (see further 4.1.3).

e The following proposition (from [23]) solves the remaining case.

PROPOSITION. Suppose that ¢ is an ordinary derivation of Cly| satisfying é(y) ¢ C.
Let p be the non constant polynomial in Cly| such that 6 = p0,. Any automorphism of
R = Clyl[z; 9] is triangular, of the form:

y—ay+p, x— A+ f,
with f € Cly], and o € C*, A € C*, B € C satistying p(ay + ) = a p(y).

ProOOF. For any u € Cly|, we have zu = ux + pdy(u), and then zp = p.(z + 9y(p)). Thus
p is normal in R. It follows that the two-sided ideal I generated by the commutators [r,s] =
rs — sr with ;s € R is the principal ideal generated by p = [z,y]. For any automorphism
g € Aut R, the element g(p) generates I. So there exists ¢ € C* such that g(p) = ep € Cly]. As
deg, g(p) = ndeg, g(y) where n = deg, p > 1 (by assumption), we deduce that deg, g(y) = 0,
therefore ¢g(y) € Cly]. Hence g(Cly]) C Cly], and it’s clear that there exists o € C*, 8 € C such
that g(y) = ay + . Then, the surjectivity of g implies that deg,(g(z)) = 1. So there exist
A € C*, f € Cly] such that g(z) = Ax+ f. We have p(ay+5) = g(p) = [9(2), 9(y)] = ap(y). O
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3 DEFORMATION: POISSON STRUCTURES ON INVARIANT
ALGEBRAS

3.1 Poisson invariant algebras
3.1.1 Basic notions on Poisson structures

We start with the following definition.

DEFINITION. A commutative k-algebra A is a Poisson algebra when there exists a bilinear
antisymmetric map {-,-} : A x A — A satisfying the two conditions:

- Leibniz rule: {ab,c} = a{b,c} +{a,c}b for all a,b,c € A;
- Jacobi identity : {a,{b,c}} + {b,{c,a}} + {c,{a,b}} =0 foralla,b,ce A
Then the Poisson bracket {-,-} defines a structure of Lie algebra on A and acts as a

biderivation. It’s clear that a Poisson bracket on a finitely generated algebra A is entirely
determined by the values of {x;, z;} for ¢ < j where z1,...,xx generate A.

EXAMPLES.

1. The commutative polynomial algebra in two variables S = k[z,y| is a Poisson
algebra for the bracket defined on the generators by {z,y} = 1, or equivalently for

any P.QQ €S :
{P,Q} =985 — 5298 — PlQ, — Q1 P
2. More generally, S = k[x1,..., 2T, Y1, .., Ys] is a Poisson algebra for the symplectic

bracket defined on the generators by {z;,y;} = 0;; and {z;,z;} = {v;,y;} =0, or
equivalently for any P,Q € S :

n
— 9P 9Q 0Q dP
1PQF = 2 555 — o ow

3. Let F be a fixed element of the polynomial algebra in three variables S = k[z, y, z];
then there exists a Poisson bracket on S defined for any P,Q € S by :

{P,Q} = Jac(P,Q, F)
= (PQ5 — Qy ) FY + (P3Q) — Q3P Fy + (PIQy — Q1 P) .
The brackets on the generators are then {x,y} = Fj, {y, 2z} = FJ, {z,2} = F..
4. More generally, one can prove (see [34] for complete detailed calculations) that
S = k[xy,...,zx]is a Poisson algebra for the Poisson bracket defined (when N > 3)

for any P,Q € S by: {P,Q} = Jac(P,Q, F,...,Fx_s), where Fj,..., Fy_o are
arbitrary chosen polynomials in S.
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e Poisson structure on quotient algebras. An ideal I of a Poisson algebra A is a Poisson
ideal when {a,z} € I for any a € A,z € I ; in this case, we also have {z,a} € I and
the trivial observation {a, b} — {a’,0'} = {a — a’,b} + {a’,b—V'} for all a,b € A allows to

define on the algebra A/I the induced bracket {a@,b} = {a,b}.

e Poisson structure on localized algebras. Let S be a multiplicative set containing 1 in a
Poisson algebra A. Then there exists exactly one Poisson bracket {-,-} on the localization
S~ ! A extending the bracket of A. It is given by:

{as™ 0t71} = {a,b}s™ 17t — {a,t}bos™'t72 — {s,b}as 2t + {s,t}abs 2t 72
for any a,b € A,s,t € §. In particular, if A is a domain, the Poisson bracket on A
extends canonically in a Poisson bracket on the field of fractions of A.

e Poisson structure on invariant algebras. Let G be a group of algebra automorphisms
of a Poisson algebra A. An element g € G is said to be a Poisson automorphism when
g{a,b} ={g(a),g(b)}. If any g € G is a Poisson automorphism, then the Poisson bracket
of two elements of the invariant algebra A% also lies in A“. We say that A% is a Poisson
subalgebra of A.

3.1.2 Poisson structures on Kleinian surfaces

Main results of this paragraph come from [28] (see also [34]). Let G be a finite subgroup
of SLy(C) of one of the canonical types A, _1, D,, Es, E7, Eg acting canonically by (11)
on S = Clz,y].

From one hand, since G C SL,, each element of G is a Poisson automorphism of S for
the symplectic bracket defined on S in example 1 of 3.1.1. Therefore S¢ is a Poisson
subagebra of S for the symplectic Poisson structure.

From the other hand, we have recalled in 2.2.1 that S¢ is isomorphic to C[X,Y, Z]/(F)
for some polynomial F' irreducible in C[X,Y, Z] explicitly determined for each of the five
types. Let us consider on C[X,Y, Z] the jacobian Poisson bracket associated to F, in the
sense of example 3 of 3.1.1. For any polynomials P € C[X,Y, Z] and QF € (F), we have
{P,QF} ={P,Q}F +{P,F}Q = {P,Q}F + Jac(P, F,F)Q = {P,Q}F + 0 € (F). Then
(F') is a Poisson ideal and we can take the induced Poisson structure on C[X,Y, Z]/(F).

PROPOSITION. There exists a Poisson isomorphism between Clz,y]% for the symplectic
Poisson structure and C[X,Y, Z|/(F') for the jacobian Poisson structure associated to F'.

ProOF. With the notations of 2.2.1, C[x, y]” is generated by f1, f2, f3 submitted to one relation
F(f1, f2, f3) = 0 for suitable irreducible F' € C[X,Y, Z]. The surjective morphism of algebras
¢ : C[X,Y,Z] — C[z,y]% defined by X — f1,Y — fo, Z + f3 induces a surjective morphism
® : C[X,Y, Z]/(F) — Clx,y]® because ker ¢ D (F). From classical ringtheoretical results, the
Krull dimension of C[z,y]¢ is 2, and the irreducibility of F implies that C[X,Y, Z]/(F) is also
of Krull dimension 2. We conclude that ® is a algebra isomorphism. The strategy to deduce
from ® a Poisson isomorphism consists in the calculation of three constants ay, as,as € Q such
that the polynomials hy = a1 f1, ha = aafe and hs = a3 fs in C|z, y]G satisfy the relations:

{h1,ha} = F5(h1,ha, h3), {ha,h3} = F{(h1,ha,h3), {hs,h1} = F3(h1, ha, h3) (%)
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with F(hy, ha, h3) = 0, so that the isomorphism ¥ : C[X,Y, Z]/(F) — C[z,y] deduced from
the map X — hy,Y — ho, Z — hs becomes a Poisson isomorphism.

The determination of ay,as,as is case by case. For instance, for G of type A,_1, we have
fi=zy, fo=2a"and f3=y", with F=X"-YZso F{ =nX""!, F}=—Z and F}, = -Y. We

compute {f1, f2} = —nfa, {f2, fs} = n?f{~" and {fs, f1} = —nfs. Setting hy = ayf1, ha = az f

and hs = asfs and identifying in the above relations (%), we obtain a1 = % and asaz = n%

Similar (but more complicated) calculations are detailed for each case in [28]. O
We deduce from this proposition an interesting link between the Poisson algebraic struc-
ture of the algebra Clz,y] ~ C[X,Y, Z]/(F) and some geometrical invariant of the
hypersurface F defined by F' in the three dimensional affine space. There exists for any
Poisson C-algebra A a notion of Poisson homology ; the first term of it is just the C-vector
space:
HPo(A) = A/{A, A},

where {A, A} is the subspace generated by all {a,b} for a,b € A. Moreover, the Milnor

number of the surface F is defined as the codimension of the jacobian ideal (i.e. the ideal
generated by the derivative polynomials FY, Fj, F}), that is:

Then we have:

PROPOSITION. For any finite subgroup of GG, the Kleinian surface F associated to the
polynomial F € C[X,Y, Z] in the Poisson algebra isomorphism C[z,y]® ~ C[X,Y, Z]/(F)
satisfies the equality :

dim HP(C[z,y]) = u(F).

PROOF. Observe first that F' is weighted homogeneous : referring to the description of each type
of Kleinian surface in 2.2.1 and denoting the total degrees of the three generators a := deg fi,
b = deg fo and c := deg f3, there exists in each case an integer d > 1 (depending on a, b, ¢ and
F') such that:

FO\"X,\°Y,\°Z) = NF(X,Y, Z), for any \ € C. (26)

where:

type An—l Dn EG E? E8
a,bye,d | 2,m,n,2n | 4,2n,2(n+1),4(n+1) | 6,8,12,24 | 8,12,18,36 | 12,20, 30,60

It follows that :
aXF(X,)Y,Z2)+bYFy(X,Y,Z)+ cZF3(X,Y,Z) =d F(X,Y, Z) (27)
Now denote T := C[X,Y, Z] with the jacobian Poisson bracket defined from
(XY} =8, {V. 2} =F, {Z X} = F}, (28)

and I = (F|, F}, F}). Relation (27) implies (F) C I. Hence T/I ~ T /T where T := T/(F) ~ S¢
from the previous proposition with notation S = C[z,y|. If we prove that {T,T} + (F) = I,
then {T,T} = I, thus HP(S®) =T /{T,T} = T/I ~ T/I and the proof will be complete.
Inclusion {T,T} + (F) C I is clear from relations (28) and (27).
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To prove the converse inclusion, it’s sufficient to check that
X™Y"ZPF! € {T,T}+ (F) for any integers m,n,p >0, i =1,2,3. (29)

Up to permutation of i, we can take ¢ = 1. In the case m = 0, we have from (28) (see
example 3 in 3.1.1) the identities {Y"T12ZP Z} = Jac(Y"T12P, Z, F) = (n + 1)Y"ZPF] and
{Y,Y"ZPT1} = Jac(Y,Y"ZPTL F) = (p+ 1)Y" ZPF]. It follows that:

YZPF] = Sa{Y" 2P, 7} = g {Y, Y 2Pt € {S, S}

So we suppose now m > 1. Applying again the jacobian formula, we have:

{V, Xmy"z°t) = (p+ 1) X™Y"ZPF] — mX™ YY" ZPHL ), (30)
{XmYy"™HizP 7} = (n+ 1) XY ZPF] — mX™ 'y ZPE) (31)

From the other hand, Euler’s identity (27) implies
AdX"Y"ZF = aX™Y"ZPF] + bX™ WY ZP ) 4 e Xy ZP LR (32)

The three relations (30), (31), (32) can be interpreted as a linear system into the three vari-
ables U = X”"”Y”ZPF17 V = XmlyntlZPFl and W = X™~1Y"ZPHF} whose determinant

+1 0 —
" m’ = — + 1) 4+ b(n+ 1) + am] doesn’t vanish. Then each U, V, W appears as a

n+1 —m 0
linear combmatlon of {Y, Xmynzptly Lxmyntlze 73 and X™ 1Y Z F| so as an element of
{T, T} + (F), which proves (29) and achieves the proof. O

COROLLARY. The values of 1(F) by type of Kleinian surface are:

type Apn_1 | Dy Es | B7 | Eg
dimc HPo(Clz,y]%) | n—1|n+2|6 |7 |8

PROOF. For the type A,,_;, we have ' = X" +Y Z, then the ideal I = (FY, F}, F}) is generated
by Y, Z, X" ! ; therefore a C-basis of C[X,Y, Z]/I is {1, X, Y2, e ,Ynﬂ} whose cardinality is
n— 1. For the type D,,, F = X" "1+ XY?2 + 72 satisfies I = ((n+1)X"+Y?2 XY, Z) ; therefore
a C-basis of C[X,Y, Z]/I is {1, X; YQ X", Y} whose cardinality is n 4+ 2. For the type E6,
F=X44Y3+Z2%then I = (X3,Y2 2) and a C-basis of C[X,Y, Z) /T is {1, X, x? ? W YX }
of cardinality 6. The cases E; and Fg are similar with basis {1,X,Y, X Y,X ,X X } and

{1,X,Y, XY, YQ, Y?), Y2Y, Y?)Y} respectively. O

3.2 Deformations of Poisson algebras
3.2.1 General deformation process

We fix a non necessary commutative k-algebra B. We suppose that there exists some
element h of B which is central in B not invertible and not a zero divisor in B, such that
A := B/hB is a commutative k-algebra.

A being commutative, any u,v € B satisfy (u+hB)(v+hB) = (v+hB)(u+hB) and then
[u, v] == uv—vu € hB. We denote by y(u, v) the element of B defined by [u, v] = hy(u,v).
We set:

{u,7} = v(u,v) for any w,v € A.
This is independent of the choice of u,v.
29



If W = w4+ hw with w € B, we have [u/,v] = [u,v] + h[w,v] since h is central;
thus hy(u',v) = hy(u,v) + h?y(w,v), then ~v(u',v) = v(u,v) + hy(w,v) and so
v(u',v) = vy(u,v). The result follows by antisymmetry.

This defines a Poisson bracket on .A.

Jacobi identity holds for [-, -], thus for ¥(-, ) because h is central, and then for {-,-}.
Using again the centrality of h, the Leibniz rule for {-,-} follows from [uv,w] =
ulv, w] + [u, w]v for all u,v,w € B.

DEerINITIONS. With the previous data and notation, we say that the noncommutative
algebra B is a quantization of the Poisson algebra A, and for any A € k such that the
central element h — \ of B is non invertible in B, the algebra A, := B/(h — \)B is a
deformation of the Poisson algebra A.

quan‘% \

A = B/hB ~~~nnnnnnns Ay = B/(h — \)B

deformation

EXAMPLES.

1. Let g be a complex finite dimensional Lie algebra. Let B be the homogenized
enveloping algebra Uy, (g) of g, that is B is the C[h]-algebra with generators a basis

{z1,...,2,} of g and relations: x;z; — z;2; = hz;,z;]. It’s clear that B is a
quantization of the algebra A = Clxy,...,z,] ~ S(g) ~ O(g*) with the so-called
Kirillov-Kostant Poisson bracket defined on the generators by {z;, z;} = [x;, x]q,

and that the enveloping algebra U(g) ~ B/(h — 1)B is a deformation of A.

T

~U(g)

quantization. -7 Un(g)

S(g) =~ O(g*) ~—rr

deformation

2. In particular, let g be the first Heisenberg Lie algebra h; = sl and B be the
homogenized enveloping algebra Uy (g), that is the C[h]-algebra with generators a
basis {x,y, z} of g with relations: zy — yzr = hx,y] = hz, vz — 2z = zy — yz = 0.
Then B is a quantization of the commutative algebra A = C|x,y, 2] ~ S(g) whose
Poisson structure deduced from the brackets {z,y} = z and {z,z} = {y,z} =0 is
of jacobian type (see example 3 of 3.1.1); the enveloping algebra U(g) ~ B/(h—1)B
is a deformation of A.
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C +
quantization. 7 Uh(5[3)

S

Clz, vy, 2] Ul(sld)

deformation

3. Let B =U(h,) be the enveloping algebra of the n-th Heisenberg algebra generated
by T1, ..., Zp, Y1, .- Yn, 2 With [x;, 4] = 2z and |25, y;] = @i, 25] = [yi, y5] = [24, 2] =
[y;, 2] = 0 for i # j. This is a quantization of A = B/z2B = Clx1,...,Zn, Y15+ -, Yn)
i.e. A ~ O(C*") with the Poisson symplectic structure (see second example in 3.1.1).

Thus the n-th Weyl algebra A, (C) = B/(z — 1)B is a deformation of A.

T

s A4,(C)

quantiza‘pion,— 7 U(hn)

@ (CZn)Sympl ~

deformation

3.2.2 Algebraic deformation process

We follow in 3.2.2 and 3.2.3 the results and writing of [34]. Let A be a commutative
Poisson k-algebra and R a non necessary commutative k-algebra. By definition, we say
that R is an algebraic deformation of A when there exists a filtration F := (F,)n>0 of R
with Fo = k [we also use the convention F_; = (0)] satisfying the following two conditions:

(1) [J—_.nw’rm} g Fn+m—1 for all n,m 2 07

(ii) the associated graded space gry(R) = €D, 5 Fn/Fn-1 is isomorphic to A as a Pois-
son algebra, for the product and Poisson bracket defined in gr-(R) from the product
. and commutation bracket |-, -] in R by:

(xn + fnfl)(xm + J—-'m71> = Xp.Tpy + fnerfla
{xn + ~F~n—1> Lm + ]:m—l} - [In,l’m] + ]:n—i-m—2

Recall that by definition the Rees algebra of R related to the filtration F is the subalgebra
Reesz(R) = ,,~( Fnh"™ in the noncommutative algebra R[h] of polynomials in one central
indeterminate h with coefficients in R.

THEOREM. Under the above hypothesis, the algebra B = Reesx(R) satisfies the Poisson
algebra isomorphism B/hB ~ gr»(R) ~ A and the algebra isomorphism B/(h—1)B ~ R.
Thus B is a quantization of A and R is a deformation of A.
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quantization. = Rees ]:( R)

T~

B (B) o maion T

PRrROOF. In B = @,,., F.h" C R[h], the element h is central, non zero divisor and non
invertible. The linear map ¢ : B — grz(R) defined from x,h" — x, + F,_; is clearly
surjective and a morphism of algebras following the definition (ii) of the product in gr »(R).
We determine ker ¢. First we have p(h) =1+ Fy = 0 in grz(R) thus hB C ker . Now
consider f = xg+ x1h+ -+ x,h" € B with g, x1,...,z, be elements of Fy, F1,...,F,
respectively such that ¢(f) = 0. Then: zo+F 1 =0, 21+ Fo=0,...,2, + F,_1 =0,
that means g = 0,7, € Fo,..., 0, € Fo_1. Thus f = h(zy + 22h + -+ + 2,h" ). We
conclude that kerp = hB and ¢ : B/hB — grz(R) is an isomorphism of algebras. By
assumption grr(R) ~ A so B/hB is commutative.

Moreover for z,, € F,,, T,y € Fp, we have [x,h", x,, W] = [2, T W™ = hry(z, A", 2,,h™)
with notation y(z,h", z,,h"™) = [Tp, LA™ = 2y A" where Tppmo1 =
[T, T,] lies on F,1m—1 because of the hypothesis (i) on the filtration. Thus the Pois-
son bracket defined on B/hB by general deformation process 3.2.1 is given by {x,h" +
hB,x,h™ + hB} = |1, 2,|h"T™ ! + hB those image by @ is no more than [z,,z,,] +
Frnim—o corresponding to the Poisson bracket defined by hypothesis (ii) in gr-(R). We
conclude that ¢ is an Poisson isomorphism and B is a quantization of gr-(R).

In order to prove that R is a deformation of A, we consider the linear map v : B — R
defined from x,,A" — x,,. It is clearly surjective and a morphism of algebras. We determine
kere. First we have ¢»(h —1) =1 —1 = 01in R thus (h — 1)B C kert. Now consider
f=x9+x1h+---+x,h" € Bwith x¢, x4, ..., x, be elements of Fy, Fi, ..., F, respectively

such that ¥ (t) = 0. Then: xo+x1+---+x, =0, that means z,, = —x¢g— 1 — -+ — Tp_1.
Therefore f = xo(1—h")+z1h(1— R Y44z, 1h" 1 (1—h) € (h—1)B. We conclude
that kery) = (h —1)B and ¢ : B/(h — 1)B — R is an isomorphism of algebras. O

EXAMPLE. Let A, (k) be the n-th Weyl algebra and F the Bernstein filtration defined
in 2.1.2; it can be proved inductively from relations (6) on the generators that condition
(Foy, Fin] € Frim—1 is satisfied. Applying the algebraic deformation process, A, (k) is
a deformation of the Poisson algebra A = grz(A,(k)). We have seen in 2.1.2 that A =~
O(k*") ~K[x1,...,Tn, Y1, - -, Yn] as an algebra. Morever by relation (ii) the corresponding
Poisson bracket in A calculated on elements of Fy gives {z;, z;} = [pi, p;] = 0, {vi,y;} =
[¢i,q;] = 0 and {x;,y;} = [pi, ¢j] = 0; ;. Thus the Poisson structure on A is the symplectic
one (see example 2 of 3.1.1).

quantization > Reesz(A,(k))

T

O (K™ )sympt ~~rr

deformation

An(k)
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REMARK. The comparison of this diagram with the third example of 3.2.1 gives rise to
the natural question asking for the equivalence or not of the two deformation processes,
that means for the isomorphism or not of the enveloping algebra U(h,) with the Rees
algebra of A, (k) for the Bernstein filtration. We can prove that they are not isomorphic.

Proor. We write it for A; for simplicity but the general case is similar. We take
R = A; (k) generated over k by p,q with pg — gp = 1. The denote by F = (Fy,)n>0
the Bernstein filtration: a k-basis of F,, being (p'q?)i+j<n, we deduce that a k-basis
of the associated Rees algebra B = @, < Fnh" C R[h] is (p'¢’h™)i+j<n. Denoting
w := ph and v := ¢h, we can deduce that B is the k-algebra generated over k
by three generators u, v, h with relations [u,h] = [v,h] = 0 and [u,v] = h?. The
two-sided ideal I generated in B by the commutators is the ideal h>B and then the
abelianized algebra B/I contains the nonzero nilpotent element h. At the opposite
the enveloping algebra of the Heisenberg b is the k-algebra H = U(h1) generated
over k by three generators z,y, z with relations [z, z] = [y,z] = 0 and [z,y] = z.
The two-sided ideal J generated in H by the commutators is the ideal zH and then
the abelianized algebra H/J is the polynomial algebra k[z,7y]. We conclude that
B # H since their abelianized algebras are not isomorphic. O

Indeed the algebraic deformation process presents useful specific properties in particular
when we introduce some group action.

3.2.3 Deformations of invariant algebras

Let R be a non necessary commutative k-algebra with a filtration satisfying conditions (i)
and (ii) of 3.2.2. We consider the associated Poisson algebra grz(R) = D, > Fn/Fn-1-
Now we suppose that some finite group G acts on R by automorphisms with respect of
the filtration, i.e.

g.x, € F, forallge G, zx, € F,.
In this case, G acts naturally on F,,/F,_1 by: g.(x, + Fn_1) = g.Tp + Fn_1.
LEMMA. We have the following isomorphism of vector spaces: (Fy,/Fn_1)¢ ~ FS/FC .
ProOOF. It’s clear that 0 — F,_1 — F, — F,/Fn_1 — 0 is an exact sequence of G-

modules, then the isomorphism (F,/F,_1)% ~ FS¢/FC | just follows from the fact that
0— FY | — FY — (F./Fn1)¢ — 01is an exact sequence, which is the direct application

of the following general sublemma. m
SUBLEMMA. If () A—2>B b C 0 is an exact sequence of G-modules,
then ( AC o BG i c¢ 0 is an exact sequence.

PROOF. Since o and 3 are morphisms of G-modules, it’s clear that a(A%) c BY
and 3(B%) ¢ C% and we can consider the restrictions o/ and ’. The injectivity of
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o is trivial. It’s clear that Im o/ C Ima N B¢, Conversely, if b € BY and b = a(a)
for some a € A, then for any g € G we have: a(a) =b=g-b=g-ala) =a(g-a)
therefore @ = ¢ - a by injectivity of a,and so a € AY. We deduce that Imo/ =
Ima N BY = Ker N B = Ker #/. The last point is to check the surjectivity of 5.
Let ¢ € C%. By surjectivity of 3 there exists b € B such that ¢ = 3(b). It is clear
that b’ := ﬁ > 9eG 9 b lies in BY and we compute (using at the second equality
the fact that 5 is a morphism of G-module):
BEY =& X Blg b =& X g-B0) =& L g-c=c
geG geqG

geG
We conclude that ¢ € 8(B%), and then ' is surjective. O

APPLICATION. Consider the commutative Poisson algebra S = k[xy,..., 20, Y1, .., Yn| =
O(k?") for the symplectic Poisson bracket (example 2 of 3.1.1) as the algebraic deformation
of the Weyl algebra A, (k) for the Bernstein filtration (see above in 3.2.2). Fix a finite
subgroup G of the symplectic group Sp,, (k) acting by Poisson automorphisms on S and
by automorphisms of noncommutative algebra on A, (k). It’s clear that any subspace F,
in the Bernstein filtration is stable under the action of G, then G acts on each F,,/F,,_1
and the Poisson isomorphism S ~ grrA, (k) is also a G-module isomorphism. Applying
the previous lemma, we deduce:

SE = (g1 A0 (1)) 2 (B0m0 Fin/ Frne1) = Brno (Fin/ Finr)© = @00 FE/FG.

