La Naturaleza Física de las Estrellas de HgMn

por Natalia Lorena Maza

Presentado ante la Facultad de Matemática, Astronomía y Física como parte de los requerimientos para la obtención del grado de Doctor en Astronomía de la UNIVERSIDAD NACIONAL DE CORDOBA

UNIVERSIDAD NACIONAL DE CORDOBA

Marzo de 2012

© FaMAF - UNC 2012

Director: Dr. Orlando Hugo Levato Co-Director: Dr. Emilio Lapasset Gomar

A Victoria

Clasificación 97.30.-b: Variable and peculiar stars 97.30.Fi: Chemically peculiar stars (Ap, Am, etc.)

Paralabras Claves Estrellas Químicamente Peculiares Estrellas de HgMn Abundancias Químicas

Resumen

En esta tesis se realiza un estudio de las abundancias químicas de algunos elementos presentes en las atmósferas de estrellas químicamente peculiares de Mercurio Manganeso (HgMn) con el objetivo final de verificar posibles variaciones de las abundancias químicas de elementos críticos de estas estrellas tales como el Hg, Mn, P, Sc, Ga, entre otros con la edad de las mismas. También se analizaron posibles tendencias de algunas especies químicas con la temperatura efectiva y la velocidad de rotación proyectada de las estrellas.

Los patrones de abundancias observados en nuestra muestra siguen las pautas generales de las estrellas de HgMn y están en acuerdo con estudios realizados previamente. Respecto a las posibles tendencias observadas, podemos decir que hay sospechas sobre la existencia de tendencias decrecientes de las abundancias con la edad de las estrellas para los elementos: P, Ga, Y, Zr y Xe. Sospechamos una tendencia creciente para el Sc, mientras que el Hg y Mn no presentaron tendencias. En el caso de la relación abundancia–temperatura efectiva de las estrellas, sospechamos tendencias crecientes para el Mg, Ti, Mn, Ga, Y, Zr, Xe y Hg. Una tendencia decreciente se sospecha para el Al, Sc y Sr, mientras que no encontramos dependencias para el Si, Fe y Ni. Finalmente, para el caso de abundancia–velocidad de rotación proyectada, sospechamos tendencias decrecientes para el Al, Sc, Br, Nd. Sospechamos tendencias crecientes para el O y Ni, mientras que no se observaron tendencias para el Si, Mn, Fe, Ga, Sr y Hg.

ÍNDICE GENERAL

1. Introducción

1.	Intro	roducción 1						
	1.1.	Antecedentes						
	1.2.	Estrellas Químicamente Peculiares	2					
	1.3.	Estrellas CP	6					
		1.3.1. Estrellas A metálicas (Am)	6					
		1.3.2. Estrellas Magnéticas Ap	7					
		1.3.3. Estrellas de HgMn	8					
		1.3.4. Estrellas con He anómalo	10					
		1.3.5. Estrellas λ <i>Bootis</i>	12					
	1.4.	Mecanismos físicos responsables de las anomalías observadas en las estrellas						
	de HgMn							
2.	Adq	Adquisición de Datos y Reducción						
	2.1.	Los Objetos a Estudiar	17					
	2.2.	Espectroscopía						
		2.2.1. El instrumental utilizado	19					
		2.2.2. Reducción de los espectros	19					
	2.3.	Preparación de los Espectros	22					
		2.3.1. Determinación de velocidades radiales	22					
3.	Dete	rminación de Abundancias Químicas	24					
	3.1.	Identificación de líneas espectrales	24					
	3.2.	. Determinación de Parámetros Atmosféricos						
	3.3.	El Modelo de Atmósfera: Programa ATLAS9						
	3.4.	Determinación de Abundancias: Programa WIDTH9						
	~ -	Estimación de los errores						

4.	Resultados Observacionales	31
	4.1. Determinación de la Abundancia de He	. 34
	4.2. HD 149121	. 36
	4.3. HD 35548	. 36
	4.4. HD 175640	. 38
	4.5. HD 49024	. 42
	4.6. HD 129174	. 42
	4.7. HD 186122	. 45
	4.8. HD 78316	. 46
	4.9. HD 158704	. 49
	4.10. HD 190229	. 49
	4.11. HD 53244	. 51
	4.12. Estrellas Binarias SB2: HD 33647, HD 144844 y HD 71833	. 54
	4.13. Determinación de Edad	. 57
5.	. Análisis y Discusión	62
	5.1. Respecto a las Abundancias Químicas	. 62
	5.2. Correlación con respecto a la edad de las estrellas	. 72
	5.3. Correlación con respecto a la temperatura de las estrellas	. 77
	5.4. Correlación con respecto a la velocidad de rotación de las estrellas	. 86
	5.5. Discusión Final	. 91
A.	. Abundancias Químicas línea por línea	93
	A.1. HD 149121	. 93
	A.2. HD 35548	. 103
	A.3. HD 175640	. 111
	A.4. HD 49024	. 122
	A.5. HD 129174	. 129
	A.6. HD 186122	. 136
	A.7. HD 78316	. 144
	A.8. HD 158704	. 153
	A.9. HD 190229	. 162
	A.10.HD 53244	. 170

Resumen

En esta tesis se realiza un estudio de las abundancias químicas de algunos elementos presentes en las atmósferas de estrellas químicamente peculiares de Mercurio Manganeso (HgMn) con el objetivo final de verificar posibles variaciones de las abundancias químicas de elementos críticos de estas estrellas tales como el Hg, Mn, P, Sc, Ga, entre otros con la edad de las mismas. También se analizaron posibles tendencias de algunas especies químicas con la temperatura efectiva y la velocidad de rotación proyectada de las estrellas.

Trabajamos sobre una muestra de 10 estrellas de HgMn seleccionadas de los catálogos de estrellas peculiares de Renson (1991) y Schneider (1981) y utilizamos el espectrógrafo de banco EBASIM del Complejo Astronómico el Leoncito (CASLEO) para llevar a cabo las observaciones. Determinamos velocidades radiales mediante correlaciones cruzadas para corregir los espectros y llevar las longitudes de onda al reposo.

Posteriormente, identificamos las especies químicas clásicas presentes en las estrellas que nos permitió determinar las abundancias para aproximadamente 30 elementos en cada una. Empleamos el método clásico de determinación de abundancias químicas que consiste en medir anchos equivalentes de las distintas líneas espectrales.

Previo a la determinación de las abundancias químicas, determinamos los parámetros atmosféricos fundamentales, T_{ef} y log g, para cada estrella obteniendo una primera aproximación con el programa TempLogg (Rogers 1995) utilizando la fotometría Strömgren uvby β que luego fueron mejorados utilizando dos técnicas diferentes. Para un grupo de estrellas para las cuales pudimos obtener espectros UVES calibrados en flujo de la base de datos del ESO (European Southern Observatory) realizamos síntesis espectral de la línea H γ utilizando el programa SYN-THE. Para el resto de las estrellas fijamos la T_{ef} obtenida fotométricamente corregida por la relación propuesta por Adelman & Rayle (2000) y buscamos equilibrio de ionización para el Fe variando logg hasta 0.3 dex. Obtuvimos los modelos de atmósfera y las abundancias químicas utilizando los programas ATLAS9 y WIDTH9 (Kurucz 1992) respectivamente.

Si comparamos nuestros resultados con los correspondientes valores solares podemos decir que, en todas las estrellas analizadas el He resultó por debajo del valor solar.

El O se encuentra levemente sobreabundante excepto para HD 35548 y HD 149121 que es levemente deficiente.

El Mg resultó ser levemente deficiente para HD 35548, HD 53244, HD 149121 y HD 175640 y para el resto de las estrellas de la muestra resultó levemente sobreabundante.

El Si resultó ser levemente subsolar para las estrellas HD 129174, HD149121 y HD 175640,

para el resto de las estrellas se presenta levemente deficiente.

El Fe es levemente sobreabundante para las estrellas de la muestra.

Las especies Sc, Ti, Cr, Mn, Sr, Y y Zr resultaron sobreabundantes para las estrellas de la muestra. Particularmente dentro de este grupo, HD 175640 posee Sc levemente deficiente mientras que HD 53244 y HD 175640 no poseen Sr.

El Ni resultó estar por debajo del valor solar para HD 175640, HD 186122, HD 158704 y HD 78316. HD 53244 posee Ni levemente sobreabundante y HD 49024 se encuentra sobreabundante por un factor 140 aproximadamente, mientras que para el resto de las estrellas no se identificó Ni.

El Ga se encuentra sobreabundante excepto para HD 53244 y HD 49024 en las cuales no se identificó este elemento siendo ambas estrellas pertenecientes cúmulos estelares. Aunque debería confirmarse la pertenencia de HD 53244 a Cr 121.

Por último, el Hg se encuentra muy sobreabundante en todos los casos.

Finalmente, determinamos edades utilizando el método y el programa (PARAM 1.1) implementado por da Silva et al. (2006) quienes determinan parámetros estelares básicos utilizando isócronas teóricas y el método de estimación Bayesiana idealizado por Jorgensen & Lindergren (2005). Luego de obtener edades con PARAM 1.1 realizamos una inspección de los valores obtenidos ubicando a las estrellas de la muestra en el Diagrama HR y ajustando para cada una de ellas la isócrona teórica correspondiente. Para ello, realizamos una búsqueda de paralajes en el catálogo Hipparcos y utilizamos las isócronas de Padova (Girardi 2000).

Para analizar las posibles tendencias de las abundancias con los parámetros edad, temperatura efectiva y velocidad de rotación proyectada de la estrella, construimos gráficos de Abundancias vs. Edad, Abundancias vs. Temperatura Efectiva y Abundancias vs. *vseni*. Para el primero de los casos, el análisis se realizó para las especies químicas que presentan un comportamiento anómalo en este tipo de estrellas. Es decir, para P, Sc, Mn, Ga, Y, Zr, Xe y Hg: podemos decir que hay sospechas sobre la existencia de tendencias decrecientes para los elementos: P, Ga, Y, Zr y Xe. Sospechamos una tendencia creciente para el Sc, mientras que el Hg y Mn no presentaron tendecias. En el caso de la relación abundancia–temperatura efectiva de las estrellas, sospechamos tendencias crecientes para el Mg, Ti, Mn, Ga, Y, Zr, Xe y Hg. Una tendencia decreciente se sospecha para el Al, Sc y Sr, mientras que no encontramos dependencias para el Si, Fe y Ni. Finalmente, para el caso de abundancia–velocidad de rotación proyectada, sospechamos tendencias decrecientes para el Al, Sc, Br, Nd. Sospechamos tendencias crecientes para el O y Ni, mientras que no se observaron tendencias para el Si, Mn, Fe, Ga, Sr y Hg.

Abstract

We have studied the chemical abundances of some chemical elements in the atmospheres of HgMn stars. The aim is to verify the existence of possible variations of the chemical abundances of critical elements in these kind of stars like Hg, Mn, P, Sc and Ga among others, with the age.

We work on 10 HgMn stars selected from the catalogues of perculiar Star by Renson (1991) and Schneider (1981). We used the EBASIM bench echelle spectrograph at CASLEO. We have measured radial velocities through cross correlation to correct the wavelengths to the laboratory frame. After the reduction with IRAF package, we identified the chemical species present in the atmosphere of the stars and we have derived abundances for around 30 chemical elements in each object. To deriving the abundances we have measured the equivalent widths of the spectral lines.

As a previous step before the calculation of the abundances we have determined the atmospheric parameters, T_{ef} and $\log g$, for each star. As a first approximation we used the code TempLogg (Rogers 1995) using Strömgren uvby β photometry and later we have improved the values using two different techniques. For six stars we could retrieve flux-calibrated UVES spectra from the ESO database and we synthesized H γ Blamer line with the code SYNTHE. For the rest of the stars we used T_{ef} corrected by the relation proposed by Adelman & Rayle (2000) and we searched ionized equilibrium for Fe varying $\log g$ up to 0.3 dex. For the model atmosphere computation and the abundances we used ATLAS9 and WIDTH9 (Kurucz 1992) respectively.

Generally, in all stars, He is deficient with respect to the solar abundance. O is slightly overabundant except for HD 35548 and HD 149121 (slightly underabundant).

Mg is slightly underabundant for HD 35548, HD 53244, HD 149121 and HD 175640, for others is slightly overabundant. Si was slightly overabundant for HD 129174, HD149121 y HD 175640, but is slightly underabundant for the rest.

Fe is slightly overabundant for all stars.

Sc, Ti, Cr, Mn, Sr, Y and Zr are overabundant for all stars of the sample except that HD 175640 has Sc slightly deficient while HD 53244 and HD 175640 have no Sr lines.

Ni is underabundant for HD 175640, HD 186122, HD 158704 and HD 78316. HD 53244 is slightly overabundant, for HD 49024 Ni is overabundant by a 140 factor while for the rest of the stars we have not identified Ni lines.

Ga is overabundant except for HD 53244 and HD 49024. We could not find Ga lines in their spectra. Both stars belong to open clusters, although it should be confirmed membership of HD

53244 at Cr121.

Finally Hg is strongly overabundant in all stars.

We have derived stellar ages using the code (PARAM 1.1) (da Silva et al. (2006)). The code uses theoretical isochrones and the Bayesian method of estimation developed by Jorgensen & Lindergren (2005). We locate the stars in an HR diagram and we adjusted for each one the best suited theoretical isochrones. We have used Hipparcos parallaxes and the isochrones of Padova (Girardi 2000).

To analyze possible trends in abundance with age, effective temperature and projected rotational velocity of the star, we construct graphics of abundances vs. Age, Abundances vs. Effective Temperature and Abundances vs. vseni. For the first case, the analysis was performed for the anomalous chemical species in this type of stars. That is, for P, Sc, Mn, Ga, Y, Zr, Xe and Hg: we can say that there are suspicions about the existence of downward trends for the elements: P, Ga, Y, Zr and Xe. We suspect a growing trend for Sc, while the Hg and Mn showed no trends. In the secondone, we suspect growing trends for Mg, Ti, Mn, Ga, Y, Zr, Xe and Hg. A decreasing trend is suspected for Al, Sc, Sr, while we find no dependencies for Si, Fe and Ni. Finally, for the case of abundance vs. *vseni* suspect decreasing trends for Al, Sc, Br, Nd. We suspect increasing trends for O and Ni, while no trends were observed for Si, Mn, Fe, Ga, Sr and Hg.

We drew plots Abundances vs. Ages for P, Sc, Mn, Ga, Y, Zr, Xe y Hg. We have found a tendency of decreasing abundances with age for P, Zr and Mn. The behavior of the rest of the chemical species does not show any tendency with age. Due to the reduced sample that we have used, this should be consider a first attempt to handle the problem. It will be necessary to increase the number of HgMn stars observed for definite results.

Capítulo 1

INTRODUCCIÓN

1.1. Antecedentes

Morgan (1933) notó que algunas estrellas de la secuencia principal superior no encajaban en el esquema de clasificación espectral bidimensional. Las líneas de ciertas especies atómicas estaban intensificadas comparadas con espectros normales para las mismas temperaturas. Morgan notó que algunas de estas estrellas tenían líneas de Hg y Mn extremadamente intensificadas.

Las estrellas de HgMn, como fueron llamadas, pertenecen al grupo más general de estrellas Ap. Investigaciones sobre este tema se realizaron desde entonces con éxito. Hoy sabemos que las estrellas Ap, más comúnmente llamadas CP, (chemically peculiar) pueden clasificarse en cuatro grupos diferentes según el esquema de Preston (1974) a saber:

- CP1: Estrellas con líneas metálicas, o estrellas A metálicas (Am)
- CP2: Estrellas Magnéticas Ap (de Silicio, de Cr-Eu, de Sr)
- CP3: Estrellas de HgMn y
- CP4: Estrellas con He anómalo (He-weak estrellas débiles de He y He-strong estrellas con He muy intensificado)

También se sabe que las estrellas CP3 (HgMn) tienen las siguientes propiedades (ver Dworetsky (1993)):

- Temperaturas efectivas entre 11000 y 16000 K (correspondientes a tipos espectrales B6 a A0).
- 2. Muy bajas velocidades de rotación axial (algunas veces es más baja que la velocidad de sincronismo en sistemas binarios).

- 3. La mitad de las estrellas de HgMn son miembros de binarias espectroscópicas (Gerbaldi et al. 1985). Sin embargo, hay opiniones que favorecen la idea de que todas las estrellas de HgMn pertenecen a sistemas binarios espectroscópicos.
- 4. Los períodos de las binarias con estrellas de HgMn nunca son más cortos que 3 días. No se conoce con exactitud el motivo.
- Las estrellas de HgMn no tienen campos magnéticos significativos organizados. Sin embargo, han habido esfuerzos observacionales para determinar campos magnéticos en estas estrellas (Lanz & Hubeny (1993), Hubrig et al.(1999b), Hubrig & Castelli (2001), Wade et al. (2006), Folsom et al. (2010), Makaganiuk et al. (2011)).
- 6. El esquema de abundancias es sorprendente: Hg y Mn son muy sobreabundantes pero las líneas de otras especies atómicas que normalmente no se ven en espectros normales son muy prominentes, entre ellas se pueden mencionar Nd, Au, Xe, Ga, Pt, etc. Sin embargo, todo el grupo es heterogéneo Adelman (1993). La explicación teórica de estas anomalías no es clara. Se han propuestos distintos mecanismos como responsables de este fenómeno pero los cálculos no reproducen aún satisfactoriamente las abundancias observadas (Gonzalez et al. 1995). En particular en algunas estrellas se encuentran abundancias isotópicas que no pueden ser explicadas por difusión radiativa (Dolk et al. 2003).
- 7. Hay correlación entre las abundancias en las estrellas de HgMn (ver Smith & Dworetsky (1993)).
- 8. La composición isotópica de las abundancias de Hg en las estrellas de HgMn está correlacionada con las temperaturas efectivas (Hubrig et al. (1999a).
- 9. Hay algunos indicios sobre la variabilidad fotométrica de estas estrellas con amplitudes pequeñas.

1.2. Estrellas Químicamente Peculiares

Las estrellas de la secuencia principal más baja ($T_{ef} \leq 7000$ K) son notablemente homogeneas respecto a su rotación (uniformemente lenta) y composiciones químicas (aproximadamente solar). Para las estrellas de secuencia principal superior la situación es bastante diferente. Muchas familias de estrellas químicamente peculiares (CP) pueblan el intervalo de temperaturas

Introducción

 $7000 \le T_{ef} \le 30000$ en un dominio de temperaturas bien definido pero superpuesto. Estas incluyen las estrellas A metálicas (Am), estrellas A magnéticas (Ap), las estrellas con He anómalo y las estrellas λ *Bootis*. Durante la década de los 60s y 70s varias hipótesis fueron propuestas para explicar las diversas estrellas CP: nucleosíntesis interior en la fase de evolución de postsecuencia principal (Fowler et al. 1965), contaminación superficial de una estrella normal por una compañera supernova (Guthrie 1967), difusión inducida por presión de radiación (Michaud 1970), y acreción magnética selectiva por materia interestelar (Havnes & Conti 1971).

Las estrellas CP son identificadas por la presencia de líneas de absorción anómalas intensas (o débiles) de ciertas especies químicas en los espectros de las mismas. A partir de la década del 20 estas estrellas se clasificaban de acuerdo a un esquema de complejidad creciente. Si el espectro no se podía interpolar en la secuencia de Harvard simplemente se le agregaba una p (por peculiar) a la clasificación espectral. Morgan (1933) fue el primero en reconocer que estas estrellas, ordenadas por peculiaridad predominante (Mn, Si, Eu, Cr, Sr), formaban una secuencia de temperatura excitación–lumunosidad. Posteriormente, Jaschek & Jaschek (1958) agregaron detalles a la secuencia y mostraron que los colores estaban relacionados con los tipos. Sin embargo, existía una superposición considerable en los colores de varios grupos, y luego ellos concluyeron (Jaschek & Jaschek 1967) que la correlación era la mejor en términos estadísticos. Los esfuerzos de clasificación culminaron con un survey de dispersión moderada ($60 \text{Å}mm^{-1}$) realizado por Osawa (1965) quien encontró conveniente subdividir al rededor de 200 estrellas Ap en 16 clases de peculiaridad.