Therefore the filtration F = (FS)s0 = (FnNAn(K)F)mso of the invariant algebra A, (k)¢
is such that grz(4,(k)) ~ S as Poisson algebras. In other words, we have proved:

PROPOSITION. For any finite subgroup of G of linear automorphisms of A,,(k), the action

of G induces an action on gr (A, (k)), the Bernstein filtration F induces a filtration F of
A, (k)¢ and we have:

grz(An(k)9) =~ grz(An(k))”.
Condition (i) of 3.2.2 being obvious for F, we can conclude:
THEOREM. For any finite subgroup G of Sp,, (k) acting by Poisson automorphisms on
S =K[x1,. . Tn,y1,- -, Yn] = O(k?") and by automorphisms of noncommutative algebra

on A, (k), the invariant algebra A, (k)¢ is an algebraic deformation of the Poisson algebra
SC for the filtration induced by the Bernstein filtration.

O(k>")

J

O(k2)C

An(k)

deformation

An (k)¢

NS>
deformation

REMARK. Suppose here that n = 1, k = C and G a finite subgroup of SLy. We consider

in the affine space V = C? the quotient variety V|G, so that O(V|G) ~ O(V)¥. With

our usual notations, O(V) = C[z,y| = S, the above deformation picture can be completed
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by homological considerations. Comparing the values of dime HHg(A;(C)%) (see 2.2.2)
and dimc HP((S%) (see 3.1.2), we just observe a vector space automorphism:

HHo(A;(C)%) ~ HPy(S%).
It can be interpreted as a deformation process at the level of the homological trace groups:
considering the vector spaces G,, = F / (F&N[A1(C)¥, A;(C)“]), it is proved in [28] that
HP((5%) = grgHHy(A;(C)%) := D0 9m/Gm—1

C[x7y] - deformatiggw Al(c)

J J

C[%,y]G AI(C)G

deformation
\ \
HPD(Q%?JP) HHO(Al(C)G)

[ SN NENEN
deformation

3.3 Lie structure on invariant algebras

3.3.1 Finiteness of the Lie structure on Poisson symplectic spaces

Preliminary. The results of section 3.3 come from [34]. We start with the basic situation
where S is the commutative Poisson algebra C|x,y] with the symplectic Poisson bracket
defined from {z,y} = 1. The generators = and y act on S by derivations:

{z, -} =0, and {-y, -} =0, (33)

We consider in the homogeneous component Sy, = Cz? @ Cay ® Cy? of degree 2 in S the
three elements: e = %332, f= —%yz and h = —zy, which act on S by Euler derivations:

{e, }=20,, {f, }=y0, and {h, -} =20, —y0, (34)

In particular: [e, f] = h, [h,e] = 2e and [h, f] = —2f; hence Sy = Ce @ Cf @ Ch is a
Lie subalgebra of (S, { -, - }), isomorphic to sls(C). We introduce V := Cz @ Cy and the
subspace Fo = C ® V @ 95 of elements of total degree < 2 in S. It is clear that F; is a
Lie subalgebra of S for the Lie structure defined by the Poisson bracket.

PROPOSITION: The Lie algebra Clz,y| for the symplectic bracket is finitely generated,
and the Lie subalgebra F; is maximal.

PROOF. Let g be a Lie subalgebra of S containing F; (i.e. 1,z,y, 22, zy,y? € g) and any other
element g of S of total degree > 3 (ie ¢ € g and ¢ ¢ F»). Then {x,q} € g and {y,q} € g ;
so applying many times the hamiltonian derivations (33), we obtain an element p € g of total
degree 3. Let us denote:

p = ax® + fr’y +yry? + 0y with o, 8,7,6 € C, (o, B,7,9) # (0,0,0,0).
Now the elements e, f, h lie in g and then by (34): {e, p} = Ba®+2v2?y+35y°z € g, {e,{e,p}} =
2vx3 + 6522y € g, and {e, {e, {e,p}}} = 12023 € g. We deduce that 23 € g. Applying to p the
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action of {f, -} we obtain similarly y® € g. It follows that 2%y = %{f, 23} and 2y = %{e, y3}
are also elements of g. Hence g contains the homogeneous component S3 of degree 3 in S. In
particular {3 43} = 922y lies in g. By iterated application of {e, -} and {f, -}, we conclude
that 23y, 2, zy3, y* € g and so g contains the homogeneous component S;. Suppose by induction
that S,, € g for some n > 3. Then 2%y" ! = %{x?’,y”} € g which implies by applications of
{e, -} and {f, -} that S, y1. We conclude that g O €p,,~, S, = S and S = g is generated by
1,z,y, 2%, xy,y? and any element of degree > 3 in S. O

This result can be extended to the dimension 2n and precised by a reduction to only two
generators. This the purpose of the following theorem.

THEOREM. The Lie algebra Cxy, ..., Ty, Y1, .., Ys] for the symplectic Poisson bracket is
generated by the two elements:

- = szyz

T = 2101T2Y2 - - - TnYn + Z i + Z yi + Z( AR yl+2)

i= =1
Proor. The adjoint action of H is given by {H, -} = Y. _,(2;0s, — yi0y,). The element T'
appears as a sum of eigenvectors for this action:

n n
X:=> mjand Y := > y; satisfy {H,X}=X and {H,Y}=-Y
i=1 i=1

Z = T1Y1T2Y2 - . . TnYn satisfies {H,Z} =0,
X =2t and Vi =y satisfy {H,X;}=(i+2)X; and {H,Yi} = —(i +2)Vi.
The iterated adjoint action of H on T' produces a linear (2n + 3) x (2n + 3) system:

r=X + Y o+ Zn:Xi + Y + 2
=1
(HT)=X + -1y + i(zu) + S (—i—2)Y; + 0
=1 =1
{HTH =X +  (“1 +  S6+22% +  Y(-i—-2% + 0

n n

(adH)*"(T) =X + (-1)*72Y + Y (i+2)*7X; + Y (-i—-2"7Y; + 0
i=1 i=1

whose determinant is a nonzero Vandermonde determinant. Hence the system is invertible and

any element of the family M := {X,Y, Xy,...,X,,,Y1,...,Y,, Z} can be expressed as a linear

combination of the brackets (ad H)’(T) for 0 < j < 2n + 2. Thus each vector of M lies in the

Lie subalgebra g of S := C[z1,...,2Zn,y1,...,Yn] generated by H and T.

Moreover, (ad X) acts as > .- ; 0y, and (ad (=Y")) as Y ;" ; 9, then we have for 1 <7 < n:
(ad (=Y))"(X;) = 2(i +2)!2? and (adX (Y))!(Y;) = 5(i +2)!y2,

which imply that z%,...,22,9%,...,y2 € g. Applying again (ad (-Y)) and (ad X), we deduce
that g contains x1,...,2n,y1,-..,yn. Hence g contains the homogeneous component of degree
one $1 =V =Cx1®---®&Cx,®Cy; ®- - - ®Cy,. By iteration of appropriate (ad z;) and (ad y;)
acting on the product Z, it follows that any monomial with factors x; and y; appearing only
with exponent one lies on g.
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In particular, g contains all monomials x;x;,y;y; for 1 <+ # j <n and z;y; for 1 <+¢,5 <n, in
addition of the squares 22 and y2. Thus, g contains the homogeneous component of degree two:
So= @ Cx?d P Cyl o P Caiyy® @ Caxizj & @ Cyy

1<i<n 1<i<n 1<i,j<n 1<i£j<n 1<i£j<n

For degree three, g contains similarly all monomials x;xjx) and y;y;y, for pairwise distinct ¢, j, &,
and all monomials x;x;y, and zy;y; for ¢ # j. From the relations

(ad(~Y)) (X)) = L+ 2)la and (adX)3(Y;) = A(i +2)! 3

we deduce that x?,yf’ € g for any 1 < ¢ < n. The calculation of {a:imj,y?} implies a:iy? €g
(for i # j or for i = j). Finally it follows from {xly],:c?} = —Bxix? that xza:? € g for i # j.
Similarly x?yj € g and ylyj2 € g. We conclude that the homogeneous component S3 of degree 3
is a subspace of g.

Suppose now by induction that g contains the homogeneous component S,,—1 of S for some
m > 4. Take any monomial f = z{! -~-:L'?L”yl1’1 ~oybn € S, If all exponents are < 1, then
f can be obtained from Z € g by application of appropriate ad(x;) and ad(y;) and therefore
f € g. If at least one exponent is > 2, we can suppose without any restriction that a; > 2, and
then f = 1 {a%,h} = 220y, (h) with h = g2 gtng bt b e 5. The result follows by
induction. O
REMARK. It follows from the description of the homogeneous component S, detailed in
the proof above that dimeSs = n(2n + 1). It is also obvious in this direct sum that the
Poisson bracket of two generators lies in S5. Hence S; is a Lie subalgebra of S. It can
be proved by a straightforward verification that S5 is isomorphic to the symplectic Lie
algebra sp,,,(C).

3.3.2 Finiteness of the Lie structure on Kleinian surfaces

The algebra S = Clxy,...,Tn, Y1, -, Yn] = O(V) of regular functions on the symplectic
space V of dimension 2n is finitely generated as a Lie algebra for the Poisson structure. It
is then a natural question (in the continuity of Noether’s theorem about the ring structure
or its noncommutative analogues) to ask whether the invariant Poisson subalgebra S¢ ~
O(V|G) under the action of a finite subgroup of Sp,,, (see theorem 3.2.3) is also finitely
generated as a Lie subalgebra, and whether it is also the case for its deformation A, (C)¢.
We give a positive answer in the case of Kleinian surfaces (i.e. n = 1).

We fix GG a finite subgroup of SLy(C) acting linearly by automorphisms on S = C[z, y|;
we consider the Poisson isomorphism S¢ ~ C[X,Y, Z]/(F) proved in 3.1.2, where F is an
irreducible element of C[X,Y, Z] defining the corresponding Kleinian surface, see 2.2.1.

Denoting by a, b, ¢ the total degrees in S of the three homogeneous generators f1, fo, f3
of S¢ given in 2.2.1, we define the weight of a monomial by w(X*Y7Z*) = ai + bj + ck
and the weight of any polynomial in C[X,Y, Z] as the maximum of the weights of its
monomials. In particular the weight of each monomial appearing in the polynomial F
is the same, as observed previously in (26), and we have denoted it by d. The integer d
takes values 2n,4n + 4, 24, 36, 60 for G of type A,,_1, D,,, Fs, E7, E5 respectively, and we
can note that d = 2max(a, b, c).
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We have given in the last corollary in 3.1.2 a basis (P, ..., P,,) of C[X,Y, Z]/(F|, F}, F}).
The corresponding monomials P, ..., P, € C[X,Y, Z] satisfy :

w(P;) <d—4 forany 1<i<m, (35)

as observed in the following table:

type | a,b,c F(X,Y,Z) d pP,...,P, max w(F;)
A1 | 2,n,n X"+YZ 2n LX, X2, ,xn2 2n — 4
D, 4,2n,2n+2 | X" 4+ XY?2 4+ 2% [ 4n+4 | 1,X, X%, XY 4n
FE 6,8,12 X4 4+Y3 4+ 22 24 LX,X2Y,YX, VX2 20

E; 8,12,18 X3Y +Y3 4 22 36 1L,X, X2 X3 XYY, XY 32
Eq 12,20, 30 X°+Y3+ 722 60 1,Y, X, XY, X2, X3 XY, X3Y 56

PROPOSITION. The Lie algebra Clz,y|% ~ C[X,Y, Z]/(F) for the Poisson bracket is
finitely generated (by its elements of degree < d), for any finite subgroup G of SLs.

PROOF. We denote by g the Lie subalgebra of H := C[X,Y, Z]|/(F) generated by the elements
P+(F) for P € C[X,Y, Z] such that w(P) < d. Our goal is to prove that, for any P € C[X,Y, Z],
we have P+ (F') € g. We proceed by induction on w(P). It is obvious when w(P) < d. Suppose
that there exists some integer e > d such that P + (F) € g for all polynomials P of weight
w(P) <e.
Now we fix some P € C[X,Y, Z] with w(P) = e. Considering C[X,Y, Z]|/(F}, F}, F}), we can
write with the notations above:

P=a1P+- -+ aoanPy +_C21fq +_622Ig +‘623f%,
with aq, g, ..., ap € C and Q1,Q2,Q3 € C[X,Y, Z]. For i = 1,2, 3, denote by Qg the homoge-
neous part of weight j in @;. Thus

P=aiPi+ -+ amPn+ Y QIF + X Q)F + Y. QiF},
J J J

From different previous observations, we have w(F]) = d — a,w(Fy) = d — b,w(F3) = d — ¢,
w(a1 P+ -+ amPp) < d—4 < e, hence w(P) = e implies that

> OQIF+ Y QIF+ Y QF=0,

j>e—d+a j>e—d+b j>e—d+c
and then ‘ } ‘
P=aPi+ - +anPut+ X QF+ ¥ QF+ Y QiF
j<e—d+a j<e—d+b j<e—d+c

From the other hand, it follows from the induction hypothesis that:
Pt tamPut 3 QIF + 3 QFi+ 3 Q3F; + (F) € g
j<e—d+a j<e—d+b j<e—d+c
To sum up, it is sufficient to prove that QT_‘H“F{ + (F), Qg_d+bF2’ + (F) and Qg_d“Fé + (F)
are elements of € g. By linearity and symmetry up to permutation of @)1, Q2 and Qs, it is finally
enough to prove that:

if Q=X"Y"ZPF| witham+bn+cp=e—d+a, then Q+ (F)€g (36)
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e First case: m,n,p > 0. We have:
{y2, xmyn-1zrtl} = 2(p + 1) XY " ZPF] — 2mX ™ty ZP L FY,
{xmyntlzr=t 72} = 2(n + 1) XY ZPF| — 2mX™ 1yt Zr )
and from Euler identity (27)
dX™ YN ZPF = aX™Y " ZPF] + bX™ YL ZP ) e XMy ZzP LR
These three relations form a linear system with three variables X™Y"ZPF], X™-lyntizrF)

2(p+1) 0 —2m
and XM~ 1YnZPHLFL Tts determinant is | 2(n+1) 0 —2m’ = —4m(ma+ (n+ 1)b+ (p+ 1)c) < 0.

a b ¢

Hence Q = X™Y"ZPF] is a linear combination of X" 1YynZPF {y?2 Xmyn"-1zrtl} and
{xmyntlzp=1 721 Therefore we only have to check that {Y?2 X™mY"~1ZPtl} + (F) € ¢
and {X™myntizr=1 723 4 (F) e g.

Since w(Y?) = 2n < d, we have Y2 + (F) € g. Moreover w(X™Y" 1zrtl) =
ma+nb+pct+c—b < ma+nb+pc+d—a = w(X™Y"ZPF|) = e and then by induction
hypothesis, X™Y "1 ZPT1 1+ (F) € g. We deduce that {Y?, X"y 1 2P} 1 (F) € g.
The calculations for { XY™+l zr=1 72} 4+ (F) € g are quite similar.

We conclude that @ + (F) € g in this case.

e Second case: m > 0 and p = 0 (the case m > 0 and n = 0 is similar). We have:
{Xm=lyntl X7} = (n+ 1) XY F| — (m — )X™ LY L — (n+ 1) X™ Y ZF),
{XMY" Y Z} =nX"Y"F] —mX" Y LR - m XY ZF
and from Euler identity (27)
dXMIY"F = aX™Y"F] + bX™ Y + e XYY ZFY,
These three relations form a linear system with three variables X™Y" [ X™~1y"+1ZF! and
Xm=tynZF}. Its determinant is e 7(%;1) 7(71“) =—(m+n)(ma+ (n+1)b+c) <O0.
a c
Hence @ = X™Y"F] is a linear combination of the elements xm-lynp [Xm=lyntl X 7} and

{X™Y" Y Z}. Similarly to the previous case, we conclude that @ + (F') € g.

e Third case: m = 0. Then w(FY) is lower than d and F| + (F) € g. Hence we suppos n > 0
(the case p > 0 is similar). We have: Q = Y"ZPF| = 2(pilﬂ){YQ, Y?~1ZP+11 and the induction
hypothesis implies that @ + (F) € g.

In conclusion, assertion (36) us proved in all cases and the proof is complete. ]

REMARK. Let U = (uy,...,u,) be a family of elements of S¢ generating S¢ as a
Lie subalgebra of S. Denote by V' the vector space generated by ¢4. Then we have:
SC =V 4H{V,V}+{V,{V,V}} +--- and then S¢ C V 4 {SY S“}. Therefore the classes
Uy, . . ., Uy, modulo {SY, SY} generate the subspace S¢/{S%, S} ; thus its dimension is at
least m. We conclude that the cardinality of a generating family of S¢ as Lie subalgebra
of S for the Poisson bracket is always greater than p = dimc HP(SY). So comparing
the values of d and p given in the two tables in 3.1.2, the following proposition is a real
improvement of the previous result.
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THEOREM. For any finite subgroup G of SLs, the Lie algebra C[z,y]® for the Poisson
bracket is generated by a (minimal) family whose cardinality is 2 in the trivial case where
G is cyclic of order 2, and exactly dimc HPo(C[z,y]%) in all other cases.

ProoOF. We only outline the general method and illustrate it by complete calculations in the
cyclic case; the four other cases are developed in [34]. We denote S = C[z, y|.

e One find in any case of G a finite-dimensional subspace V; of S¢ and an integer N > 1, such
that the iterated adjoint action of V) on the subspace finite-dimensional V; of S generated by
the elements of degree < N generates S as a Lie algebra. In other terms, S = >,V where
Vier1 = {W, Vi } for any k > 1. The Reynolds operator pg := ﬁ deeg is a projection S — S¢.
Since each ¢ is a Poisson automorphism, we have

pc(Vit1) = pa({Vo, Vi) = {pa(Vo), pc (Vi) } = {Vo, pc (Vi) }-

Hence S¢ = pg(S) is generated as a Lie algebra by the subspace Vj and the subspace W :=
pc(Vh) of invariants of degree < N. Finally one reduces case by case the number of generators
to obtain the minimal value p = dim¢ HP((S%).

e We suppose now that is G cyclic of order n > 3. As an associative algebra, S¢ is generated
by z",y", xy. We take Vp := Ca?y? @ Ca"ly @ Cay™*! € S and N := 2(n — 1). Hence V; is
the subspace of S generated by monomials zPy? of degree p + ¢ < 2(n — 1). We have:
{a?y? 2P~ 12971} = 2(q — p)aPy? for all p,q > 1,
{z" 1y, 2Py} = [(n+ 1)g — p+ njaPy? forallp >mn, ¢ > 1,
{xy™ 2Py} = [¢ —n — (n+ 1)plaPy? for all p > 1, ¢ > n.
By straightforward induction on the total degree p + ¢, we check from these relations that any
monomial zPy?, p,q > 1, lies in the vector space ) .-, Vi with Vi41 = {Vo,Vi} for £ > 1.
We conclude that S = ), Vi as announced. Hence by the general above argument, SE s
generated as a Lie algebra by Vg and Wy, where Vj is generated by (z2y?, 2y ™!, 2" ly) and W
is generated by: {(zy)to<i<n—1 U {(zy)'@"}o<icz—1 U {(zy)'y" bo<j<z1.
Let us denote by £ the Lie subalgebra of S generated by the n — 1 invariant elements: 1 +
™ +y" xy, (xy)?, ..., (zy)" 2. We claim that S© = £. It’s enough to check that any generator
of Vo and W7 above lies in £.
Firstly: {1+ 2" + 3", 2y} = na™ — ny" hence 2" — y" € £,
then: {zy,z" — y"} = —na™ — ny™ hence z" + y" € £,
thus £ contains 1, 2", y",
and {z",y"} = n22" 1y~ ! implies (2y)""! € £.
Now, £ contains (zy)'z" = ﬁ{x”, (ry)**1} and similarly (zy)y" for any 0 <i <n —2. We
conclude that S¢ = € is generated by n — 1 elements, with n — 1 = dimcHPo(S%). The proof
is complete in this case.

e In the particular case n = 2, we have dimcHPy(S¥) = 1 and one invariant can of course
not generate the nonzero Lie algebra S¢. In this case, one proves by direct calculations using
the same kind of arguments as above that S¢ is generated by the two elements (1 + xy) and
22+ y? + (zy)? O

REMARK. We give as an illustration the minimal generating families calculated (follow-
ing the method exposed at the beginning of previous proof but with highly nontrivial

40



computations) in [34]. An interesting observation is that this Lie algebra generators are
powers of the homogeneous algebra generators described in 2.2.1

type | algebra generators of C[z,y]“ Lie algebra generators of Clz,y]% | u
D, | fi=a*?  fo=2¥+ (1),

fz = a*"Hly — (=1)"ay® Lofi S22 n
Eg fi = zy® — 20y, fo = 28 + ldaty* + 48,

f3 = ' —33a8y* — 33x%y® + ' L f1, 11, fos fifo, fif2 6
B £ = 25 4 oty + o8, fy = 21092 — 22645 1 22410

f3 = 2Ty — 3423y + 3425y — ayl” L f1, f%, fo, f1f2, f2, f1f3 7

Es | fi=a"y+112%° —ay'!,
fo =220 — 22821595 + 494210910 4 22825y15 + 420 | 1, f1, f2, £, fo, fife, fRf2, f2f2 | 8
fz = 230 4 5222:25y® — 10005220410

—10005210920 — 52225925 4 /30

3.3.3 Lie structures on deformations

We start with the following lemma (from [34]) related to the general context of the alge-
braic deformations studied in 3.2.2.

LEMMA. Let A be a commutative Poisson algebra and R a noncommutative algebra with
a filtration F such that R is the algebraic deformation of A associated to J. Suppose
that we have a finite family ag, a1, ..., a, generating A as a Lie algebra for the Poisson
bracket such that each a; is homogeneous (i.e. a; € Fp,,/Fm,—1 for some m;) ; for any
0 <7 < p, let us choose b; € F,,, such that a; = b; + F,,,_1. Then by, b1, ..., b, generate
R as a Lie algebra for the commutator bracket.

PrROOF. We denote by b the Lie subalgebra of R (for the commutator bracket) generated by
bo, b1, ...,bp. Our goal is to prove that R = b.

First step. By assumption, by, b1, ..., b, generate grr(R) = €D,,~¢ Fm/Fm—1 as a Lie algebra
for the Poisson bracket. It means that grr(R) = >, ~; £,(V) where V is the vector subspace
of grrz(R) generated by the elements by, b1, ..., bp, and the £,(V) are defined inductively by
L£1(V) =V and £,41(V) ={V, £,(V)}. Any element of V = £;(V) is a linear combination of
elements a; = b; + F,—1 with b; € F,,, N'b. Suppose by induction that for some fixed n > 1,
£,(V) is a linear subspace generated by elements of the form x,, + F,—1 with z,, € F,,, N b.
Take then z € £,,11(V) ; it is a finite sum:

=) {a;,yi} with y; € £,(V)
= Z{bz + ]:m,-—l , Tm + fm—l} with z,, € Fpr, N D
= ([bi, zm] + Fin;+m—2) with [bj, Tp,] € Fnj4m—1 N b.

We conclude that gr ~(R) is generated as a vector subspace by the elements of the form x,,+F,,—1
with z,,, € Fp,, N b.

Second step. We prove now that F,, C b for any m > 0. We have F_; = (0) C b. Suppose that
Fm C b for some m > —1. Take z € F,,+1. Then the first step implies  + F;, = Tymt1 + Fm
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with 2,41 € b. Hence z € b + F,,, C b by induction hypothesis. We conclude that R C b and
the proof is complete. O

COROLLARY. Let A be a commutative Poisson algebra and R a noncommutative algebra
with a filtration F such that R is the algebraic deformation of A associated to F. If A is
finitely generated as a Lie algebra for the Poisson bracket, then R is finitely generated as
a Lie algebra for the commutator bracket.

ProoOF. If ag,a1,...,ap is a generating family of grz(R) ~ A, the family composed by all
homogeneous components of all elements a; is still a finite family of generators ; now the previous
lemma applies. O

A direct application of this deformation results concerns the Lie structure defined from
the commutator bracket in the invariant for the Weyl algebra (in the context of 3.2.3)

THEOREM. For any finite subgroup G of the Weyl algebra A;(C), the invariant algebra
A1 (C)Y is finitely generated as a Lie algebra for the commutator bracket.

Proor. It follows directly from the previous corollary, theorem 3.2.3, and assertion (i) of
theorem 2.2.2. O

REMARK. Explicit generators for the Lie algebra A;(C)®. In cases Dy, Es, E7, E,
the generators of the Lie algebra C[z, y]G given at the end of 3.3.2 are homogeneous;
thus the previous lemma produces directly generators of the Lie algebra A;(C)%
(replacing = by p and y by q).