Fue Preston en 1974 quien realiza un esquema simplificado de clasificación agrupando a las estrellas por abundancias anómalas en vez de tener en cuenta diferencias superficiales en la apariencia del espectro producidas por diferencias de temperaturas efectiva que pueden ocurrir dentro de la familia de las estrellas CP. Dividió a las estrellas peculiares en 4 grupos:

- Grupo 1 (ó CP1): teniendo en cuenta la definición clásica de estrellas con líneas metálicas (Roman et al. 1948), tipo espectral (línea K) < tipo espectral (línea H) < tipo espectral (líneas metálicas), que luego fue modificado por Conti (1970a) para incluir estrellas con líneas débiles de ScII en vez o además de líneas K débiles. La aplicación de esta definición extendida permitió descubrir numerosas estrellas Am calientes entre las estrellas A0V–A2V con líneas angostas (Conti 1965).
- Grupo 2 (ó CP2): incluye en este grupo todas las estrellas Ap para las cuales Si, Cr, Sr,

o Eu son el elemento principal y más abundante. Las estrellas de este grupo generalmente poseen campos magnéticos ~ 10^3 a 10^4 G (Babcock 1958). Los campos magnéticos varían periódicamente con un período que va de unos pocos días a años (Preston 1970), y la variación magnética frecuentemente es acompañada por luz sincronizada y variación del espectro (Preston 1971). Tales variabilidades se encontraron en casi todas las estrellas de este grupo.

- Grupo 3 (6 CP3): Contiene todas aquellas estrellas para las cuales HgII λ 3984 y/o la líneas más importantes del MnII son las características principales.
- Grupo 4 (ó CP4): Las estrellas de este grupo poseen líneas de HeI que son más débiles de lo que se espera de los colores UBV. Se usaba como criterio de descubrimiento Q (tipo espectral) > Q(UBV) para clasificarlas.

En la siguiente tabla se resume el esquema de clasificación según lo hiciera Preston en su trabajo de 1974.

Grupo	Nombre	Criterio de	Otras Propiedades				
СР	Clásico	Descubrimiento	Rotación.	Frecuencia de	Períodos de	Rango de	
				binaridad	binarias	Temperaturas	
1	línea	CaII y/o ScII débil;	lenta	alta	anormal	7000–10000K	
	metálica (Am)	metales pesados abundantes					
2	Ap magnética	Si, Cr, Sr, Eu abundantes	lenta	baja	anormal	8000–15000K	
3	HgMn	HgII $\lambda 3984$,	muy lenta	normal?	anormal	10000-15000K	
		MnII abundantes					
4	He-deficiente	Q(Sp)	lenta?	?	?	13000-2000K	
		> Q(UBV)					

Tabla 1.1: Esquema de Clasificación para las estrellas CP

1.3. Estrellas CP

A continuación se describen los distintos grupos de estrellas peculiares según el esquema de clasificación de Preston (1974)

- CP1: Estrellas con líneas metálicas, o estrellas A metálicas (Am)
- CP2: Estrellas Magnéticas Ap (de Silicio, de Cr-Eu, de Sr)
- CP3: Estrellas de HgMn y
- CP4: Estrellas con He anómalo (He-weak estrellas débiles de He y He-strong estrellas con He muy intensificado)

1.3.1. Estrellas A metálicas (Am)

Las estrellas Am o estrellas de líneas metálicas son definidas, en el sentido de la clasificación espectral, como estrellas de tipo A o estrellas tipo F tempranas en las cuales el tipo de la línea K del CaII es más temprana que el tipo de líneas metálicas por al menos 5 subclases espectrales. Por el momento, una estrella A con líneas K de una tipo A5 y líneas metálicas de una tipo F2 es clasificada como una estrella Am.

Las estrellas con discrepancias similares entre los tipos de líneas K y los tipos de líneas metálicas, pero para las cuales las diferencias para los dos tipos es menor que 5 subclases espectrales, han sido determinadas como estrellas "proto-Am" por Morgan et al. (1978).

El descubrimiento de las Am puede ser atribuido a los clasificadores de Harvard, Antonia Maury y Annie J. Cannon quienes notaron que un grupo de estrellas, incluyendo δ Nor, τ UMa, y τ^3 Eri, que tienen líneas K débiles, pero líneas metálicas intensas parecidas a aquellas de las estrellas F. Sin embargo, el reconocimiento de la existencia de una clase de estrella como Am fue hecha por primera vez explícitamente por Titus & Morgan (1940) quienes clasificaron un grupo de tales estrellas en el cúmulo Hyades. La clase Am fue formalizada en el atlas MKK (Morgan et al. (1943)). El patrón de abundancias en las estrellas Am es bastante peculiar, Ca, Y, Sc son subabundantes, mientras que los elementos del pico de hierro y los elementos más pesados son sobreabundantes.

Los colores fotométricos (tales como B–V o b–y de Strömgren) muestran una dispersión grande cuando se los grafica contra las líneas tipo K de las estrellas Am. La conclusión es que las líneas tipo K no son un buen indicador de temperatura efectiva. La correspondencia entre los tipos de líneas metálicas y los colores fotométricos es mejor. Sin embargo, las líneas tipo

Hidrógeno son menos afectados por la abundancias elementales anormales en las atmósferas de las estrellas Am, y entonces son los mejores indicadores de temperatura efectiva. Resulta que el excesivo blanketing de las líneas presente en las estrellas Am enrojecen los colores fotométricos (las líneas de absorción están más densamente espaciadas en el azul que en el rojo), y por lo tanto, para una dada temperatura efectiva o un dado tipo de línea de hidrógeno, las estrellas Am tienden a ser más rojas que las estrellas normales de tipo A.

1.3.2. Estrellas Magnéticas Ap

Si las Am o estrellas de líneas metálicas son estrellas de tipo A en las cuales casi todos los elementos pesados (con unas pocas excepciones especiales) son mayores en la fotósfera estelar, luego las estrellas Ap o estrellas tipo A peculiares son estrellas en las cuales algunos elementos seleccionados tienen abundancias mayores. En realidad, la mayoría de las estrellas Ap son estrellas tipo B en términos de temperaturas efectivas.

La clasificación de las estrellas Ap tienen una larga historia. Antonia Maury (Maury & Pickering 1897) clasificaron cerca de una docena de estrellas Ap del norte y comentaron sobre las peculiaridades de α^3 CVn, notando el doblete de SiII $\lambda\lambda$ 4128–30 muy intenso en la estrella. En el catálogo Draper, Annie J. Canon (Cannon & Pickering (1901)) reconocieron la existencia de dos clases de estrellas Ap: aquellas con mayor Si (incluyendo ν For, τ^9 Eri y α Dor) y aquellas con mayor Sr (incluyendo ξ Phe, θ^1 Mic y ι Phe). Posteriormente, Cannon (1912a,b) sumaron 25 estrellas a esta clase. El primer trabajo sistemático sobre las estrellas Ap lo hizo W. W. Morgan, quien en una serie de trabajos de 8 publicaciones publicado en el Observatorio de Yerkes desde 1931 a 1933 (ver también Morgan 1933), identificó 5 grupos de estrellas peculiares: las estrellas de MnII, λ 4200, EuII, CrII y SrII con importantes solapamientos entre estas clases. El también notó que las estrellas de SiII $\lambda\lambda$ 4128–30 se superponía con los 3 primeros grupos. Los Jascheks (Jaschek & Jaschek 1958) extendieron y modificaron estos 6 grupos – los grupos de λ 4200, Mn, Si, Si–Cr–Eu, Eu–Cr–Sr y Sr. Bidelman (1962b) señaló que λ 4200 es una línea de alta excitación del SiII y entonces las estrellas λ 4200 son ahora reconocidas dentro del grupo de Si. Osawa (1965), en el mayor estudio de clasificación, dividió las estrellas Ap en 16 clases de peculiaridad. La clasificación de Osawa tiende a ser bastante detallada y usualmente indica no solo las peculiaridades químicas presentes sino que separa los tipos espectrales para la línea K del CaII y las líneas de hidrógeno. Garrison & Gray (1994) adoptan una notación similar, pero también, para las estrellas tipo B peculiares da una separación por tipos espectrales basados en la intensidad de las líneas de HeI.

Una característica importante de la mayoría de las Ap es que son variables espectroscópicas, en que la intensidad de la línea asociada con varias peculiaridades químicas varía con el período rotacional de la estrella. La opinión predominante es que esto significa que la sobreaundancia de estos elementos no están distribuidos uniformemente sobre la superficie estelar de una estrella Ap típica, sino más bien que están concentrados en manchas. Elementos diferentes pueden estar concentrados en manchas diferentes sobre la superficie de la estrella , como la intensidad de la línea de diferentes especies puede variar de diferentes maneras. Por ejemplo, para α^2 CVn (Pyper 1969) los anchos equivalentes de los elementos de las tierras raras varían esencialmente de manera sinusoidal con la fase, sugiriendo que estos elementos están concentrados en una mancha única sobre un hemisferio. Los elementos del pico de hierro, sin embargo, varían de una manera mucho más complicada, sugiriendo la presencia de múltiples manchas. Observando la variación de la velocidad radial de las líneas espectrales asociadas con estos elementos, es posible mapear las posiciones de estas manchas sobre la superficie de la estrella.

El origen de estas manchas o parches de abundancia está asociado con la presencia de campos magnéticos. Es conocido que todas las estrellas Ap "clásicas" (también llamadas estrellas "CP2", que comprende las estrellas Ap, pero no incluye las estrellas de HgMn) tienen campos magnéticos intensos, en el rango comprendido entre unos cientos de gauss hasta unos pocos kilogauss (kG) en muchos casos. La intensidad de campo magnético más alta observada sobre cualquier estrella no-degenerada es el de la estrella Ap HD 215441 (estrella Babcock, Borra & Landstreet(1978)) la cual tiene un máximo de 20.5 kG. Los campos magnéticos fueron descubiertos por primera vez por Babcock (1947) y han sido medidos en cientos de estrellas Ap.

1.3.3. Estrellas de HgMn

Las estrellas de HgMn se encuentran típicamente en un rango espectral angosto desde B7 a B9, y tienen tipos de luminosidad entre V y III. Presentan baja velocidad de rotación comparando con las estrellas normales del mismo rango de temperaturas (Abt et al. 1972). La característica más distintiva en su atmósfera son la extrema sobreabundancia de Hg (aveces exceden los 5 dex) y el Mn (por encima de 3 dex), en el violeta-azul el Hg II puede ser detectado únicamente en λ 3984, mientras que el MnII es visto más facilmente en λ 4136, λ 4206 y λ 4252. Para algunas estrellas el HgII no se observa, en cuyo caso la estrella es referida como estrella de "manganeso", y para otras estrellas el Mn es normal y el Hg se incrementa. Las estrellas de HgMn a menudo muestran deficiencias de He, aunque esta característica es común para todas las estrellas CP. El esquema de abundancias es sorprendente y varía de una estrella a otra, esto es una característica de las estrellas de HgMn que la teoría aun no ha explicado satisfactoriamente, no hay un modelo único para ellas: Los elementos livianos son en general deficientes, la mayor parte de los elementos del pico del Fe tienden a ser sobreabundantes, por ejemplo el Mn, pero algunos son solares o subsolares como el Ni. Los elementos más pesados cuando están presentes son sobreabundantes. De las tierras raras, el Nd y el Pr se encuentran en su segundo estado de ionización. Los elementos C, N y O son deficientes aunque el C a veces muestra una abundancia normal o levemente sobreabundante. El Si es normal en estas estrellas y el S en general es deficiente. El P si está presente es sobreabundante. Otros elementos que de estar presentes muestran sobreabundancia son el Au, Xe, Ga, Pt. El Fe muestra un comportamiento ambiguo, por ejemplo, mientras que en 53 Tau es deficiente en HR 7664 es muy intenso.

Otro ejemplo es χ Lup una estrella de HgMn que ha sido bien estudiada (Leckrone et al. 1999) muestra una marcada sobreabundancia de la mayoría de los elementos con $Z \ge 38$ (Sr y por encima de la tabla periódica; Mn tiene una abundancia cercana a la normal) incluyendo una sobreabundancia de 2 dex o mayores para las tierras raras, y una sobreabundancia muy grande de Pt, Au y Hg.

En el ultravioleta, las líneas de resonancias del MnII (λ 2594, λ 2606) son claramente intensificadas, y en el lejano ultravioleta, estas estrellas muestran una marcada deficiencia de flujo posiblemente debido al aumento en el blanketing de las líneas y a la opacidad del continuo ligado-libre.

La explicación teórica de estas anomalías no es clara. A pesar de proponerse mecanismos diferentes para intentar explicar las anomalías observadas, los resultados no concuerdan con las observaciones. En particular en algunas estrellas se encuentran abundancias isotópicas que no pueden ser explicadas por difusión radiativa (Dolk et al. 2003).

Las estrellas de HgMn fueron reconocidas por primera vez como un grupo (las estrellas de "manganeso") por Morgan (1931), aunque en ese tiempo la línea de HgII λ 3984 no fue identificada. Esta línea fue por primera vez identificada con el HgII por Bidelman (1962a,b), quien sugirió también la presencia de anomalías isotópicas en el mercurio (ver Whitford (1962)).

Las estrellas de HgMn son consideradas estrellas químicamente peculiares no magnéticas, aunque este cuadro ha cambiado en las últimas décadas. Por ejemplo, Mathys & Hubrig(1995) proponen una intensidad de campo del orden de 1 kG para *o Peg*, y han sido detectados campos similares en otras estrellas de HgMn. El hecho de que algunas estellas de HgMn muestran variaciones espectrales (cambios en el perfil de HgII λ 3984 entre otros elementos) sugiere que existe una distribución no uniforme de las abundancias sobre la superficie estelar, y con esto la

presencia de campos magnéticos. En los últimos tiempos se han realizado algunos trabajos interesantes para hacer una conexión entre las estrellas de HgMn y las Am calientes (aquellos tipos A tempranos con líneas de hidrógeno). Muchos elementos, por ejemplo los lantánidos tierras raras muestran una tendencia continua en las anomalías de las abundancias a través del límite HgMn-Am, mientras que otras muestran comportamientos discontinuos (ver Dolk, Wahlgren, & Hubrig 2003). Adelman et al. (2003) sugieren que existe una conexión evolutiva directa entre las estrellas de HgMn y las estrellas Am calientes. En acuerdo con las estrellas Am, las estrellas de HgMn parecen tener una alta incidencia de binaridad (quizas mayor al 67 %, de acuerdo a Mathys & Hubrig (1995)), con muchas de las posibles compañeras Am (Ryabchikova 1998).

1.3.4. Estrellas con He anómalo

Estrellas He-strong

Las estrellas He-strong son estrellas tipo B tempranas (B3 y más tempranas) que tienen líneas extraordinariamete intensas de He neutro. El prototipo de esta clase es σ Ori E, la estrella en el cúmulo joven σ Ori. La otra estrella brillante He-strong es δ Ori C. Un grupo de estrellas tipo B He-strong son variables fotométricas y espectroscópicas, algunas muestran un gran cambio en la intensidad de las líneas de HeI. Bidelman (1965) fue el primero en descubrir la variabilidad en las estrellas He-strong; el encontró que HR 5378 (a Cen) tiene líneas intensas de HeI que varían de He-strong a He-weak. HD 184927 es otra estrella que muestra variaciones intensas en la intensidad de las líneas de HeI, en este caso varía en intensidad entre He-strong y He-normal (Bond & Levato (1976); Levato & Malaroda (1979); Levato & Malaroda encontraron un período para la variación de 9.536 días. Wade et al. (1997) midieron un campo mag nético longitudinal para HD 184927 y encontraron que este variaba entre -0.7 kG a 1.8kG con un período cercano al encontrado por Levato & Malaroda (1979).

Los campos magnético intensos parece ser una característica común aunque no universal en las estrellas tipo B He-strong (Bohlender et al. 1987), con intensidades en los campos magnéticos promediando por encima de 3 veces más grandes que para las estrellas Ap magnéticas clásicas. Una gran fracción de estrellas tipo B He-strong tienen campos magnéticos constantes, sugiriendo el caso contrario a HD184927, que la inclinación entre el eje del campo magnético y el eje rotacional es bastante pequeño; estas estrellas muestran variaciones pequeñas o incluso ninguna variación fotométrica o espectroscópica. δ Ori C es un ejemplo de una estrella He-strong no variable escencialmente.

Estrellas He-weak

Las estrellas He-weak constituyen una clase de estrellas tipo B que están caracterizadas por tipos espectrales mediante líneas de hidrógeno (es decir, tipos espectrales basados únicamente en perfiles de líneas de hidrógeno) o, usualmente B3 y más tardías, pero para las cuales las líneas de He son peculiarmente débiles. Osawa (1965) introduce el uso de las líneas de HeI para las estrellas He-weak, y esta práctica fue seguida por Garrison & Gray (1994). Alguna de estas estrellas muestran un espectro rico en líneas metálicas inusual, y en cuyos casos uno puede asignar también tipos de líneas metálicas.

Las estrellas He-weak fueron encontradas tempranamente cuando encontraron discrepancias en el espectro-color (ver Sharpless (1952); Garrison (1973)) en que los colores U - B y B - V son azules para las intensidades de las líneas de HeI. Este criterio fue utilizado para descubrir nuevas estrellas He-weak (Bernacca 1968; Jaschek et al. 1969).

Estudios de alta resolución de las estrellas tipo B He–weak han demostrado –si se omite las clásicas estrellas Ap magnéticas y las estrellas de HgMn, ambas de las cuales son a menudo He–weak– la existencia de 3 subclases. Estas subclases son las estrellas de Silicio (Si) (caracterizada por una mayor cantidad de líneas de Si, pero generalmente a temperaturas más altas que las estrellas Ap clásicas de Si), las estrellas Fósforo-Galio (PGa), y las estrellas Estroncio-Titanio (SrTi). Las estrellas de Si He-weak pueden no ser distintas de las Ap Si λ 4200, la cual representa el final caliente de las estrellas de Silicio Ap. En el caso de las estrellas SrTi He-weak, tanto el Estroncio como el Titanio son mayores, pero con tipos espectrales significativamente más tempranos que las estrellas clásicas Ap de Estroncio. Una minoría de estrellas He-weak no muestran peculiaridades adicionales. De hecho, aunque estas 3 subclases de estrellas He-weak fueran reconocidas por primera vez en estudios de alta resolución (Norris 1971), ellas pueden ser detectadas en espectros de clasificación de alta S/N con resolución mejor que 2.

Las líneas de HeI en las estrellas He-weak a menudo muestran perfiles peculiares. Por ejemplo la estrella 3 Sco las líneas de HeI tienen perfiles triangulares, especialmente la λ 4471. Las estrellas 3 Cen A y ι Ori B y algunas otras estrellas He-weak reportan una inusual sobreabundancia del isótopo ³*He*. Esto puede ser responsable, al menos en alta resolución, de los inusuales perfiles de HeI debido al corrimiento entre el isótopo ³*He* y el isótopo ⁴*He* normalmente más abundante (ver Sargent & Jugaku 1961; Dworetsky 1973; Hartoog & Cowley 1979).

Como las estrellas tipo B He-strong, muchas pero no todas de las He-weak, tiene cam-

pos magnéticos detectables, aunque estos campos son mucho más débiles que para las estrellas He-strong (Borra et al. 1983). La existencia de estos campos magnéticos sugieren una conexión entre las estrellas tipo B He-weak y las estrellas magnéticas Ap, además se acepta que las estrellas tipo B He-weak representan el final caliente del fenómeno Ap magnética. Sin embargo, las estrellas He-weak PGa pueden representar el final caliente de las estrellas de HgMn no magnéticas, como Borra, Landstreet, & Thompson fueron capaces de detectar campos magnéticos en cualquiera de sus 4 estrellas PGa observadas. Las estrellas He-strong generalmente tiene tipos espectrales B3 y más tempranos, mientras que las He-weak tienen tipos espectrales B3 o más tardíos, y entonces existe un pequeño solapamiento en temperatura efectiva entre los dos grupos. Por otro lado las estrellas variables de He tienen tipos espectrales y colores que cierran la brecha entre estos dos grupos, en particular la estrella a Cen (HR 5378) que varía desde He-strong a He-weak (Bond & Levato 1976).

1.3.5. Estrellas λ *Bootis*

Dentro de las estrellas CP debemos considerar también al grupo de las λ *Bootis*.

Las estrellas λ *Bootis* son una clase de estrellas tipo A de población I con metales débiles. El descubrimiento de esta clase data de 1943 cuando el prototipo de la clase, λ Boo en sí misma, fue mencionada en el clásico *Atlas del Espectro Estelar* (Morgan, Keenan, & Kelleman 1943). Esta fue descripta como que tenía el tipo espectral "cercana a A0", pero con líneas espectrales muy débiles, entonces las únicas características visibles fácilmente "son una línea K débil y la serie de Balmer de hidrógeno ". Otra de las características sobresaliente de las estrellas λ *Bootis* es la línea de MgII λ 4481 que es peculiarmente débil. De hecho, durante muchos años, la definición operativa de la clase fue simplemente "estrellas con tipos espectrales cercanos a A0 con la línea 4481 débil". Sin embargo, esta definición resultó ser demasiado simple.

Con el avance en el estudio de estos objetos, fue necesario adoptar una definición más clara y sin ambigüedades. Tal definición fue propuesta por Gray (1997) para el espectro óptico, y lo que sigue está basado en las definiciones presentadas en aquel paper.

- 1. Las estrellas λ *Bootis* son estrellas entre A-tempranas y F-tempranas con un rango aproximado en tipos espectrales (determinado por las líneas de hidrógeno) de B9.5 a F0 con posibles miembros tan tardíos como F3.
- 2. Las estrellas λ *Bootis* parecen estar caracterizadas siempre por líneas débiles de MgII λ 4481, entonces la relación MgII λ 4481/FeII λ 4383 es significativamente más chica que

para las estrellas tipo-A normales.

- 3. Además de la ínea MgII λ 4481, las estrellas λ *Bootis* muestran un signo claro de carácter débil en metales general. En las estrellas λ *Bootis* más calientes el espectro de líneas metálicas en general pueden ser significativamente más débil que en las A0 estándares. En las estrellas λ *Bootis* A-tardías y F-tardías, el espectro de líneas metálicas es claramente débil para el tipo de temperatura determinado por las líneas de hidrógeno.
- 4. Las estrellas λ *Bootis* también están caracterizadas por líneas de hidrógeno anchas, entonces parecen ser no cercanas a la secuencia principal.
- 5. La distribución de la velocidad de rotación para las estrellas λ *Bootis* no puede ser distinguida de las estrellas tipo-A de población I normales. No todas tienen $v \sin i \ge 100$ kms^{-1} como fue sugerido por Jaschek & Jaschek (1990). Las estrellas con alta velocidad de rotación ($v \sin i \ge 200 \ kms^{-1}$) identificadas como estrellas λ *Bootis* son necesariamente miembros provisorios del grupo, ya que es difícil confirmar las características de las λ *Bootis* en tales estrellas rotadoras rápidas.

1.4. Mecanismos físicos responsables de las anomalías observadas en las estrellas de HgMn

Con anterioridad al año 1970 hubo varios intentos de explicar las anomalías de abundancia, sin éxito, por ejemplo (Fowler et al. 1965), propusieron la existencia de reacciones nucleares en el interior de la estrella, pero entonces las estrellas deberían ser relativamente viejas y esto no está de acuerdo con las observaciones pues las estrellas CP habían sido detectadas en cúmulos jóvenes. Anteriormente en 1955, Fowler, Burbidge & Burbidge habían postulado reacciones nucleares en la superficie de la estrella, pero los resultados tampoco estaban de acuerdo con las observaciones.

En 1970, Michaud (de la Universidad de Montreal, Canadá) propone la teoría de la difusión para las atmósferas de las estrellas Ap para explicar las anomalías de abundancia y desde el punto de vista cualitativo obtiene buenos resultados. Para que la difusión tenga lugar se necesita una atmósfera estable y Michaud considera que las Ap son buenas candidatas porque:

- 1. Son rotadores lentos ($vsini < 100 \ kms^{-1}$)
- 2. Tienen una zona de convección que no es muy importante, son estrellas B tardías, A y F

tempranas.

- 3. Tienen velocidades de turbulencia no muy grandes (en particular el grupo HgMn muy cercanas a cero).
- 4. Las velocidades de circulación meridional no son importantes.
- 5. En el caso particular de las HgMn no tienen campos magnéticos grandes.

Para explicar las abundancias anómalas en las capas externas de la atmósfera de una estrella de HgMn, a menudo se considera una atmósfera relativamente estable y se considera difusión selectiva conducida radiativamente. Las estrellas de HgMn son demasiado calientes para tener una zona superficial convectiva de hidrógeno y debido al ajuste gravitacional del He, se espera que no tengan zona convectiva de He. Por lo tanto la difusión ocurre en ausencia de mezcla debido a la convección y a la circulación meridional intensa que puede ocurrir en los rotadores rápidos.

En un esquema de una atmósfera estable se plantea una competición entre las fuerzas radiativas (representada por la aceleración radiativa g_R) y las fuerzas gravitatorias (representadas por la aceleración de la gravedad g). Si $g_R > g$, los elementos químicos son empujados hacia la superficie de la estrella y entonces los elementos son sobreabundantes; si por el contrario, g > g_R , los elementos son empujados hacia el interior de la atmósfera y entonces son deficientes. A esta propuesta de Michaud se la conoce como *Modelo Libre de Parámetros*.

Las estrellas nacen como estrellas normales con una zona de convección cuya componente principal es el HeII (a esta zona la llamaremos ZCHeII). El Helio de esta zona como su g $> g_R$ es empujado hacia el interior de la atmósfera, su abundancia decrece y después de un intervalo de tiempo de 10⁶ años su valor decrece a 0.3 de su valor inicial, en esas condiciones la ZCHeII es eliminada y la difusión tiene lugar en esa zona inmediata a la superficie de la estrella. Debido a este mecanismo tenemos que por empuje gravitacional se produce una deficiencia de elementos livianos, y por empuje radiativo tenemos sobreabundancia de Mn, Sr, Y, Zr. El Si es sobreabundante sólo si hay episodios de autoionización y el P es sobreabundante. El modelo de Michaud recibió algunas críticas:

- 1. Asume una estabilidad no razonable en la zona externa de la estrella.
- 2. Las sobreabundancias que predecía eran mucho mayores que las observadas.

Introducción

En la década del 80 se trabajó en el perfeccionamiento del modelo, además de Michaud colaboraron en este proyecto: los Vauclair (Observatoire de Meudon, París, Francia), Charbonneau (USA), Alecian (Francia) etc.

Las Modificaciones implementadas al modelo libre de parámetros debía cumplir:

- 1. Favorecer la desaparición de la ZCHeII
- 2. Disminuir las sobreabundancias calculadas

Michaud et al. utilizan los resultados de (Tassoul & Tassoul 1982) quienes determinaron la velocidad de circulación meridional en un medio viscoso rotante. Entonces, estudiaron procesos de circulación meridional en una estrella rotante, y determinaron cual es la máxima velocidad de rotación de una estrella que permite la eliminación de la ZCHeII. El modelo que usaron para las estrellas HgMn es el siguiente: $M = 3 M_{\odot}$, $T_{ef} = 14000$ K

Llegando a la conclusión que para que desaparezca la ZCHeII la velocidad de circulación meridional no debe ser mayor que 10 veces la velocidad de difusión y que para que se cumpla esta condición la velocidad de rotación ecuatorial, V_e tiene que ser menor que 90 kms^{-1} ; lo cual está de acuerdo con las observaciones ya que para las etrellas de HgMn, $V_e < 100 \ kms^{-1}$. También determinaron que la circulación meridional tiene una fuerte dependencia con la gravedad: Una estrella con *log g* = 4.43 cumple con la condició descripta si $V_e = 90 \ kms^{-1}$ Si *log g* = 4.0, la $V_e = 30 \ kms^{-1}$ y si *log g* = 3.5, $V_e = 4 \ kms^{-1}$.

De esta manera, los autores pudieron explicar cualitativamente las abundancias de los elementos He, B, Si, Ca, Sr y Mn.

La estrellas de HgMn presentan aún una serie de aspectos en los que es factible seguir indagando. En este trabajo doctoral nuestro objetivo principal es estudiar las abundancias químicas de las especies presentes en las atmósferas y hacer incapie en la búsqueda de posibles variaciones entre las abundancias de especies anómalas y la edad de la estrella. Se pretende aportar más datos en el estudio de las abundancias químicas para colaborar de alguna manera en el entendimiento de los procesos que hacen que estas estrellas posean un comportamiento tan ambiguo.

En el Capítulo 2 mostramos las consideraciones realizadas en la selección de los objetos de estudio, presentamos el instrumental empleado y describimos la adquisición de los datos y su reducción.

En el Capítulo 3 describimos la metodología implementada en la determinación de abundancias químicas, como también los programas utilizados para tal fin. En el Capítulo 4 mostramos los resultados obtenidos en el estudio de las abundancias químicas para cada una de las estrellas de la muestra. También mostramos la técnica implementada en la determinación de las edades de las estrellas para llevar a cabo la búsqueda de las posibles variaciones entre la abundancia y la edad.

Finalmente, en el Capítulo 5 realizamos el análisis de los esquemas de abundancias observada para cada estrella de la muestra y presentamos las tendencias observadas para las especies P, Sc, Mn, Ga, Y, Zr, Xe y Hg.

Capítulo 2

ADQUISICIÓN DE DATOS Y REDUCCIÓN

2.1. Los Objetos a Estudiar

El objetivo de este trabajo consiste en buscar si existe alguna relación entre las abundancias químicas de los elementos críticos de las estrellas de HgMn y la edad de las mismas.

Teniendo en cuenta el objetivo propuesto, seleccionamos la muestra de estrellas a estudiar. Para ello, se utilizaron los catálogo de Renson et al. (1991) y Schneider (1981) de estrellas peculiares y se eligieron estrellas de HgMn considerando los siguientes criterios:

- 1. *Limitadas por magnitud*: estrellas más brillantes que V = 7 para estar dentro de los límites de sensibilidad del espectrógrafo EBASIM.
- 2. *Estrellas con velocidades de rotación vseni* $< 50 \text{ km s}^{-1}$: para evitar los "blends" ¹ que se producen por la alta rotación y que disminuye el número de líneas útiles para la determinación de las abundancias.
- Estrellas que pertenecían a cúmulos de distintas edades observables desde el hemisferio sur: Para contar con un rango amplio de edades. Se pretendía dividir la muestra en tres rangos de edades, aquellos con edades menores a 5 millones de años, entre 300 - 600 millones de años y finalmente alrededor de 1000 millones de años.
- 4. Estrellas de campo catalogadas como de HgMn: fue necesario incluir estrellas de campo ya que al momento de iniciar la búsqueda no habían catalogadas más de 20 estrellas de HgMn pertenecientes a cúmulos abiertos, dichos cúmulos no abarcan un rango amplio de edades y no todos eran accesibles de observar con el instrumental con el que disponíamos.

¹Regiones del espectro donde las líneas se encuentran solapadas.

La muestra quedó constituida por 16 estrellas de HgMn tanto de cúmulos abiertos como también de campo. Las estrellas débiles de cúmulo no pudieron ser observadas quedando reducida la muestra a 14 estrellas.

Las observaciones se llevaron a cabo en el Complejo Astronómico El Leoncito con el telescopio "Jorge Sahade" de 2.15 m y el espectrógrafo echelle de banco EBASIM durante Diciembre de 2007, Marzo, Junio, Diciembre 2008, Enero, Abril y Julio de 2010. En todos los turnos empleamos la red de 226 líneas mm⁻¹ con un ángulo aproximado de 4.20° respecto al haz incidente para la parte azul del espectro y usamos un ángulo aproximado de 5.20° para cubrir la parte roja del espectro. De esta manera los espectros cubren la región espectral de 3700 a 6900 Åaproximadamente.

Por cada noche de observación obtuvimos 10 bias y 10 flats de lámpara, mientras que para cada uno de los objetos de la muestra tomamos 3 espectros que luego se sumaron para obtener la S/N deseada (~ 250). Los objetos seleccionados se muestran en la tabla 4.4.

Objeto	Objeto	Clasif.	Asc. Recta	Declinación	V	vseni	B-V	Tipo espectral
HD	HR		(1950)	(1950)		$(\text{km}\cdot\text{s}^{-1})$		
33647	1690	orionOB1	5:09.1	00:27	7.2	40	-0.07	B9Vn
35548	1800	bin	5:23.0	00:35	7.0	15	-0.04	B9sp
49024		NGC2287	6:43.5	-20:38	7.9		-0.12	B9V
49025		NGC 2287	6:43.5	-20:46	9.1		-0.03	
53244	2657	Cr 121	7:01.5	-15:33	4.1	45	-0.12	B8II
CP-60982		NGC2516	7:57.4	-60:40	7.2			
71833		bin	8:26.7	-20:47	6.7	30	-0.06	B8II
78316	3623	bin	9:05.0	10:52	5.2	15	-0.11	B8IIIMNp
87752		NGC3114	10:03.5	-59 : 59	9.8		-0.02	
129174		bin	14:38.4	16:38	4.9	25	0	B9pMnHg
144844	6003		16:05.7	-23:33	5.9	5	0.01	B9V
149121	6158		16:30.1	05:38	5.6	10	-0.06	B9.5III
158704	6520	bin	17:28.6	-26:14	6.0	20	-0.06	B9II/III
175640	7143		18:53.8	-01:52	6.2	20	-0.05	B9III
186122	7493		19:39.9	12:04	6.3	13	-0.05	B9III
190229			20:01.2	15:53	5.6	10	-0.11	B9Mnp

Tabla 2.1: Estrellas de HgMn seleccionadas.

Las vsini fueron obtenidas del catálogo de Abt et al. (2002)

2.2. Espectroscopía

2.2.1. El instrumental utilizado

EBASIM es un espectrógrafo echelle de banco, alimentado por fibra óptica que opera en el telescopio de 2.15 m "Jorge Sahade" situado en CASLEO. Este espectrógrafo está montado sobre un banco óptico de 122 cm x 183 cm x 21.4 cm. La entrada de la fibra se coloca en el plano focal del telescopio que presenta una escala de 11.3 "mm⁻¹. La luz que ingresa al espectrógrafo a través de la fibra, es colimada y luego incide sobre una red echelle de 31.61 líneas mm⁻¹ con surcos perpendiculares a la superficie horizontal sobre la cual está montada. Para separar los espectros solapados generados por la echelle, es posible emplear una de las dos redes cruzadas con las que cuenta el espectrógrafo. Una de ellas es de 226 líneas mm⁻¹, está centrada en 5000 Åy cubre un rango espectral aproximado de 1900 Åa ambos lados del centro; mientras que, la segunda red posee 150 líneas mm⁻¹, está centrada en 6500 Åy abarca un rango estimado de 2700 Åde cada lado. La resolución de este espectrógrafo es de ~ 39000 para $\lambda = 5500$ Å, con una dispersión de 0.06Åpix⁻¹.

El detector empleado es un CCD ROPER de 1340 x 1300 pixeles de 20 μ de lado, enfriado con nitrógeno líquido. El chip es adelgazado e iluminado por detrás, y presenta un recubrimiento Unichrome UV.

2.2.2. Reducción de los espectros

Para la reducción de los espectros, empleamos las técticas usuales de reducción utilizando los paquetes de IRAF², esto comprende:

- Tratamiento de los espectros bidimensionales
- Extracción
- Calibración en longitud de onda

Tratamiento de los espectros bidimensionales

Corregimos los espectros por:

i) Trimming: La corrección por "*trimming*" implica la eliminación de los bordes no útiles de la imagen.

²Image Reduction and Analysis Facility

ii) Bias: El "*bias*" es un nivel de cero que contienen los datos y que es añadido electrónicamente, simplemente para mantener la positividad del número medido. Este valor puede variar pixel a pixel a través del detector y también a lo largo de la noche. La corrección por bias implica básicamente la extracción de este nivel cero y

iii) Overscan: Como el "*bias*" puede cambiar a lo largo de la noche, cada imagen suele tener una zona llamada zona de "*overscan*" donde se almacena el nivel de cero propio. Esta zona está formada por algunas columnas o filas adicionales virtuales que no existen físicamente sobre el detector y que por lo tanto no están iluminadas. Sin embargo, este nivel no es representativo de todos los pixeles, sino únicamente de unas pocas columnas o filas, por lo tanto se suele promediar y obtener sólo un valor por imagen. La corrección por "*overscan*" implica la eliminación de esta zona.

No se efectúa la corrección por "*Dark*" para evitar la introducción innecesaria de ruido, ya que el nivel de corriente oscura es despreciable (< 5 cuentas hora⁻¹ pixel⁻¹). El "*dark*" o corriente oscura es generada por electrones que fueron liberados térmicamente y no debido a la absorción de fotones.

Utilizamos la tarea *imcombine* para generar una imagen *"bias promedio"* y posteriormente ejecutamos la tarea *ccdproc* para llevar a cabo las correcciones mencionadas.

Para corregir por "*Flat*" los espectros tomados con EBASIM suele ser conveniente flatear después de la extracción ya que los corrimientos sobre el detector son inferiores al pixel. Por lo tanto, utilizamos la tarea *imcombine* para promediar los "*flats*" de lámpara, previamente corregidos por "*bias*", "*trimming*" y "*overscan*", luego se extrae el "*flat promedio*" generado, a través del mismo procedimiento aplicado a los objetos. Por último, empleamos la tarea *sarith* para dividir todos los espectros-objeto por este flat promedio unidimensional. Esta división o corrección por flat tiene como finalidad remover las variaciones en la sensibilidad de cada uno de los pixeles del detector.

Extracción

Para poder extraer los espectros se realizan los siguientes pasos:

1. Definición de aperturas

Por lo general, el área de la ranura que es ocupada por el objeto está contaminada por luz que no proviene del mismo (brillo del cielo o radiación que proviene de filtraciones de luz) y que ha ingresado al espectrógrafo junto con radiación de la estrella por el interior de la fibra. Se define una apertura o región por cada orden de interferencia en la cual sea posible integrar la mayor parte de radiación proveniente de la estrella, introduciendo a su vez el menor ruido debido a la presencia de luz espúrea. En este caso, se escoge un tamaño de apertura tal que, en general, los extremos del perfil se ubican aproximadamente a 9 pixeles del centro de la misma.

2. Trazado de órdenes

Como EBASIM es un espectrógrafo de banco alimentado por fibra óptica, la posición de los órdenes sobre el detector casi no varía y el perfil espacial es siempre el mismo sin importar cuáles sean las condiciones de observación o el tipo de imagen. Es por ello que es suficiente definir el tamaño de las aperturas y el trazado de los órdenes una sola vez para cada noche, salvo que se ingrese a la sala del espectrógrafo durante la noche de observación por alguna razón y en ese caso se deberá realizar el mismo trabajo para los espectros observados después del ingreso a la sala.

Para llevar a cabo esto, generamos para cada noche una imagen de alta relación S/N promediando todos los objetos observados. Luego, ejecutamos para esta imagen la tarea *apall* y modificamos el tamaño de las aperturas encontradas con el fin de integrar la mayor cantidad de luz proveniente del objeto introduciendo el menor ruido posible. Utilizamos polinomios de Legendre de orden 3 a 5 para realizar los ajustes en el trazado de los órdenes.

3. Extracción de objetos y lámparas

La extracción consistió en sumar las cuentas de los pixeles ubicados dentro de la apertura.

Realizamos el trazado de los órdenes y la extracción de los objetos mediante la ejecución de la tarea *apall* en forma no interactiva y tomando como referencia los órdenes trazados para la imagen de alta relación S/N generada.

Para las lámparas de comparación, la extracción la realizamos empleando nuevamente la tarea *apall*.

De esta manera obtuvimos los espectros de objetos y lámparas en una dimensión.

Calibración en longitud de onda

Para realizar la calibración en longitud de onda empleamos un espectro de lámpara de Torio-Argón como espectro de referencia en el cual se identifican las íneas y se ajusta una función de dispersión para la cual los residuos no muestren ninguna tendencia. Luego utilizamos ésta lámpara calibrada como referencia para calibrar el resto de las lámparas. Para ello, usamos la tarea *ecidentify*.

Posteriormente, asignamos a cada espectro-objeto sus correspondientes lámparas de comparación utilizando la tarea *refspectra*. Finalmente, calibramos los objetos en longitud de onda con la tarea *dispcor*.

Por último, un punto importante a tener en cuenta es la determinación del continuo de los espectros estelares. Por eso, Los espectros fueron normalizados con la tarea *continuum*, en general utilizamos para el ajuste Polinomios de Chebyshev o Legendre de orden 7 a 9.

2.3. Preparación de los Espectros

2.3.1. Determinación de velocidades radiales

Previo a la determinación de las abundancias químicas es necesario realizar algunos análisis sobre los espectros que serán de utilidad para dichas determinaciones. Por ejemplo, es útil tener el espectro en longitud de onda de laboratorio lo que facilita el trabajo de identificación de especies químicas. Para esto, determinamos las velocidades radiales (VRs) de cada espectro para luego ser desplazados por VR y obtener el espectro en longitudes de onda de laboratorio.

Clásicamente, la velocidad radial de un objeto se expresa de acuerdo a la fórmula Doppler clásica como:

$$v_R = c \frac{\Delta \lambda}{\lambda_0} = c \frac{\lambda - \lambda_0}{\lambda_0} \tag{2.1}$$

donde λ es la longitud de onda medida para una línea determinada, λ_0 es su longitud de onda en reposo y $\Delta \lambda = \lambda - \lambda_0$ corresponde al desplazamiento que experimenta esta línea debido a la velocidad radial de la estrella.