In the case A, ; with n > 3, we have proved that C[z,y]" is generated by the
n — 1 elements 1 + 2™ + y™, zy, (zy)?, ..., (zy)" 2. Thus Clz,y]® is generated
by the n homogeneous elements 1,2 + y", xy, (zy)?, ..., (ry)"~2. Hence apply-
ing the lemma, Al((C)G is generated as a Lie algebra by the n elements 1,p" +
q", pq, (pq)?,. .., (pq)" 2. Moreover, we have:

[pg;1+p" +q"| =n(=p" +¢") and [pg,—p" +¢"] = n(p" +¢").
Hence the Lie algebra generated by 14+p"+q¢", pq, (pq)?, ..., (pg)" 2 contains p" +q"
and 1 ; therefore A;(C)% is generated by 1+ p™ + ¢™, pq, (pq)?, ..., (pq)" 2.
In the case Aj, we have proved that C[z,y] is generated by the two elements
1+ xy and 22 4+ y2 + (zy)?. Thus C[z,y]“ is generated by the four homogeneous
elements 1, 2y, 2% 4 y2, (xy)?. Hence applying the lemma, A;(C)% is generated as a
Lie algebra by the four elements 1, pq, p? + ¢2, (pq)?. Moreover, we have:

[1+pq, p* + @ + p*¢*] = —2p° + 2%,
(14 pg, —p*+¢? =2p*> +2¢°, and [p?,¢?| = 4dpg — 2.

Hence the Lie algebra generated by 1+ pgq, p> + ¢ + (pq)? contains p?, ¢%, 1, pq, p*¢>
which generate A;(C)%. Finally A;(C)¢ is generated by 1+ pq and p? + ¢ + (pq)?.
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4 QUANTIZATION: AUTOMORPHISMS AND INVARIANTS FOR
QUANTUM ALGEBRAS

4.1 Quantum deformations and their automorphisms
4.1.1 Quantum deformations of the plane

We fix k a commutative base field. We recall that for any ¢ € k* the quantum plane
k,[x,y] is the algebra generated over k by two elements = and y with relation

Ty = qu. (37)
PROPOSITION (the quantum plane). Suppose that ¢ is not a root of one.
(i) k,[z,y] is a noncommutative noetherian domain of center k.
(ii) The k-algebra k,[z,y] is not simple.

(iii) The k-automorphism group of k,[z,y] reduces to the 2-dimensional torus (k*)?
acting by & — ax and y — By for any («a, 8) € (k*)2.

(iv) ky[x,y] is a deformation of the commutative Poisson algebra k[z,y] related to the
Poisson bracket defined from {z,y} = xy.

PROOF. Noetherianity in point (i) follows from example (iv) in 1.3.1 and last corollary of 1.3.2;
because ¢ is not a root of one, it is straightforward to observe that the centralizer of y reduces
to kly], and then that an element of k[y] commutes with = only when it is a constant. The
non simplicity of k4[z,y] in (ii) follows from the fact that any non trivial monomial is normal
(generates a two-sided ideal).

Assertion (iii) first appeared in [20], as a particular case of more general results. We give here a
short independent proof. Let z be a normal element of k,[z,y]. We have in particular zy = uz
and zx = vz for some u,v € ky[z,y]. Considering deg, in the first equality, we have u € kly].
Denoting z = ) fm(y)2™, relation zy = uz implies ), fm(y)(¢™y — u(y))z™ = 0; since ¢ is
not a root of one, there exists one nonnegative integer i such that z = f;(y)a*. From the second
equality f;(y)z*t! = vz, it is easy to deduce that z = ay/z’ for some nonnegative integer j and
some « € k. This proves that the normal elements of k4[x,y] are the monomials. Now let g be
a k-automorphism of k,[x,y]. It preserves the set of nonzero normal elements. Hence we have
g(z) = a2’ and g(y) = Py*a" with a, 8 € kX and j,14, k, h nonnegative integers; because ¢ is
not a root of one, the relation g(x)g(y) = qg(y)g(x) implies that ik — hj = 1. Writing similar
formulas for ¢! and identifying the exponents in ¢g~!(g(x)) = = and g~ '(g(y)) = y, we obtain
easily j=h=0and it =k=1.

For the last point (iv), let us introduce the noncommutative algebra B generated by three
variables h,z,y with commutation relations zh = hx, yh = hy and xy — yx = hxy. It is
clear that A := B/hB is the commutative algebra k[Z,y]. Moreover uv — vu = hvy(u,v) with
v(u,v) € B for all u,v € B. Thus by the method described in 3.2.1, {w, 7} = 7(u,v) defines
a Poisson bracket in A. In particular {Z,y} = Ty. For any A € k, X\ # 0, A # 1, the quotient
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B/(h — X\)B is a deformation of A. This deformation is generated by two elements X and Y
with relation YX = (1 — A\) XY, that is the quantum plane k,[X, Y] for ¢ = (1 — \)~L. O

We define the jordanian plane k’[z,y] as the algebra generated over k by x and y with
relation zy — yx = 3.

PROPOSITION (the jordanian plane). Suppose that k is of characteristic zero.
(i) k'[z,y] is a noncommutative noetherian domain of center k.
(i) The k-algebra k’[x,y] is not simple.

(iii) The k-automorphism group of k?[x,y] reduces to the semi-direct product of k* by
the additive group k[y], acting by

r— ax+ f(y) and y+— ay for any o € k*, f € kly].

(iv) k’[z,y] is a deformation of the commutative Poisson algebra k[z,y] related to the
Poisson bracket defined from {z,y} = .

PROOF. Noetherianity in point (i) follows from example (iii) in 1.3.1 and last corollary of 1.3.2;
the determination of the center follows from easy calculations on the centralizers of z and y
using the assumption chark = 0. The non simplicity of k”[x,y] in (ii) is clear since y is normal.
Point (iii) is a direct application of the last proposition of 2.3.4. The proof of (iv) is quite similar
to the previous proposition considering here the algebra B generated by h,x,y with hx = zh,
hy = yh and zy — yx = hy?. O

REMARK. We consider the quantum plane k,[z,y] with ¢ € k*. If ¢ =
1, it is just the commutative plane k[x,y]. If ¢ # 1, we set A = li—q; the
algebra k,[z,y] is also generated by 2’ = = + Ay and y' = y. We compute
Ty — qy'r’ = xy + \y? — qyr — A\gy® = (1 — ¢)\y? = (¢)?. In other words,
the algebra generated over k by x and y with xy — qyz = y? is the quantum
plane in the case ¢ # 1 and the jordanian plane in the case ¢ = 1. This
property is sometimes called the contraction principle from the quantic case
to the jordanian case.

We concentrate now on the quantum case (we will return to the jordanian situation
further in 4.1.3). The quantum plane admitting non trivial quotient cannot constitute a
quantum analogue of the Weyl algebra. Moreover, its automorphism group is to small to
provide an interesting invariant theory for finite subgroups. Therefore we introduce the
localization k,[z*!, y*!] of k,[z, y] with respect of the multiplicative set generated by x
and y; this is the algebra of Laurent polynomials, with k-basis (2'y”); jez and commutation
law 2y = qyz extended in 7'y = ¢ lyz™!, ayt = ¢ 'y lr, or a7y = gyt
PROPOSITION (the quantum torus). Suppose that q is not a root of one.

(i) k,[z*!, y*!] is a noncommutative noetherian domain of center k.
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(ii) The k-algebra k,[z*!, y*!] is simple.

(iii) The k-automorphism group of k,[z*', y*'] is isomorphic to the semi-direct product
of the 2-dimensional torus (k*)? by SLy(Z) acting by

x— ay’z® and y— Bya’ (38)
for any (o, 8) € (k*)? and (2%) € SLy(Z).

1 y#] related

(iv) k,[z*, y*!] is a deformation of the commutative Poisson algebra k|x
to the Poisson bracket defined by localization from {z,y} = xy.

Y

PROOF. Points (i) and (iv) are clear by localization ; see last comment of 1.3.2, and 3.1.1 (or
further the proof of theorem 4.2.2). The proof following of (ii) is a multiplicative adaptation
of the argument for the Weyl algebra (see 2.1.1). For any nonzero element s € ky[z*!, y*1],
denote by ¢(s) the length of s (i.e. the number of monomials with nonzero coefficients in the
decomposition of s related to the k-basis (z'y’); jez). Let I be a nonzero two-sided ideal of
kg [z*1, 571, Let s be a nonzero element of I whose length is the minimum of the lengths of
nonzero elements of I. Choose (a,b) € Z? in the support of s; we have s = az%® + s’ where
a € kX and s’ € kg2l yF!]. Then u := a lsy ™z = 1 + s” where s” = o~ ls'y~ bz~
Because s € I and I is an ideal, we have v € I. Hence v — zuz~! € I. In other words
uw—zur~! = s" —xs"z~! € I. Since multiplying a monomial by z on the left and 2! consists in
multiplying it by a nonzero constant, is is clear that £(s” — xs"z~1) < {(s") = £(s') < £(s). By
minimality of £(s), we deduce that u — zuz~! = 0. We prove similarly that u = yuy~!. Finally
u € I, u# 0, lies in the center k of k,[z*!, y*!]. So I = k,[z*!,y*!] and point (ii) is proved.
To prove (iii) let us consider  an automorphism of k,[z*!,y*1]. It preserves the group U
of invertible elements. In particular 6(z) € U and 6(y) € U. It is easy to prove that U is the
set of nonzero monomials. Thus there exist a, € k* and a, b, c,d € Z such that 6(z) = ay“z®
and (y) = By?x’. By identification of coefficients in the identity 0(z)0(y) = ¢f(y)0(z) we
deduce ¢®¥% = 1 and the assumption ¢ not a root of one implies ad — bc = 1. Conversely
any a,b,c,d € 7 with ad — bc = 1 define an automorphism 6 : z — y°z% vy — y%® with
6=z — g™y 2%y — ¢"y?c® where the exponents m,n depend on a,b,c,d (see further
precisions in 4.2.1); point (iii) follows by computing the composition of such automorphisms
and diagonal automorphisms z — ax,y — Sy with «a, 5 € k*. O

In conclusion, as well as the Weyl algebra is a simple noncommutative deformation of
the symplectic plane, the quantum torus is a simple noncommutative deformation of the
plane for its so called multiplicative Poisson structure.

COMMENT. We restrict here to dimension two but n-dimensional versions of the
quantum plane and the quantum torus (see [2]) are of course the object of many
studies. Related to the above properties, we refer to the papers [54], [59] and [61].

4.1.2 Induced Lie structures

e We consider the commutative Poisson algebra S = Clz, y] for the multiplicative Poisson
bracket, defined in point (iv) of the first proposition of 4.1.1. That is:

{z,y} = 2y, (39)
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or more generally
{2%y, 2°y?} = (ad — be)x®y"* for all a,b,c,d € N. (40)
We claim (from [34]) that HP((S) is not finite dimensional.

Proof. The Poisson bracket { f, g} of two polynomials f, g € S is a linear combination
with coefficients in C of terms h = {x%?’ x°y?} with a,b,c,d € N. If a + ¢ = 0,
then a = ¢ = 0 thus ad — bc = 0, and therefore h = 0. With the same argument
for b + d we deduce that {f, g} is a linear combination of monomials z%y" where
the integers u = a + c and v = b+ d are > 1. Such a monomial can be obtained as
2y’ = L{z,2*"1y"}. So we have: S =C& (P, Cz")® (P>, Cy") @ {3, S},
and then S/{S, S} is not finite dimensional. O

In particular, C[z, y] is not finitely generated as a Lie algebra for the bracket { -, - } under

consideration. Then we work in the following on the localized form.
e We consider the commutative Poisson algebra T = C[z*!, y*!] for the multiplicative
Poisson bracket, defined in point (iv) of the third proposition of 4.1.1 by localization of

the previous one. That is:

vy ={z,y}, v 'y t={ay "}, aly=~{a7"y}, 2y =—{x,y '}, (41)

or more generally
{2, 2"} = (ad — be)a" *y"** for all a,b,c,d € Z. (42)

PROPOSITION. For the multiplicative Poisson bracket on the commutative algebra T" =
Clz*t, y*1], the following holds:

(i) dimec HPo(T') =1
(ii) T is finitely generated as a Lie algebra.

(iii) The only Lie ideals of T are C, T' and the vector space T generated by the non
constant monomials. In particular T'/C is a simple Lie algebra.

ProOOF. We follow [35]. For any a,b € Z, we have {2¢t0y*~% 27y} = (a% + b%)2%°. Thus any
non constant monomial is an element of {T',T}. Moreover a + ¢ = b+ d = 0 implies ad — bc = 0
and it follows then from (42) that the constant term of any bracket {f,g} with f,g € T is
necessarily zero. In conclusion T'= C @ {7, T} and point (i) is proved. Now denote by g the Lie
subalgebra of T generated by the five elements 1,z, 27!, y,y~'. We claim that any monomial
z%® with a,b € Z, a # 0, b # 0 lies in g.

We proceed by induction on |a|+|b|. The case |a|+|b| = 2 follows from the identities
(41). Now suppose |a| + |b] > 2. Then |a] > 2 or |b|] > 2. Up to permute, we can
suppose |a| > 2. If a > 2, then z%y® = — {2 'y®, 2} with = € g by definition of
g and 2% 1y € g by induction hypothesis. If a < —2, then z%® = %{xaﬂyb,m_l}
with =1 € g by definition of g and 2%ty € g by induction hypothesis.
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Moreover z% = —%{x“y,y‘l} for a # 0 with z% € g from the previous step, and then z% € g.
Similarly y® = %{xyb, w7t} € g for b # 0. In conclusion g contains all monomials and finally
g = T. In order to proved (iii), let us introduce a Lie ideal I of T' non reduced to C. We
choose in I an element u of minimal length s among the non constant elements of I. We denote
it u == arxyp, + - + asz®yP where the ay’s are in C. Suppose that s > 2. For any
(i,7) € Z2, {a'y/,u} € I. Observe that {z'y/,u} = > 7_; ax(iag — jbr)x" T yi TP is of length
< s. If there exists some (i,j) € Z2, (i,j) # (0,0), such that all (ax,by) are proportional to
(i,7) [i-e. there exists A1,...,As € Q such that (ag,bx) = A(7,7) for any 1 < k < s], then we
consider in I the non constant element {27y~ u} = S°7_ 2ap\pij cgad TRy~ AI with non
proportional exponents (j + Agi, —i + Arj). So, up to this change of monomial, we can suppose
without any restriction that at least two pairs of exponents, for instance (aj,b;) and (ag, bs2),
are non proportional in Q. Hence {z*4", u} is a non constant element of I whose length is
strictly lower than s. Contradiction. It follows that we necessarily have s = 1. So I contains a
monomial u = z%® with (a,b) # (0,0). Without lost of generality we can assume a # 0. Then
—ay = {2~ %% u} € I. Thus I contains y and then {zy~ !y} = z. Similarly 2~ € I and
y~ '€l If1 €1, then I =g=T by point (ii). Otherwise I =T+, O
e We consider now the quantum deformation C,[z*!, y*!]. We suppose that ¢ is not a
root of one in C. The Lie structure under consideration is the commutator’s one. Hence
the bracket of two monomials is given by

[z, 9] = (¢ = Dyz = (1 — ¢ Hay, (43)
or more generally
[l'ayb,xcyd] — (quc . qfad)xa+cyb+d for all a,b, C,d c 7. (44>

The similarity between the original multiplicative Poisson bracket on T' = C[z*!, y*1] and
the deformed commutator bracket on the quantum deformation C,[z*!, y*!] appears in
particular in the main observation that (¢~ —¢=%4) = 0 in (44) if and only if ad — bc = 0
n (42). So it is not surprising to obtain a quite parallel result (see [34] and [35]):

PROPOSITION. Suppose that q is not a root of one. For the quantum torus T, =
C,[z*!, y*!], the following holds:

(i) dime HHo(T,) = 1
(ii) T, is finitely generated as a Lie algebra for the commutator bracket.

(iii) The only Lie ideals of T, are C, T and the vector space T, generated by the non
constant monomials.

PRrROOF. It suffices to copy out mutatis mutandis the previous demonstration ]

REMARK. Let I be a nonzero two-sided ideal of the associative algebra Tj,. It is a fortiori
a Lie ideal and we can apply point (iii) above. If I = C, then [ = T,. If I = T, then
x € I and by the definition of an ideal 1 = zz~! € I, thus I = T,. So we find again the
simplicity of the associative algebra T}, proved in (ii) of the third proposition of 4.1.1.
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4.1.3 Rigidity of quantum groups

Up to isomorphism, the search of Hopf algebras with the same representation theory as
SLy leads to two noncommutative deformations of the Hopf algbra O(SLy) of regular
functions on SLy. There are obtained from the corresponding bialgebras of 2 x 2 matrices
applying the Faddeev-Reshetihin-Takhtajan construction to one of the Hecke symmetries:

—1 0

(13 0 : 1-11 1
: . _ {0011
g 0 jordanian: R’ = (9 ¢ 31, (45)
0 ¢t 0001

q
quantum: R, = (

O =ROO

0
0
0

where ¢ € k*. In both cases the matrix R = R, or R = R’ viewed as an endomorphism of
V ®V for a 2-dimensional k-vector space V satisfies in the group of linear automorphisms
of V®V ®V the Yang-Baxter relation:

(R®idy)(idy @R)(R®1idy) = (idy @R)(R ® idy)(idy ®R),
and the Hecke condition in End(V ® V):
(Rq — q_l idV®V)(Rq + q_l idV®V) =0 or (RJ — idV®V)(RJ + idV®V) = 0.

Then we consider the algebra A generated by four generators a, b, ¢, d with relations:
Rx[(¢g)e(epl=[ty) (@l x R € End(VaV) (46)

COMMENT. A is also a bialgebra for the coproduct A : A -+ A ® A and counit
€ : A — k defined from the matrix product:

Ala) A a®a c a a S (a a —
(R0 A0) = (egurhee weprhed) = (2h) e (eh) and (2950) = (9.

It follows from relations (46) that the assignments 6(z) =a®z+b®y and d(y) =
c®x+d®y satisfy §(x)d(y) = ¢d(y)d(x) if zy = qyx and R = R, and 6(z)d(y) —
5(y)o(x) = 6(y)? if zy —yx = y?> and R = R!. Then § defines a coaction P — A® P
where P is the quantum plane k,[z,y] if R = R,, and P is the jordanian plane
k’[z,y] if R = R’. In both cases, there exists an analogue z of the determinant which
is central in A and we define the corresponding analogue A’ = A/(z—1)A of O(SL2);
the ideal (z — 1)A is a coideal and the bialgebra A’ is a (non commutative and non
cocommutative) Hopf algebra where the antipode S : A" — A’ is respectively given

by (30 50 ) = (L4700 ) or (< eteba),

DEFINITION. For g € k*, the algebra O,(M,) of quantum 2 x 2 matrices is the algebra
generated over k by four generators a, b, ¢, d with relations:

{ ab = gba, bd=qdb, ac=qca,

cd = qde, cb = be, ad — da = (¢ — q~1)bc. (47)

The quantum determinant is the central element z, = ad — qbc = da — qcb and the algebra
O,(Ms)/(zg — 1)O4(M) is the quantum deformation of O(SL,), denoted by O,(SLy).
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REMARK. In the same way than in point (iv) of the first proposition of 4.1.1 we can
observe that Oy(SL2) is a deformation of the commutative Poisson algebra O(SLy)
for the standard Poisson bracket defined from {a,b} = ab, {a,c} = ac, {b,c} =0,
{b,d} =bd, {c,d} = cd and {a,d} = 2bc; see II1.5.5 in [2] for more details.

DEFINITION. The algebra O(M,) of jordanian 2 x 2 matrices is the algebra generated

over k by four generators a, b, c,d with relations:
[aa C] = 627 [d> C] = 627 [aa d] = dc— ac, (48)
la,b] = ad —bc+ac—a?, [d,b] =ad —bc+ac—d* [b,c] =dc+ac—

The jordanian determinant is the central element 2’ = ad — bc + ac and the algebra
O (My) /(27 — 1)O?(My) is the jordanian deformation of O(SLsy), denoted by O7(SLy).

THEOREM. For g not a root of one, the automorphism group of O,(Ms) reduces to the
semi-direct product (k*)*x () where 7 is the involution of O,(M,) defined by:

T :a—a bc c—b d—d (49)
and the 3-dimensional torus (k*)* acts by:
Lap @ ar>aa, b Bb, crr e, d— a ' Byd (50)

PRrROOF. This theorem is proved in [20] using the structure of derivations to deduce the auto-
morphisms. We give here an alternative direct demonstration.

Step 1. Denote by A the algebra O4(Mz) and U the noncommutative Laurent polynomial
algebra U = kb, c, z][a™! ; o] where ¢ is defined by o(b) = ¢b, o(c) = gc and o(z) = 2. It follows
from relations (47) and relation d = (z + qcb)a™! that A can be embedded in U. Using the
canonical form of any element ¢ € A as a finite development >, fi(b,c, z)a’ in U with very
simple relations ab = gba, ac = qca and az = za, it is easy to see that ¢ commutes with b and
c if and only if t € k[b, ¢, 2], and then t also commute with a if and only if ¢ € k[z]. We prove
so that the center Z(A) of A reduces to k[z]. By similar calculations, we verify that the set of
normal elements of A is N(A) = 50 Nm(A) where Npy(A) = D, k50,4 j=m kbici 2F.

Step 2. Let o be an automorphism of A. Using the natural grading of A, we can note:
o(a) = ag+a1+a™ with ag € k, a1 € ka®kb®ke®kd, and dega™ > 2. With similar notations
for o(b), o(c) and o(d), we apply o to the first four relations of (47) and deduce obviously
by identifications that ag = bo = Cy) = d[) and a1b1 = qblal, ajcy = qciaq, b1d1 = qdlbl and
c1dy = qdicy. Writing each ag, b1, c1,d; in the basis a, b, ¢, d, these four g-commutations imply
a1 = aa, by = Bb+~+'c, ¢ = B'b+ vc and di = dd with o, 3,8,7v,7,0 € k. Moreover the
restriction of o to Z(A) = klz] is an automorphism of k[z]. Hence there exists A\, € k, A # 0
such that o(z) = Az + p. Therefore ajd; — gbic; = Aad — gbe) + p. It follows that p = 0,
ad =\, vy = BB =0 and By + B9 = A. We conclude that, up to compose o by 7 and the
automorphism i, g, described by (49) and (50), we can suppose without any restriction in the
following that a; = a, by = b, ¢; = ¢ and d; = d. In other words, o(a) =a+a*t, o(b) = b+ b",
o(c)=c+c" and o(d) = d + d*t, with o(2) = z.

Step 3. The element b is normal in A, then o(b) is normal in A; because o(b) = b+ b and
b € N1(A), the rest bT must be an element of the component Ni(A) of N(A). In particular
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ab™ = gbTa. Developing the relation o(a)o(b) = qo(b)o(a) into ab + a™b + ab™ + atbt =
gba + gb*a + qa*b + ga™bT, the simplification by ab = gba and ab™ = ¢b"a together with the
degree conditions degb < degb™ imply a™b = gba™. Thus the development of a™ in U reduces
to at = f(b,c,2z)a with f € k[b,¢,z]. Applying the same argument for the automorphism
o=t with 0=%(a) = a + g(b, ¢, z)a, we obtain in the subalgebra k[b, c, z][a; o] of U the identity
a=oc(c"a)) = (1+0(g9))(1+ f)a. Hence f = g = 0 and then o(a) = a. Similarly o(d) = d.
Step 4. Since o(ad) = ad and o(z) = z, we have o(bc) = be. The element b™ € Ny(A) is of
the form b+ = f(2)b+ g(z)c with f,g € k[z]. Similarly ¢t = h(2)b+ £(z)c. The identification
(b+bT)(c+ct) = be in k[2][b, c] gives then g = h = 0. Hence o(b) = b+ f(2)b and o(c) = c+£(z)
and the argument b = o(c~1(b)) as above for a implies f = 0. Finally o(b) = b, and similarly
o(c) = c¢. We conclude o =id4 and the proof is complete. O

We can deduce from this theorem (see also [20] and [33]) that:

- the group of algebra automorphisms of O,(SLs) reduces to the semi-direct product
(k*)%x (1) where 7 is the involution defined by: a + a, b+ ¢, ¢ — b, d — d and the
2-dimensional torus (k*)? acts by a — aa, b+ 8b, ¢+ 7lc, d— a~td.

- the Hopf algebra automorphisms of O,(SLy) are the a — a, b+ 8b, ¢+ e, d— d.

REMARK. The corresponding result for the jordanian matrices is proved in the paper
[44]. The proof is somewhat more difficult and clearly too long to be developed here.
The description is the following. We suppose k of characteristic zero and consider
the algebra A = O’(Ms) with generators a, b, ¢, d and relations (48):

1. there exists 7 € Aut A such that: 7(a) =d, 7(b) =b, 7(c) = ¢, 7(d) = a, and
T = {id, 7} is a subgroup of order 2 of Aut A;
2. for all a € k*, there exists o, € Aut A such that:
oa(a) = aa, o4(b) =ab, oc4(c) =ac, o4(d)=ad,
and H = {0, ; a € k*} is a subgroup of Aut A isomorphic to k*;

3. for all q(z) € k[z], there exists 1, € Aut A such that:
nga) = a, ng(b) =b+q(z)a, ny(c) =c, ny(d) =d+q(z)c,
and G1 = {ny; q(2) € k[z]} is a subgroup of Aut A isomorphic to the additive
group klz];
4. for all p(z,u,c) € klz,u, c]|, where u = d — a, there exists &, € Aut A such that:
&la) =a+p(z,u,c)e, &le) =c¢, &(d) =d+p(z,u,c)c,
&(b) = b+ ap(z,u,c) + p(z,u,c)d + p(z,u, c)?c,
and Go = {&; p(2,u,c) € k[z,u, ]} is a subgroup of Aut A isomorphic to the
additive group k[z, u, c].