Puede verse en la ecuación que el corrimiento Doppler depende de la longitud de onda de la línea considerada. Sin embargo, usando como variable independiente el logaritmo de la longitud de onda se obtiene un corrimiento proporcional a la velocidad e independiente de la longitud de onda: $\Delta(log\lambda) = VR/c$. Por lo tanto, en el espacio $log\lambda$ la VR tiene el único efecto de desplazar todo el espectro sin alterar su morfología. Es decir, el desplazamiento es el mismo para todas las líneas espectrales. Determinar la velocidad radial de un objeto implica entonces determinar el desplazamiento del espectro observado respecto al espectro que tendría el mismo objeto si se encontrara en reposo respecto del observador.

Medición por medio de Correlaciones Cruzadas

Esencialmente este procedimiento consiste en calcular el desplazamiento global de todo el espectro comparando simultáneamente todo el espectro objeto con un espectro en reposo morfológicamente similar y que posee una velocidad radial conocida (template). La medida de este desplazamiento se puede traducir en una medida de la velocidad radial relativa entre ambos espectros, y se calcula a través de lo que se conoce como función de correlación. Esta función es el resultado de la convolución del espectro-objeto con el template.

Específicamente, a medida que el espectro del objeto es desplazado, el número de líneas cuyas posiciones coinciden con las de las líneas espectrales del template varía de manera tal que, cuando no existe ninguna coincidencia, la función de correlación toma el valor cero, pero, cuando se produce el mayor número de coincidencias, la función presenta un máximo. La posición de este pico coincide con el valor de velocidad radial relativa que permite la mejor correspondencia entre objeto y template. Luego, como la velocidad radial relativa y la velocidad absoluta del template son conocidas, es posible determinar la velocidad absoluta del objeto.

Esta técnica es particularmente útil para medir, con mucha precisión, velocidades radiales de objetos tales como estrellas tardías que presentan un gran número de líneas. Sin embargo, tambin es de utilidad para estrellas tempranas teniendo la precaución de descartar aquellas zonas con escasa información espectral, de esta manera se evita la introducción innecesaria de ruido.

Calculamos correlaciones cruzadas con la tarea *fxcor* de IRAF y usamos como templates espectros sintéticos de temperatura de la base de datos BLUERED³ los cuales fueron ensanchados con un perfil rotacional de acuerdo a la velocidad de rotación de la estrella para asemejar lo mejor posible el template con el espectro–objeto.

Finalmente desplazamos los espectros con la tarea dopcor usando las VRs obtenidas.

³http://www.inaoep.mx/ modelos/bluered/documentation.html

Capítulo 3

DETERMINACIÓN DE ABUNDANCIAS QUÍMICAS

Para determinar las abundancias químicas de la muestra de estrellas de HgMn empleamos el método clásico de determinación de abundancias, el cual ha sido ampliamente usado (ver, por ejemplo, Lopez-Garcia & Adelman (1994)) el método consiste en medir anchos equivalentes de las distintas especies químicas. Luego, utilizando un modelo de atmósfera adecuado para cada estrella de interés se pueden obtener las abundancias químicas utilizando el programa WIDTH9 (Kurucz 1992).

Para implementar el método se requiere también una estimación inicial de los parámetros fundamentales T_{ef} y log g, utilizando por ejemplo la fotometría ubvy β de Strömgren. Luego empleando estos valores se elige un modelo de atmósfera adecuando para cada objeto de estudio (en este trabajo se utilizaron como modelos iniciales los modelos de Castelli 1997) elegido con metalicidad solar. Finalmente, haciendo uso del modelo elegido y los anchos equivalentes de las líneas de absorción medidas en el espectro se puede determinar la abundancia química de cada especie y para cada objeto.

3.1. Identificación de líneas espectrales

Se identificaron líneas estelares usando la técnica clásica, esto es, las intensidades de las líneas medidas en las estrellas (ancho equivalente) deben ser acordes con la relación de intensidades medidas en el laboratorio. Para dichas identificaciones se usa la resolución espectral más alta con la que se pueda contar, también tratando de identificar todas las líneas posibles en el rango de longitudes de onda como también prestando especial atención a las líneas de laboratorio más intensas de cada especie atómica presente. Para esto, se usaron las referencias generales de "*A Multiplet Table of Astrophysical Interest*" Moore (1945) así como también las referencias específicas para SiII Shenstone (1961), SII (Pettersson 1983), TiII (Huldt et al. 1982), MnII (Iglesias & Velasco 1964), FeII (Johansson 1978), PtII (Engleman 1989).

Las identificaciones se realizaron siguiendo los criterios usuales: La medición de los anchos equivalentes de las líneas se realiza en forma iterativa haciendo uso de la tarea *splot* del programa IRAF, cuando se identifica una línea se marcan dos puntos sobre el espectro indicando el inicio y el final del perfil a la altura del continuo, luego se hace el ajuste del perfil de la línea tanto para líneas simples como para aquellas blendadas. Este proceso se repite para cada línea presente en el espectro y para cada uno de los espectros obtenidos.

3.2. Determinación de Parámetros Atmosféricos

Una primera aproximación de los valores de T_{ef} y log g para cada estrella de la muestra se determinaron mediante el programa TempLogg (Rogers 1995). Luego éstos parámetros fueron mejorados mediante síntesis espectral o equilibrio de inización según las posibilidades de cada estrella.

El programa Templogg, calcula los parámetros astrofísicos fundamentales de un objeto a partir de las magnitudes observadas del mismo, las cuales pueden corresponder a las fotometrías Strömgren, Geneva o Johnson. Para realizar este cálculo, el programa dispone de una serie de calibraciones, entre ellas Moon & Dworetsky (1985), Napiwotzki et al. (1993) y Castelli et al. (1997) entre otras. En nuestro caso empleamos la calibración de Napiwotzki et al. (1993), la cual fue construída a partir de un conjunto de estrellas de secuencia principal con temperaturas conocidas entre 6000 y 30000 K aproximadamente, y gravedades superficiales derivadas del ajuste de perfiles de Balmer con perfiles teóricos. Si bien, con esta calibración se obtienen valores confiables de T_{ef} y log g para estrellas normales con tipos espectrales en el rango B–F, esta calibración no fue realizada para estrellas peculiares. Sin embargo, es la calibración que mejor se ajusta a nuestra muestra de objetos.

Se utilizaron los datos del catálogo de Hauck & Mermilliod (1998) correspondientes a la fotometría ubvy β de Strömgrem para cada objeto. Específicamente los parámetros buscados son: magnitud visual V, índice de color (b - y), índices de color promedio ((v - b) - (b - y)) o m1 y ((u - v) - (v - b)) o c1, y el parámetro H β .

Específicamente Adelman & Rayle (2000) encuentran diferencias entre las temperaturas efectivas obtenidas fotométricamente (T(uvby β)) y las temperaturas determinadas espectroscópicamente (T(sp)), proponen una corrección para las estrellas de HgMn según la siguiente ecuación:

$T(ubvy\beta)$ - $T(sp) = 209 \pm 188 \text{ K}$

En general, cuando se desean obtener las abundancias químicas en este tipo de estrellas peculiares se acepta que, un buen método para determinar parámetros atmosféricos es la síntesis espectral de las líneas de Balmer. Es decir, se compara el perfil de la línea de Balmer observado con un perfil calculado sintéticamente hasta obtener el mejor acuerdo entre ambos. Los parámetros atmosféricos que favorezcan este acuerdo son considerados como valores finales de T_{ef} y log g. En trabajos más recientes (por ejemplo ver, Adelman & Yüce 2010), también se comenzó a determinar estos parámetros mediente equilibrio de ionización de algunas especies químicas. Es decir, se busca que la abundancia química sea independiente del estado de ionización del elemento a ser analizado.

En este trabajo no fue posible sintetizar las líneas de Balmer en los espectros tomados con EBASIM ya que los perfiles de las líneas cae en el borde de la apertura, siendo necesario unir dos aperturas para obtener el perfil completo lo que implica dificultades para obtener un buen ajuste del continuo. Esto da como resultado un ajuste poco confiable en la determinación de los parámetros fundamentales. Debido a esta dificultad encontrada para nuestros objetos, realizamos una búsqueda de espectros disponibles en la base de datos ESO (European Southern Observatory). Para algunas de las estrellas de nuestra muestra (6 estrellas) pudimos obtener espectros UVES calibrados en flujo de dicha base de datos.

La metodología implementada en la determinación de T_{ef} y log g consistió en obtener una primera aproximación con el programa TempLogg, luego para aquellas estrellas para las cuales contábamos con espectros UVES realizamos síntesis espectral de H γ , y para aquellas estrellas sin espectros UVES determinamos equilibrio de ionización. Para esto último, la metodología consistió en: fijar el valor de T_{ef} obtenido fotométricamente, corregirlo según lo propuesto por Adelman & Rayle (2000) y variamos el valor de log g hasta 0.3 dex como máximo hasta alcanzar el quilibrio de ionización para ciertos elementos. El equilibrio se logra cuando la abundancia química del FeI y FeII es independiente del estado de ionización (también puede buscarse equilibrio para FeII/FeIII o SiII/SiIII según el caso). Una metodología similar fue utilizada por Adelman & Yüce 2010.

3.3. El Modelo de Atmósfera: Programa ATLAS9

Para determinar el modelo de atmósfera correspondiente a cada objeto particular de la muestra empleamos el programa ATLAS9 (Kurucz 1970). Este programa, cuya última versión fue desarrollada por Kurucz en el año 1999, calcula modelos de atmósferas estelares en equilibrio
convectivo y radiativo para un rango completo de temperaturas estelares. Para simplificar el cómputo, el código utiliza distintas aproximaciones:

- Atmósfera en estado estacionario.
- El tamaño de la fotósfera se considera mucho menor que el radio estelar, de modo que se asumen capas plano-paralelas.
- Equilibrio hidrostático. Es decir que presión y gravedad se encuentran perfectamente equilibradas y no existe movimiento relativo de las capas en la dirección de la normal, ni tampoco una aceleración neta de la atmósfera.
- Atmósfera homogénea excepto en la dirección de la normal. Es decir, se ignoran las estructuras tales como granulación, manchas, celdas, campos magnéticos, etc.
- Equilibrio termodinámico local (ETL): Cada capa de la fotósfera está caracterizada por una única temperatura.
- El flujo de energía es constante con la profundidad, ya que la fuente de energía de la estrella se localiza muy por debajo de la atmósfera y la energía que ingresa por las capas superficiales de la misma es nula. Este flujo está determinado por la temperatura efectiva de la estrella (T_{ef}): F_o = σT⁴_{ef}
- Abundancias constantes a lo largo de la atmósfera.
- Atmósfera de 72 capas.

Dadas estas suposiciones, la creación de un modelo de atmósfera consiste en obtener la temperatura y la presión como función de la profundidad óptica. El programa determina estas distribuciones por medio de un proceso iterativo. Inicialmente, a partir de la T_{ef} ingresada asume una distribución de temperaturas $T(\tau)$ para un conjunto de puntos ubicados a distintas profundidades ópticas. Luego, emplea $T(\tau)$, logg y la composición química ingresados para calcular a través de una serie de iteraciones la presión, la densidad numérica y la opacidad $\kappa(\tau)$ en cada punto. A partir de estas cantidades determina el campo de radiación y el flujo convectivo a distintas profundidades. En general, el flujo total (convectivo más radiativo) no coincide con el flujo constante predicho teóricamente F_o , entonces realiza una corrección en la temperatura que modifica ligeramente la distribución $T(\tau)$ adoptada inicialmente, y repite nuevamente todo

el proceso. La iteración continúa hasta que las diferencias entre los sucesivos valores del flujo correspondientes a una misma capa son inferiores al 1 %.

Para poder llevar a cabo este proceso iterativo, ATLAS9 cuenta con datos de las funciones de distribución de opacidad (ODFs) para cada metalicidad y velocidad de microturbulencia (ξ), tablas de opacidad de Rosseland para cada posible valor de abundancia química, que incluyen las opacidades de línea y las del continuo para distintos valores de ξ^1 , y datos sobre distintas especies atómicas y moleculares, tanto ionizadas como neutras.

No obstante, ATLAS no sólo permite crear nuevos modelos de atmósfera sino también calcularlos a partir de modelos preexistentes, esto último fue implementado en este trabajo. Para cada objeto de la muestra seleccionamos un modelo previamente calculado con metalicidad solar y velocidad de microturbulencia (ξ) lo cual es adecuado para estrellas de HgMn y con parámetros atmosféricos que se asemejan lo mejor posible a los de la estrella en estudio. Luego, el programa requiere como parámetros de entrada: T_{ef} , $\log g$ y ξ del modelo que se quiere calcular. Entre otras cosas, también se especifican los nombres de los archivos con las opacidades de Rosseland y las funciones de distribución y que el cálculo del modelo se realizara sin tener en cuenta el "overshooting"². Seguidamente, ATLAS calcula cada uno de los modelos requeridos luego de una serie de iteraciones efectuadas a partir del modelo preexistente escogido.

3.4. Determinación de Abundancias: Programa WIDTH9

Para medir abundancias se empleamos el programa WIDTH9. Este programa, desarrollado por Kurucz en 1970, determina las abundancias químicas de distintos elementos presentes en la atmósfera estelar por medio de la comparación entre los anchos equivalentes medidos y los calculados por el programa. WIDTH requiere como entrada el modelo de atmósfera calculado, el valor de ξ y los anchos equivalentes de las líneas de cada elemento químico al que se le desea medir la abundancias. Además de la información obtenida en la medición de anchos equivalentes, como por ejemplo, la longitud de onda del centro de la línea o su ancho equivalente, también son necesarios datos de laboratorio, tales como la longitud de onda de laboratorio del centro de la línea, el $\log(gf)$, los potenciales de excitación de los niveles superior e inferior de la transición y las constantes de amortiguamiento, entre otros.

Luego, a partir de estos datos y de las abundancias dadas en el modelo de atmósfera, WIDTH

¹En esta versión del programa ATLAS, estas opacidades corresponden a valores de ξ de 0, 1, 2, 4 y 8 km s⁻¹

²Se denomina así a la extensión de la zona convectiva de la estrella, que está dada por una cantidad α_{ov} HP, donde α_{ov} es el parámetro de overshooting y HP es la escala de altura de presión.

calcula teóricamente el ancho equivalente (W_c) de cada línea y lo compara con su ancho equivalente medido (W_m). Este proceso se repite para distintos valores de abundancia hasta que $|\log W_c - \log W_m| < 0,005$. Luego, la abundancia para la cual se cumple esta condición será la abundancia determinada a partir de esa línea. Los cálculos que desarrolla el programa para obtener metalicidades involucran la teoría de las curvas de crecimiento. En el archivo de salida de WIDTH, se muestran las abundancias medidas a partir de cada línea, el valor de la abundancia promedio y la dispersión en dex para cada elemento químico, y finalmente tres gráficos: log(abundancia) vs potencial de excitación, log(abundancia) vs Ancho Equivalente y log(abundancia) vs log(altura en la atmósfera).

Para la velocidad de microturbulencia adoptada ξ , se calculan inicialmente las abundancias químicas de ciertos elementos, aquellos que cuenten con el mayor número de líneas (generalmente Fe, Ti, Cr) en este trabajo utilizamos las líneas de Fe que cuentan con un número importante de líneas y se busca que cumpla simultáneamente las siguientes condiciones:

i) Que las abundancias calculadas sean independientes de los anchos equivalentes medidos. Es decir que la pendiente del gráfico log(abundancia) vs Ancho Equivalente fuese nula o lo más ceracana a cero posible.

ii) Que el error cuadrático medio sea mínimo.

Generalmente se trabaja buscando cumplir primero la condición *ii*, mediante la inspección de aquellas líneas que se aparten de la abundancia promedio. Generalmente, este error no debe superar los 0.25 o 0.30 dex. Luego, para cumplir la condición *i* se varía el valor de ξ , resultando pendientes positivas y negativas hasta encontrar finalmente aquella ξ para la cual la pendiente del gráfico log(abundancia) vs Ancho Equivalente tiene el valor más cercano a cero.

Una vez obtenida la velocidad de microturbulencia se procede a determinar las abundancias para cada especie química como también se determina la abundancia de He mediante síntesis espectral, ya que la apariencia asimétrica típica de estas líneas no permite medir el ancho equivalente. Para alcanzar una precisión mayor en las abundancias determinadas, ejecutamos nuevamente el programa WIDTH tomando como entrada un nuevo modelo de atmósfera calculado a partir de la misma T_{ef} y el mismo $\log g$, pero empleando las abundancias determinadas en la primer corrida. Generalmente ese proceso se repite hasta alcanzar la convergencia de las abundancias de entrada con las de salida. En este caso sólo fue necesario realizar una única iteración.

3.5. Estimación de los errores

El método implementado para determinar abundancias químicas, requiere una medición precisa de los anchos equivalentes, generalmente se adopta un error del 5 % en la medición de los anchos equivalentes debido a una incorrecta ubicación del continuo, lo cual representa hasta un 20 % en la dererminación de las abundancias (Saffe et al. 2008).

La posición el continuo no es la única incerteza al momento de calcular las abundancias. Los datos de laboratorio de cada línea espectral también puede estar sujeta a errores o incertezas. Este es el caso de la fuerza del oscilador, $\log(gf)$, el cual está relacionado con las probabilidades de transición entre distintos niveles atómicos y se determina a partir de mediciones de laboratorio. Saffe (2008) estimó que las variaciones en los valores de $\log(gf)$ generan variaciones en los valores finales de metalicidad de ~ 10 %. Los valores utilizados de $\log(gf)$ para las distintas especies químicas pueden ser consultados en el Apéndice A.

Generalmente, los cambios o variaciones en la temperatura introducen una variación mayor en las abundancias finales que los generados por variaciones en $\log g$, lo cual pone en evidencia que la temperatura es el parámetro estelar que modifica más severamente la abundancia de la estrella.

En nuestro caso, adoptamos como error en la determinación de abundancias la dispersión cuadrática media calculada por el programa WIDTH9.

Capítulo 4

RESULTADOS OBSERVACIONALES

En este capítulo presentamos los resultados obtenidos para las abundancias químicas de las estrellas observadas.

Como se explicó en el capítulo anterior, para determinar las abundancias químicas es necesario en primera instancia contar con un modelo de atmósfera adecuado, en este trabajo utilizamos los modelos de atmósfera de Castelli¹ con metalicidad solar, los cuales no toman en cuenta el overshooting y poseen nuevas ODF (Opacity Distribution Functions) con cálculos actualizados de opacidades y abundancias (Castelli & Kurucz 2004) y luego se utilizó el programa ATLAS9 (Kurucz 1992) para generar el modelo correspondiente. Finalmente, obtenido el modelo y los anchos equivalentes de las especies químicas, utilizamos el programa WIDTH9 para obtener las abundancias químicas. Los valores iniciales para los parámetros fundamentales T_{ef} y log g se obtuvieron a partir de la fotometría uvby β de Strömgrem y el programa TempLogg y luego fueron mejorados con síntesis espectral de H γ o equilibrio de ionización de acuerdo a las posibilidades de cada estrella.

La síntesis espectral pudo ser realizada para aquellas estrellas para las cuales obtuvimos espectros calibrados en flujo obtenidos con el espectrógrafo UVES y FEROS que se encuentran disponibles en la base de datos del ESO (European Southern Observatory). Para aquellas estrellas para las cuales no contamos con dichos espectros, los parámetros fundamentales se obtuvieron mediante equilibrio de ionización. A continuación, mostramos en la tabla 4.1 las temperaturas obtenidas con la fotometría uvby β de Strömgren y la calibración de Napiwotzki et al. (1993), espectroscópicamente y por equilibrio de ionización para cada estrella. También se listan los parámetros fundamentales adoptados en la determinación de las abundancias químicas y la velocidad de microturbulencia adoptada.

De la muestra inicial seleccionada, las dos estrellas débiles HD 49025 y HD 87752 no

¹http://www.ser.oat.ts.astro.it/castelli/grids.html

Número	Fotor	nétrico	Espectr	oscópico	Eq. Io	nización	Ado	ptado	vel. micro.
HD	T_{ef}	Log(g)	T_{ef}	Log(g)	T_{ef}	Log(g)	T_{ef}	Log(g)	ξ
149121	10796	3.86			10587	3.50	10587	3.50	0.0
35548	10878	3.78	10950	3.80			10950	3.80	0.0
175640	11968	3.95	11400	3.70			11400	3.70	0.0
49024	12486	3.21			12277	3.40	12277	3.40	0.2
186122	12990	3.75	12500	3.40			12500	3.40	0.0
158704	13147	4.24			12938	4.40	12938	4.40	0.0
190229	13303	3.43			13094	3.70	13094	3.60	0.0
78316	13433	3.82	12900	3.75			12900	3.75	0.0
129174	13451	3.98	12400	3.75			12400	3.75	0.0
53244	13781	3.40	13400	3.55			13400	3.55	0.2

Tabla 4.1: Parámetros fundamentales T_{ef} y log g.

pudieron ser incluidas en los programas de observación. La estrella CP-60982 pudo ser observada sólo en el primero de los turnos de observación designados para el trabajo de tesis doctoral y no se logró la relación S/N necesaria para hacer el análisis de las abundancias. Dentro de la muestra nos encontramos también con tres estrellas SB2 (HD 33647, HD 71833 y HD 144844) para las cuales vimos la posibilidad de contar con el mayor número de espectros posibles para poder trabajar las componentes de manera separada, pero no alcanzamos con éxito el objetivo. Finalmente, la muestra se vio reducida a 10 estrellas con las cuales realizamos el análisis. Mostramos en la tabla 4.2 datos de bibliografía para cada estrella estudiada.

HD	B-V	U - B	V	Tipo Esp.	VR	vseni	T_{ef}	$\log g$	Referencias
149121	-0.05	-0.13	5.65	B9.5III	-27.6	20	11000	3.80	G66; C72; W00; A02; SD93
35548	-0.05	-0.18	6.57	B9	-25.0	25	11050	3.80	J66; R91; E67; A02; SD93
175640	-0.05	-0.30	6.21	B9III	-26.0	20	12050	3.90	Cou65; C69; W00; A02; Cen07
49024	-0.08	-0.37	7.87	A0					M86; HS88
129174	-0.11	-0.41	5.00	B9	-0.6	25	12416	3.76	M86; R91; E67; A02; Cen07
186122	-0.08	-0.42	4.33	B9III	-31.8	20	13000	3.65	Cra63; C69; Wil53; A02; SD93
78316	-0.12	-0.42	5.23	B8III	13.4	15	13500	3.80	M86; C72; B69; A02; SD93
158704	-0.06	-0.37	6.05	B9II/III	0.1	20			D70; H82; Hu70; A02
190229	-0.09	-0.50	5.67	B9	-21.7	20	13200	3.60	M86; C69; Wil53; A02; SD93
53244	-0.13	-0.45	4.10	B8II	32	30			HS88; F83; W00; A02

Tabla 4.2: Datos bibliográficos para la muestra de estrellas.

Referencias: A02: Abt et al. (2002); B69: Beardsley (1969); Cen: Cenarro et al. (2007); Cou65: Cousins (1965); C69: Cowley et al. (1969); C72: Cowley (1972); D70: Dixon (1970); E67: Evans (1967); G66: Gutierrez-Moreno (1966); H82: Houk (1982); HS88: Houk & Smith-Moore (1988); Hu70: Hube (1970); J66: Johnson et al. (1966); M86: Mermilliod (1986); R91: Renson et al. (1991); SD93: Smith & Dworetsky (1993); Wil53: Wilson (1953); W00: Wielen et al. (2000) En el Apéndice A se presentan las abundancias químicas línea por línea obtenidas para las estrellas de nuestra muestra. En las tablas se lista el código de la especie, el nombre del elemento, número de multiplete, longitud de onda de la línea, valor del log gf, referencia para el valor de log gf, ancho equivalente y la abundancia de la línea.

A continuación describimos en cada sección el trabajo realizado para cada una de las estrellas.

4.1. Determinación de la Abundancia de He

Para la determinación de la abundancia del He utilizamos un espectro sintético, el cual fue calculado con el código SYNTHE (Kurucz 1992). El espectro fue ensanchado teniendo en cuenta el valor de *vseni* y el perfil instrumental adecuado. Al comienzo tuvimos en cuenta la velocidad de rotación catalogada para cada uno de los casos y luego se modifica si es necesario. Se inicia el cálculo con abundancia solar ($logN_{He}/N_H = -1.07$) y se realizan comparaciones entre el espectro sintético y el observacional. En todos los casos el HeI (en la línea λ 4471) muestra una alta deficiencia respecto a la abundancia solar. Por lo tanto fuimos disminuyendo paulatinamente la abundancia de He en el espectro calculado hasta lograr el mejor ajuste.

La figura 4.1 se muestran los ajustes obtenidos en la determinación de la abundancia de He para todas las estrellas, en color negro se muestra el espectro observado y el espectro sintético en rojo. En la tabla 4.3 se muestran los valores obtenidos en cada caso.

Para la determinación de las abundancias de las distintas especies químicas presentes en las distintas estrellas debemos obtener el modelo de atmósfera con los parámetros fundamentales (T_{ef} y log g) y se utiliza el programa WIDTH9. Se realiza una primera determinación de las abundancias para las distintas especies con los valores solares. Una vez obtenidas las abundancias de He, se vuelve a calcular el modelo de atmósfera con los mismos parámetros fundamentales (T_{ef} y log g) de cada estrella pero se modifica la abundancia de He obtenida y las abundancias determinadas para cada especie en la primer corrida para luego volver a correr el programa WIDTH9. Con este procedimiento se logra tener en cuenta la corrección por He que se necesita aplicar a las abundancias obtenidas con WIDTH9 ($log(N/N_{H+He})$)si se desea luego comparar las abundancias obtenidas con aquellas determinadas para el sol ($log(N/N_H)$). Pero también se logra una mejor convergencia en los valores obtenidos para las abundancias.

Resultados Observacionales

Figura 4.1: Síntesis espectral de He para las estrellas de la muestra.

HD	$log N_{He}/N_H$
149121	-2.10
35548	-1.79
490224	-2.30
175640	-1.79
129174	-2.05
186122	-2.77
158704	-2.18
78316	-2.22
190229	-2.80
53244	-1.85

Tabla 4.3: Abundancia de He para las estrellas de la muestra.

4.2. HD 149121

Para HD 149121 no fue posible obtener espectros de la base de datos de la ESO por lo que corroboramos los parámetros fundamentales mediante equilibrio de ionización del FeI/II, los valores obtenidos fueron $T_{ef} = 10587$ y log g = 3.50, estos valores fueron los empleados para obtener el modelo de atmósfera como también la determinación de las abundancias químicas. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue $\xi = 0.0$ km s⁻¹.

En los espectros de HD 149121 hemos identificado las especies: H, He, C, O, Ne, Mg, Si, P, S, Ca, Sc, Ti, Cr, Mn, FeI, Ni, Cu, Ga, Br, SrI, YI, Zr, Rh, Pd, Xe, Ba, Pr, Nd, Yb, Os, Pt, Au y Hg.

En la tabla 4.4 se muestran las abundancias obtenidas para las distintas especies químicas y los correspondientes valores solares. En ella se lista nombre de la especie atómica, nombre de la estrella, cantidad de líneas utilizadas en el cálculo y la correspondiente abundancia solar.

4.3. HD 35548

Para HD 35548 obtuvimos un espectro calibrado en flujo observado con el espectrógrafo UVES encontrándose disponible en la base de datos del ESO (European Southern Observatory). Con este espectro pudimos obtener mediente síntesis espectral los parámetros fundamentales obteniendo los valores de T_{ef} =10950 y log g =3.80, estos valores fueron los utilizados para obtener el modelo de atmósfera. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue ξ = 0.0 km s⁻¹. También corroboramos equilibrio de ionización para el FeI/II con estos parámetros fundamentales obtenidos de

Especie	HD 149121	n° de líneas	Sol
Atómica	$log N/N_H$	n	$log N/N_H$
CII	-3.11 ±0.23	3	-3.61
OI	$-3.38 {\pm} 0.18$	5	-3.34
MgI	$-4.83 {\pm} 0.17$	4	-4.47
MgII	$-5.03 {\pm} 0.18$	5	-4.47
SiII	-4.36 ± 0.25	8	-4.49
PII	$-5.60 {\pm} 0.25$	5	-6.60
SII	-4.63 ± 0.24	11	-4.84
CaI	-5.55	1	-5.71
CaII	-6.12	1	-5.71
ScII	-6.23	1	-8.96
TiII	-6.77 ± 0.26	61	-7.11
CrI	-5.88 ± 0.20	6	-6.37
CrII	-6.15 ± 0.26	55	-6.37
MnI	-5.11 ± 0.26	17	-6.53
MnII	-5.46 ± 0.30	45	-6.53
FeI	-4.49 ± 0.17	14	-4.55
FeII	-4.34 ± 0.27	109	-4.55
GaII	$\textbf{-6.48} \pm 0.29$	2	-8.93
BrII	-6.49	1	-9.44
SrII	-7.03 ± 0.15	3	-9.12
YII	-6.67 ± 0.24	25	-9.83
ZrII	-8.02 ± 0.23	11	-9.43
XeII	$-5.73 {\pm} 0.28$	4	-9.73
NdIII	-8.31	1	-10.57
YbII	-7.89 ± 0.23	2	-11.09
AuII	-6.58 ± 0.03	2	-11.20
HgII	-6.77	1	-10.87

Tabla 4.4: Abundancias químicas determinadas para HD 149121.

Las abundancias solares son las obtenidas por Asplund et al. (2005)

la síntesis espectral.

En los espectros pudimos identificar las especies: H, He, C, O, Ne, Na, Mg, Al, Si, P, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Cu, Ga, Br, Sr, Y, Zr, Pd, Xe, Ba, Pr, Nd, Yb, Os, Pt, Au y Hg.

En la figura 4.2 se muestra la síntesis espectral de la región H γ con el mejor ajuste obtenido. Se grafica en color negro el espectro observado y en rojo el sintético. Como se puede observar en la figura no se logró un buen ajuste, se observa una asimetría en el perfil de la línea ajustando mejor por izquierda que por derecha. Es necesario aclarar también que no se pudo obtener una buena normalización debido a la asimetría que presentaba la línea. Es por esto que decidimos quedarnos con el mejor ajuste logrado para la parte izquierda del perfil.

Figura 4.2: Síntesis de H γ para HD 35548. El espectro negro corresponde al observado, mientras que el rojo al espectro sintético.

En la tabla 4.5 se muestran las abundancias obtenidas para las distintas especies químicas y se compara con la abundancia solar. En ella se lista nombre de la especie atómica, nombre de la estrella, cantidad de líneas utilizadas en el cálculo y el correspondiente valor solar.

4.4. HD 175640

Para esta estrella contamos con un espectro calibrado en flujo obtenido con el espectrógrafo UVES obtenido de la base de datos del ESO (European Southern Observatory) pudiendo obtener mediente síntesis espectral los parámetros fundamentales que corresponde a $T_{ef} = 11400$ y

Especie	HD 35548	n° de líneas	Sol
Atómica	$log N/N_H$	n	$log N/N_H$
CI	-3.16	1	-3.61
CII	-3.77 ± 0.10	4	-3.61
OI	-3.39 ± 0.23	2	-3.34
MgI	-5.13 ± 0.17	3	-4.47
MgII	$-4.96 {\pm} 0.22$	5	-4.47
AlII	-6.51	1	-5.53
SiII	-5.14 ± 0.16	7	-4.49
PII	-5.17 ± 0.09	3	-6.60
SII	-4.53 ± 0.27	17	-4.84
CaI	-5.38	1	-5.71
CaII	-6.03	1	-5.71
ScII	-6.29	1	-8.96
TiII	-6.66 ± 0.24	53	-7.11
CrI	-5.37 ± 0.13	5	-6.37
CrII	-5.84 ± 0.23	55	-6.37
MnI	-4.59 ± 0.18	23	-6.53
MnII	-4.88 ± 0.29	51	-6.53
FeI	-4.42 ± 0.11	4	-4.55
FeII	-4.47 ± 0.28	94	-4.55
GaII	$\textbf{-6.26} \pm 0.14$	3	-8.93
BrII	-5.36	1	-9.44
SrII	-7.31 ± 0.21	3	-9.12
YII	-6.36 ± 0.19	24	-9.83
ZrII	-7.50 ± 0.23	15	-9.43
XeII	-4.21 ± 0.01	2	-9.73
NdIII	-8.04	1	-10.57
YbII	-7.64 ± 0.23	2	-11.09
HgI	-3.88	1	-10.87
HgII	-5.08	1	-10.87

Tabla 4.5: Abundancias químicas determinadas para HD 35548.

Las abundancias solares son las obtenidas por Asplund et al. (2005)

 $\log g = 3.70$, estos valores fueron los utilizados para obtener el modelo de atmósfera. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue $\xi = 0.0$ km s⁻¹. También corroboramos equilibrio de ionización para el FeI/II con estos parámetros fundamentales obtenidos de la síntesis espectral.

En los espectros de HD 175640 hemos identificado las especies: H, He, Be, C, O, Ne, Na, Mg, Al, Si, P, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Cu, Ga, Br, Sr, Y, Zr, Pd, Xe, Ba, Pr, Nd, Yb, Ir, Pt, Au y Hg.

En la figura 4.3 se muestra la síntesis espectral de la región H γ con el mejor ajuste obtenido, en color negro se grafica el espectro observado mientras que el sintético se encuentra en rojo. Como se puede observar en la figura no se logró un buen ajuste, se observa una asimetría en el perfil de la línea ajustando mejor por izquierda que por derecha. Es necesario aclarar también que no se pudo obtener una buena normalización debido a la asimetría que presentaba la línea. Debido a esto, decidimos quedarnos con el ajuste obtenido para la parte izquierda del perfil.

Figura 4.3: Síntesis de H γ para HD 175640. El espectro negro corresponde al observado, mientras que el rojo al espectro sintético.

En la tabla 4.6 se muestran las abundancias obtenidas para las distintas especies químicas y se compara con la abundancia solar. En ella se lista nombre de la especie atómica, nombre de la estrella, cantidad de líneas utilizadas en el cálculo y el correspondiente valor solar.

Especie	HD 175640	n° de líneas	Sol
Atómica	$log N/N_H$	n	$log N/N_H$
CI	-3.63 ±0.19	2	-3.61
CII	-3.94 ± 0.03	3	-3.61
OI	$-3.09{\pm}0.18$	8	-3.34
MgI	$-4.93 {\pm} 0.04$	2	-4.47
MgII	$-4.99 {\pm} 0.14$	5	-4.47
AlII	-6.63	1	-5.53
SiII	-4.38 ± 0.16	6	-4.49
PII	-6.04 ± 0.21	5	-6.60
SII	-4.83 ± 0.11	13	-4.84
CaI	-4.89	1	-5.71
CaII	-6.10	1	-5.71
ScII	-9.34	1	-8.96
TiII	-6.16 ± 0.20	68	-7.11
CrI	-5.12 ± 0.27	6	-6.37
CrII	-5.68 ± 0.26	58	-6.37
MnI	-4.36 ± 0.21	33	-6.53
MnII	-4.63 ± 0.24	67	-6.53
FeI	-4.83 ± 0.18	11	-4.55
FeII	-4.78 ± 0.29	100	-4.55
NiII	-7.32	1	-5.81
GaII	$\textbf{-5.23}\pm0.10$	3	-8.93
BrII	-6.23	1	-9.44
YII	$-7.18 {\pm} 0.19$	22	-9.83
ZrII	$-7.58 {\pm} 0.16$	9	-9.43
XeII	-5.55 ± 0.20	6	-9.73
NdIII	-9.04	1	-10.57
YbII	-7.31 ± 0.05	2	-11.09
AuII	-7.26	1	-11.20
HgII	-5.30 ± 0.09	2	-10.87

Tabla 4.6: Abundancias químicas determinadas para HD 175640.

Las abundancias solares son las obtenidas por Asplund et al. (2005)

4.5. HD 49024

Ya que para HD 49024 no fue posible obtener espectros de la base de datos de la ESO, corroboramos los parámetros fundamentales mediante equilibrio de ionización del FeI/II, los valores obtenidos fueron $T_{ef} = 12277$ y log g = 3.40 que posteriormente fueron empleados para obtener el modelo de atmósfera y las abundancias químicas. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue $\xi = 0.2$ km s⁻¹.

En los espectros de HD 49024 hemos identificado las especies: H, He, C, O, Ne, Na, Mg, Al, Si, P, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Cu, Ga, Br, Sr, Y, Zr, Rh, Xe, Ba, Pr, Nd, Yb, Ir, Pt, Au y Hg.

En la tabla 4.7 se muestran las abundancias obtenidas para las distintas especies químicas y se compara con la abundancia solar. En dicha tabla se lista nombre de la especie atómica, nombre de la estrella, cantida de líneas utilizadas en el cálculo y el correspondiente valor solar.

4.6. HD 129174

Para HD 129174 contamos con un espectro UVES obtenido de la base de datos del ESO (European Southern Observatory) pudiendo obtener mediente síntesis espectral los parámetros fundamentales que corresponden a T_{ef} =12400 y log g =3.75, estos valores fueron utilizados para obtener el modelo de atmósfera y las abundancias químicas. También corroboramos equilibrio de ionización para el FeI/II y MnI/II con los parámetros fundamentales obtenidos de la síntesis espectral. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue $\xi = 0.0$ km s⁻¹.

En los espectros hemos identificado las especies: H, He, C, O, Ne, Na, Mg, Al, Si, P, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Cu, Ga, Br, Sr, Y, Zr, Rh, Xe, Ba, Pr, Nd, Yb, Os, Pt, Au, y Hg.

En la figura 4.4 se muestra la síntesis espectral de la región H γ con el mejor ajuste obtenido. Nuevamente como en los casos anteriores se grafican en color negro el espectro observado y en rojo el sintético.

En la tabla 4.8 se muestran las abundancias obtenidas para las distintas especies químicas y los correspondientes valores solares.

Especie	HD 49024	n° de líneas	Sol
Atómica	$log N/N_H$	n	$log N/N_H$
CI	-3.41	1	-3.61
CII	-3.35 ± 0.08	2	-3.61
OI	-2.78 ± 0.28	7	-3.34
MgI	$-3.94{\pm}0.22$	2	-4.47
MgII	-5.08 ± 0.16	3	-4.47
AlII	-6.64	1	-5.63
SiII	-4.80 ± 0.29	7	-4.49
SiIII	-4.34	1	-4.49
PII	-5.20 ± 0.24	5	-6.60
SII	-5.08 ± 0.24	9	-4.84
CaI	-3.58	1	-5.71
CaII	-6.39	1	-5.71
ScII	-8.51	1	-8.96
TiII	-6.21 ± 0.28	48	-7.11
CrI	-4.81 ± 0.12	4	-6.37
CrII	-5.78 ± 0.25	33	-6.37
MnI	-3.84 ± 0.25	18	-6.53
MnII	-4.92 ± 0.29	38	-6.53
FeI	-4.25 ± 0.25	6	-4.55
FeII	-4.31 ± 0.29	76	-4.55
NiII	-3.68	1	-5.81
BrII	-6.66	1	-9.44
SrII	-6.88	1	-9.12
YII	-7.05 ± 0.22	10	-9.83
ZrII	-7.31 ± 0.29	12	-9.43
XeII	-5.60	1	-9.73
BaII	-8.85	1	-9.83
NdIII	-8.90	1	-10.57
YbII	-7.45	1	-11.09
AuII	-6.61 ± 0.10	2	-11.20
HgI	-3.92	1	-10.87
HgII	-5.55	1	-10.87

Tabla 4.7: Abundancias químicas determinadas para HD 49024.

Las abundancias solares son las obtenidas por Asplund et al. (2005)

Especie	HD 129174	n° de líneas	sol
Atómica	$log N/N_H$	n	$log N/N_H$
CI	-3.07	1	-3.61
CII	-3.74 ± 0.27	3	-3.61
OI	$-2.82{\pm}0.17$	6	-3.34
NaI	-4.44	1	-5.73
MgI	-3.64 ± 0.06	2	-4.47
MgII	$-4.78 {\pm} 0.09$	3	-4.47
AlII	-6.81	1	-5.63
SiII	-4.18 ± 0.20	12	-4.49
PII	-5.41 ± 0.15	8	-6.60
SII	-4.67 ± 0.19	16	-4.84
CaII	-5.73	1	-5.71
ScII	$-7.36 {\pm} 0.27$	2	-8.96
TiII	-6.28 ± 0.28	31	-7.11
CrI	-4.45 ± 0.17	3	-6.37
CrII	-5.47 ± 0.19	42	-6.37
MnI	-3.87 ± 0.19	27	-6.53
MnII	-4.12 ± 0.23	53	-6.53
FeI	-4.55 ± 0.11	5	-4.55
FeII	-4.62 ± 0.27	78	-4.55
GaII	-4.65 ± 0.06	4	-8.93
BrII	$\textbf{-6.64} \pm 0.10$	2	-9.44
SrII	$-7.08 {\pm} 0.19$	2	-9.12
YII	-6.01 ± 0.18	11	-9.83
ZrII	$-7.40{\pm}0.11$	5	-9.43
XeII	$-5.18 {\pm} 0.17$	4	-9.73
BaII	-8.85	1	-9.84
NdIII	$-8.34{\pm}0.08$	2	-10.57
YbII	-6.99 ± 0.04	2	-11.09
HgI	-3.96	1	-10.87
HgII	-3.42	1	-10.87

Tabla 4.8: Abundancias químicas determinadas para HD 129174.