Then the main theorem asserts that:
Aut OJ(MQ) = [(GQN G1)>4 H] X T,
and a corollary proves that:
Aut O (SLy) = [(GHx G))x H'|x T.
where H' = {0, € H; @ = %1} of order 2, G} = {n, € G1;q € k} ~ k and
5 ={& € Ga; p(u, ) € k[u, c]} ~klu, (]
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COMMENT. Let us recall that the structure of the automorphism group of a commutative
algebra of polynomials in n indeterminates is known only for n < 2 (see 2.3.4). For n > 3,
it is the subject of many problems, studies and open questions connected with profound
topics (tameness conjecture, Dixmier conjecture, Jacobian conjecture,... see [18]) with
recent fundamental progresses (by Alexei Belov-Kanel and Maxim Kontsevich, Ivan P.
Shestakov and Ualbai U. Umirbaev). For instance the structure of the automorphism
group of Clx,y, z,t] ~ O(Ms) or O(SLs) is still unknown. The same problem for the
quantum algebras O,(M,) and O,(SLs) turns out to be trivial with a very “small” group
of automorphisms. The fact that the quantization leads to a more rigid situation is
a well known phenomenon, observed in many other cases: quantum spaces, quantum
groups, quantum enveloping algebras (see for instance references in [20], [21], [32], [46],
[61],...). The jordanian deformation gives rise to a very different picture; in some sense,
it is intermediate between the extremely rich commutative situation and the very rigid
quantum case (see [44]).

4.2 Multiplicative invariants
4.2.1 Actions for multiplicative Poisson structures and deformations

The action of the group SLy(Z) on the Poisson algebra T'= Cla*!, y*] for the multiplica-
tive bracket defined by (41) and the corresponding “multiplicative invariant theory”’ (see
[12]) is deformed into an action by automorphisms on the quantum torus 7, = C,[z*!, y*]
previously encountered in point (iii) of the third proposition of 4.1.1 and detailed in the
following. It is useful to introduce ¢ a square root of ¢~*. Relation (37) rewrites into

yr = §°xy (51)
We start with the description of the actions.

ProOPOSITION. We suppose that q is not a root of one.

(i) The group SLy(Z) acts by Poisson automorphisms on the commutative algebra
T = Cla*!, y*] for the multiplicative bracket. The action is defined by:

gx=az%" and gy=aza"y" forg=(25%)€ SLy(Z), (52)

or more generally for any m,n € 7Z,

g(xmyn) — xaerlmychrdn (5?))

(ii) The group SLs(Z) acts by algebra automorphisms on the quantum torus T, =
C,[z%, y%]. The action is defined by:

g.w=q¢"x"y* and gy =q"ay? forg=(2Y) € SLy(Z), (54)
or more generally for any m,n € 7,
g(xmyn) — qA(am+bn)(cm—&-dn)—mnxam—i-bnycm-i-dn (55)
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PROOF. From one hand ¢'.(g.x) = ¢.(x%y°) = (¥ y°)*(z?y?)e = go'atteycatde — (/g g
Similarly ¢'.(g.y) = (¢'g).y. From the other hand it follows from (42) that {g.x,9.y} =
{x%°, 2by?} = (ad — be)x®Tlyctd = g.(zy) = g.{z,y} thus any g € SLy(Z) defines a Poisson

automorphism. The proof of (i) is complete. For the quantum case, we have:

(g.9)(g.) = §Uabydgacpoye = gbdract2adgatbyerd _ gactbd+2+2be atbyctd
— dzqac+bd+2bcxa+byc+d — (chj‘ICx“yccj bdxbyd — ég(gx)(gy)
Moreover: g'.(g.a?) _ g/-(fj acwayc) _ qac+a/c’a2+2b’c’ac+b/d’c2xa/aer’cyc’aer’c,
and (g/g).$ =g (a’a-‘rb’c)(c’a-i-d’c)$a’a+b’cyc’a+d’c;
the exponents of ¢ are similar because a’d’ = 1 + b'¢/, hence ¢'.(g.z) = (¢'g).z. On the same
way g'.(9.y) = (9'9) -y O

4.2.2 Invariants for multiplicative Poisson stuctures and deformations

Just like the classification of finite subgroups of SLy(C) is the starting point for the in-
variant theory of symplectic Poisson commutative algebra C[z, y| (see 2.2.1) and through
deformation of the Weyl algebra A;(C) (see 2.2.2 and 3.2.3), on the same way the mul-
tiplicative invariant theory deals with the invariants of C[z*!, '] under the action of
classified finite subgroups of SLy(Z) and can be extended to the quantum torus by defor-
mation process; the following theorem (from [34]) is a multiplicative analogue of 3.2.3.

THEOREM. For any finite subgroup G of SLy(Z) acting by Poisson automorphisms on
the commutative algebra T = C[z*!, y*!] and by algebra automorphisms on the quantum
torus T, = C,[z*!, y*], with q not a root of one, the noncommutative invariant algebra
T, qG is a deformation of the commutative Poisson invariant algebra T¢.

+1 +1 +1 +1
(C[:I:‘ j’y ] deformation q[xj’y }
+1 +11G +1 +11G
Cl%v™) Gooimnion Calr™ v ]

PRroOOF. Let B be the noncommutative Laurent polynomial algebra generated by three gener-
ators x,y, z and their inverses z™1, y*!, 2*! with relations zx = zz, zy = yz and yx = 22zy.
The element h := 2(1 — z) is central and non invertible in B. It is clear that A := B/hB is

isomorphic to the commutative algebra T' = C[z*!, y*1]. We calculate in B the commutator:
zy —yz = (1 — 222y = 2(1 — 2)3(1 + 2)zy = hy(z,y) with notation y(z,y) := (1 + 2)zy.

In the algebra B/hB, we have y(z,y) = %(1 +7%) Ty = Ty. Hence the algebra isomorphism A ~ T
is a Poisson isomorphism for the multiplicative Poisson bracket on T; then B is a quantization
of A is the sense of 3.2.1 and B/(h — \)B is a deformation of A for any A € C such that h — X is
not invertible in B. In particular for A = 2(1 — §) where § is a square root of ¢!, the deformed
algebra B/(h — A\)B is isomorphic to the quantum torus Tj.

By calculations formally similar to the proof of point (ii) in the previous proposition, we easily
observe that any subgroup G of SLa(Z) acts by automorphisms on B by:

g.x = 2%x%C, gy =2"by? gr=2z forg= (‘é g) € SLy(Z).
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The ideal hB being stable under this action, the action induces an action on B/hB = A and
B%/hB% ~ A% by application of the sublemma of 3.2.3. The Poisson isomorphism A ~ T being
clearly equivariant, it follows that AY ~ T and we finally B®/hB% ~ T as Poisson algebras.
Similarly B /(h—\)B® ~ TqG as associative algebras where A = 2(1—¢). We conclude that BY
is a quantization and T, qG is a deformation of T¢. In other words, the invariants of the deformed
algebra constitute a deformation of the initial invariant algebra. O

REMARK. We mention here some general way to obtain invariant elements in 7" (or
T, mutatis mutandis). Let G be a finite subgroup of SLy(Z). Consider the canonical
linear action of G on the lattice Z2, i.e. :

g.(m,n) = (am +bn,em +dn) for (m,n) € Z2, g = (2%) € SLy(Z). (56)
Relation (53) can be rewritten g.(x™y") = x'y’ where (i,5) = g.(m,n). We intro-
duce the Reynolds operator pg : T — T defined by f — pa(f) = % > gec 9-1-
For any (m,n) € Z?, we consider

1 o
Ry = pa(z™y") = Il Z gyl e TY, (57)

(4,7)€G.(m,n)

where G.(m,n) is the G-orbit of (m,n). By surjectivity of pg, the (Rmn)(mn)ez?
generate TC as a C-vector space. Then Z? being the disjoint union of its G-orbits,
a C-basis of T is (Rmn)(m,n)eq Where €2 is a set of representatives of the G-orbits.
This basis (or its adapted quantum form, see [34] p. 97) provides candidates for
generators of TC as associative algebra or Lie algebra for the Poisson bracket.
Take for instance G = {I, —Iz}, then Ry, = R_y—, for any (m,n) € Z?%; we
choose © = (N* x Z) U ({0} x N). It’s an exercise to check (by induction from
identities verified by the R,,,’s) that any R,,, such that (m,n) € Q lies in the
subalgebra of T generated over C by &; := 2R1p=x+ z1 & = 2Rpp =y + y~ !
and 0 := 2Ry 2y + 2~ 'y~1; hence TC is generated as a C-algebra by &1, &, 6.
Similarly, T¢ is generated as a Lie algebra for the bracket (42) by the five elements
Roo=1,&1,&, 0 and Ry = (.7} +x )

COMMENT. Previous results open the way for a wide program of systematic study of
multiplicative/quantum invariants in parallel with the more classical symplectic/Weyl
theory. This program is greatly initiated in [34]. We couldn’t think of developing it here
with details and proofs but it seems interesting to give some brief overview about the
obtained results.

e 1. The classification up to conjugation of finite subgroups of GLy(Z) is well known; the
description of the twelve types (classically denoted G; to Gia) can be found in [12]. In
particular the finite subgroups of SLy(Z) correspond to the four (all cyclic) cases:

g7 = <X> = 067 g - <dS> ~ C4a g9 = <X2> = C3a glO = <X3> ~ CQ?

where x = (1 '), d = (%) and s = (9}) are the three basic matrices used in the
description of any finite subgroup of GLy(Z). Explicitly:

x=(19) ds=(}7), XQZ((l)j)v XSZ(_Ol—Ol)-
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REMARK. It is easy to verify that the property for any finite subgroup G of SLy(Z)
to be conjugated in GL2(Z) to a G; (i = 7,8,9,10) implies that G is conjugated to
G; in SLa2(Z) (see [34] p. 73). Denoting by h an element in SLa(Z) such that G =
h='G;h, the assignment P +— h.P defines a Poisson isomorphism (C[xﬂ,yﬂ}G —
Clz*!,y*!%. In conclusion, in the study of invariants of C[z*! y*1] under the
action of a finite subgroup G of SLo(Z) we can suppose without restriction thet G
is one of the G7, Gs, Gg, G1o.

e 2. Just like the Kleinian surfaces for the case of finite groups of SLy(C) acting on Clz, y,
the invariant subalgebra C[z*!, y*']¢ for each type of finite subgroup of SLy(Z) acting by
(52) and (53) is generated (as an associative algebra) by three elements with one relation.
From [12], we have:

G generators of C[z*!, y*!]¥ and relation

Gio~Cy | Gi=a+az!, &L=y+y ', O=ay+aly!

0616 = 60>+ & + & —4

Go=Cs | ny=c+y+aly, no=a 'ty oy, p=ay’+a 7y +ay ' +6
enn- =i + 02 +¢® — 99+ 27

Gs~Cy | o1=61+&, oa=6&, p=ay’+a ly 2 +2%y~ ! +a %y + 30,

0% = poi(oa +4) + 4030y — o — o2(09 + 4)?

Gr~Cs | m=n4+n-, n=nn-, o=nyp+n_(z7 'y 2 +2%y+a2'y+6)

o2 =11(re +9)0 — (2 +9)? + (7% — 412) (312 — 73 — 27)

The surfaces in the 3-dimensional affine space corresponding to the algebraic relation
between the three generators in each case are studied in [34] (in particular the type of the
isolated singularities are determined).

e 3. The next step concerns the finiteness of the Lie structures on invariants. From
one hand C[z*!, 4= is finitely generated as a Lie algebra for the multiplicative Poisson
bracket (42); this is a multiplicative analogue of the first proposition of 3.3.2. From
the other hand the same is true after quantum deformation,i.e. C,[z*!, y*1]¢ is finitely
generated as a Lie algebra for the commutator bracket; this is a multiplicative analogue
of theorem 3.3.3. Moreover the cardinality of a generating family of the Lie algebra
(Cla®t, y*1%, {-, - }) and a generating family of the Lie algebra (C,[z*!,y*]% [+, -])
calculated in [34] are the same (by type: 5 for Gy, 7 for G, 8 for Gg, 9 for G;).

e 4. The multiplicative analogue of the last remark of 3.2.3 leads to compare the dimen-
sions of HHy(C,[z*!, y*1]%) and HPy(C[z*!, y*1]9).
- The answer is complete for G of type Gy. In this case:

dime HHo(C, [2%!, y*1)9) = dime HPo(C[z*!, y*1]9) = 5.
The last equality also proves (see theorem 3.3.2 for the symplectic analogue) that the
family of five Lie algebra generators cited above is of minimal cardinality.
- In the other three cases, the determination of dime HHo(C,[z%!, y*1]%) can be found in
[34]; the dimension is 7 for Gy, 8 for Gg and 9 for G.
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5 LOCALIZATION: ACTIONS ON NONCOMMUTATIVE RATIO-
NAL FUNCTIONS

5.1 Commutative rational invariants

PRELIMINARY REMARK: extension of an action to the field of fractions. Let S be a
commutative ring. Assume that S is a domain and consider F' = Frac S the field of
fractions of S. Any automorphism of S extends into an automorphism of F and it’s
obvious that, for any subgroup G of AutS, we have FracS® C F¢. For finite G, the
converse is true:

PROPOSITION. If G is a finite subgroup of automorphisms of a commutative domain S
with field of fractions F, then we have: Frac S¢ = F¢,

PrOOF. For any = € F©, there exist a,b € S, b # 0, such that z = 2. Define v’ =

[1ycc gias 9(b)- Then b € S¢ and x = @b with ab/ = z(bb') € FE NS = SC. O
This applies in particular to a polynomial algebra S = k[z1, ..., x,] and its field of rational
functions F' = k(z1,...,x,), and we formulate in this case the following problem about

the structure of FC.

5.1.1 Noether’s problem

Let k be commutative field of characteristic zero. Let G be a finite subgroup of GL, (k)
acting canonically by linear automorphisms on S = k[zy,...,2,], and then on F =
Frac S = k(z1,...,,). We consider the subfield F'“ = Frac S¢ of F.

REMARK 1. It’s well known (by Artin’s lemma, see for instance [11] page 194) that
[F: F9] = |G|, and then trdeg, F¢ = trdeg, F' = n.

REMARK 2. We know from classical invariant theory that S¢ is finitely generated
(say by m elements) as a k-algebra. Thus F© is finitely generated (say by p elements)
as a field extension of k, with p < m. We can have p < m; example: S = k(z,y) and
G = (g) for g: x — —x,y — —y, then S = k[22,92, 2y] = k[X,Y, Z]/(Z? — XY)
and F¢ = k(zy, v~ 'y).

REMARK 3. Suppose that S¢ is not only finitely generated, but isomorphic to a
polynomial algebra k[yi, ..., ¥ym], with y1,. ..,y algebraically independent over k.
Then we have F¢ = k(y1,...,Ym). Thus m = n by remark 1.

Now we can consider the main question:

PROBLEM (Noether’s problem) : is F¢ a purely transcendental extension of k ?

An abundant literature has been devoted (and is still devoted) to this question and it’s
out of the question to give here a comprehensive presentation of it. We just point out the
following facts.
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e The answer is positive if S¢ is a polynomial algebra. By remark 3, we have then
S¢ = Kk[xy,...,7,) and F® = k(xy,...,x,). This is in particular the case when G is the
symmetric group S, acting by permutation of the z;’s (see for instance [10] p. 3), or more
generally when Shephard-Todd and Chevalley theorem applies.

e The answer is positive if n = 1. This is an obvious consequence of Liiroth’s theorem
(see [9] p. 520): if F = k(x) is a purely transcendental extension of degree 1 of k, then
for any intermediate subfield k & L C F', there exists some v € F' transcendental over k
such that F' = k(v).

e The answer is positive if n = 2. This is an obvious consequence of Castelnuovo’s theorem
(see [9] p. 523): if F' =k(z,y) is a purely transcendental extension of degree 2 of k, then
for any intermediate subfield k & L C F such that [F' : L] < 400, there exists some
v,w € F such that F' = k(v,w) is purely transcendental of degree 2.

e The answer is positive for all n > 1 when G is abelian and k is algebraically closed.
This is a classical theorem by E. Fischer (1915), see [37] for a proof, or corollary 2 in 5.1.2
below.

Among other cases of positive results, we can cite the cases where G is any subgroup of
Sy for 1 < n <4, the case where G = A; for n = 5 by Sheperd-Barron or Maeda (see [50]
and [55]), the case where G is the cyclic group of order n in S, for 1 <n <7 and n = 11.
The first counterexamples (Swan 1969, Lenstra 1974) were for k = Q (and G the cyclic
group of order n in S,, for n = 47 and n = 8 respectively). D. Saltmann produced in 1984
the first counter-example for k algebraically closed (see [50], [63], [64]).

5.1.2 Miyata’s theorem

The following result concerns invariants under actions on rational functions resulting from
an action on polynomials.

THEOREM (T. M1YATA). Let K be a commutative field, S = K|x] the commutative ring
of polynomials in one variable over K, and F = K (x) the field of fractions of S. Let G
be a group of ring automorphisms of S such that g(K) C K for any g € G.

(i) if S¢ C K, then F¢ = S¢ = K¢.

(ii) if S ¢ K, then for any u € S¢,u ¢ K of degree m = min{deg,y;y € S% y ¢ K}
we have S¢ = K%[u] and F¢ = K% (u).

We don’t give a proof of this theorem here, because we will prove it further (see 5.3) in
the more general context of Ore extensions; for a self-contained proof on the commutative
case, we refer the reader to [50] or [56]. Observe that the group G is not necessarily finite.

COROLLARY 1 (W. BURNSIDE). The answer to Noether’s problem is positive if n = 3.

PROOF. Let G be a finite subgroup of GL3(k) acting linearly on S = k[z, y, z]. We introduce in
F =k(z,y, z) the subalgebra S = k(%, £)[z], which satisfies Frac S; = F. Let g € G. We have:
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9(x) = ax + By +7z, gly) =dz+By+7'2 g(z) =d"z+ "y ++"2.
Thus: o _i_ﬂ/g _i_,)//g o +ﬂ//g _i_,y//g
9G) = ——gi oz ad ¢g(F)= TR
a‘*’ﬁ;"”V} a+ﬁ5+7;
It follows that the subfield K = k(Z, %) is stable under the action of G, and we can apply the
theorem to the algebra S; = K[z]. The finiteness of G implies that [F' : F] is finite and so
S¢ ¢ K. Thus we are in the second case of the theorem. There exists u € S of minimal degree
> 1 such that S = K%[u] and F¢ = K%(u). By Castelnuovo’s theorem (see in 5.1.1 above),

K% = k(v;w) is purely transcendental of degree two, and then F¢ = k(v, w)(u) = k(u,v,w). O

Of course, we can prove similarly that the answer to Noether’s problem is positive if n = 2
using Liiroth’s theorem instead of Castelnuovo’s theorem.

COROLLARY 2 (E. FiscHER). Ifk is algebraically closed, the answer to Noether’s prob-
lem is positive for G abelian.

PROOF. Here we assume that G is a finite abelian subgroup of GL,, (k). By total reducibility and
Schur’s lemma (see 2.3.1) we can suppose up to conjugation that there exist complex characters
X1;---,Xn of G such that g(z;) = x;(g)x; for all 1 < j < n and all g € G. In particular, G
acts on S = k(xa, ..., x,)[x1] stabilizing K1 = k(xa,...,2,); thus k(zy,...,2,)% = KF(u;) for
some u; € SlG . We apply then Miyata’s theorem inductively to conclude. O

Another application due to E. B. Vinberg concerns the rational finite dimensional rep-
resentations of solvable connected linear algebraic groups and uses Lie-Kolchin theorem
about triangulability of such representations in order to apply inductively Miyata’s theo-
rem (see [68] for more details).

5.2 Noncommutative rational functions
5.2.1 Skewfields of fractions for noncommutative noetherian domains

Let A be a ring (non necessarily commutative). Assume that A is a domain; then the set
S ={a € A;a # 0} is multiplicative. We say that S is a (left and right) Ore set if it
satisfies the two properties:
IV (a,s) € Ax S, 3(bt) € Ax S, at = sb]
and [V (a,s) € Ax S, I, t')e Ax S, t'a="Vs].

In this case, we define an equivalence on A x S by (a, s) ~ (b, t) if there exist ¢,d € A such
that ac = bd and sc = td. The factor set D = (A x S)/ ~ is canonically equipped with a
structure of skewfield (or noncommutative division ring), which is the smallest skewfield
containing A. We name D the skewfield of fractions of A, denoted by Frac A. Concretely,
we have:

Vge€FracA, [3(a,5)€AxS, g=as'] and [3(b,t) € Ax S, q=1t"'0], (58)
and more generally:

day,...,a,,by,...0 € A,

o — .ol 1 < i<
Jstes gi = a;s t7b; for 1 < i < k. (59)

Vaqi,. .., qk eFracA,{
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We refer the reader to [7], [8], [13] for more details on this standard construction. An
important point is that noetherianity is a sufficient condition for A to admit such a
skewfield of fractions.

LEMMA. Any noetherian domain admits a skewfield of fractions.

PROOF. Let (a,s) € A x S, a # 0, where S is the set of nonzero elements of A. For any integer
n > 0, denote by I,, the left ideal generated by a,as,as?,...,as". We have I, C I, for all
n > 0. Since A is noetherian, there exists some m > 0 such that I,, = I,4+1. In particular,
as™ = coa + cras + -+ + ¢pas™ for some cg,ci,...,cm € A. Denote by k the smallest
index such that c; # 0. Because A is a domain, we can simplify by s* and write as™T1=F =
.+ Cpp1as + -+ cpas™ k. With ¢/ = ¢, € S and b = as™ % — cpp1a— - — cpas™ P,
conclude that t'a = b's. So S is a left Ore set; the proof is similar on the right. O

we

REMARK 1. Many results which are very simple for commutative fields of fractions become
more difficult for skewfields. This is the case for instance of the following noncommutative
analogue of the preliminary proposition of 5.1:

let R be a domain satisfying the left and right Ore conditions, let F' be the skewfield of
fractions of R, let G be a finite subgroup of automorphisms of R such that |G| is invertible
in R, then R satisfies the left and right Ore conditions and we have Frac R = F¢.

Sketch of the proof. We start with a preliminary observation. Let I and J be two
nonzero left ideals of R. Take a € I,a # 0,s € J,s # 0. Since R satisfies the left
Ore condition, there exist b’,t nonzero in R such that t'a = b's. This element is
nonzero (since R is a domain) and lies in I N J. By induction, we prove similarly
that: the intersection of any family of nonzero left ideals of R is a nonzero left ideal
of R.

Now fix a nonzero element 2 € F¢. By (58), there exist nonzero elements b,t € R
such that = ¢'b. It’s clear that [ = Ngec 9(R1) is a left ideal of R which is
stable under the action of G. Then we can apply Bergman’s and Isaacs’ theorem
(see corollary 1.5 in [14] or original paper [36] for a proof of this nontrivial result)
to deduce that I contains a nontrivial fixed point. In other words, there exists a
nonzero element v in RS N I. In particular v € Rt can be written v = dt for some
nonzero d € R, and so x =t~ b =t"'d~'db = v~'db. Since z € FE and v € R®, we
have db = vz € F“ N R = RY. Denoting u = db, we have proved that: any nonzero
x € FY can be written = v~ u with v and u nonzero elements of RS,

Finally, let a,s be two nonzero elements of R®. Then z = st~! € F®. By the
second step, there exist u,v € RS such that st~ = v~lu, and then vs = ut. This
proves that RC satisfies the left Ore condition. The proof is similar on the right.
Therefore R admits a skewfield of fractions and the equality Frac R® = F¢ is clear
from the second step of the proof. ]

REMARK 2. There exists a noncommutative analogue of Galois theory. We cannot develop
it here, but just mention the following version of Artin’s lemma (see remark 1 of 5.1.1):
Let D be a skewfield and G a finite group of automorphisms of D. Then [D : DY) < |G|.
If moreover G' doesn’t contain any non trivial inner automorphism, then [D : D] = |G|.
We refer the reader to [4] (theorem 3.3.7) or [14] (lemma 2.18). O
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5.2.2 Noncommutative rational functions

Let A a ring, o an automorphism of A, § a o-derivation of A, and R = Alx; 0,0] the
associated Ore extension. We have seen in 1.3.1 that R is a domain when A is a domain,
and in 1.3.2 that R is noetherian when A is noetherian. So we conclude by the lemma
of 5.2.1 that, if A is a noetherian domain, then the Ore extension R = Alx; o, 0] admits
a skewfield of fractions. Denoting K = Frac A, it’s easy to check that ¢ and § extend
uniquely into an automorphism and a o-derivation of K, and we can then consider the Ore
extension S = K|z ; 0,d]. It follows from (59) that any polynomial f € S can be written
f =gs ! =t'h with s,t nonzero in A and g,h € R. We deduce that Frac R = Frac S.
This skewfield is denoted by K(x; o,9).