Las abundancias solares son las obetenidas por Asplund et al. (2005)

Figura 4.4: Síntesis de H γ para HD 129174. El espectro negro corresponde al observado, mientras que el rojo corresponde al espectro sintético.

4.7. HD 186122

Para HD 186122 obtuvimos un espectro calibrado en flujo observado con el espectrógrafo UVES disponible en la base de datos del ESO (European Southern Observatory) pudiendo obtener mediente síntesis espectral los parámetros fundamentales que corresponde a T_{ef} =12500 y log g =3.40, estos valores fueron los utilizados para obtener el modelo de atmósfera. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue ξ = 0.0 km s⁻¹. También corroboramos equilibrio de ionización para el FeI/II.

En los espectros pudimos identificar las especies: H, He, C, O, Ne, Na, Mg, Al, Si, P, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Br, Sr, Y, Zr, Rh, Pd, Xe, Ba, Pr, Nd, Yb, Os, Ir, Pt, Au y Hg.

En la figura 4.7 se muestra la síntesis espectral de la región H γ con el mejor ajuste obtenido. Se presenta en color negro al espectro observado mientras que el sintético se grafica en color rojo. Como se puede observar en la figura para este caso también el ajuste no es perfecto, se observa una asimetría en el perfil de la línea ajustando mejor por derecha que por izquierda como tampoco ajusta del todo bien el núcleo de la misma. El espectro de esta estrella muestra una marcada asimetría de las alas lo que dificultó la normalización del espectro. El mejor ajuste logrado se muestra a continuación. Teniendo en cuenta lo anteriormente explicado decidimos quedarnos con el ajuste que logramos para la parte derecha del perfil.

En la tabla 4.9 se muestran las abundancias obtenidas para las distintas especies químicas y

Figura 4.5: Síntesis de H γ para HD 186122. El espectro negro corresponde al observado, mientras que el rojo corresponde al espectro sintético.

se compara con los correspondientes valores solares.

4.8. HD 78316

HD 78316 cuenta con un espectro calibrado en flujo UVES obtenido de la base de datos del ESO (European Southern Observatory) pudiendo obtener mediente síntesis espectral los parámetros fundamentales que corresponden a $T_{ef} = 12900$ y log g = 3.75, estos valores fueron empleados para obtener el modelo de atmósfera para posteriormente determinar abundancias. También corroboramos equilibrio de ionización para el FeI/II. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue $\xi = 0.0$ km s⁻¹.

En los espectros identificamos las especies: H, He, Be, C, O, Ne, Na, Mg, Si, P, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Cu, Ga, Br, Sr, Y, Zr, Rh, Pd, Xe, Ba, Pr, Nd, Pt, Au y Hg.

En la figura 4.6 se muestra la síntesis espectral de la región H γ con el mejor ajuste obtenido. En color negro se presenta el espectro observado, mientras que en rojo se grafica el espectro sintético. En este caso el ajuste es muy bueno.

En la tabla 4.10 se muestran las abundancias obtenidas para las distintas especies químicas y se las compara con la abundancia solar.

Especie	HD 186122	n° de líneas	sol
Atómica	$log N/N_H$	n	$log N/N_H$
CI	-3.31	1	-3.61
CII	-4.52 ± 0.11	3	-3.61
OI	-3.15 ± 0.11	6	-3.34
MgI	-3.71	1	-4.47
MgII	$-5.88 {\pm} 0.02$	2	-4.47
AlII	-5.99	1	-5.57
SiII	-4.81 ± 0.19	6	-4.49
PII	-5.22 ± 0.20	7	-6.60
SII	-5.00 ± 0.24	8	-4.84
CaI	-4.22	1	-5.71
CaII	-6.22	1	-5.71
ScII	-7.55	1	-8.96
TiII	-6.21 ± 0.27	46	-7.11
CrI	-4.59 ± 0.10	2	-6.37
CrII	-6.15 ± 0.23	24	-6.37
MnI	-4.11 ± 0.27	23	-6.53
MnII	-4.89 ± 0.19	28	-6.53
FeI	-3.90 ± 0.22	12	-4.55
FeII	-4.00 ± 0.27	112	-4.55
NiII	$\textbf{-6.89} \pm 0.22$	2	-5.81
ZnII	-5.32	1	-7.39
GaII	-4.74 ± 0.03	2	-8.93
BrII	-6.75	1	-9.44
SrII	-8.64	2	-9.12
YII	-7.18 ± 0.19	10	-9.83
ZrII	-7.01 ± 0.22	13	-9.43
XeII	$-5.58 {\pm} 0.18$	5	-9.73
BaII	-8.85	1	-9.84
NdIII	-7.90	1	-10.57
YbII	-6.87 ± 0.05	2	-11.09
AuII	-6.42 ± 0.05	2	-11.20
HgI	-4.05	1	-10.87
HgII	-4.54	1	-10.87

Tabla 4.9: Abundancias químicas determinadas para HD 186122.

Las abundancias solares son las obetenidas por Asplund et al. (2005)

Especie	HD 78316	n° de líneas	sol
Atómica	$log N/N_H$	n	$log N/N_H$
CI	-3.38 ± 0.23	2	-3.61
CII	-3.94 ± 0.04	4	-3.61
OI	$-2.88 {\pm} 0.18$	6	-3.34
MgI	-4.15 ± 0.11	3	-4.47
MgII	-5.25 ± 0.01	2	-4.47
SiII	-4.66 ± 0.22	10	-4.49
PII	-4.07 ± 0.13	5	-6.60
SII	-5.51 ± 0.21	8	-4.84
CaI	-3.82	1	-5.71
CaII	-6.38	1	-5.71
ScII	-7.87	1	-8.96
TiII	-6.35 ± 0.30	39	-7.11
CrI	-4.72 ± 0.29	4	-6.37
CrII	-5.76 ± 0.26	43	-6.37
MnI	-3.63 ± 0.22	15	-6.53
MnII	-4.20 ± 0.28	66	-6.53
FeI	-4.07 ± 0.23	10	-4.55
FeII	-4.24 ± 0.27	110	-4.55
NiII	$\textbf{-6.33}\pm0.30$	2	-5.81
GaII	-4.74 ± 0.15	4	-8.93
BrII	-6.48	1	-9.44
SrII	-8.24 ± 0.29	2	-9.12
YII	-6.59 ± 0.12	5	-9.83
ZrII	-6.41 ± 0.21	11	-9.43
XeII	-4.77 ± 0.16	5	-9.73
NdIII	-8.42 ± 0.17	2	-10.57
AuII	-7.61	1	-11.20
HgI	-4.06	1	-10.87
HgII	-5.10	1	-10.87

Tabla 4.10: Abundancias químicas determinadas para HD 78316.

Las abundancias solares son las obetenidas por Asplund et al. (2005)

Figura 4.6: Síntesis de H γ para HD 78316. El espectro negro corresponde al observado, mientras que el rojo corresponde al espectro sintético.

4.9. HD 158704

Para HD 158704 no fue posible obtener espectros de la base de datos de la ESO por lo que corroboramos los parámetros fundamentales mediante equilibrio de ionización del FeI/II. Los valores obtenidos fueron $T_{ef} = 12938$ y log g = 4.40, estos valores se utilizaron para obtener el modelo de atmósfera y también se emplearon en la determinación de las abundancias químicas. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue $\xi = 0.0$ km s⁻¹.

En los espectros de HD 158704 hemos identificado las especies: H, He, C, O, Ne, Na, Mg, Al, Si, P, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Cu, Ga, Br, Sr, Y, Zr, Rh, Pd, Xe, Ba, Pr, Nd, Yb, Os, Pt, Au y Hg.

En la tabla 4.11 se muestran las abundancias obtenidas para las distintas especies químicas comparándolos con los correspondientes valores solares.

4.10. HD 190229

Para HD 190229 no fue posible obtener espectros de la base de datos de la ESO entonces, corroboramos los parámetros fundamentales mediante equilibrio de ionización del FeI/II obteniendo para $T_{ef} = 13094$ y log g = 3.60, estos valores fueron utilizados para obtener el modelo

Especie	HD 158704	n° de líneas	sol
Atómica	$log N/N_H$	n	$log N/N_H$
CI	-2.55 ± 0.20	2	-3.61
CII	-3.10 ± 0.13	3	-3.61
OI	-2.65 ± 0.16	2	-3.34
MgI	-3.79 ± 0.12	3	-4.47
MgII	$-4.98 {\pm} 0.20$	4	-4.47
AlII	-6.70	1	-5.63
SiII	-4.68 ± 0.28	9	-4.49
PII	-4.99 ± 0.22	6	-6.60
SII	-4.94 ± 0.27	10	-4.84
CaI	-4.04	1	-5.71
CaII	-5.75	1	-5.71
ScII	-4.95	1	-8.96
TiII	-5.89 ± 0.30	54	-7.11
CrI	-4.27 ± 0.23	3	-6.37
CrII	-5.81 ± 0.27	43	-6.37
MnI	-3.94 ± 0.28	34	-6.53
MnII	-4.37 ± 0.24	60	-6.53
FeI	-3.81 ± 0.22	10	-4.55
FeII	-4.19 ± 0.24	117	-4.55
NiII	-6.06	1	-5.81
ZnII	-5.47	1	-7.40
GaII	-5.33 ± 0.08	4	-8.93
BrII	-6.56	1	-9.44
SrII	$-8.38 {\pm} 0.37$	2	-9.12
YII	-6.73 ± 0.25	16	-9.83
ZrII	-6.82 ± 0.23	9	-9.43
XeII	-5.01 ± 0.26	6	-9.73
BaII	-7.48	1	
NdIII	-8.58	1	-10.57
YbII	-6.61	1	-11.09
HgII	-4.53 ± 0.18	2	-10.87

Tabla 4.11: Abundancias químicas determinadas para HD 158704.

Las abundancias solares son las obtenidas por Asplund et al. (2005)

de atmósfera y las abundancias químicas. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue $\xi = 0.0$ km s⁻¹.

En los espectros de HD 190229 hemos identificado las especies: H, He, C, O, Ne, Na, Mg, Al, Si, P, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Cu, Ga, Br, Sr, Y, Zr, Rh, Pd, Xe, Ba, Pr, Nd, Yb, Os, Pt, Au y Hg.

En la tabla 4.12 se muestran las abundancias obtenidas para las distintas especies químicas y se compara con la abundancia solar.

4.11. HD 53244

Para HD 53244 obtuvimos un espectro FEROS obtenido de la base de datos del ESO (European Southern Observatory) pudiendo llevar a cabo la síntesis espectral y obtener los parámetros fundamentales cuyos valores son T_{ef} =13400 y log g =3.55. los mismos se utilizaron para obtener el modelo de atmósfera y las abundancias. También corroboramos equilibrio de ionización para el FeII/III y Si II/III para los parámetros obtenidos. La velocidad de microturbulencia se obtuvo de la manera explicada en el capítulo anterior y el valor adoptado fue ξ = 0.2 km s⁻¹.

En los espectros de HD 53244 hemos identificado las especies: H, He, C, O, Ne, Na, Mg, Si, P, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Ba, Sr, Y, Zr, Xe, Ba, Pr, Nd y Hg. Para esta estrella realizamos una inspección más detallada de la identificación de los elementos químicos presentes, cuyos resultados pueden consultarse en Maza et al. (2010).

En la figura 4.7 se muestra la síntesis espectral de la región H γ con el mejor ajuste obtenido.

En la tabla 4.13 se muestran las abundancias obtenidas para las distintas especies químicas y la abundancia solar.

Especie	HD 190229	n° de líneas	sol
Atómica	$log N/N_H$	n	$log N/N_H$
CI	-3.37	1	-3.61
CII	-4.75 ± 0.25	2	-3.61
OI	-3.02 ± 0.11	6	-3.34
MgI	-4.11	1	-4.47
MgII	$-4.87 {\pm} 0.19$	4	-4.47
AlII	-6.53	1	-5.63
SiII	-4.68 ± 0.25	12	-4.49
PII	-4.37 ± 0.29	5	-6.60
SII	-5.65 ± 0.22	7	-4.84
CaI	-4.14	1	-5.71
CaII	-5.70	1	-5.71
ScII	$-8.45 {\pm} 0.08$	2	-8.96
TiII	$-5.88 {\pm} 0.28$	51	-7.11
CrI	-4.63 ± 0.13	4	-6.37
CrII	-5.85 ± 0.22	39	-6.37
MnI	-3.47 ± 0.26	19	-6.53
MnII	-4.58 ± 0.29	35	-6.53
FeI	-3.46 ± 0.18	12	-4.55
FeII	-3.78 ± 0.27	110	-4.55
GaII	-6.34 ± 0.25	2	-8.93
BrII	-6.36	1	-9.44
SrII	-8.23	1	-9.12
YII	$-6.86 {\pm} 0.26$	10	-9.83
ZrII	$-6.94{\pm}0.26$	9	-9.43
XeII	$-5.50 {\pm} 0.25$	5	-9.73
BaII	-8.65	1	-9.83
NdIII	-8.28	1	-10.57
YbII	-7.05	1	-11.09
HgI	-4.05	1	-10.87
HgII	-5.93 ± 0.12	2	-10.87

Tabla 4.12: Abundancias químicas determinadas para HD 190229.

Las abundancias solares son las obtenidas por Asplund et al. (2005)

Especie	HD 53244	n° de líneas	sol	
Atómica	$log N/N_H$	n	$log N/N_H$	
CII	-3.52 ± 0.23	4	-3.61	
OI	-2.95	1	-3.34	
NeI	$\textbf{-3.66}\pm0.18$	8	-4.16	
NaI	-5.90	1	-5.73	
MgII	$-4.86 {\pm} 0.17$	2	-4.47	
SiII	-4.59 ± 0.28	8	-4.49	
PII	-4.36 ± 0.20	5	-6.60	
SII	-5.03 ± 0.15	4	-4.84	
CaII	-5.50	1	-5.71	
ScII	-8.04	1	-8.96	
TiII	-6.08 ± 0.24	23	-7.11	
CrII	-5.38 ± 0.29	29	-6.37	
MnI	-3.45 ± 0.17	5	-6.53	
MnII	-4.44 ± 0.29	28	-6.53	
FeII	$\textbf{-4.34} \pm 0.26$	100	-4.55	
FeIII	$\textbf{-4.62}\pm0.29$	4	-4.55	
NiII	$\textbf{-5.14} \pm 0.28$	3	-5.81	
BrII	-6.87	1	-9.44	
YII	-6.59 ± 0.21	7	-9.83	
ZrII	-7.51 ± 0.04	3	-9.43	
XeII	-4.75 ± 0.15	2	-9.73	
NdIII	-8.95	1	-10.57	
HgI	-4.29	1	-10.87	
HgII	-5.15	1	-10.87	

Tabla 4.13: Abundancias químicas determinadas para HD 53244.

Las abundancias solares son las obetenidas por Asplund et al. (2005)

Figura 4.7: Síntesis de H γ para HD 53244. La línea negra corresponde al espectro observado mientras que la linea roja correpsonde al espectro sintético.

4.12. Estrellas Binarias SB2: HD 33647, HD 144844 y HD 71833

HD 33647

HD 33647 (HR 1690, HIP 24196) con coordenadas (J20000.0) $\alpha = 5^h \ 11^m \ 41.35^s$; $\delta = +00^\circ$ 30' 52.45" es una estrella B tardía, químicamente peculiar de HgMn o CP3 según el esquema de clasificación de Preston (1974) y se encuentra clasificada como B9 en el catálogo de estrellas peculiares de Renson et al. (1991) y Schneider (1981).

La fotometría fotoeléctrica UBV fue publicada por varios autores, los valores más recientes son aquellos provistos por Lee (1968) (V = 6.67, B–V = -0.07 mag, U–B = -0.34 mag). También existen varias mediciones de la fotometría fotoeléctrica uvby β pero cuyos valores hemos tenido en cuenta los publicados en el catlogo Hauck & Mermilliod (1998).

La última medición de velocidad radial fue llevada a cabo por Evans (1967) obteniendo un valor de 20 km s⁻¹, la velocidad rotacional fue determinada por varios autores. En este caso tendremos en cuenta el valor determinado por Abt et al. (2002), 30 km s⁻¹.

En la literatura no se encuentran publicados parámetros fundamentales (T_{ef} y log g) por lo que los primeros valores determinados para esta estrella corresponden a los obtenidos en este trabajo. Los mismos fueron obtenidos con el programa TempLogg con valores T_{ef} =12420 K y log g =4.09.

HD 144844

HD 144844 (HR 6003, HIP 79098) con coordenadas (J20000.0) $\alpha = 16^h \ 08^m \ 43.73^s$; $\delta = -23^\circ \ 41' \ 07.27^{"}$ es una estrella B tardía, químicamente peculiar de HgMn o CP3 según el esquema de clasificación de Preston (1974) y se encuentra incluida en el catálogo de estrellas peculiares de Renson et al. (1991) y Schneider (1981). Fue clasificada como B9V por varios autores y la última clasificación fue realizada por Houk & Smith-Moore (1988).

La fotometría fotoeléctrica UBV fue publicada por algunos autores, los valores más recientes son aquellos provistos por Corben (1971), (V = 5.87, B–V = +0.01 mag). También existen varias mediciones de la fotometría fotoeléctrica uvby β pero cuyos valores hemos tenido en cuenta los publicados en el catálogo Hauck & Mermilliod (1998).

La velocidada radial publicada por Wielen et al. (2000) es -16 km s⁻¹ y la velocidad rotacional es de 20 km s⁻¹ calclada por Abt et al. (2002).

En la literatura no se encuentran publicados parámetros fundamentales (T_{ef} y log g) por lo que los primeros valores determinados para esta estrellas corresponden a los obtenidos en este trabajo. Los mismos fueron obtenidos con el programa TempLogg (Rogers 1995) obteniendo $T_{ef} = 12791$ K y log g = 4.55.

HD 71833: ¿es un sistema SB2?

HD 71833 (HR 3345, HIP 41603) con coordenadas (J20000.0) $\alpha = 08^{h} 28^{m} 53.43^{s}$; $\delta = -20^{\circ} 57' 01.44^{"}$ es una estrella B tardía, químicamente peculiar de HgMn o CP3 según el esquema de clasificación de Preston (1974) y se encuentra incluida en el catálogo de estrellas peculiares de Renson et al. (1991) y Schneider (1981). Fue clasificada como B8II por Houk & Smith-Moore (1988).

La fotometría fotoeléctrica UBV fue publicada por algunos autores, los últimos valores publicados son aquellos provistos por Johnson et al. (1966), (V = 6.67, B–V = -0.06 mag). También existen varias mediciones de la fotometría fotoeléctrica uvby β pero hemos tenido en cuenta los publicados en el catlogo Hauck & Mermilliod (1998).

La velocidada radial publicada por Evans (1967) es +7 km s⁻¹ y la velocidad rotacional es de 30 km s⁻¹ calclada por Abt et al. (2002).

Tanto HD33647 como HD 144844 son estrellas binarias de línea doble confirmados, por lo que es necesario contar con los espectros separados de ambas componenetes para poder calcular las abundancias químicas de la componente peculiar.

Particularmente HD 71833 es reportada como miembro de un sistema binario en la base de datos SIMBAD. Gaham et al. (1983) designó un tipo espectral F2V a una separación de 18".9 y V=11.72 para la compañera de HD 71833. Schöller et al. (2010) realizaron un estudio de multiplicidad en estrellas de HgMn utilizando imagenes en el infrarrojo cercano en el VLT y no pudieron resolver el sistema. En nuestro caso, cuando realizamos la inspección visual de los espectros de esta estrella, observamos variaciones morfológicas en los espectros que daban indicios de la presencia de la secundaria. Sin embargo, no contamos con la cantidad de espectros suficientes para realizar un estudio más profundo, por lo que no contamos con la información bibliográfica suficiente para establecer a HD 71833 como SB2 hasta el momento de la redacción de esta tesis.

Un método posible de aplicar para realizar la separación de espectros es el método desarrollado por González & Levato (2006), para llevarlo a cabo es necesario contar con la mayor cantidad de espectros posibles (en general mayor a 10) en distintas fases orbitales para que los resultados obtenidos representen adecuandamente a los epectros de ambas componentes. En este trabajo no fue posible obtener la cantidad de espectros necesarios, por lo que la determinación de las abundancias químicas para estas estrellas no se llevará a cabo.

4.13. Determinación de Edad

Para la determinación de la edades de las estrellas de la muestra, utilizamos el método implementado por da Silva et al. (2006) (programa PARAM 1.1) quienes desarrollaron una programa para determinan parámetros estelares básicos (edades, masas, radios, $(B - V)_0$ y log g) utilizando isócronas teóricas y el método de estimación Bayesiana. Se puede acceder al programa en forma interactiva por internet². El programa requiere como datos de entrada la temperatura efectiva, la metalicidad [Fe/H], la magnitud aparente y la paralaje. Los autores implementaron el método para determinar las propiedades intrísecas más probables de las estrellas mediante la comparación de isócronas teóricas, utilizando las de Girardi et al. (2000). Adoptan también la versión levemente modificada del método de estimación Bayesiana implementada por Jørgensen & Lindegren (2005) el que fue disenado para evitar sesgos estadísticos y para tomar en cuenta las estimaciones de error de todas las cantidades observadas. Para mayores detalles del método consultar al paper del autor.

Una vez obtenidas las edades utilizando PARAM 1.1, inspeccionamos estos valores ubicando a las estrellas de nuestra muestra en el diagrama HR. Para ello, realizamos una búsqueda de las paralajes en el catálogo ESA (1997) y ajustamos para cada estrella la isócrona correspondiente. Utilizamos las isócronas de Padova Girardi et al. (2000) asumiendo los excesos E(B - V) especificados en la tabla 4.14 que fueron obtenidos teniendo en cuenta una ley de enrojecimiento lineal. En el caso de HD 49024 la paralaje publicada en el catálogo presenta una gran incerteza, por lo que no obtuvimos la edad utilizando PARAM 1.1, sólo realizamos los cálculos teniendo en cuenta el enrojecimiento, módulo de distancia y edad publicados para NGC 2287 ya que la estrella está catalogada como perteneciente al mismo. Otro caso a destacar es HD 53244, está catalogada como miembro de Cr 121 y posee una determinación de paralaje muy precisa. Nuestra determinación del módulo de distancia para esta estrella es muy diferente a la que se encuentra publicada, por lo que decidimos determinar los parámetros necesarios teniendo el cuenta la paralaje publicada ya que teniendo en cuenta el módulo de distancia sospechamos que la estrella parece no ser miembro del cúmulo.

En general pudimos abservar que las edades estimadas con el ajuste de las isócronas se encuentran dentro del rango de los valores obtenidos con PARAM 1.1. No obstante, el ajuste de las isócronas no nos permite contar con un rango variado de edades ya que aquellas estrellas cuyas edades son muy próximas entre sí quedan representadas por una misma isócrona. De esta manera el rango en edades necesario para poder llevar a cabo la búsqueda de posibles

²http://stev.oapd.inaf.it/cgi-bin/param

variaciones de las abundancias con la edad se ve poco representada. Debido a esto, decidimos emplear para el gragifo del diagrama HR los resultados obtenidos con PARAM 1.1 (ver valores en la tabla 4.14).

HD	T_{ef}	[Fe/H]	V	Paralaje [mas]	$(B-V)_0$	E(B-V)	$(m-M_v)_0$	$(M_v)_0$	Log(edad)	Log(edad)
	-								PARAM 1.1	Isócrona
149121	10587	0.44	5.60	10.12	-0.016	-0.028	4.89	0.74	8.11	[8.50-8.55] ^c
35548	10950	0.41	7.00	4.42	-0.032	-0.006	6.75	-0.20	8.19	[8.50-8.55] ^c
175640	11400	0.05	6.20	6.21	0.032	-0.014	5.99	0.21	8.21	[8.50-8.55] ^c
49024	12277	0.57	7.85	\dots^a	-0.137	0.027^{b}	9.29^{b}	-1.44		8.05
129174	12400	0.27	4.49	10.28	-0.032	0.030	5.03	-0.54	8.07	8.50
186122	12500	0.90	6.33	4.53	-0.032	-0.045	6.58	-0.25	8.07	[8.50-8.55] ^c
78316	12900	0.70	5.23	6.74	-0.1	0.008	5.88	-0.65	8.03	8.30
158704	12938	0.89	6.05	7.47	-0.032	-0.033	5.53	0.52	8.01	[8.50-8.55] ^c
190229	13094	1.26	5.60	5.12	-0.032	-0.063	6.26	-0.53	8.02	8.50
53244	13400	0.39	4.11	8.11	-0.1	-0.012	5.42	-1.31	8.00	8.25

^{*a*}: El valor presenta gran error en la determinación.^{*b*}:datos de bibligrafía.^{*c*}:La edad de la estrella se encuentra en ese rango.

En la figura 4.8 se muestra el ajuste de las isócronas para las estrellas de la muestra. Los símbolos representan: cuadrado vacío HD 149121, círculo vacío HD35548, estrella HD 175640, estrella de tres puntas HD 49024, triángulo lleno HD 129174, círculo lleno HD 186122, cuadrado lleno HD 78316, triángulo vacío, HD 158704, pentágono vacío HD 190229 y asterisco HD 53244. Los valores adoptados para las edades pueden verse en la tabla 4.14

Figura 4.8: Estimación de edades mediante el ajuste de isócronas teóricas. Ver el texto para la designación de cada símbolo. Las líneas corresponden a las isócronas teóricas: en línea cortada Log(edad)=8.05, línea continua negra Log(edad)=8.25, línea continua verde Log(edad)=8.30, línea continua roja Log(edad)=8.50 y línea continua azul Log(edad)=8.55

Para una inspección más detallada del ajuste de las isócronas mostramos a continuación en la figura 4.9 una ampliación de la región de interés.

Figura 4.9: Estimación de edades mediante el ajuste de isócronas teóricas. Ver el texto para la designación de cada símbolo. Las líneas corresponden a las isócronas teóricas: en línea cortada Log(edad)=8.05, línea continua negra Log(edad)=8.25, línea continua verde Log(edad)=8.30, línea continua roja Log(edad)=8.50 y línea continua azul Log(edad)=8.55

Capítulo 5

ANÁLISIS Y DISCUSIÓN

5.1. Respecto a las Abundancias Químicas

Si comparamos nuestros resultados con los correspondientes valores solares podemos decir que, en todas las estrellas analizadas el He resultó por debajo del valor solar.

El O se encuentra levemente sobreabundante excepto para HD 35548 y HD 149121 que es levemente deficiente.

El Mg resultó ser levemente deficiente para HD 35548, HD 53244, HD 149121 y HD 175640 y para el resto de las estrellas de la muestra resultó levemente sobreabundante.

El Si resultó ser levemente subsolar para las estrellas HD 129174, HD149121 y HD 175640, para el resto de las estrellas se presenta levemente deficiente.

El Fe es levemente sobreabundante para las estrellas de la muestra.

Las especies Sc, Ti, Cr, Mn, Sr, Y y Zr resultaron sobreabundantes para las estrellas de la muestra. Particularmente dentro de este grupo, HD 175640 posee Sc levemente deficiente mientras que HD 53244 y HD 175640 no poseen Sr.

El Ni resultó estar por debajo del valor solar para HD 175640, HD 186122, HD 158704 y HD 78316. HD 53244 posee Ni levemente sobreabundante y HD 49024 se encuentra sobreabundante por un factor 140 aproximadamente, mientras que para el resto de las estrellas no se identificó Ni.

El Ga se encuentra sobreabundante excepto para HD 53244 y HD 49024 en las cuales no se identificó este elemento siendo ambas estrellas pertenecientes cúmulos estelares. Aunque debería confirmarse la pertenencia de HD 53244 a Cr 121.

Por último, el Hg se encuentra muy sobreabundante en todos los casos.

Los patrones de abundancias observados en nuestra muestra siguen las pautas generales de las estrellas de HgMn y están en acuerdo con estudios realizados por otros autores (ver por ejem-
plo Cowley & Aikman (1975), Dworetsky & Vaughan (1973), Wahlgren et al. (1994), Smith (1997), Castelli & Hubrig (2004), Saffe et al. (2011)).

Resumimos los valores obtenidos para las abundancias químicas en las tablas 5.1 y 5.2, mostramos también a modo de comparación en las columnas 12 y 13 los valores obtenidos para dos de las estrellas de HgMn estudiadas por Adelman et al. (2006) en el mismo rango de temperaturas γ Crv, v Her y β Tau respectivamente junto con los valores solares obtenidas por Asplund et al. (2005).

Tabla 5.1: Abundancias Químic	cas.
-------------------------------	------

Especie	HD 1/0121	HD 355/18	HD 175640	HD 49024	HD 120174	$\sim Cry$	1) Her	Sol
Atomica	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$
HeI	-2.10	-1.79	-1.79	-2.30	-2.05	-1.17 ± 0.06	-1.51	-1.07
CI		-3.16	-3.63 ± 0.19	-3.41	-3.07			-3.61
CII	-3.11 ±0.23	-3.77 ± 0.10	-3.94 ± 0.03	-3.35 ± 0.08	-3.74 ± 0.27	-3.71 ± 0.12	-4.04 ± 0.18	-3.61
OI	$-3.38 {\pm} 0.18$	$-3.39{\pm}0.23$	$-3.09{\pm}0.18$	-2.78 ± 0.28	$-2.82{\pm}0.17$		-3.57 ± 0.09	-3.34
NeI	•••	•••			•••	•••	•••	-4.16
NaI	•••	•••			-4.44	•••	•••	-5.73
MgI	-4.83±0.17	-5.13±0.17	-4.93 ± 0.04	$-3.94{\pm}0.22$	$-3.64{\pm}0.06$		•••	-4.47
MgII	-5.03 ± 0.18	-4.96 ± 0.22	-4.99 ± 0.14	-5.08 ± 0.16	$-4.78 {\pm} 0.09$	-5.02 ± 0.13	-5.04 ± 0.04	-4.47
AlII		-6.51	-6.63	-6.64	-6.81			-5.53
SiII	-4.36 ± 0.25	-5.14 ± 0.16	-4.38 ± 0.16	-4.80 ± 0.29	-4.18 ± 0.20	-5.60 ± 0.20	-5.06 ± 0.25	-4.49
PII	-5.60 ± 0.25	-5.17 ± 0.09	-6.04±0.21	-5.20 ± 0.24	-5.41 ± 0.15	-5.96	-5.99 ±0.13	-6.60
SII	-4.63 ±0.24	-4.53 ±0.27	-4.83 ±0.11	-5.08 ± 0.24	-4.67 ± 0.19	-5.33	-5.07 ± 0.15	-4.84
CaI	-5.55	-5.38	-4.89	-3.58				-5.71
CaII	-6.12	-6.03	-6.10	-6.39	-5.73	-5.75	-6.04	-5.71
ScII	-6.23	-6.29	-9.34	-8.51	-7.36 ± 0.27	-8.22	$-8.95 {\pm} 0.07$	-8.96
TiII	-6.77 ± 0.26	-6.66±0.24	-6.16±0.20	-6.21±0.28	-6.28 ± 0.28	$-5.79 {\pm} 0.20$	-6.10 ± 0.20	-7.11
CrI	-5.88 ± 0.20	-5.37 ± 0.13	-5.12 ± 0.27	-4.81 ±0.12	-4.45 ±0.17			-6.37
CrII	-6.15 ±0.26	-5.84 ± 0.23	-5.68 ± 0.26	-5.78 ± 0.25	-5.47 ± 0.19	-6.34±0.17	-5.99 ± 0.18	-6.37
MnI	-5.11 ±0.26	-4.59 ± 0.18	-4.36 ± 0.21	-3.84 ± 0.25	-3.87 ±0.19	$\textbf{-5.05} \pm 0.22$	-4.61±0.14	-6.53
MnII	-5.46 ± 0.30	-4.88 ±0.29	-4.63 ± 0.24	$\textbf{-4.92} \pm \textbf{0.29}$	-4.12 ± 0.23	-5.32 ± 0.20	-4.77±0.19	-6.53

Tabla 5.1:	Continuación	Abundancias	Químicas
------------	--------------	-------------	----------

Especie	HD 149121	HD 35548	HD 175640	HD 49024	HD 129174	$\gamma \operatorname{Crv}$	v Her	Sol
Atómica	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$logN/N_H$
FeI	-4.49 ±0.17	-4.42 ± 0.11	-4.83 ± 0.18	-4.25 ±0.25	-4.55 ±0.11		-4.66 ±0.16	-4.55
FeII	-4.34 ± 0.27	-4.47 ± 0.28	-4.78 ± 0.29	-4.31 ±0.29	-4.62 ± 0.27	$\textbf{-5.10} \pm 0.16$	-4.65 ±0.16	-4.55
FeIII							-4.55	-4.55
NiII			-7.32	-3.68			-6.78 ±0.19	-5.81
ZnII							-6.92	-7.39
GaII	$\textbf{-6.48} \pm 0.29$	$\textbf{-6.26} \pm 0.14$	$\textbf{-5.23}\pm0.10$		$\textbf{-4.65} \pm 0.06$		-5.67 ± 0.06	-8.93
BrII	-6.49	-5.36	-6.23	-6.66	$\textbf{-6.64} \pm 0.10$			-9.44
SrII	-7.03 ± 0.15	-7.31±0.21		-6.88	$-7.08 {\pm} 0.19$	-9.04	$\textbf{-7.85} \pm 0.25$	-9.12
YII	-6.67 ± 0.24	-6.36±0.19	-7.18±0.19	-7.05 ± 0.22	-6.01±0.18		$\textbf{-7.45} \pm 0.17$	-9.83
ZrII	-8.02 ± 0.23	-7.50 ± 0.23	-7.58 ± 0.16	-7.31±0.29	$-7.40{\pm}0.11$	-7.95 ± 0.12	-8.08	-9.43
XeII	-5.73 ± 0.28	-4.21 ± 0.01	-5.55 ± 0.20	-5.60	-5.18 ± 0.17			-9.73
BaII	•••	•••		-8.85	-8.85		-8.74 ± 0.01	-9.83
NdIII	-8.31	-8.04	-9.04	-8.90	$-8.34{\pm}0.08$	-9.60	-9.50	-10.57
YbII	-7.89 ± 0.23	-7.64 ± 0.23	-7.31 ± 0.05	-7.45	-6.99 ± 0.04			-11.09
AuII	-6.58 ± 0.03		-7.26	-6.61 ± 0.10			•••	-11.20
HgI		-3.88		-3.92	-3.96		-5.94	-10.87
HgII	-6.77	-5.08	$\textbf{-5.30} \pm 0.09$	-5.55	-3.42	-7.42	-6.12	-10.87
T_{ef}	10587	10950	11400	12277	12400	12125	11950	
$\log g$	3.50	3.80	3.70	3.40	3.75	3.70	3.70	
ξ	0.0	0.0	0.0	0.2	0.0	0.0	0.0	

Tabla 5.2:	Abundancias	; Químicas.
------------	-------------	-------------

Especie	HD 186122	HD 78316	HD 158704	HD 190229	HD 53244	β Tau	Sol
Atómica	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$
HeI	-2.77	-2.22	-2.18	-2.80	-1.85	-1.15±0.06	-1.07
CI	-3.31	-3.38 ±0.23	$-2.55 {\pm} 0.20$	-3.37			-3.61
CII	-3.94 ± 0.04	-3.10 ± 0.13	-4.75 ±0.25	-3.52	-3.71	-3.62 ± 0.10	-3.61
OI	-3.15±0.11	$-2.88 {\pm} 0.18$	-2.65 ± 0.16	-3.02 ± 0.11	-2.95		-3.34
NeI	•••	•••	•••	•••	$\textbf{-3.66} \pm 0.18$	••••	-4.16
NaI	•••	•••	•••	•••	-5.90	••••	-5.73
MgI	-4.15±0.11	-3.79 ± 0.12	-4.11				-4.47
MgII	$-5.88 {\pm} 0.02$	-5.25 ± 0.01	$-4.98 {\pm} 0.20$	-4.87 ± 0.19	$-4.86 {\pm} 0.17$	-4.83 ± 0.08	-4.47
AlII	-5.99	•••	-6.70	-6.53	•••	••••	-5.53
SiII	-4.81 ± 0.19	-4.66 ± 0.22	-4.68 ± 0.28	-4.68 ± 0.25	-4.59 ± 0.28	$-5.57 {\pm} 0.18$	-4.49
PII	-5.22 ± 0.20	-4.07 ± 0.13	-4.99 ± 0.22	-4.37 ± 0.29	-4.36 ± 0.20		-6.60
SII	-5.00 ± 0.24	-5.51 ±0.21	-4.94 ± 0.27	-5.65 ± 0.22	-5.03 ± 0.15	-5.05 ± 0.14	-4.84
CaI	-4.22	-3.82	-4.04	-4.14			-5.71
CaII	-6.22	-6.38	-5.75	-5.70	-5.50	-5.60	-5.71
ScII	-7.36 ± 0.27	-7.55	-7.87	-4.95	$-8.45 {\pm} 0.08$	••••	-8.96
TiII	-6.28 ± 0.28	-6.21±0.27	-6.35 ± 0.30	-5.89 ± 0.30	$-5.88 {\pm} 0.28$	-6.22 ± 0.20	-7.11
CrI	-4.45 ± 0.17	-4.59 ± 0.10	-4.72 ± 0.29	-4.27 ± 0.23	-4.63 ± 0.13		-6.37
CrII	-5.47 ± 0.19	-6.15 ±0.23	-5.76 ± 0.26	-5.81 ± 0.27	-5.85 ± 0.22	-5.85 ± 0.18	-6.37
MnI	-3.87 ± 0.19	-4.11 ±0.27	-3.63 ±0.22	-3.94 ± 0.28	-3.47 ± 0.26		-6.53
MnII	-4.12 ±0.23	-4.89 ±0.19	-4.20 ± 0.28	-4.37 ±0.24	-4.58 ±0.29	-4.84 ±0.15	-6.53

66

Especie	HD 186122	HD 78316	HD 158704	HD 190229	HD 53244	β Tau	Sol
Atómica	$log N/N_H$	$log N/N_H$	$log N/N_H$	$log N/N_H$	$logN/N_H$	$log N/N_H$	$log N/N_H$
FeI	-4.55 ±0.11	-3.90 ±0.22	-4.07 ±0.23	-3.81 ±0.22	-3.46 ±0.18		-4.55
FeII	-4.62 ± 0.27	-4.00 ± 0.27	-4.24 ± 0.27	-4.19 ± 0.24	-3.78 ± 0.27	$\textbf{-4.57} \pm 0.20$	-4.55
FeIII			•••		•••	-4.26	-4.55
NiII	•••	$\textbf{-6.89} \pm 0.22$	$\textbf{-6.33}\pm0.30$	-6.06	•••	$\textbf{-6.26} \pm 0.19$	-5.81
ZnII		-5.32		-5.47			-7.39
GaII	$\textbf{-4.65} \pm 0.06$	$\textbf{-4.74} \pm 0.03$	$\textbf{-4.74} \pm 0.15$	-5.33 ± 0.08	-6.34 ± 0.25		-8.93
BrII	$\textbf{-6.64} \pm 0.10$	-6.75	-6.48	-6.56	-6.36		-9.44
SrII	-7.08 ± 0.19	-8.64	-8.24 ± 0.29	$-8.38 {\pm} 0.37$	-8.23		-9.12
YII	-6.01 ± 0.18	-7.18±0.19	-6.59 ± 0.12	-6.73±0.25	-6.86 ± 0.26		-9.83
ZrII	-7.40 ± 0.11	-7.01 ± 0.22	-6.41±0.21	-6.82 ± 0.23	$-6.94{\pm}0.26$		-9.43
XeII	-5.18 ± 0.17	$-5.58 {\pm} 0.18$	-4.77 ± 0.16	-5.01 ± 0.26	-5.50 ± 0.25		-9.73
BaII	-8.85	-8.85		-7.48	-8.65	-7.80	-9.83
NdIII	$-8.34{\pm}0.08$	-7.90	-8.42 ± 0.17	-8.58	-8.28	•••	-10.57
YbII	-6.99 ± 0.04	-6.87 ± 0.05	•••	-6.61	-7.05	•••	-11.09
AuII		-6.42 ± 0.05	-7.61				-11.20
HgI	-3.96	-4.05	-4.06		-4.05	•••	-10.87
HgII	-3.42	-4.54	-5.10	-4.53 ± 0.18	-5.93 ± 0.12	•••	-10.87
T_{ef}	12500	12900	12938	13094	13400	13250	
$\log g$	3.40	3.75	4.40	3.60	3.55	3.65	
ξ	0.0	0.0	0.0	0.0	0.2	0.1	

Tabla 5.2: Continuación Abundancias Químicas

En la figura 5.1 se muestran las abundancias de cada una de las estrellas estudiadas relativas al sol. Para poder mostrar los patrones de las abundancias químicas estudiadas, se garfican también las abundancias químicas presentadas por Takada-Hidai (1991) quien hace una recopilación de las abundancias obtenidas hasta el año de la publicación del trabajo, también se grafican los datos obtenidos por Adelman et al. (2006) junto con los valores obtenidos en este trabajo. En el gráfico podemos observar con triángulos y círculos abiertos a las cotas superior e inferior respectivamente y el cuadrado lleno negro representa el valor medio considerado en las determinaciones de abundancias presentados en el trabajo de Takada-Hidai (1991). Los círculos azules representas los valores obtenidos por Adelman et al. (2006) y finalmente los círculos rojos representan los valores obtenidos en este trabajo.