If FracA=K, R=Alz;o0,0], S=K|[z;o0/], (60)
then: D = Frac R = Frac S = K(z; 0,9).

In the case of an iterated Ore extension (5) over a base field k, we have by induction: if
Ry, =Kk[z1][xe; 09,05] - - - [T ; Om, O], then Frac R, = k(z1)(x2; 09,02) - -+ (Tm 5 Ty ).
We simply denote D = K(z; o) when 6 =0 and D = K(x; §) when o = id4.

REMARK. It’s useful in many circumstances to observe (see proposition 8.7.1 of
[3]) that K (x; 0,4) can be embedded into the skewfield F = K((z~!; 071, —d0~1))
whose elements are the Laurent series ) ajz ™ with m € Z and o € K, with
the commutation law:

j>m

o= Za_l(—éa_l)”_l(a)a:_” =o Y a)zt —z7 0 Ha)z™! forallae K.
n>1

Indeed, multiplying on the left and the right by x, we obtain the commutation law
of S = K[x; 0,0]; then S appears as a subring of F, and so D is a subfield of
F. In particular, for 6 = 0, we denote F' = K((x=1; 0~ 1)) and just have: 27 ta =
oY a)z~!. If 0 = idg, then F = K(z~'; —6)) is a pseudo-differential operator

skewfield, with commutation law:
s la=ar™ —§(@)z 2+ (=)0 ()2 = =27 (a)2

It follows from the embedding of D into K (z~!; 0=, —do~1)) that D is canonically
equipped with the discrete valuation v,-1, or more simply v, satisfying v(s) =
—degs for all s € S.

LEMMA. Let K be a skewfield, with center Z(K).

(i) Let o be an automorphism of K. Assume that, for all n > 1, the automorphism
o™ is not inner. Then the center Z(D) of D = K(x; o) is the subfield Z(K) N K,
where K° = {a € K; 0(a) = a}.

(ii) Let ¢ be a derivation of K. Assume that K is of characteristic zero and ¢ is not inner.
Then the center Z(D) of D = K (x; 0) is Z(K)NKj, where K5 = {a € K ; §(a) = 0}.
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PROOF. In the embedding of D = K(z;0) in F = K(z~'; 07!)), any element f € D can
be written f = ijm ajz™) with m € Z and a; € K for all j > m. Assume that f is
central. Then zf = fx and af = fa for any a € K. This is equivalent to a; € K° and
o = aj(f*j (a) for all j > m. Since ¢/ is not inner, we necessarily have a; = 0 for j # 0. This
achieve the proof of (i). Under the assumptions of point (ii), let us consider now an element
feD=K(x;6 CF=K(2"1;-5). From the relation af = fa for any o € K, we deduce
using the fact that § is not inner that f € K, and so f € Z(K). Then f € K; follows from the
relation fox = zf. O

5.2.3 Weyl skewfields

We fix a commutative base field k.

e We consider firstly as in (12) the first Weyl algebra A, (k) = k[¢|[p; 9,] = k[p|[q; —0,)].
Its skewfield of fractions is named the first Weyl skewfield, classically denoted by D (k):

Dy (k) = Frac Ay (k) = k(q)(p; 9,) =k(p)(q; —0p). (61)

It would be useful in many circumstances to give another presentation of D;(k). Set
w = pg; it follows from relation pg — gp = 1 that wqg = qw + ¢ and pw = (w + 1)p. Thus
the subalgebra of A;(k) generated by ¢ and w, and the subalgebra of A;(k) generated by
p and w are both isomorphic to the enveloping algebra U (k) defined in example (ii) of
1.3.1. It’s clear that Frac A (k) = Frac U;(k). We conclude:

D (k) =k(q)(w; d), with d = g0, the Euler derivation in k(g), (62)
Dy(k) =k(w)(p; o), with o € Autk(w) defined by o(w) = w + 1. (63)
Applying the last lemma in 5.2.2, we obtain:

if k is of characteristic zero, then Z(D;(k)) = k. (64)

The situation where k is of characteristic £ > 0 is quite different, and out of our main
interest here, since D;(k) is then of finite dimension % over its center k(p*, ¢).

e We defined similarly the n-th Weyl skewfield D, (k) = Frac A,,(k). Using (8,14), we
write:

Dn(k) =k(q1, 42, - 4n) (P13 Oq,) (P23 Ogo) - - (Pns D0y ), (65)
D (k) = k(q1)(p15 95 )(02) (P2 o) - - (¢0) (P 5 Og)- (66)

Reasoning as above on the products w; = p;q; for all 1 < i < n, which satisfy the relations
PiW; — WiPi = Pis WiG; — Wi = gi, [pi, wj] = [Qi,wj] = [w, wj] =0sij#1, (67)
we obtain the alternative presentations:

Dy (k) =k(q1,q2; - - 7Qn)<ig(1]§ di)(wa; da) ... (wn; dn), (68)



with d; the Euler derivative d; = ¢;0,, for all 1 <17 <n, and:

D, (k) = k(wy, wa, ..., wn)(p1; 01)(p2; 02) -+ (Pns Tn), (69)

where each automorphism o; is defined on k(wy, ws, ..., w,) by o;(w;) = w; + 9, ;, and
fixes the p;’s for j < i.

e If we replace k by a purely transcendental extension K = k(z1, 22, ..., 2) of degree ¢
of k, the skewfield D,,(K) is denoted by D, (k). By convention, we set Dy (k) = K. To
sum up:

Dyi(k) = Dy (k(z1,...,2)) forall t>0,n>0. (70)
One can prove using inductively the last lemma of 5.2.2 (see also [47] or [25]) that:

if k is of characteristic zero, then Z(D,,;(k)) =k(z1,...,2). (71)

CoMMENT. The skewfields D,, ; play a fundamental role in Lie theory and are in
the center of an important conjecture (the Gelfand-Kirillov conjecture) on rational
equivalence of enveloping algebras: for “many” classes of algebraic Lie algebras g
the skewfield of fractions of the enveloping algebra U(g) is isomorphic to a Weyl
skewfield D,, (k) (see [47], 1.2.11 of [2], [31], [25], [26], [60], and 5.4 below).

e Finally, for any ¢ € k*, the skewfield of fractions the quantum plane k,[z, y] defined in
example (iv) of 1.3.1 is sometimes called the first quantum Weyl skewfield, denoted by:

Di(k) = Frack,[z,y] = k,(z,y) =k(y)(x; o) where 0 € Autk(y) with o(y) = qy. (72)

These skewfields (or more generally their n-dimensional versions as in the last example
of 1.3.1) play for the quantum algebras a role similar to the one of Weyl skewfields in
classical Lie theory (see 11.10.4 of [2], [25], [60]). It follows from last lemma in 5.2.2, that:

if ¢ is not a root of one in k, then Z(Df(k)) = k. (73)

The situation where ¢ is of finite order £ > 0 on k* is quite different, and out of our main
interest here, since D{(k) is then of finite dimension ¢2 over its center k(p’, ¢).

Let us recall that the first quantum Weyl algebra (see example (v) of 1.3.1) is the algebra
Af(k) generated by z and y with commutation law zy — qyx = 1. We observe that
the element z = xy — yx = (¢ — 1)yx + 1 satisfies the relation zy = qyz. Since x =
(¢ — 1)7ly7t(z — 1), Frac A%(k) is equal to the subfield generated by z and y, which is
clearly isomorphic to Df(k). Thus we have proved that:

Frac Al(k) ~ Dj(k). (74)
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5.3 Noncommutative rational invariants
5.3.1 Noncommutative analogue of Miyata’s theorem

We can now formulate for Ore extensions an analogue of theorem 5.1.2. We start with a
technical lemma.

LEMMA. Let K be a non necessarily commutative field, o an automorphism and  a
o-derivation of K. We consider the Ore extension S = K|x; 0,d]. Take u € S such that
deg, (u) > 1.

(i) For any non necessarily commutative subfield L of K, the family U = {u’; i € N}
is right and left free over L.

(ii) If the left free L-module T' generated by U is a subring of S, then there exist an ring
endomorphism ¢’ and a o’-derivation ¢’ of L such that T = L{u; o', 4']. If moreover
T is equal to the right free L-module T" generated by U, then ¢’ is an automorphism
de L.

(iii) In the particular case where K is commutative, then o’ is the restriction of ¢™ to
L, with m = deg,(u).

PROOF. Point (i) is straightforward considering the term of highest degree in a left L-linear
sum of a finite number of elements of ¢. Consider now o € L CT. We have deg, (ux) = deg, u
and ua € T thus there exist uniquely determined ag, @1 € L such that ua = ap + aju. So
we define two L — L maps ¢’ : @« — aq and ¢’ : a — g satisfying ua = o'(a)u + §'(«) for
all & € L. Denoting u = A\pz™ + --- + Az + Ag with m > 1, A\; € K for any 0 < ¢ < m and
Am # 0, then A\, 0™ () = o' (), for all & € L. We deduce that ¢’ is a ring endomorphism of
L, and prove also point (iii). The associativity and distributivity in the ring 7" imply that ¢’ is
a o’-derivation. When 7" = T, there exists for all 8 € L two elements 31 and 3y in L such that
Bu=ub + o =0 (B1)u+d(51)+ Po. Thus = 0'(f1) and ¢’ is surjective. O

THEOREM ([23]). Let K be a non necessarily commutative field, o an automorphism and
d a o-derivation of K. We consider the Ore extension S = K|z, ; 0,6] and its skewfield of
fractions D = FracS = K(x; 0,9). Let G be a group of ring automorphisms of S such
that g(K) C K for any g € G.

(i) if S¢ C K, then D¢ = S¢ = K¢,

(i) if S¢ ¢ K, then for any u € S¢ u ¢ K of degree m = min{deg,y;y € S% y ¢
K}, there exist an automorphism o' and a o'-derivation ¢’ of K¢ such that S¢ =
KCu; o',08'] and DY = Frac (S¢) = K% (u; o', d").

PROOF. We simply denote here deg for deg,. Take g € G and n = degg(x); the assumption
g9(K) C K implies degg(s) € nNU {—oc} for all s € S and so n = 1 since ¢ is surjective. We
deduce:

degg(s) =degs for all g € G and s € S. *)
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If S C K, then S¢ = K¢, If S¢ ¢ K, let us choose in {s € S; degs > 1} an element u of
minimal degree m. In order to apply the previous lemma for L = K<, we check that the free
left K%-module T generated by the powers of u is equal to the subring S¢ of S. The inclusion
T C S is clear. For the converse, let us fix s € S¢. By the proposition in 1.3.1, there exist
q1 and r; unique in S such that s = qu + 1 and degr; < degu. For any g € GG, we have
then: s = g(s) = g(q1)g(u) + g(r1) = g(q)u + g(r1). Since degg(r1) = degri < degu by
(*), it follows from the uniqueness of ¢; and r; that g(¢1) = ¢1 and g(r1) = 1. Sor; € SG:
since degr < degu and degu is minimal, we deduce that r € K. Moreover, ¢; € S¢, and
deg q1 < deg s because degu > 1. To sum up, we obtain s = qiu+r with r € K¢ and ¢; € S
such that degq; < degs. We decompose similarly ¢, into ¢; = qou + 75 with ro € K¢ and
Q2 € SE such that deg g2 < degqi. We obtain s = gou? + rou + r1. By iteration, it follows that
s € T. The same process using the right euclidian division in S proves that S is also the right
free L-module T" generated by the powers of u. Then we deduce from point (ii) of the previous
lemma that there exist an automorphism o’ of K¢ and a ¢’-derivation ¢’ of de K€ such that
S¢ = KCu; o', 8.
In both cases (i) and (ii), the inclusion Frac (S¢) C DY is clear. For the converse (which follows
from remark 1 of 5.2.1 in the particular case where G is finite), we have to prove that:

for any a and b non-zero in S, ab~! € D¢ implies ab™! € Frac (S%). (**)
We proceed by induction on dega + degb. If dega + degb = 0, then a € K, b € K. Thus
ab™' € D@ is equivalent to ab~! € K& C S¢; the result follows. Assume now that (**) is
satisfied for all (a,b) such that dega + degb < n, for some fixed integer n > 0. Suppose that a
and b are non-zero in S with ab~! € D¢ and dega + degb = n + 1. Up to replace ab~! by its
inverse, we can without any restriction suppose that degb < dega. By the proposition of 1.3.1,
there exist ¢, € S uniquely determined such that:

a=gb+r with degr < degb < dega. ()

For all g € G, we have g(ab™!) = ab™! and we can so introduce the element ¢ = a~!g(a) =
b~lg(b) in D. Denoting by val the discrete valuation v,-1 in D (see the remark in 5.2.2), it
follows from (*) that valc = 0. Applying g to (***), we have g(a) = g(q)g(b) + g(r); in other
words, gbc 4+ rec = ac = g(q)bc + g(r), or equivalently: (g(q) — q)bc = rc — g(r). The valuation of
the left member is val (g(¢) — ¢) + valb. For the right member, we have val g(r) = — deg g(r) =
—degr = valr = valre, thus val (re—g(r)) > valr. Since g(q) —q, b and r are in S, we conclude
that: deg(g(q) — ¢) + deg(b) < deg(r). The inequality degb < degr being incompatible with
(***), it follows that g(q) = ¢, and then g(r) = rc. Therefore we have g(rb=!) = rc(be) =t = rb~1.
So we have proved that ab™! = (gb + r)b~" = ¢ + rb~! with ¢ € S and rb~! € D% such that
deg(r) + deg(b) < 2deg(b) < deg(a) + deg(b) = n + 1. If r = 0, then ab™! = ¢ € S¢. If not,
we apply the inductive assumption to b~ ': there exist r; and b; non zero in S¢ such that que
rb~t = byt and so ab~! = (gby +71)b; ! € Frac (S). O

5.3.2 Rational invariants of the first Weyl algebra

We consider here the action of finite subgroups of automorphisms of the Weyl algebra
A1 (C) on its skewfield of fractions D;(C). We know from theorem 2.2.2 that the algebras
A1 (C)¢ and A;(C)¢ are not isomorphic when the finite subgroups G' and G’ are not
isomorphic. However, these algebras are always rationally equivalent, as proved by the
following theorem from [23].
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THEOREM. For any finite subgroup G of Aut A;(C), we have: Di(C)% ~ D;(C).

PROOF. With the notations of 2.2.2 and 5.2.3, we have R = A;(C) generated by p and ¢ with
pq —qp =1 and D = D;(C) = Frac R. The element w = pq of R satisfies p"w — wp™ = mp™
for all m > 1. The field of fractions of the subalgebra U,, of R generated by p™ and w is
Qm = C(w)(p™; 0™), where o is the C-automorphism of C(w) defined by o(w) = w+ 1. In
particular, Q1 = C(w)(p; o) = D. It’s clear Q,, ~ D for all m > 1. Let us define v = p~!gq,
which satisfies wv — vw = 2v. Since wv™! = p?, we have Q2 = C(w)(p?; 0?) = C(v)(w; 2v0,).
We denote by S the subalgebra C(v)[w ; 2v0,].

Let G be a finite subgroup of Aut R. From theorem 2.2.2, we can suppose without any restriction
that G is linear admissible. In the cyclic case of order n, the group G is generated by the
automorphism g, : p — (up,q + ¢, tq for ¢, a primitive n-th root of one. Then we have:
gn(w) = w, therefore D¢ = D9 = QJ" = Q, ~ D. Assume now that we are in one of the
cases D, Fg, E7, Eg. Thus G necessarily contains the involution e : p — —p,q — —q (because
u? = v? = 6 with the notations of 2.2.1), which satisfies D¢ = Q2. Let g be any element of
G. By (13), there exist a, 3,7, € C satisfying ad — Sy = 1 such that g(p) = ap + B¢ and

9(q) = yp+ dq. Thus g(p) = p(a + pv) and g(q) = p(y + dv), and so:

o) = 22 e o). (1
-1

Moreover, g(w) = ayp? + B3q¢* + adpq + Bygp. From relations ¢p = pg — 1, p? = wv™! =

v hw — 207! and ¢% = v + vw = wv — v, it follows that:

o(w) = (ﬁévz + (oeé;l—ﬁv)v - ow)w N (BévQ — BZU — 20@) @

We deduce from (f) and () that the restrictions to the algebra S = C(v)[w; 2v9,] of the
extensions to D of the elements of G determine a subgroup G’ ~ G/(e) of Aut S. Since e € G
and D¢ = Qo = Frac S, we have D¢ = QQI.

Assertion (1) allows to apply theorem 5.3.1 for K = C(v), d = 209, and S = K[w; d]. By
remark 2 of 5.2.1, we have: [Qs : Q5] < |G'| < +00, therefore S ¢ K. From the theorem
of 5.3.1 and point (iii) of the lemma of 5.3.1, there exists u € S¢ of positive degree (related
to w) and d’ a derivation of C(v)¢" such that S¢ = C(v)%[u; d'] and Q" = C(v)% (u; d').
By Liiroth theorem (see 5.1.1), C(v)%" is a purely transcendental extension C(z) de C. If d’
vanishes on C(z), then the subfield Q§" of Q2 would be C(z,u) with transcendence degree > 1
over C, which is impossible since Q2 ~ D;(C) (it’s a well known but not trivial result that D;(C)
doesn’t contain commutative subfield of transcendence degree > 1 ; see [13], corollary 6.6.18).
Therefore d'(z) # 0; defining t = d’(z)~'u, we obtain QS = C(2)(t; 8.) ~ D(C). O

EXAMPLE 1. In the case where G = (), is cyclic of order n, we have seen in the proof that
DY = @, is generated by w = pq and p"; then a pair (p,,¢,) of generators of D;(C)%»
satisfying [pn, q,] = 11is p, = p" et ¢, = (np") 'pq.

EXAMPLE 2. In the case where G = D,, is binary dihedral of order 4n (see 2.2.1),
the interested reader could find in [23] the calculation of the following pair (p,,g,) of
generators of D;(C)Pr satisfying [pn,¢q.] =1 :

1 1 \—n oy (07T — 1N 2 _ (p~lg)™ + 1\2
n= 15 ()" = (") )(m> 2pg—1), g = (W> ,
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5.3.3 Rational invariants of polynomial functions in two variables

We consider R = Clyl[z; o, 0], for 0 a C-automorphism and ¢ a o-derivation of Cl[y].

LEMMA. If R = Cly|[z; 6], with § an ordinary derivation of C[y| such that 6(y) ¢ C, then
Frac RY ~ D, (C) for any finite subgroup of Aut R.

PROOF. Let us denote K = C(y) and D = Frac R = C(y)(z; 0). Replacing x by 2’ = §(y) ',
we have D = C(y)(2’; 9y),and so D ~ D;(C). Since d(y) ¢ C, the proposition of 2.3.4 implies
that any g € Aut R satisfies g(K) C K for K = C(y), and the restriction of g to S = C(y)[z; ¢]
of the extension to D = FracS determines an automorphism of S. For G a finite subgroup
of Aut R we can apply the theorem of 5.3.1 and point (iii) of the lemma of 5.3.1: there exist
u € SY of positive degree and ¢’ a derivation of C(y)¢ such that S = C(y)%[u; ¢'] and
D = C(y)%(u; ¢). Then we achieve the proof as in the proof of the previous theorem. O

LEMMA. If R is the quantum plane C,[x,y] for ¢ € C* not a root of one, then Frac R ~
D‘f,((C) with ¢' = ¢/®! for any finite subgroup G of Aut R.

PROOF. Let G a finite group of Aut R where R = C,[x,y]. By point (iii) of the first proposition
of 4.1.1, there exists for any g € G a pair (ay,3y) € C* x C* such that g(y) = a4y and
g(z) = Bgx. Denote by m and m’ the orders of the cyclic groups {ay; g € G} and {f,; g € G}
of C* respectively. In particular, C(y)¢ = C(y™). We can apply the theorem of 5.3.1 to the
extension S = C(y)[z; o] of R = C[y][x; o], where o(y) = qy. We have S¢ # C(y)¢ because
#™ € SG. Let n be the minimal degree related to z of the elements of SC of positive degree.
For any u € S@ of degree n, there exist ¢’ and ¢’ such that S = C(y™)[u; o', ']. By assertion
(iii) of the lemma of 5.3.1, the automorphism ¢’ of C(y™) is the restriction of 6" to C(y™). We
show firstly that we can choose u monomial. We develop v = a,(y)z" +---+a1(y)z+ao(y) with
n > 1, a;(y) € C(y) for all 0 < ¢ < n and a,(y) # 0. Denote by p € Z the valuation (related
to y) of an(y) in the extension C((y)) of C(y). The action of G being diagonal on Cz & Cy, the
monomial v = yPz" lies in S¢. So we obtain S = C(y™)[v; "] and DF = C(y™)(v; o™) =~ qul
for ¢ = ¢"™". We have to check that mn = |G|. Let g € G determining an inner automorphism of
D = Frac R = Frac S; there exists non-zero r € D such that g(s) = rsr~! of all s € D. Denoting
by d the order of g in G, we have then r¢ central in D, and so 7¢ € C by (73). Embedding
D = C(y)(x; o) in C(y)((x~*; 071)), see remark in 5.2.2, we deduce that r € C and so g = idg.
We have proved that any nontrivial automorphism in G is outer. Applying remark 2 of 5.2.1, it
follows that [D : D] = |G|. We have:

DY =C(y™)(yz"; o") S L=Cly)(y’a"; 0") = Cly)(a"; ") € D =C(y)(z; 0).
Thus [D : L] = n and [L : D] = m. We conclude |G| = [D : D%] = mn. O

LEMMA. If R is the quantum Weyl algebra A(C) for ¢ € C* not a root of one, then
Frac RC ~ DY (C) with ¢ = ¢ for any finite subgroup of Aut R.

PROOF. The proof is easier than in the case of the quantum plane and left to the reader as an

exercise (use assertion (74) and the description of Aut A7(C) recalled in 2.3.4, from [21]) ; see

proposition 3.5 of [23] for details. O
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We are now in position to summarize in the following theorem the results on rational
invariants for Ore extensions in two variables.

THEOREM. Let R = C[y][z; 0,0] with ¢ an automorphism and 0 a o-derivation of C[y|.
Let D = Frac R with center C. Then we are in one of the two following cases:

(i) D ~ Dy(C), and D% ~ D;(C) for any finite subgroup G of Aut R ;

IG|

(i) there exists ¢ € C* not a root of one such that D ~ DJ(C), and D ~ D/
for any finite subgroup G of Aut R.

(C)

PROOF. We just combine the classification lemma 2.3.4 with the assertions (64) and (73) on the
centers, the main theorem of 5.3.2, and the three previous lemmas. O

REMARK. It could be relevant to underline here that previous results only concern actions
on Frac R which extend actions on R. The question of determining D¢ for other types of
subgroups G of Aut D is another problem, and the structure of the groups Aut D;(C) and
Aut D}(C) remains unknown (see [22]). In particular, we can define a notion of rational
triangular automorphism related to one of the presentations (61) or (63) of the Weyl
skewfield D;(C) ; the three following results are proved in [24].

1. The automorphisms of D;(C) = C(q)(p; J,) which stabilizing C(q) are of the form:

0: g 0(q) = 2LE, prr0(p) = P + /@),

for (27) € GL2(C) and f(q) € C(q).
2. The automorphisms of D;(C) = C(pq)(p; o) stabilizing C(pq) are of the form:

0: pg— 0(pq) =pg+a, p—0(p)=f(pqp,

for @« € C and f(pq) € C(pq), or are the product of such an automorphism by the
involution pq — —pq, p+ p~ L.

3. For any finite subgroup of Aut D;(C) stabilizing one of the three subfields C(p),
C(q) or C(pq), we have D;(C)¢ ~ D,(C).

5.4 Noncommutative Noether’s problem
5.4.1 Rational invariants and the Gelfand-Kirillov conjecture

Let k be a field of characteristic zero. We have seen in 2.3.3 that any representation of
dimension n of a group G gives rise to an action of G on the commutative polynomial
algebra S = Kk[q1, ..., ¢, which extends canonically into an action by automorphisms
on the Weyl algebra A, (k) defined from relations (22) or (23), and then to the Weyl
skewfield D, (k). Following the philosophy of the Gelfand-Kirillov problem (see above
5.2.3) by considering the Weyl skewfields D, (k) as significant classical noncommutative
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analogues of the purely transcendental extensions of k, the following question appears of
a relevant noncommutative formulation of Noether’s problem.

Question: do we have D, (k)¢ ~ D,, (k) for some nonnegative integers m and ¢ ?

By somewhat specialized considerations on various noncommutative versions of the tran-
scendence degree (which cannot be developed here), we can give the following two preci-
sions (see [26] for the proofs):

1. if we have a positive answer to the above question, then m and t satisfy 2m+t < 2n;

2. if we have a positive answer to the above question for a finite group G, then m =n
and ¢t = 0, and so D, (k)¢ ~ D, (k).

5.4.2 Rational invariants under linear actions of finite abelian groups

The main result (form [26]) is the following.

THEOREM. For a representation of a group G (non necessarily finite) which is a direct

summand of n representations of dimension one, there exists a unique integer 0 < s < n
such that D,(k)% ~ D, _; (k).

PROOF. By (71), the integer s is no more than the transcendence degree over k of the center of
Dy,—s (k) and so is unique. Now we proceed by induction on n to prove the existence of s.

1) Assume that n = 1. Then G acts on A;(k) = k[g1][p1; 9y,] by automorphisms of the form:
g9(q)) = x1(9)qr, 9(p1) = xa(9)"'p1, forallge G

where x1 is a character G — k*. The element w; = p1q; is invariant under G. We define in
Di(k) = k(w1)(p1, o1), see (63), the subalgebra S; = k(w1 )[p1, o1]. We have FracS; = D; (k).
Any g € G fixes wy and acts on p; by g(p1) = x1(9)p1. We can apply the theorem of 5.3.1.
If S¢ C k(wy), then Dy(k)¢ = S¢ = k(w;1)% = k(w;); we deduce that in this case D (k) =~
Di_ss(k) with s = 1. If S ¢ k(wi), then S{ is an Ore extension k(wi)[u; o’,8'] for some
automorphism ¢’ and some o’-derivation ¢’ of k(w;), and some polynomial u in the variable p;
with coefficients in k(w;) such that g(u) = w for all g € G and of minimal degree. Because of the
form of the action of G on pq, we can choose without any restriction v = p{ for an integer a > 1,
and so 0/ = ¢ and & = 0. To sum up, D; (k)¢ = FracS¥ = k(w)(p{; of). This skewfield
is also generated by = p¢ and y = a~lwip;® which satisfy 2y — yz = 1. We conclude that
D1 (k)¢ ~ Dy (k) = D;_s (k) for s = 0.

2) Now suppose that the theorem is true for any direct summand of n — 1 representations
of dimension one of any group over any field of characteristic zero. Let us consider a direct
summand of n representations of dimension one of a group G over k. Then G acts on A, (k) by
automorphisms of the form:

9(@) = xi(9)ai, 9(pi) = xi(9)"'pi;, forallge Gand1<i<n,
where x1, X2, .., Xn are characters G — k*. Thus, recalling the notation w; = p;q;, we have:

g(w;) = w;, forany g € G and any 1 <i <n.
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In Dy (k) = k(wy,wa,...,wn)(p1; 01)(p2; 02) - (Pn=1; 0n—1)(Pn; on), see (69), let us consider
the subfields:

L = k(wy),

K = k(wi,wa,...,wn)(p1;01)(p2; 02) - (Pn-1; On-1)
= k(wp)(wi,ws, ..., wo—1)(p1; o1)(p2; 02) - (Pn=1; On-1)
~ anl(L),

and the subalgebra S, = K|[p,; o] which satisfies FracS,, = D, (k). Applying the induction
hypothesis to the restriction of the action of G by L-automorphisms on A,_1(L), there exists
an integer 0 < s < n — 1 such that: D, _1(L)% ~ D,,_1_54(L) ~ Dy, (s41),s+1(k). Since K is
stable under the action of G, we can apply the theorem of 5.3.1 to the ring S, = Klp,; on].
Two cases are possible.

First case: S = KY. Then we obtain:
Dy (k)¢ = Frac (S§) = K¢ ~ D, 1(L)% = D,,_(511)541(k).

Second case: there exists a polynomial u € S,, with deg,, u > 1 such that g(u) = u for all g € G.
Choosing u such that deg, w is minimal, there exist an automorphism o' and a o’-derivation ¢’
of K¢ such that S = K%[u; o, and D, (k)¢ = Frac S¢ = K% (u; o, d").

Let us develop u = fi,p' + - -+ fipn + fo with m > 1 and f; € K€ for all 0 < i < m. In view
of the action of G on p,, it’s clear that the monomial f,,p" is then invariant under G. Using
the embedding in skewfield of Laurent series (see 5.2.2), we can develop f, in:

K =k(wi,wa,...,wa)((pr 5 o7 N0y 505 ) - ((onty 1 00 2h))-

The action of G extends to K acting diagonally on the p;’s and fixing w;’s. Therefore we can
choose without any restriction a monomial w:

u=pi"...p¢ with (a1,...,a,) € Z", and a, > 1.

For any 1 < j < n, we have uw; = (w; + a;)u. Let us introduce the elements:

w) = w1 — ajtagw,,  wh = apwe —aytagw,, ..., W = apwp_1 — a; an_1wy.
We obtain: wju = uw] for any 1 < j <n—1. Since 0;(w}) = wj +J;; pour 1 <i,j <n—1, the
skewfield F,,_1 = k(w), wh, ..., wl,_1)(p1; 01)(p2; 02) -+ (Pn—1; on—1) is isomorphic to D,_1 (k).
More precisely, F;,_1 is the skewfield of fractions of the algebra

klgis .- s @n_allp1s O] [pn—15 9y 1,

where ¢, = wipi_l for any 1 <1 < n—1. This algebra is isomorphic to the Weyl algebra A, (k).
Applying the induction hypothesis, there exists 0 < s < n—1 such that F$—1 ~ Dy_1-ss(k). It’s
clear by definition of the w’’s that k(wy,)(wy, wy, ..., wy,_;) = k(wp) (w1, w2, . .., ws—1); since wy,
commutes with all the elements of F,_1, we deduce that K = F,_1(w,). The algebra SnG =
KC[u; o',6'] can then be written S¢ = F& | (wy,)[u; o’,0"]. The generator u commutes with w
for any 0 < j < n—1 as we have seen above, commutes with all the p;’s by definition, and satisfies
with wy, the relation vw, = (w, + a,)u. Therefore the change of variables w!, = a,, Lw,, implies:
S¢ = FY | (w))[u; "], with ¢” which is the identity map on F¢ | and satisfies o (w/,) = w/, +1.
It follows that: Frac S ~ Dl(FT?_l) ~ Di(Dp—1-ss(k)) >~ Dy s(k). O
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COROLLARY (Application to finite abelian groups). We suppose here that k is alge-
braically closed. Then, for any finite dimensional representation of a finite abelian group
G, we have D, (k) ~ D, (k).

PrOOF. By Schur’s lemma and total reducibility, any finite representation of G is a direct
summand of one dimensional representations (see 2.3.1). Then the result follows from the
previous theorem and remark 2 of 5.4.1. ]

This result already appears in [24]. The following corollary proves in particular that for
non necessarily finite groups G, all possible values of s can be obtained in the previous
theorem.

COROLLARY (Application to the canonical action of subgroups of a torus). For an integer
n > 1, let T,, be the torus (k*)™ acting canonically on the vector space k™. Then:

(i) for any subgroup G of T,, there exists a unique integer 0 < s < n such that
D, (k)¢ ~ D, (k);

(ii) for any integer 0 < s < n there exists at least one subgroup G of T, such that
D, (k)¢ ~ D, (k);

(iii) in particular s =n if G =T, and s = 0 if G is finite.

PROOF. Point (i) is just the application of the previous theorem. For (ii), let us fix an integer
0 < s <n and consider in T,, the subgroup:

G = {Diag (a1,...,as,1,...,1) ; (aq,...,a5) € (k*)*} =~ T,
acting by automorphisms on A, (k):

G — aiqi, pi— o 'p;, pour tout 1<i<s,
Qi 7 Qi DPi > Pis pour tout s+ 1<i < n.

In the skewfield D, (k) = k(wy,wa,...,wy)(p1; 01)(p2; 02) - (Pn; on), we introduce the sub-
field K = k(wi,wa, ..., wn)(Pss1; Osy1)(Pst2; 0st2) - (Pn; 0n). Then the subalgebra S =
Kpi; 1] [ps; 05| satisfies Frac S = D, (k). It’s clear that K is invariant under the action of
G. If S ¢ K, we can find in particular in S¢ a monomial:

u:vpclllng---pgS, ve K, v#£0, dy,...,ds €N, (dy,...,ds) # (0,...,0),

then af'a$? - a% =1 for all (a1, as, ..., as) € (k*)%, and so a contradiction. We conclude with
theorem 5.3.1 that (FracS)¢ = S¢ = K%, and so D, (k)¢ = K. It’s clear that K ~ D,,_; +(k);
this achieves the proof of point (ii). Point (iii) follows then from the previous corollary. O

The actions of tori T,, on the Weyl algebras have been studied in particular in [58].
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5.4.3 Rational invariants for differential operators on Kleinian surfaces

Another situation where it’s possible to give a positive answer to the question of 5.4.1
is the case of a 2-dimensional representation. Using the main theorem 5.3.1 as a key
argument, one can the prove (by technical developments which cannot be detailed her;
see [26] for a complete proof) the following general result.

THEOREM ([26]).

(i) For any 2-dimensional representation of a group G, there exist two nonnegative
integers m,t with 1 < m + ¢ < 2 such that Dy(k)¥ ~ D, ;(k).

(ii) In particular, for any 2-dimensional representation of a finite group G, we have
DQ(k)G ~ Dg(k)

As an application, let us consider again the canonical linear action of a finite subgroup
G of SLy(C) on S = Clx,y] = C[V] for V = C?. The corresponding invariant algebra
S% is one of the Kleinian surfaces studied in 2.2.1. This action extends to the rational
functions field K = Frac S = C(z, y) and it follows from Castelnuovo or Burnside theorems
(see 5.1.1 and 5.1.2) that K¢ ~ K. Considering the first Weyl algebra A;(C) as a
noncommutative deformation of C[z,y], we have studied in 2.2.2 the action of G on
A;(C) and the associated deformation A;(C)“ of the Kleinian surface S¢. The extension
of the action to Frac A;(C) = D;(C) has been considered in 5.3.2, and we have proved
that D;(C)¥ ~ D;(C). From another point of view, we can apply to the action of G' on
S the duality extension process described in 2.3.3 in order to obtain an action on Ay(C).
As explained in second example 2.3.3, the invariant algebra Ay(C)¢ = (Diff $)¢ is then
isomorphic to Diff (S%); in other words the invariants of differential operators on S are
isomorphic to the differential operators on the Kleinian surface S¢ (by theorem 5 of [52]).
Of course the action extends to Dy(C) = Frac A2(C) and the following corollary follows
then from point (ii) of the previous theorem (see also further the end of 5.5.2).

COROLLARY. Let G be a finite subgroup of SLy; for the action on Ay(C) = Diff S canoni-
cally deduced from the natural action of G on S = C|x,y|, we have Dy(C)% =~ Dy(C).

The method used in [26] to prove this result allows to compute explicitly, according to
each type of G in the classification of 2.2.1, some generators Pp, P, Q1, Qs of Dy(C)%
satisfying canonical relations [Py, Q1] = [P, Q2] = 1 and [P, Pj] = [Q:, Q4] = [P, Q;] =0
for i # j. For instance, denoting As(C) = Clg1, g2)[p1; Oy |1 Oy), a solution for the
type A,_1 is:

n=2p n=2p+1
Q= qfqu Q= qu+1q272p71
Q2= q1q2 Q2 = q{’“q;p
Pi= g a a1 — 550" d5  pe Pi= — gl g g py — 2L g7 g 2,
Py = 3(a 1+ 0 'p2) Py=q;Pdpr+ 0.7 ' pe
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5.5 Poisson structure on invariants and localization
5.5.1 Poisson analogue of Noether’s problem

FORMULATION OF THE MAIN QUESTION. We come back to the commutative situation
of 3.1.1 where A is a commutative Poisson algebra over a base field k. Suppose that A
is a domain and consider its field of fractions F' = Frac.A. The Poisson bracket extends
canonically to F' (see 3.1.1 with § = A\ {0}). Take now a finite group G of Poisson
automorphisms of A. We know (see 3.1.1) that in this case A% is a Poisson subalgebra.
From the preliminary proposition of 5.1, the field of fractions of AY is Frac (AY) =
(Frac A)¢ = FC. At the intersection of problems 5.1.1 and 5.4.1, we formulate (see [34])
the following question:

PROBLEM (Poisson-Noether’s problem) : is there a field isomorphism between F¢ and F
which is a Poisson isomorphism 7

COMMENT: a Poisson version of Gelfand-Kirillov problem. For any field K and
any integer n > 1, denote by F),(K) the field of fractions of the symplectic Poisson
algebra of dimension 2n over K (see example 2 in 3.1.1). Let g be an algebraic Lie
algebra over a base field k, S(g) the symmetric algebra, L(g) the field of fractions
of S(g). Similarly to the Gelfand-Kirillov problem (see 5.2.3), we can ask:

Question: do we have L(g) ~ F,,(k(z1,...,2)) for some nonegative integers m,t ?

Here L(g) ~ Fy(k(z1,...,2)) means that the Poisson center of L(g) is purely
transcendental of degree t over k and L(g) is isomorphic to the field of fractions of a
symplectic Poisson algebra of dimension 2m over this Poisson center. The original
geometric motivations of this problem arise from [67]. Recent algebraic results on
it can be found in [48] and [66].

The most natural question is then the following:

PROBLEM (symplectic Poisson-Noether’s problem) : for a finite subgroup G of the sym-
plectic group Sp,,(C) acting by the linear canonical Poisson action on the symplectic
polynomial algebra of dimension 2n, do we have a Poisson isomorphism F,(C)¢ ~ F,, ?
[or more generally for any G, a Poisson isomorphism F,,(C)¢ ~ F,,(C(zy, ..., z)) for some
nonegative integers m,t such that 2n > 2m + ¢|.

EXAMPLES IN THE CASE OF THE SYMPLECTIC PLANE. We take for A4 the algebra C|x, y]
with the symplectic Poisson bracket defined from {z,y} = 1. Thus F = Frac A = C(z,v).
We introduce w := zy € A, an the subfields @, = C(w,2™) of F for all m > 1. In
particular @ = C(w, z) = C(x,y) = F. The Q,, are stable for the Poisson bracket since

{z™, w} =ma™ for any m > 1. (75)
Hence the element z,, := %x_mw = %ywl_m satisfies {z,,, w} = —mz,, and we deduce:
Qm = C(zpm,2™), with {z,,2™} =1 for any m > 1. (76)
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So each @), is isomorphic to C(z,y) as a field and as a Poisson algebra. We also need the
element v := 27y = 22, € F; because wv~! = 22, we have

Q2 = C(w,2%) = C(v,w), with {w,v} = 2v for any m > 1. (77)

e EXAMPLE. Let G be the cyclic subgroup of order n in SLs generated by the
automorphism g, acting on C[z,y] by gn(z) = (uz and g, (y) = ¢, 'y for ¢, a n-th
primitive root of one. Then g,(w) = w. The algebra S := C(w)[z] is such that
FracS = F and g, acts on S fixing w and multiplying « by (,. Thus it is clear
that S¢ = C(w)[z"] and it follows directly from (commutative) theorem 5.1.2 that
FCG = C(w,z") = Q,. Finally we have proved that:

C(x,y)G = C(pn,qn) with p, = %ywl_” and ¢, = =" satisfying {pn,qn} = 1,

e EXAMPLE. Let G be the binary dihedral subgroup of order 4n in SLo generated
by the automorphism go, acting on C[z,y| by gon(x) = (onz and go,(y) = C2_n1y
for (a;, a 2n-th primitive root of one, and the automorphism p define by p(z) = iy
and p(y) = iz (see 2.2.1). We have FY¢ = (F9n)* = Q. Since 22 = wv™!, we
have z%" = w"v™" ; thus Q2, = C(w,2*") = C(w,v"), with {w,v"} = 2nv"™. The
action of p on Qg is given by p(w) = —w and p(v"™) = v~". The element s, =
5= (™" — v™)w satisfies u(sy) = s, and Qan = C(sp, v™), with {s,,v"} =1 —v?".
By a last change of variable t,, := (v™ + 1)(v"™ — 1)7!, we deduce C(v") = C(t,) by
Liiroth’s theorem, and the action of u reduces to u(t,) = —t,. Because p(sy,) = sp,
we have Qb = C(sy,,tn)* = C(sn,t2). We compute:

{snotn} = ({sn, 0"} = 1) = (0" + 1) {sp,0"}) (v — 1)~
= —2(1 —v®)(1 —v") "2 = 2t,,

and then {s,,t2} = 2t {sn,tn} = 4t2. It follows that Qb = C(sp,t2), with
{sn,t2} = 4t2. Denoting finally p, := (2t,)"%s, and ¢, := t2, we conclude that
by = C(pn, qn), with {pn, ¢} = 1. We have proved that:

C(z,9)% = C(pn, qn) with p, and g, satisfying {p,,¢,} = 1 defined by :

R Lo (@) — 12 @) 12
= g (@™ = @) () e = ()

Hence the answer to the Poisson-Noether’s problem is positive in both cases. More gen-
erally, we have (from [34]):

PROPOSITION. Let A be the Poisson algebra Clz,y| for the symplectic bracket. Let
F = C(z,y) be its field of fractions. For any finite subgroup G of SLy acting linearly on
A, there exist two elements p and q in F¢ such that F¢ = C(p, q) and {p,q} = 1.

Therefore the assignment x + p and y +— q defines an field isomorphism from F to F¢
which is also a Poisson isomorphism.

PROOF. The proof is somewhat formally similar to the noncommutative case in 5.3.2. Let G
be any finite subgroup of SLo. The cyclic case being solved in the first above example, we can
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suppose that the type of G is D,,, Eg, E7 or Eg. Then G contains the involution e defined by
e(r) = —x and e(y) = —y, with F'° = Q2 with notation (77). Take any g € G. There exist
a,B,7v,e € C with ae — fy = 1 such that g(z) = az + By and g(y) = vz + ey. Recall that
w:=zy and v := 2~ 1y. Since g(x) = x(a + Bv) and g(y) = z(y + v), we obtain

g(v) = 2 c k(). (1)

Moreover, g(w) = ayz? + Bey? + asry + Byyx and then

g(w) = <st2+(as+ﬂ7)v+aw)w‘ (1)

v

It follows from (}) and (f) that the restrictions to the algebra S = C(v)[w] of the extensions
to F of the elements of G determine a subgroup G’ ~ G/(e) of Aut¢S. Because e € G and
F¢ = Q9 = Frac S, we deduce that & = QQG/.

Denoting K = C(v), assertion (f) allows to apply theorem 5.1.2 with S = K[w] and Q2 =
FracS = K(w) = C(v,w). Since S ¢ K because [Q2 : QS'] = |G| < +oo, there exists
uw € SY of degree w > 1 minimal among the degrees of all elements S’ \ K G" such that
S¢" = K [u] and QS = K (u). Denote u = y, (0)w™ + a1 (v)w™ 1t + - - 4 ay (v)w + ag(v),
with a;(v) € K for any 0 < i < m and a,,(v) # 0. For any h(v) € K we have {a;(v),h(v)} =0
thus {a;(v)w’, h(v)} = a;(v){w’, h(v)}. Since {w,v} = 2v implies {w, h(v)} = 2v0,(h(v)), it
follows that {w’, h(v)} = 209, (h(v))w'"!. Finally:

{u, h(v)} = 2mva, (v)d, (h(v))w™ 1 + .- for any h(v) € K

In particular, if h(v) € K, then {u, h(v)} € S because u € S and the elements of G’ are
Poisson automorphisms of S. By minimality of the degree m of u among degrees (related to w)
of elements in &\ K&, it is impossible that m — 1 > 1 when 8, (h(v)) # 0. So we have proved:

if h(v) € K& with h(v) ¢ C, then {u, h(v)} € K.

By Liiroth’s theorem, C(v)¢" is a purely transcendental extension C(z) of C. Since z € K and
z ¢ C, it follows from previous calculations that m = 1 and {u, z} = 2va;(v)9,(2(v)) # 0. We
introduce ¢ := {u,z} ' in order to obtain Q" = C(z,t) with {t,z} = 1, and the proof is
complete. ]

REMARK. Another example of positive answer to the symplectic form of Poisson-Noether’s
problem in higher dimension can be found in [34] and concerns the action of the Weyl
group Bs of rank two on the symplectic polynomial algebra in four generators. The author
also gives a Poisson analogue of Miyata’s theorem, and the following interesting example
related to the general (non symplectic) formulation of the Poisson-Noether’s problem

EXAMPLE FOR THE MULTIPLICATIVE POISSON STRUCTURE. We return here to the situ-
ation studied in 4.2 where a finite subgroup G of SLy(Z) acts by Poisson automorphisms
defined from (52) and (53) on the commutative Poisson algebra T = C[z*!, y*!] for the
multiplicative Poisson bracket {z,y} = xy, see (39) or (40). As an illustration of the cor-
responding Poisson-Noether’s problem that in the particular case where G is the group
Gio of order two (see 4.2.2), it is proved in [34] that:
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CLAIM. There exists a Poisson isomorphism F¢ ~ F where F = C(z,y), for
the multiplicative Poisson bracket {z,y} = xy.

PROOF. Here G is just {Is,e} where e := —Iy acting by (52) and (53), that is
ex = ' and ey = y~!. It is known that TC is generated by & = z + 271,

& = y+y tand § = zy+x~ly~!, submitted to the relation ¢ &, —60%—£2—£2+4 = 0.

Step 1. In F& = C(&1,&2,0), this algebraic dependence relation rewrites into:
(20 —6162)> = €165 — 47 + &5 —4) & (20 —&1&)* = (6 —4)(& —4)

20 — &162\2 2 §2+2
& (—22) = —4) .
( &2 ) = (& )52_2
_ 2
Let us introduce 77::20551262 e F¢ and «a:= 5277 i §2+§ € C(n,&1).
2~ 1~ 2

2 1
We have: & = M
a—1

We conclude that F'¢ = C(n), &;).

€ C(n,&) and then 6= §(n(&2 —2) + &1&) € C(n,&).

Step 2. Concerning the Poisson structure, we start from:
{&1,6) =20 — £1&, {&,0} = 26 — 0& and {0,&} = 26 — 0.
Thus: {n,&} = {288 g} = 298 (6, 2 6} + {20~ 66, &)
= (2%;§12£2)2 + 59 (2(26 — 061) + £1(20 — £1&2))
=’ + 24— =P+ i+ 1) -8
= 5(° — €& +4).
Hence: {n, n* =& +4} = ~&(n* — & +4) and {&1, n* =& +4} = —n(® — & +4).

Therefore: {n+ &1, n? — &2 +4} = —(n+ &1)(n* — €2 +4) and then:
e m — & +4) = g (0 — & +4).

Step 3. Conclusion: we define p := 77“:-51 and ¢:=n?— & +4=n+&)(n—§&)+4.

From the first step, we have F¢ = C(n+£&1,1m—&1) = C(p, ¢). From the second step
{p,a} = pq. O

5.5.2 Invariants of symplectic Poisson enveloping algebras

INTRODUCTION. Let A be a commutative Poisson algebra over a base field k. For any
a € A, the derivation {a, -} of A is called the hamiltonian derivation associated to a.
We denote it by o,. From Jacobi identity we deduce that o0y, — 0v0, = 04y for any
a,b € A, then the space Derpan(A) of hamiltonian derivations of A is a Lie subalgebra
of DerA. The notion of Poisson enveloping algebra Upeis(A) defined in [51] can be easily
described in the particular case where the Poisson structure on A is the symplectic one.
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We fix V' a C-vector space of dimension n. Let (q1,...,¢,) be a basis of V| (¢ui1,---,Gon)
its dual basis, and { -, - } the symplectic Poisson bracket defined on V' & V* and then on
OVaeV*):=5=Clq,. - qn Gnits---,Gon) by

{¢,q;} = 0p+ij forany1<i<n, n+1<j<2n. (78)

e For any Poisson subalgebra S’ of S, the Poisson enveloping algebra Up,;s(.S”) is defined
as the subalgebra of Endy(S’) generated by the multiplications p, by all elements a € S’
and the hamiltonian derivation o, for all s € S’. It is clear in particular for S’ = S that
Upois(S) C Diff S = Ay, (C) the Weyl algebra

A2n((c) = C[Qb - 7Q2n][p1 ; 81] ce [an ; 32n]-

Denoting by o : S — As,(C) the map a — o,, and up to the usual identifications y,, = ¢,
and 0, = p; (see 2.3.3), it follows from (78) that:

n

o(a) =Y (0(@)puri = Onsila)pi) for any a € S, (79)

=1

In particular 0(¢;) = pnyi and 0(gny;) = —p; for any 1 <4 < n. Thus any p; (1 < j < 2n)
acts as an hamiltonian derivation on S, and therefore:

uPois<S) - AQn(C> (8())

e Consider K = FracS = C(qi, - .., qon), and the algebra Bs,(C) of differential operators
with rational coefficients:

Bon(C) = Kp1; 01 ... [pan; O2n) = Cqu, - -, q2n)[p1; O1] - - - [P2n 5 Oanl.

Both algebras Ay, (C) C By,(C) have the same skewfield of fractions which is the Weyl
skewfield

D, (C) = K(p1; O1) ... (pan; O2n) = Clqu, .-, q2n) (P15 O1) - .. (D2n; O2n)-

For the Poisson structure on K extending the bracket in S, we can also extend the map
o0 : K — DerK defined by ¢ + o.. For any ¢ = a~'b with a,b € S,a # 0, we have
o(c) = ato(b) — a?bo(a). Therefore the subalgebra of EndK generated by K and
o(K) is the same that the subalgebra generated by K and o(S). This last algebra being
generated by K and the p;’s (1 < j < 2n), we conclude that

uPois(K) = BZn((C) (81>

e Let G be a finite subgroup of the symplectic group Sp(V @& V*) ~ Sp,,,(C), acting by
Poisson automorphisms on S. The invariant algebra is a Poisson subalgebra of S. Then
we can consider the enveloping Poisson algebra

V 1= Upeis(SY).
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The action of G extends canonically to K = FracS. Since G is finite, we have K¢ =
Frac (S%) and we can introduce:

W = Z/{pois(KG).

This action also extends canonically (see 2.3.3) into an action by automorphisms on
Diff S = A,(C), and then on By, (C) and D, (C). We have the following inclusions:

(1) vcw, (2) YV C Ay (C)Y, (3) W C By,(C)“,
or in other words:
(1> Z/{Pois(SG) C uPois(KG)7 (2) uPois(SG) C uPois(‘S)Gu (3) uPois(KG) C uPois(K)G-

PROOF. Assertion (1) is clear. Take a € S¢ and consider the hamiltonian derivation
04 € A2, (C). Forany g € G, we apply (21) to calculate g.0, = go,g~'. Then for any
z € S, we have (g.04)(2) = g(0a(97"(2))) = 9({a,g7"(2)}) = {g(a), 2} = {a,}.
Thus g.0, = 0, for all g € G and a € S¥. We conclude that o(S) C A§; this is

enough to prove (2). The proof of (3) is similar. O

We are now in position to summarize in the following theorem the main results concerning
this kind of invariant algebras. Another complementary result lies in [51] which proves
that Upeis(SY) and Upis(S) are not Morita equivalent. We emphasize here in particular
the quite different picture between the original algebras and their localized versions.

THEOREM. Let G be a nontrivial finite subgroup of Sp,,,(C). If G is abelian, or for any
G when n =1, we have:

(i) z’{PoiS(SG) 7’é uPoiS<S)G - AZn(C>G ¢ A2n((c)-
(11) L{pois(KG) = L{poiS(K)G = BQn(C)G ~ BQn(C)

e PROOF OF ASSERTION (i). We denote N = 2n and consider on Ax(C) the Z-graduation
extending the natural graduation on S by giving degree 1 to each ¢; and degree —1 to each p;.

An(C) = @jez T; and S = EBjeN Sj

where T} is spanned by monomials ¢7* . .. q}zVNpIil .. .p?\’,v such that a1 +---+any—b1—---—by = 7,
and S; by monomials ¢{*...¢3" such that a; +--- + ay = j. We know by Noether’s theorem
that the subalgebra S is finitely generated. We claim that more precisely S€ is here generated
by homogeneous elements of degree > 2.

This is clear from 2.2.1 when n = 1 (and so G C SL3). In the case where G is
abelian, we can suppose by total reducibility argument (exactly as in 2.3.1) that
(up to conjugation) any automorphism g € G acts on the symplectic basis (78) of S

by g(ai) = xi(9)¢i and g(gitn = xi(9) ™" gitn for some complex characters x1, ..., Xn
of GG, and the result follows.
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Let s be any element in SC. Tt decomposes into s = sg+s2+s3+---+s; with so € C and s; € S
for any 2 < j < k. With the usual notations 9; = 0, it follows that 0;(sg) = 0 and deg J;(s;) > 1
for any 1 < ¢ < 2n. Hence for any 1 < i < n, we have degd;(s) > 1, degdn+i(s) > 1 and
degpnti = degp; = —1. We conclude with relation (79) that o(s) € ;5 T; for any s € SE.
Since S¢ C S C @D,>0T; and Upois(SY) is generated by S¢ and o(SY), we conclude that:

Upois(SY) C D501

The group G acts linearly on W = @&1<;<nCg; but also on W’ = ®1<;<nyCp; [this follows from
the definition of the extension of the action studied in 2.3.3, see in particular identities (21),
(22) and (23)]. Thus, applying the same argument as above to the action of G on S" = O(W') =
Clp1,...,pn], we know that S’ is generated by homogeneous elements of degree > 2 into the
pi’s. Such an elements lies in Ayx(C)“ but not in ,>0T;. We have proved that the inclusion
Upois(SY) C A2, (C)¢ is not an equality. For the non isomorphism of Ay, (C) with Ag,(C), see
references at the end of section 2.3.1 O

e PROOF OF ASSERTION (ii) IN THE ABELIAN CASE. We fix a finite abelian subgroup G of
Sp(V @ V*). By total reducibility (and as in 2.3.1, see above), we can suppose up to change the
symplectic basis that G acts on V @ V* and then on S = O(V @ V*) = C|qu, ..., q2n] by

9(qj) = ¢;(9)q; and  g(gjtn) = ¢j(9) '¢j4n forany ge G, 1<j <n,

where ¢1,. .., ¢, are complex characters of G. Following (21), (22) and (23) defining the exten-
sion of the action to As,(2C), and therefore to Ba,(C) and D3, (C), we obtain

9(p;) = ¢;(9)'p; and  g(pjtn) = ¢j(9)pj+n forany g€ G, 1<j <n.

The elements wi, ..., wa, € A2,(C) defined by w; := ¢;p; for any 1 < j < 2n satisfy the
relations

(wj,qi] = 0;;¢; and [w;,w;] =0 foralll<i,j<2n.
Then it is clear that

B, (C) = Kfw; di] ... [wan; don] = C(q1, ..., q2n)[wi; di] ... [way ; dan],

where d; denotes the Euler derivative d; = ¢;0,,. By construction, all w;’s are G-invariants.
Hence K¢ is stable for each d; because if a € K¢, then d;(a) = wja — aw; with w; € Az, (C)Y.
Moreover the monomials into the w;’s being a basis of Bs,(C) over K, they are also a basis of
Bo,(C)% over K. To sum up, we have:

Bgn((C)G = KG[wl s di] .. [wan ; doy).

The first step consists in the determination of the commutative invariant field K. Let us
introduce in S the elements y1,...,y, defined by y; := ¢;qj4n for any 1 < j < n. Denoting
F = C(q,...,qn) C K, we have K = F(qn+1,---,92n) = F(y1,...,yn). The y;’s being G-
invariants by construction it follows that K¢ = F%(y,...,y,). Now observe that G acts
diagonally on the generators qi,...,q, of F; thus we can apply theorem 1 of [37] (see also
corollary 2 in 5.1.2) to describe F¢ as the purely transcendental extension
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mj,1 15,2

FC =C(21,...,2n), withzj=¢/""¢ ---q;nj’j forany 1<j<n

where the m;;’s (for 1 <i < j <n) are nntl) nonnegative integer such that m;; # 0 for any

2
1 <7 <n. We conclude that
KC =C(y1,. .. Uns 21, -+ 2n)-

The second step consists in the determination of W = Upois(K G). Recall that W is the subal-
gebra of Bs,(C)“ generated over C by K¢ and ¢(S%). Since y1,...,%n,21,..., 2, are elements
of SY, it is clear that W contains the subalgebra W' generated over C by K¢ and the set
E ={o(yj), 0(zj) | 1 <j <n}. We calculate o(y;) for any 1 < j < n:

o(yj) = 0(4i%j+n) = 4j0(gj4n) + G1n0(¢5) = —4jPj + QjtnPjtn = —Wj + Wjtn.

To compute o(z;), observe that o(q; ") = mjviq;nj’iflpnﬂ. We deduce:
J J . J J J
mj; mj;— m; — -1 -
o([Ta) =D miad™ [ ] 4" pasi =D mjazia; 'pusi = Y mjizia; ' antwnei
i=1 i=1 k=1,k+i i=1 i=1

Hence the n elements o(z1),0(22),...,0(2,) in E are given by the linear system
o(21) Wn+1
o(z2) _ R wn.-i-2 ’
o(zn) Wa,

where R is the n x n triangular matrix with entries in K“whose general entry (on the j-th row
and i-th column) is r;; = mj’izjqi_lq;ii when i < j, and zero if ¢ > j. Its determinant is

e = ([[=) ([T ) [T ) 0.

We deduce that the elements wy 41, . . ., wa, of Bgn((C)G can be expressed as linear combinations
with coefficients in K¢ of the elements o(21),0(22),...,0(2,) de E. Thus wy,11,...,ws, € W'.
Since w;j = wn4; — o(y;) for any 1 < j < n, we finally conclude that w; € W’ for all 1 < j < 2n.
Hence W' contains K¢ and all w; for 1 < j < 2n, then W’ O By, (C)“. Since W C W C
Bs,(C)%, the three algebras are equal.

The third step consists in proving the isomorphism an((C)G ~ By,(C). We start from the
description:

Bgn((C)G =C(z1y- ey Zny Yls - oy YUn,y ) w15 da] . .. [wap 5 danl,
where the generators z; = ¢ gy 77 - ~q§-nj’ and y; = ¢jgj4n (for 1 < j < n) satisfy the
following commutation relations (for 1 < k < 2n)

J

o mikzy i1 <k<j, o fy; fk=jork=n+j,
w25} = { 0 otherwise, low, 93] = 0 otherwise.
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We realize the linear change of variables t; := Y ;_, o p(wp — wgty) for any 1 < i < n where
(i @iig1,- -, p) is the unique solution in C of the system of n — i+ 1 following equations:

i imig =1,
ith _ .
Do pmivp =0 pour 1 <h<n—i

By construction we have for all 1 <, j < n the relations [t;, t;] = [t;,y;] = 0 and [t;, z;] = d; j2;.
By the new change of notations:

vji=z; f1<j<n, and vj:=y,—; ifn+1<j<2n,
ui=1t; if1<i<n and wu;:=w,_; ifn+1<i<2n,

we obtain [u;, u;] = [v;,v;] = 0 and [u;,v;] = 6; ju; for all 1 <4, j < 2n. Therefore
Bon(C)¥ = C(v1, ..., van, )[ur; Di] ... [ugn; Dan),

where D; denotes for any 1 < ¢ < 2n the Euler derivative D; = v;0,,. Now it is enough to
replace each generator u; by v, Lu; to conclude By, (C)¢ ~ By, (C). O

OBSERVATION. This last result provides an alternative proof of the first corollary in
5.4.2. More precisely, it can be viewed as an intermediate situation between the non-
isomorphism Ay, (C)¥ 2 A,,(C) and the isomorphism Ds,(C)¢ % D,,(C), proving that
the localization only by the functions (i.e. the elements of S) is sufficient to obtain the
isomorphism.

REMARK. The missing case to achieve the proof of the theorem concerns assertion (ii) in
the particular situation where n = 1. Then G is a (non necessarily abelian) subgroup of
SLs(C), acting by the canonical linear action on S = Clg, ¢2], extended by duality to the
Weyl algebra A5(C), and then to the localizations Bs(C) and Do(C). The proof is too
technical to take place here integrally; thus we just outline the main argumentation and
refer to [45] for a complete detailed writing.

e SKETCH OF THE PROOF OF ASSERTION (ii) IN THE SLy CASE. Here S = C|q1, 2] and
K = C(q1,q2). We know (see 2.2.1) that the subalgebra S is generated by three homogeneous
polynomials f1, fo, f3 into the variables ¢1, g2. Referring to (79), we denote:

hi = o(fi) = O01(fi)p2 — O2(fi)p1 fori=1,2,3.

Thus the algebra W = Upis(K), which is defined as the subalgebra of By(C)® generated
by K& and o(S%), is equivalently generated by K¢ and {hy, ha, h3}. Moreover applying the
operator o = J1p2 — Oap1 to the algebraic equation F'(f1, fa2, f3) = 0 of the Kleinian surface F,
we deduce for the hi, hs, h3 a linear relation with nonzero left coefficients in K G. This relation
allows to express h3 as a linear combination of A1 and ho with coefficients in K G, Explicitly :

G of type A1 f{'— fafs =0 nfi 'hy — fshy — fahs =0

G of type D, L AR f2=0 ((n+1)f+ f2)hy + 2f1foho + 2f3hs =0
G of type Eg fi+fs+f=0 4f3hy + 3f3ha + 2fshg =0

G of type E7 R+ f3+f3=0 3f2fohy + (f} +3f3)ha +2f3hs =0

G of type Fjg R+ E+f=0 5fthi + 3f3ha + 2f3hs =0
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We deduce that W is the subalgebra of By(C)® generated by K¢ and the elements hy, hs.

For each of the five cases, let us define y := %flhl with d; = deg f1. It is clear that y € Bo(C)C.
An important (but technical) step in the proof consists then in proving by direct calculations in
connection with the Casimir element w := q1p1 + g2p2 (see the proposition in 2.3.3) that By(C)“

can be described as a iterated Ore extension over K¢ :

By(C)% = K%y; D)w; D']

(82)

where the derivations D and D’ traduce the intended commutation relations between the gen-
erators. Now ho = s1y + sow is a linear combination of y and w whose coefficients in K G can be
explicitly calculated: sy = —[01(g92)q1 + 02(g2)g2] and so = —igfl[dlglﬁl (92) — dagadh (91)]q5 "

G of type An—_1
G of type D,

G of type Eg
G of type Fy
G of type Eg

do=n
do = 2n
do =8
do =12
ds = 20

hi = —-2gq1y
hi = —4g1y

h1 = —6g1y

hy = —ngay — 2gag; 'w
hy = —2ngey — ngsg; - w

ha = —8goy + 39397 "W
hy = —12g2y + 2939, 'w
hy = —20g2y — 3gsg; 'w

In conclusion, B2(C)¢ is generated over K¢ by hy and hy. In other words By (C)% = Upis(K ).
The isomorphism B(C)% ~ By(C) follows then from (82) by computational iterated changes of

variables (see [45]).
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6 COMPLETION: ACTIONS ON NONCOMMUTATIVE POWER
SERIES

6.1 Actions on skew Laurent series

We have already mentioned in 5.2.2 that a standard method in study of noncommutative
fields of rational functions consists in embedding them into a field of noncommutative
power series. We develop here this approach in connection with the open question of
the structure of automorphism groups of Weyl skewfields and their quantum analogues.
Partial results about D;(C) are cited at the end of 5.3.3; we concentrate now on the Weyl

skewfield D{(C).

6.1.1 Automorphisms of skew Laurent series rings

We fix R a commutative domain. For any automorphism ¢ of R, the skew power series
ring A = R[[z; 0]] in one variable = over R twisted by ¢ is by definition the set of
infinite sums ) ., a;x" where the @;’s are in R, with usual addition and noncommutative
multiplication defined from the law:

ra=o(a)r for all a € R. (83)

Of course A contains the ring T' = R[x; o] in the sense of 1.3.1, the elements of T" bing the
finite sums Y, a;t’, with usual addition and the same commutation law (83). It’s clear
that x generates a two-sided ideal in A; the localized ring of A with respect of the powers
of « is denoted by B = R((z; §)). The elements of B are the Laurent series > .. a;z"
where the a;’s are in R, with usual addition and noncommutative multiplication defined
from (83) and

v la =0 (a)z! for all a € R. (84)

In particular T C A C B. For any nonzero element f = Y. a2’ € B, the integer
m € Z such that a,, # 0 and a; = 0 for all j < m is named the valuation of f, denoted
by v.(f), and the element a,, is the coefficient of lowest valuation of f, denoted by ¢(f).
By convention, we set v,(0) = 400 and ¢(0) = 0. It’s easy to check that v, : B — Z
is a discrete valuation and that ¢ : B — R satisfies o(fg) = o(f)o*=)(p(g)) for any
f,g € B. It follows that A and B are domains. We have A = {f € B; v,(f) > 0} and
any f € B can be written f = ha™ for m = v,(f) € Z and h € A. It is easy to prove (by
the same argument than in the commutative setting) that an element of B is invertible
in B if and only if its lowest valuation coefficient ¢(f) is invertible in R.

We concentrate in the following on the situation where R is a field K. Then its follows
from all previous observation that in this case B is skewfield ; we will denote it by F':

if K is a field, 0 € Awt K, and A = K[[z; o]], then FF = K((z; 0)) = FracA.  (85)

Then it follows from the trivial inclusion "= Kz ; 0] C A = K[[x; o]] that the skewfield
of rational functions @ := FracT = K(x; o) is a subfield of F":
T=Kl[z; o] CFracT = K(z;0) C K(x; 0)). (86)
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The following theorem (appearing in [22]) asserts that any automorphism of the skewfield
F' is continuous for the z-adic topology, and then is an extension of an automorphism of
the ring A. We need the preliminary technical lemma.

LEMMA. Let p be a prime, p # Char K. Then any element of A of the form
T4+ s a;x' admits a p-th root in A.

PROOF. Denote f = ., bzt € A and fP = >0 bpix’ with b;,b,; € K. By
straightforward calculations using (83), by = [ _<j<p1 bg_l_jai(bg)] b; +r; where
the rest r; only depends on b;—_1,...,b1,by (and their images by o). Hence, for any

sequence (a;);>1 of elements of K, we can find inductively a sequence (b;);>0 with
bo = 1 such that b,; = a; for any i > 1, and then (3", biz")P =1+~  aiz’. O

THEOREM. Let o be an automorphism of a commutative field K. Let § be an automor-
phism of F' = K((x; 0)). Then v, (0(f)) = v.(f) for all F. In particular 0 restricts into
an automorphism of A = K[[x; ol].

PROOF. Let 6 be an automorphism of F'. Suppose that there exists a € K* such that v;[0(az)] <
0. Then 0(1+z~ta™t) = 1+0(x ta™t) with v, [0(z"ta™1)] > 0. We fix a prime p # Char K and
apply the lemma: there exists h € A such that §(1+z~'a=!) = h?. Hence —1 = v (1+z71a"!) =
vz[071(hP)] = v [071(h)P] = 0 modulo p. This is a contradiction. Thus we have proved:

vz[0(azx)] >0 for any a € K*. (%)
In particular s := v;[0(z)] > 0. For any a € K*, we have 0 < vy[f(ax)] = vz[0(a)] + v.[0(z)]
then v,[0(a)] > —s. Suppose that there exists ap € K* such that v;[0(ag)] = —m for some
0 <m < s. Fora=ai", wededuce —s < v, [0(a™)] = —m(s + 1). This is a contradiction

because s > 0,m > 1. Thus we have proved that v,[0(a)] > 0 for any a € K*, and up to taking

the inverse a~!, we conclude:

vz[0(a)] =0 for any a € K*. (%x)

Any t € U(A) can be written t = a(l + w) where a € K* and vy(w) > 1. Applying the
lemma for any prime p # charK there exists g € A such that a='t = gP. Therefore (xx) implies
v2[0(t)] = vz [0(a" )] = v [0(g)P] = 0 modulo p. It follows that v,[0(t)] = 0; we have proved:

for any t € U(A), we have 0(t) € U(A). (% % *)

Since v;[0(x)] = s > 0, we have 0(z) = tz® where t € U(A). Then z = §~1(¢)0~!(z)°. Using
(x % %) for 671 it follows 1 = 0 + s6~1(z). Thus s = 1 and the proof is complete. O]

6.1.2 Application to completion of the first quantum Weyl skewfield

We fix the following data and notations: k is a commutative base field, K := k((y)),
q € k* is not a root of one, and o is the k-automorphism of K defined by o(y) = qy. We
denote A = K|[[z; 0]] and F' = Frac A = K((x; 0)). In particular F' contains the Weyl
skewfield k(y)(z; o) ~ Di(k) defined in (72). Since ¢ is not a root of one, the center of
F reduces to k (see the proof of the last lemma in 5.2.2). The next theorem describes the
automorphism group of F'. We need the following technical lemma.
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LEMMA. For any 6 € AutF, there exist § € k* and two sequences (a;);>1 and
(bi)i>1 of elements of K, with a; # 0, such that:

O(x) =Y a;x® and O(y) = By + > bz’

i>1 i>1

Moreover 6 is an inner automorphism if and only if the two following conditions are
satisfied:

(i) P is a power of g, (ii) there exists uw € K* such that ajo(u) = u.

PrOOF. We know from theorem 6.1.1 that there exist (a;)i>1 and (b;);>1 in K,
with a1 # 0 and by # 0 such that: 6(z) = Y ,o; a2z’ and 0(y) = >~ biz’. The
commutation relation 8(x)0(y) = qf(y)f(x) implies o(by) = gby. We develop in K
the series bp = >~ Biyt with n € Z, B; € k, B, # 0. Since ¢ is not a root of one,
the support of this series reduces to {1}, then by = By where 81 = 3 € k*.

Now 6 is inner if and only if there exist f =} 5, 2 € F, with m € Z, u; € K,
Um # 0, such that fy = o(y)f and fo = o(z)f. By identification in F' = K((x; o)),
the first relation is equivalent to 8 = ¢ and

Uman ¥ (@™ = B) = > bio*(umyn—i) for any n > 1.
1<i<n

The second equality implies in particular that aj o(u,) = u,,. Hence conditions (i)
and (ii) are necessary. Suppose conversely that 6 satisfies assumptions (i) and (ii).
Let uw € K* solution of a1 o(u) = u and m the unique integer such that g = ¢™.
We define a sequence (Up+n)n>0 of elements of K by: w4y = u and:

Uman = (@™ = B)"Ly™ Y bio'(Umin—i) for any n > 1.
1<i<n

Then the so defined element f := .o wu;x satisfies 6(y) = fyf~! and:

i>m
fof=t = upz™t + o™ (u e + ] = upo (u N+ = a4 - -
Let us denote A := 0(x) — fzf~! and s := v,(A). We compute:
0(y) "' A0(y) = O(y~wy) — fy~ ' f faf fyf = qA
Suppose that A # 0. We develop A = Zizs w;x' where w; € K, ws # 0. Hence:
(wsx®+---)(By+biz+---) =q(B+biz+---)(wsz®+---). The identification of the

terms of valuation s of each side gives wsB8¢®y = ¢8y w,. Contradiction, therefore
A =0, then 0(z) = fof~! and 0 is inner.

SOME AUTOMORPHISMS OF F'. For any a € k*, we denote by w, the k-automorphism of
K =k((y)) defined by w,(y) = ay. Let w be the injective morphism k* — Aut K defined
by a — w,, and k* x,, K* the corresponding semidirect product.

For any a € k* and f(y) € K*, we denote by 6, the k-automorphism of F' defined by:
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0o r(y) = ay and 0, ¢(z) = f(y) x.
We define in Aut F' the subgroup
S ={bn;; ack” fe K*}~k*x, K*
Up to the subgroup Inn F', this particular subgroup S contains all automorphisms:

THEOREM. We have: Aut F//InnF ~ S/(Inn F N S).

PRrROOF. Let us consider 6§ € Aut F'; for § € k* defined by the previous lemma,
let us denote o = B!, We introduce ¢ € AutF defined by ¢(y) = ay and
d(x) = walay )z, Thus ¢po(y) = y + Vjx + bya? + - and ¢(x) = = + aha® + - -

where the af, b, are in K. Hence conditions (i) and (ii) of the lemma are satisfied

and ¢f € Inn F'. We conclude that Aut F' = (Inn F')S. O

The determination of Aut F' is completed by the explicit description of the elements of
Inn F'N S (see proposition 2.8 in [22]).

COMMENT. Let us recall here that a similar theorem on the structure of automor-
phism groups is unknown for the rational skewfield DY(C). We have cited some
partial results from [24] on the classical D;(C) in the final remarks of 5.3.3. Similar
properties in the quantum case for D¥(C) are proved in [24] using explicitly the em-
bedding [in the sense of (86)] of D}(C) in the skew Laurent series field F' considered
here.

6.2 Actions on pseudo-differential operators and related invari-
ants

6.2.1 Automorphisms of pseudo-differential operators rings

We fix R a commutative domain (related to forthcoming applications, we’ll sometimes
refer to R as the “ring of functions”). For any derivation d of R, the ring of formal
operators in one variable ¢ over R is by definition the Ore extension 7' = R[t; d| in the
sense of 1.3.1. Let us recall that the elements of T" are the finite sums Y, a;t* where the
a;’s are in R, with usual addition and noncommutative product defined from relation:

ta = at + d(a) for all a € R. (87)

For any derivation 0 of R, the ring A = R[[z; J]] of formal power series in one variable
x over R is by definition the set of infinite sums Zi>0 a;z" where the a;’s are in R, with
usual addition and noncommutative multiplication defined from the law:

ra = ax + 0(a)x? + 0%(a)z® + - - for all a € R. (88)

It’s clear that = generates a two-sided ideal in A; the localized ring of A with respect of
the powers of x is named the ring of formal pseudo-differential operators in one variable x
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with coefficients in R, and is denoted B = R((x; ¢)). The elements of B are the Laurent
series D . a;x' where the a;’s are in R, with usual addition and noncommutative
multiplication defined from (88) and

rra=ar™t — 6(a) for all a € R. (89)

It follows from (87) and (89), and we have already observed in 5.2.2, that T = R[z~!; —{]
is a subring of B = R((z; ¢)).

For any nonzero series f € B, there exist an integer m € Z and a sequence (a;);>m of
elements of R such that f = > .. a;z' and a,, # 0. The integer m is the valuation
of f, denoted by v,(f), and the element a,, is the coefficient of lowest valuation of f,
denoted by ¢(f). By convention, we set v,(0) = 400 and ¢(0) = 0. It’s easy to check
that v, : B — Z is a discrete valuation and that ¢ : B — R is a multiplicative map. It
follows that A and B are domains. We have A = {f € B; v,(f) > 0} and

for all f € B with v,(f) = m € Z, there exists h € A with v,(f) =0 s.t. f = ha™.
(90)
For any integer k € Z, we denote By = {f € B; v.(f) > k} and 7y the morphism By — R
defined by 7z (37,5, aix’) = ax. In particular By = A.

REMARKS

(i) Let U(A) be the group of invertible elements of A. An element f = >"..a;z’
of A lies in U(A) if and only if v, (f) = 0 and ¢(f) = ag lies in the group U(R)
of invertible elements of R (although the calculations in A are twisted by §,
the proof is similar to the commutative case). In other words, an element of
B lies in U(B) if and only if its coefficient of lowest valuation lies in U(R).

(ii) Let f = > ;50@ix’ be an element of A with v,(f) = 0 and ¢(f) = ap = 1.
Then, for any positive integer p such that p.1 € U(R), there exist h € A
satisfying v;(h) = 0 and ¢(h) = 1 such that f = hP (the proof is a simple
calculation by identification and is left to the reader).

PROPOSITION. We assume here that R is a field. Then:
(i) B = R((x; 0)) is a skewfield, and B = Frac A where A = R[[z; 0]];
(i) R(z~'; —§) = Frac R[x~'; —0] is a subfield of B;
(iii) for any f € B, we have f € A, or f #0 and f~! € A.
PROOF. Straightforward by remark (i) and (90). O

The following z-adic continuity lemma, which will be fundamental in the following, is
an analogue of the previous theorem 6.1.1 under somewhat different assumptions: the
domain R is not supposed here to be a field but the result only applies to automorphisms
of B stabilizing R.
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LEMMA. Let § be a derivation of a commutative domain R. Let § be an automorphism

of R((z; ¢§)) such that O(R) = R. Then v.(0(f)) = v.(f) for all f € R((x; 9)).

PROOF. It’s clear that 6(x) # 0. Denote s = v,(0(z)) € Z. First we prove that s > 0. Suppose
that s < 0. Weset u = 1+2~! € B. Since v.(0(z)™!) = —s > 0, we have f(u) = 1+60(x)~! € A.
We can apply to #(u) the remark (ii) above. For an integer p > 2 such that p.1 is invertible
in R, there exists f € A such that (u) = fP. Applying the automorphism 6#~!, we obtain
vz(u) = pve(0~1(f)), so a contradiction since v,(u) = —1 by definition. We have proved that
s > 0. In particular the restriction of § to A is an automorphism of A.

We can write 0(x) = a(1 + w)x® with nonzero a € R and w € A such that v, (w) > 1. Applying
61, we obtain x = 0~(a)0~ (1 + w)f~(x)*, and then:

vz (071 (a)) + v (0711 +w)) + sv. (0~ (z)) = 1.

From the one hand, §(R) = R implies 6~1(R) = R, thus #~!(a) is a nonzero element of R, and
50 v;(07(a)) = 0. From the other hand, it follows from remark (i) above that 1 4+ w € U(A);
since U(A) is stable by #~! (which is an automorphism of A by the first step of the proof), we
deduce that v,(0~*(1 4+ w)) = 0. We deduce that sv.(0~'(z)) = 1. As s > 0, we conclude that
s = 1 and the result follows. O]

6.2.2 Extension of an action from functions to pseudo-differential operators.

We fix R a commutative domain and ¢ a nonzero derivation of R. We denote by U(R)
the multiplicative group of invertible elements in R. We consider a group [' acting by
automorphisms on R.

Definitions. We say that the action of I' on R is d-compatible if 9 is an eigenvector for
the action of I' by conjugation on DerR, i.e. equivalently when the following condition is
satisfied:

for all @ € I', there exists py € U(R), such that §od = pyd o 6. (91)

It’s clear that 6 — py defines then an application p : I' — U(R) which is multiplicative
1-cocycle for the canonical action of I" on U(R), that means which satisfies:

Poor = p90<p9/) for all 07 9/ € I. (92)
It follows that, if we set
(F1.0):=p,*0(f) forallkeZ, 6T, fER, (93)

then the map (6, f) — (f], 6) defines a left action I' x R — R. This action is named the
left action of weight k of I' on R. The weight 0 action is just the canonical action. For
the weight one action, a 1-cocycle for the weight one action is a map r : ' — R which
satisfies:

Tegr = To +p;19(r9/):r9+(7”91]16) for all Q,QIEF. (94)
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We denote by Z'(T', R) the left R'-module of such 1-cocycles. For all k € Z, we define
the additive subgroup of R of weight k invariants:

Ioo={feR; (f|,0)=1f foralld e} (95)
In particular, Iy = R' and I;,1; C Ij .

THEOREM ([43]). With the previous data and notations, the action of I' on R ex-
tends into an action by automorphisms on B = R((x; ¢)) if and only if this action is
0-compatible, and we have then:

O(x7) = pgz™" + pory for all € T, (96)

where p : I' — U(R) is the multiplicative 1-cocycle uniquely determined by condition
(91) of d-compatibility and r : I' — R is a 1-cocycle for the weight one action arbitrarily
chosen in Z'(T', R).

PROOF. Let 6 be an automorphism of B such that the restriction of 8 to R is an element of
I. In particular, we have §(R) = R. We can apply the lemma of 6.2.1 to write §(z~1) =
co1x M4 ecqg+cix+---, with ¢; € R for any i > —1 and c_; # 0. Moreover zle U(B) implies
6(x~1) € U(B) and then c_; € U(R) by remark (i) of 6.2.1. Applying 6 to (89), we obtain:

O(x~1)0(a) — 0(a)d(z~ ') = —0(6(a)) for any a € R.
Since 6(a) € R, we can develop this identity:
e 16(a) — O(a)e1a71] + [coBla) — Ba)eo] + X4 [e298(a) — Oa)ejad] = —0(3(a)).

The first term is: c_1[x710(a) — 0(a)z™!] = —c_16(0(a)) € R. The second is zero by commuta-
tivity of R. The third is of valuation > 1. So we deduce that:

—c_16(6(a)) = —6(6(a)) and ZJ-Zl[cjij(a) — 0(a)cjz’] = 0.

Denote py := c_1; we have py € U(R) and the first assertion above implies that ppd(6(a)) =
6(6(a)) for all @ € R. Now we claim that the second assertion implies that ¢; = 0 for all
j > 1. To see that, suppose that there exists a minimal index r» > 1 such that ¢, # 0; then
ZjZT[cjij(a) — 6(a)c;z7] = 0 implies by identification of the coefficients of lowest valuation
that ¢,70(0(a))z" T 4 --- = 0. Therefore c,r§(6(a)) = 0. If we choose a € R such that d(a) # 0,
then 0(d(a)) # 0; hence 6(6(a)) # 0 [by the condition pyd(f(a)) = 0(d(a)) that we have proved
previously], and we obtain a contradiction since R is a domain and ¢, # 0. We conclude that
c; =0 forall j > 1.

We have finally checked that #(z~!) = c_127! + ¢y. We have already observed that py = c_;
satisfies (91). Now we set 79 = (c_1) " tcg. We have 0(z~1) = pgz~! + pyrg. Relations (92) and
(94) follow then from a straightforward calculation of (¢ (z71)).

Conversely, let us assume that the action of I on R is J-compatible. Denote by p the map
I' — U(R) uniquely determined by (91), which satisfies necessarily (92). Let us choose a 1-
cocycle r : I' — R arbitrarily in Z'(I', R). We consider any # € I'; denoting g9 = pyrg, we
calculate for all a € R:

87



(po~" + 0)6(a) — 6(a)(poz~" + s) = po(z~0(a) — 6(a)z~) = —ppd(6(a)) = —0(6(a).
Hence we can define an automorphism 6, of T = R[t; —] = R[z~'; —d] such that the restriction
of 0, to R is 0 and 0,.(t) = ppt+perg; (observe that pg € U(R) implies the bijectivity of 6,.). Since
py € U(R), the element 0,.(x~1) = ppz ! + gy is invertible in B by remark (i) of 6.2.1. Then we
define: 0,.(z) = 0,(x71)"! = 2(py + gox) ™! with py + ge which is invertible in A = R[[z; 6]]. So
we have built for any 6 € I' an automorphism 6, of B which extends 6. It follows immediately
from the assumptions (92) on p and (94) on r that (89'), = 6,0.. for all 6,0" € T. O

Remark. Computing (ps + qox)™! = (ijo(—l)j(pglqu)j)pgl € A, we deduce that,
under the hypothesis of the theorem, we have:

O(x) = a:(Z(—l)j(rga:)j)pg_l =p,le+-- forall@el (97)

Jj=0

In particular, the restriction to By of the action of I' on B defines an action on B, for
any k € Z.

COROLLARY. Under the assumptions of the theorem, the action of I' on R extends into
an action by automorphisms on B = R((x; 0)) if and only if it extends into an action by
automorphisms on T = R[z~"; —§].

ExaMpPLES. We suppose that the action of I' on R is d-compatible; thus the map p :
I' — U(R) defined by (91) is uniquely determined and satisfies (92), and we consider here
various examples for the choice of r € Z'(T', R).

1. If we take r = 0, the action of T on B is defined by 6(z~') = ppz~', and then
0(x) = xpy ' = 31500 (pp )7t for any 6 € T

2. If r is a coboundary (i.e. there exists f € Rsuch that: 79 = (|, 0)—f = p, '0(f)—f
for any 6 € T'), then the element y = (2! — f)~! satisfies B = R((z; d)) = R(y; 9))
and 0(y~') = ppy ! for any 6 € T'. Thus we find the situation of example 1.

3. We can take for r the map I' — R defined by: 79 = —p, 'd(pg) for any 6 € T, which
is an element of Z'(T', R) by (91) and (92). The corresponding action of I' on B is
given by: 0(z71) = ppxr~! — d(pg) = 27 pg for any 0 € I.

4. For any r € ZYT',G) and any f € R, the map 0 +— r9+p, '0(f) — f is an element of
ZY(T, R). The corresponding action of I on B is defined by 6(x™1) = pgx ™" + ppry +
O(f) — pof. As in example 2, y = (z7' — f)~! satisfies B = R((z; 9)) = R((y; 9)
and allows to express the action by 0(y™!) = pey~" + pgry for any 0 € T,

5. Since ZY(T', R) is a left R'-module, the map s r is an element of Z1(T', R) for any
r € ZYT',G) and any x € R'. The corresponding action of I" on B is given by:
O(x71) = pga~' + Kpery for any § € T'. If we suppose moreover that x € U(R),
then y = (k'™ !)~! satisfies B = R((z; 0)) = R(y; '), and we find 0(y~') =
oyt + pery for any 6 € T'.
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6.2.3 Invariant pseudo-differential operators

We fix R a commutative domain, J a nonzero derivation of R, and I" a group acting by
automorphisms on R. We suppose that the action of I' is d-compatible and so extends to
B = R((x; d)) by (96) where r is an arbitrarily chosen element of Z!(I", R). We denote
by B (respectively A™") the subring of invariant elements of B (respectively A) under
this action.

REMARKS. For any k& € Z, we denote BIE’T = B, N BY'". The following observations
precise some relations between invariant pseudo-differential operators of valuation k (i.e.
clements of B;") and weight k invariant functions (i.e. elements of Iy, see (95)).

(i) If B # R, then there exists some nonzero integer k such that I # {0}.

PROOF. Suppose that there exists y € B'" such that y ¢ R'. Set k = v,(y),
thus y € B,E’T. If k # 0, then 7, (y) is a non zero element of I} by remark (i).
If kK =0, then mo(y) € Iyp = R, thus ¢/ = y — mo(y) is a nonzero element of
B,E,’T for some integer &’ > 0 and we apply the first case.

(ii) For any k € Z and y € B, we have: (y € B,” = mi(y) € I ); this is a straightfor-
ward consequence of (93), (95), (96) and (97). If we assume that

Tr can rr Tk
0 By By == Iy —=0

inj

is a split exact sequence, then B # R if and only if there exists some nonzero
integer k such that I, # {0}.

PROOF. Suppose that there exists a nonzero integer k and a nonzero element f
in I. By assumption, we can consider ¢y, : I, — B};’T such that 7 o4y, = idy, .
Then ¢ (f) = fo¥ 4 --- lies in B};’r with valuation k # 0. Thus ¢ (f) ¢ R".

The following theorem gives an explicit description of the ring B,S’T when the functions
ring R is a field of characteristic zero. It can be viewed as an analogue for noncommuta-
tive power series of the theorem previously proved in 5.3.1 for noncommutative rational
functions.

THEOREM ([43]). Let R be a commutative field of characteristic zero. Let ¢ be a nonzero
derivation of R, A = R][x; ¢]] and B = R((x; §)) = Frac A. For any §-compatible action
of a group T on R and for any r € Z'(T', R), we have:

(i) if A" C R, then A" = B"'" = R';

(ii) if A¥" € R and R" C kerd, then there exist elements of positive valuation in A"
and, for any u € A" of valuation e = min{v,(y); y € A", v.(y) > 1}, we have
AU = RU[[u]] and BY'" = Frac (AY") = RY((u));
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(iii) if AV ¢ R and R" ¢ ker 6, then there exists an element u of valuation 1 in A™ and
a nonzero derivation &' of R' such that A™" = RY[[u; ¢']] and BY" = Frac (A7) =
R ((u; d")).
The proof of this theorem is somewhat long and technical and cannot take place here (see
[43]). It uses in an essential way the notion of higher derivation (see [42] for a survey).

SOME COMMENTS.

1. In point (iii) of the theorem, §' = cflé where u = ¢z + co2? + - -+ with ¢; € R,
C1 7& 0.

2. The equality Frac (A'"") = (Frac A)'"", which can be nontrivial in some cases
(see the proof of 5.3.1 and remark 1 in 5.2.1) follows here immediately from point
(iii) of the proposition in 6.2.1.

3. Under the assumptions of the theorem, if r and ' are two 1-cocycles in Z1(T", R)
such that B'" ¢ R and B'"' ¢ R, then B ~ B,

4. Under the assumptions of the theorem, if the exact sequence of remark (ii) is
split for r and ' two 1-cocycles in Z'(I, R), then B'" ~ B,

5. If we don’t assume that R is a field, we don’t have a general theorem, but some
particular results can be useful for further arithmetical applications. In particular it
is proved in [43] that: if there exists in B''" an element w = bx~' +c with b € U(R)
and ¢ € R, then the derivation D = b restricts into a derivation of R', and we
have then A" = RV[[u; D]] and B'"" = RY((u; D)) for u = w1

6.2.4 Application to completion of the first Weyl skewfield

We take here R = C(z) and § = 0,. We consider the ring A = R[[z; J]] and its skewfield
of fractions F' = R((z; d)). Then Q = R(t; d) where t = 27! and d = —¢ is a subfield
of F' [see point (ii) of proposition 6.2.1] which is clearly isomorphic to the Weyl skewfield
Dy (C) (see 5.2.3). We have:

rz —zx = x%, or equivalently 2t —tz = 1.
We name F' the first local skewfield. It’s well known that any C-automorphism 6 of R is
of the form z +— %is with (¢ %) € GL(2,C). For any f(z) € R, we compute:

0:(0(f)) = 0:(f(£5D) = tesrar £ (E570) = teera 0(0:(F))-
(cz+d)?

By (91), it follows that the action of any 6 € Aut R is J-compatible, with py = =
We conclude with the theorem of 6.2.2 that any automorphism 6 of F' which restricts into
an automorphism of R is of the form:

: az+b —1 .y (ez4d)? -1
0 @z 250 = o+ qo(2).

where (¢%) € GL(2,C) and gy(z) € C(z). Then, using remark 2 of 5.2.1, we can prove
that point (iii) of the theorem of 6.2.3 applies and it’s easy to deduce with Liiroth’s
theorem that:

PROPOSITION. For any finite subgroup I' of C-automorphisms of F' = C(z)((x; 0.))
stabilizing C(z), we have F* ~ F.
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6.3 Applications to modular actions

We give here an overview about some applications of the previous results in number theory
(see [43] for a more complete lecture).

6.3.1 Modular forms

In the following, I' is a subgroup of SL(2,C), and R is a commutative C-algebra R of
functions in one variable z such that:

(i) T acts (on the right) by homographic automorphisms on R
(floy) = f(&5) forall fe Randy=(4}) €T,

cz+d

(ii) the function z — cz + d is invertible in R for any v = (2Y) € T,
(iii) R is stable by the derivation 0.,.

The case where R = C(z) corresponds to the formal situation studied at the end of 6.2.3.
In many arithmetical situations, R is some particular subalgebra of Fye, (A, C) with A C C
stable by the homographic action of a subgroup I' of SL(2,Z). We denote:

(fla(z) = (cz+d)"f(&53)  forall feR, y=(¢))el, keZ.  (98)

Let us observe that ((f|.7')|,7v) = (f|.7) forally,7 € 'and f € R. For any k € Z,
we define the C-vector space of weight k£ modular forms:

My(T,R)={ f€R; (fly7)=fforallyeT } (99)
REMARKS.

1. Mo(T,R) = R'.
2. fI'> (4 %), then My(T, R) = (0) for any odd k.

3. If T contains at least one element (%) such that (c,d) ¢ {0} x U, we have
M(T, R) N M,y(T', R) = (0) pour k # £.

4. For all f € My(I',R) and g € My(I', R), we have fg € ML, R).

5. For any f € My(T', R), the function f" = 0.(f) satisfies (f' [, 57)(2) = f'(2)+
k (2). Thus f’ is not necessarily a modular form (unless for k£ = 0).

c
cz+d

COMMENT: Rankin-Cohen brackets (see [39]). It follows from remark 5 above
that, for f € Mp(T", R) and g € M,(T", R), and r, s nonnegative integers, the product
f (r) g(s) is not necessarily an element of My ¢4 0,12+(I", R). For any integer n > 0, we
denote by [, ], the n-th Rankin-Cohen bracket, defined as the linear combination:

[f.9]ly = f9,

[fag]l :kfg,fgf,g7
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[f:9ly = k(k+1)fg" = (k+ D)€+ 1) f'g" + L(L+ 1) f"g,

Fogln = 2 (27 (F551) () SOg ),
and satisfies the characteristic property:

for f € Mk(ra R) and g € ME(Fv R)a we have [f7 g]n € Mk’-l—f—i—?n(rv R)

(More precisely it is possible to prove that any linear combination of f (1) g(s) sat-
isfying this property is a scalar multiple of the n-th Rankin-Cohen bracket). It
follows from the definition that [g, f],, = (=1)"[f,g],, and that [, |, satisfies
Jacobi identity.

6.3.2 Associated invariant pseudo-differential operators

e EXXTENSION OF THE MODULAR ACTION.

For 6 = —0,, we compute: d(f|o7)(2) = —az(f(%is)) = —f’(i‘zzig) X (Czid)z, and

thus: (6(f)|ov)(z) = (cz + d)*5( f oy )(2). Then the homographic action of I' on R is
d-compatible. The associated multiplicative 1-cocycle p : I' — U(R) defined by (91) is:

py = (cz+d)? forany y= (%) el (100)

For any k € Z, the weight k action in the sense of (94) corresponds to the weight 2k
action in the sense (98) of modular forms:

az+b

(1) = (2 (2

)= (flu7)(z) forall y=(g3f)el, feR (101)

and then I, = My (I', R).

We know by example 3 of 6.2.2 that r/, = —p_d(p,) = (cz4d)20.((cz+d)?) = 2c(cz+d) ™!
defines an additive 1-cocycle ' : I' — R. Then by example 5 of 6.2.2, we can consider for

any x € C the additive 1-cocycle r = §7:

ry=rc(cz+d)"" forall y=(2%)€eTl. (102)

Applying the theorem of 6.2.2, the action of I' on R extends for any x € C into an action
by automorphisms on B = R((x; —0,)) by

YY) = (cz +d)’z '+ Kke(cz+d) forall y=(254)el. (103)
We denote by B'* the subalgebra of invariant elements of B under this action.

e INVARIANT PSEUDO-DIFFERENTIAL OPERATORS.
We fix k € C. For any f € R and any integer k > 1, we define:
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Ue(f) = fa* + > (- )”% X K (— bk 1) (—rd kot 2) (—rthtn) MRt € B,

n>1
vo(f)=Ff € R,
boi(f) = fa=* + Z Qbomt | febkmetbonid) (etk]) pg-kin ¢ B,

with the notation f(™ = 97(f). The following two results by P. Cohen, Y. Manin and
Don Zagier allow to define a vector space isomorphism between the invariant pseudo-
differential operators and the product of even weight modular forms.

LEMMA ([39]). Forall f € R, k € Z, v € I', we have: ¥((f|,.7)) = v(¥x(f)), thus:

(f€Mu(RT)) & (vu(f) €B"),
and then:

HBFT T Mgk(r, R) — 0

k+1 ko~

0—= B}’
is a split exact sequence.

e THEOREM ([39)]).

(i) For any j € Z, the map
Uyj : My =[] Mop(T, R) — B ™ 5 (far)izj — > el for)

k>j k>j
is a vector space isomorphism.
(ii) The map Wy, : My, = [J My; — U B]-F’“ = B = R((x; —0,))"" canonically

JEL JEZ
induced by the Wo;’s is vector space isomorphism.

It’s not possible to give here the proofs of these results and we can only refer the reader
to the original article [39]. In order to illustrate the construction, let us give some explicit
calculations for W, in the particular case where k = 0.

EXAMPLE.

0 : Mo = kl;IOMQk(F,R) — AF’O = R[[.T, —az]]r’o = B(l;’o ) (ka:)k:ZO —
> Ur(for)

k>0

For any (fo, f2, f4,...) € Mo, we have:

Yo(fo) = fo

¢1(f2):f2af—f YU — = afy
Va(fa) = % —Lnad+ 2flat 4

V3(fe) = 15.fex — L fhat +-
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Ya(fs) = 35f8«134+

thus:
o : Mo — AP0 o (far)kso — Y hpa"
n>0
oL AN s Mo S hpa™ v (far)r>o0,
n>0
with:
ho = fo Jo=ho
= fo fo=Mh
ho =311~ 13 fa=3ha + 30
hy = & fo— 31+ 1) fe = 10h3 + 15h5 + 5hY
ha= dfs~ Lot LS = 35kt TON + 4205 4 Y
ool r nl(n—1)! Rl k1) (2k—2—r)1 ()
b = % (1) D 30 foe = 2 S Gt P

6.3.3 Non commutative structure on even weight modular forms

By transfer of structures, the vector space isomorphisms
Wy, : My, — BYF et Wl B My,

resulting of point (ii) of the theorem of 6.3.2 allow to equip Ms, with a structure of non
commutative C-algebra. We denote by M}, which depends in principle on the parameter
r fixed in the definition of the extension of the action form R to B.

M5, ~ BU* for any k € C.
The description given in 6.2.3 of the rings B"* allows to deduce some algebraic properties
(center, centralizers,...) of the algebras M¥,. In particular, supposing that R is a field of

characteristic zero, the corollary of the theorem on 6.2.3 given in the comment 4 applies
by the lemma of 6.3.2, and we prove so that:

THEOREM. If R is a commutative field of characteristic zero, then M5, ~ MY, for all
K,k € C.
Application to the noncommutative product of two modular forms. Let us fix f € My (T, R)
and g € My (', R). With the identifications:

f=(£,0,0,...) € Mgy, and g =1(g,0,0,...) € Moy,

the noncommutative product of f by g in M5, for an arbitrary choice of k € C, is given

by:
1 (f, 9) = U3 (Uau(f). Wau(g)) = k+g (Ve(f)-1he(9)) € Magro.-
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The authors of [39] prove then that:
u”‘(f, g) = ;Otg(k, E) [fa g} ns

where [, |, : Mop(I', R) X Mae(I', R) = Ms(jye4n)(I', R) is the n-th Rankin-Cohen bracket
(see comment in 6.3.1), and t%(k, ) € Q is defined by:

—Tk ) ( —k—rl-&—l-: ) ( n—&-k;{—ﬁ—n ) ( n+k;&—€—1 )

( lec ) ( 2n+2ks+2672 )

k0 = By T

n +s=n

These coefficients satisfy ¢ (k, £) = t27"(k, £). In particular for k = } or k = 3, the product

,u%(f, g) is the well known associative Eholzer product f * g = /ﬁ(f, 9)=>1f,9,
n>0

FINAL OBSERVATION. The results of 6.3.2 and 6.3.3 can be extended to general (with even
or odd weight) modular forms by a more sophisticated construction where the pseudo-
differential operator rings are replaced by more general kind of power series (see [43]).
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