Figura 5.1: Abundancias relativas. Triángulos y círculos abiertos negros son las cotas superior e inferior respectivamente, cuadrado lleno negro corresponde a los valores medios, círculo azul corresponde a los datos obtenidos por Adelman et al. (2006), mientras que el círculo rojo representan a los valores obtenidos en este trabajo.

Se detalla a continuación las abundancias de los elementos estudiados respecto a la abundancia solar para cada una de las estrellas de la muestra.

HD 149121

Del análisis de las abundancias para HD 149121 podemos decir que el He se presenta deficiente respecto a la abundancia solar al igual que el O y Mg. El Carbono se observa levemente sobreabundante como también el Si, P, S y Ca. Los elementos de pico del Fe (Sc, Ti, Cr, Fe) se encuentran sobreabundantes, siendo el Sc el que presenta la mayor sobreabundacia con un factor del orden de 300. Dentro de este grupo, el Ni no se encuentra presente. Los elementos más pesados como Sr, Y, Zr, Xe se encuentran sobreabundantes, destacándose el Xe con una sobreabundacia de +4.0 dex respecto al sol. El Mn se encuentra sobreabundante aunque es la menos abundante del grupo (\sim +1.6 dex), el Ga, Br, Nd se observan por encima de la abundancia solar en aproximadamente +2.5, +3.0 y +2.3 dex respectivamente. Yb y Au también se presentan sobreabundantes en +3.2 y +4.6 dex respectivamente, mientras que el Hg presenta una sobreabundancia de +4.1 dex respecto al sol.

HD 35548

Analizando las abundancias de HD 35548 podemos concluir que el He, O, Mg, Al y Si se presentan levemente deficientes. Por otro lado, C, S y Ca se observan levemente sobreabundante mientras que P es sobreabundante (+1.5 dex). Los elementos de pico del Fe (Sc, Ti, Cr, Fe) se encuentran sobreabundantes, nuevamente es el Sc el que presenta la mayor sobreabundacia en el grupo de +2.7 dex, no observamos Ni. Los elementos más pesados como Sr, Y, Zr, Xe se encuentran sobreabundantes, se destacan Y y Xe con sobreabundancias de +3.5 y +5.5 dex respectivamente respecto al sol. El Mn es sobreabundante en +2.1 dex. Ga y Br son sobreabundantes en +2.7 y +4.0 dex. También son sobreabundantes Nd en +2.5 dex e Yb en +3.5 dex. Se destaca la gran sobreabundancia del Hg de +7.0 dex.

HD 175640

Del estudio llevado a cabo en HD 175640 podemos decir que el He, Mg y Al se observan deficientes respecto a la abundancia solar. Para el caso de Si, P, S y Ca se presentan sobreabundantes. Para el grupo de los elementos de pico del Fe (Sc, Ti, Cr, Fe, Ni) tenemos que el Sc y Ni se presentan deficientes siendo el Ni 32 veces más deficiente que el sol, en el caso de Ti, Cr y Fe

se presentan sobreabundantes. También encontramos una gran sobreabundancia del Mn de 2.4 dex. Los elementos más pesados como Y, Zr y Xe se encuentran sobreabundantes, destacándose el Y y Xe con valores de +2.7 y +4.2 dex respectivamente, dentro de este grupo no observamos Sr para esta estrella. Para el caso de Ga y Br los encontramos sobreabundantes en +3.7 y +3.2 dex. El Nd, Yb y Au son también sobreabundantes en +1.5, +3.8 y +3.9 dex respectivamente. Como es característico para este tipo de estrellas, encontramos una sobreabundancia del Hg de 5.6 dex.

HD 49024

En el caso de HD 49024 encontramos al He y Al deficientes respecto a la abundancia solar, mientras que Si y S se presentan levemente deficientes. Para el caso de C, O, Mg, P y Ca los encontramos más abundantes que el sol destacándose el Ca con una sobreabundancia de 2.1 dex. Para el caso de los elementos de pico del Fe (Sc, Ti, Cr, Fe, Ni) se encuentran todos sobreabundantes, siendo el más importante el Ni con una abundancia de +2.1 dex. También encontramos al Mn con una sobreabundancia de +2.7 dex. El Br presenta una sobreabundancia de +2.8 dex, no encontramos Ga en esta estrella. Los elementos más pesados como Sr, Y, Zr y Xe son todos muy sobreabundantes en +2.2, +2.8, +2.1 y +4.1 dex respectivamente. En el caso de Ba, Nd, Yb y Au se presentan todos muy sobreabundantes, se destacan Yb y Au con valores de +3.6 y +4.6 dex. El Hg es extremadamente sobreabundante en +7.0 dex.

HD 129174

Analizando a HD 129174 podemos decir que encontramos al He deficiente respecto al valor solar como también lo es el Al, mientras que Ca se observa levemente deficiente. Por otro lado, C, O, Mg, Si y S se observan levemente sobreabundantes, mientras que el Na y P se encuentran sobreabundantes (+1.3 y +1.2 dex respectivamente). Los elementos de pico del Fe (Sc, Ti, Cr, Fe) son sobreabundantes, se destacan en el grupo Sc y Cr con sobreabundancias de +1.6 y +2.0 dex respecto al solar, no se observa Ni. El Mn se observa sobreabundante en +2.9 dex. El Ga es sobreabundante en +4.3 dex mientras que el Br lo es en +2.8 dex. Los elementos más pesados como Sr, Y, Zr y Xe se observan sobreabundantes Ba, Nd e Yb. El Hg presenta una sobreabundancia de +7.6 dex.

HD 186122

Del estudio llevado a cabo para HD 186122 podemos decir que encontramos al He muy deficiente (-1.6 dex) respecto a la abundancia solar, mientras que Al, Si y S se observan levemente deficientes. El O, C y Mg se observa levemente sobreabundante y P y Ca sobreabundantes. Los elementos de pico del Fe (Sc, Ti, Cr, Fe, Ni) se encuentran todos sobreabundantes, siendo el Cr el más abundante del grupo (+1.8 dex) y el Ni deficiente (-1.1 dex). Encontramos para el Mn una sobreabundancia de +2.5 dex como es típico en este tipo de estrellas. Por otro lado Zn, Ga y Br se encuentran muy sobreabundantes en +2.1, +4.2 y +2.7 dex respectivamente. Los elementos más pesados Sr, Y, Zr y Xe son sobreabundantes, destacándose los tres últimos en +2.7, +2.4 y +4.2 dex respectivamente. En el caso de Ba, Nd, Yb y Au son sobreabundantes siendo el Nd, Yb, Au los más abundantes (+2.7, +4.2 y +4.8 dex). Observamos al Hg extremadamente sobreabundante en +6.9 dex.

HD 78316

Del estudio realizado para HD 78316 podemos concluir que el He se presenta deficiente respecto al valor solar como tambiín el Si y S. Por otra parte C, O y Mg se encuentran levemente sobreabundantes, mientras que P y Ca son sobreabundantes. Los elementos de pico del Fe (Sc, Ti, Cr, Fe, Ni) se encuentran sobreabundantes excepto el Ni que se observa deficiente respecto al valor solar. El Mn presenta una sobreabundancia de +3.0 dex. El Ga y Br se observan muy sobreabundantes en +4.2 y +3.0 dex respectivamente. Los elementos más pesados Sr, Y, Zr y Xe encuentran muy sobreabundantes, excepto el Sr que es sobreabundante en +0.9 dex. En el caso del Nd y Au son sobreabundantes en +2.2 dex y +3.6 dex. No observamos en este caso Ba ni Yb. Se encuentra sobreabundancia del Hg, característica para este tipo de estrellas (+6.8 dex).

HD 158704

El estudio realizado para HD 158704 revela que el He y Al son deficientes respecto al valor solar, mientras que el Si y S son levemente deficientes. El C, P y Ca son sobreabundantes, mientras que O y Mg son levemente sobreabundantes. Los elementos de pico del Fe (Sc, Ti, Cr, Fe, Ni) se encuentran todos sobreabundantes excepto el Ni que lo observamos levemente deficiente (-0.3 dex), de los abundantes el Sc se destaca con una sobreabundancias de +4.0 dex. Encontramos al Mn sobreabundante en +2.7 dex. Para el caso de Zn, Ga y Br los encontramos

sobreabundantes, se destaca el Ga en +3.6 dex. Los elementos más pesados como Sr, Y, Zr y Xe son todos sobreabundantes respecto al sol, se destacan Y y Xe con sobreabundancias de +3.1 y +4.7 dex respectivamente. Para los elementos Ba, Nd e Yb se presentan más abundantes que el sol en +2.4, +2.0 y +4.5 dex respectivamente. El Hg sigue el esquema típico de las estrellas de grupo, encontramos una sobreabundancia de +6.3 dex.

HD 190229

Del estudio realizado para HD 190229 pudimos observar al He deficiente respecto a la abundancia solar como también el Al, Si y S. C, O, Mg se encuentran levemente sobreabundantes En el caso de P y Ca se observan sobreabundantes respecto al valor solar en +2.2 y +1.6 dex respectivamente. Los elementos de pico del Fe (Sc, Ti, Cr, Fe) se encuentran sobreabundantes destacándose el Cr (+1.8 dex), no se observa Ni. El Mn se observa sobreabundante en +3.1 dex. Tanto Ga como Br se encuentran sobreabundantes en +2.0 y +3.1 dex respectivamente. Los elementos más pesados como Sr, Y, Zr y Xe son todos muy sobreabundantes, siendo el Sr el que presenta la menor abundancia del grupo (+0.9 dex) y se destaca el Xe con una sobreabundancia de +4.2 dex. También Ba, Nd e Yb se observan sobreabundantes en +1.2, +2.3 y +4.0 dex. Nuevamente el Hg se observa extremadamente sobreabundante en +6.8 dex.

HD 53244

Analizando HD 53244 concluimos que el He y Mg se presentan deficientes, mientras que el Na, Si y S son levemente deficientes. C, y Ca son levemente sobreabundantes, mientras que O, Ne y P son sobreabundantes, siendo éste último el que se destaca en +2.2 dex. Los elementos de pico del Fe (Sc, Ti, Cr, Fe) son sobreabundantes. El Mn posee una sobreabundancia de +3.1 dex respecto al sol. No detectamos Ga en esta estrella y el Br se presentó +2.6 dex más abundante. Los elementos más pesados Y, Zr y Xe son sobreabundantes en +3.2, +1.9 y +5.0 dex respectivamente, no se observa Sr para esta estrella. El Nd es sobreabundante en +1.6 dex respecto al sol. Se observa también una sobreabundancia típica para el Hg de +6.6 dex.

5.2. Correlación con respecto a la edad de las estrellas

A continuación mostramos en las figuras 5.2, 5.3, 5.4 y 5.5 las relaciones obtenidas entre abundancias y edades para los elementos P, Sc, Mn, Ga, Y, Zr, Xe y Hg cuyas abundancias resultan ser atípicas en las estrellas de HgMn. Hemos calculado para cada elemento el coeficiente de correlación de Pearson (de aquí en adelante CCP) con el fin de aclarar las tendencias observadas en cada caso. El coeficiente de correlación de Pearson es un índice que mide la relación lineal entre dos variables aleatorias cuantitativas y se obtiene dividiendo la covarianza de dos variables por el producto de sus desviaciones estándar.

El valor del índice de correlación varía en el intervalo [-1,1]:

a) Si r = 1, existe una correlación positiva perfecta entre las dos variables denominada relación directa: cuando una de ellas aumenta, la otra también lo hace en proporción constante.

b) Si 0 < r < 1, existe una correlación positiva.

c) Si r = 0, no existe relación lineal. Pero esto no necesariamente implica que las variables son independientes: pueden existir todavía relaciones no lineales entre las dos variables.

d) Si -1 < r < 0, existe una correlación negativa.

e) Si r = -1, existe una correlación negativa perfecta entre las dos variables llamada relación inversa: cuando una de ellas aumenta, la otra disminuye en proporción constante.

Además, realizamos una búsqueda en la bibliografía de aquellos trabajos sobre determinación de abundancias químicas realizados sobre muestras de estrellas de HgMn con el fin de agregar puntos a nuestros gráficos de abundancias vs. edad. Seleccionamos dos autores, los trabajos de la serie de Smith (Smith & Dworetsky (1993), Smith(1993, 1994, 1996b, 1997)) quien realiza un estudio en un grupo de 10 estrellas normales, 4 estrellas normales superficialmente y 26 estrellas de HgMn utilizando espectros públicos de los archivos del IUE (International Ultraviolet Explorer) utilizaron ATLAS6 para determinar los modelos de atmósfera (Kurucz 1970, 1979) y el código de síntesis espectral UCLSYN (ver referencias incluidas en los trabajos citados) para determinar las abundancias, y seleccionamos el trabajo de Saffe et al. (2011) quienes determinan abundancias para 4 estrellas de HgMn utilizando el espectrógrafo EBASIM de CASLEO empleando ATLAS9 y WIDTH9 para determinar los modelos de atmósfera y las abundancias químicas respectivamente. Ambos autores no publican edad para sus respectivas muestras, por lo que para obtenerlas empleamos el programa PARAM 1.1 de la misma manera que lo hicimos para nuestra muestra.

Los gráficos se construyeron haciendo uso de todos los puntos disponibles con sus respectivas barras de error y para diferenciar una muestra de la otra, de aquí en adelante los simbolizamos de la siguiente manera: triángulos negros los correspondientes a este trabajo, círculos rojos los correspondientes a Saffe et al. (2011) y los cuadrados verdes y azules correspondientes a los trabajos de la serie de Smith.

Para el caso de la muestra de estrellas de HgMn de Smith, la misma está constituida como un

grupo de 16 estrellas quienes en el catálogo de estrellas peculiares Renson & Manfroid (2009) se catalogan como de HgMn y otro grupo de 10 estrellas quienes en su catalogación se incluyen otros elementos como el Pt, Si, Y, Sr, y en algunos casos la estrella está clasificada como HgPtSr como es el caso de HD 193452, por lo que nos pareció conveniente diferenciar ambas muestras para analizar si estas diferencias en su clasificación puede introducir cambios en las tendencias observadas. De esta manera, a las 16 estrellas catalogadas como de HgMn se las designó con el color verde y las 10 restantes en las que se incluyen otros tipos de elementos se las designó con el color azul.

En lo que sigue mostramos los gráficos elaborados con las tres muestras. En la figura 5.2 mostramos la relación observada para el P y Zr. Para estos dos elementos pudimos agregar en la gráfica sólo los valores obtenidos por Saffe et al. (2011), ambos elementos presentan una tendencia que puede considerarse "**decreciente**" de la abundancia a medida que la estrella evoluciona. Para ambos elementos, los CCP son: $(CCP)_P = -0.38$ y $(CCP)_{Zr} = -0.22$, a pesar de que estos son valores bajos, nos indican la presencia de una posible tendencia. Para ambos elementos se aparta un punto correspondiente a nuestra muestra (triángulo negro) y corresponde a la estrella HD 49024 siendo la única estrella de la muestra que pertenece a un cúmulo (NGC 2287). El cuadro correspondiente al Zr (panel derecho) presente una dispersión de los datos mayor que para el P, pero sin embargo la tendencia se observa con claridad.

En la figura 5.3 mostramos la relación correspondiente al Xe e Y. En el caso del Xe sólo contamos con los datos de nuestra investigación, mientras que para el Y pudimos agregar los datos correspondientes a Saffe et al. (2011). Para estos elementos podemos sospechar una tendencia "**decreciente**" de la abundancia a medida que la estrella evoluciona, el CCP es $(CCP)_{Xe} =$ -0.58 si no tenemos en cuenta los puntos que se apartan de la tendencia, ellos corresponden a HD 35548 en la posición (edad, log N(Xe)/N(H))=(8.19,-4.21) y HD 49024 en la posición (edad, log N(Xe)/N(H))=(8.39,-5.6) y para el caso del Y (panel derecho) el punto que se aparta también corresponde a HD 49024 y el CCP es: $(CCP)_Y =$ -0.22.

En la figura 5.4 mostramos la relación para el Mn y Ga, en el caso del Mn (panel izquierdo) el gráfico presenta una gran dispersión, existen varios puntos que se apartan bastante de lo que podría ser una posible tendencia "**decreciente**". Los cuadrados azules son los que se apartan más del resto. Sin embargo, si no los tuviéramos en cuenta para determinar el CCP, este da un valor muy bajo para asegurar una posible tendencia. También podemos notar en este caso que

Figura 5.2: Relación Abundancia vs. Edad. Se observa una tendencia "*decreciente*" de la abundancia a medida que la estrella evoluciona para P y Zr. Los triángulos negros son los correspondiente a este trabajo, mientras que los círculos rojos corresponden a Saffe et al. (2011). También están indicadas las barras de error en abundancias de aquellas estrellas para las cuales fue posible determinarlas.

Figura 5.3: Relación Abundancia vs. Edad. Se observa una posible tendencia "*decreciente*" de la abundancia a medida que la estrella evoluciona para ambos elementos. Para mayores detalles del comportamiento de los puntos refiérase al texto. Nuevamente los triángulos negros representan los datos de nuestro trabajo y los círculos rojos los de Saffe et al. (2011), se indican también las barras de error.

podría discriminarse el grupo de estrellas con log (edad) \rangle 8.25 los cuales parecen mostrar una tendencia opuesta a la anterior, es decir, una tendenciqa "**creciente**" de las abundancias con la edad. Por lo tanto, no podemos concluir claramente en un análisis para el Mn. Para el caso del Ga los puntos muestran una gran dispersión pero se observa una tendencia "**decreciente**" de la abundancia a medida que la estrella evoluciona, si no tenemos en cuenta los dos puntos (edad, $\log N(Ga)/N(H)$) que se apartan de la muestra de Smith en (8,-8) y (8.02,-8.15) el CCP correspondiente es: $(CCP)_{Ga} = -0.52$, lo que confirma nuestra sospecha.

Figura 5.4: Relación Abundancia vs. Edad. *Panel Izquierdo:* No observamos una clara relación para el Mn. *Panel Derecho:* Para el Ga observamos una posible tendencia "*decreciente*" a pesar de que los datos presentan una gran dispersión. Los triángulos negros representan los datos de nuestro trabajo, los círculos rojos los de Saffe et al. (2011) y los cuadrados verdes y azules los de Smith, se indican también las barras de errores correspondientes.

En la figura 5.5 mostramos la relación para el caso del Sc y Hg. Para el caso del Sc (panel izquierdo) podemos sospechar una tendencia "**creciente**" de las abundancias a medida que la estrella evoluciona si descartamos tres de los puntos de nuestra muestra que se apartan del resto. Estos puntos corresponden a HD 158704 ubicado en la posición (edad, $\log N(Sc)/N(H)$)=(8.01,-4.95), HD 175640 ubicado en la posición (edad, $\log N(Sc)/N(H)$)=(8.21,-9.34) y HD 49024 ubicado en la posición (edad, $\log N(Sc)/N(H)$)=(8.34,-8.51). De esta manera el CCP es: $(CCP)_{Sc} =+0.80$, confirmando la tendencia observada. Para el caso del Hg (panel derecho) no pudimos observar tendencia alguna.

Es importante destacar, que para todas las relaciones mostradas, HD 49024 siempre se presenta apartada de las tendencias. Como lo comentamos anteriormente, ésta estrella es el único caso

confirmado en nuestra muestra de pertenencia a cúmulo, por lo que sería muy interesante poder analizar en investigaciones futuras las posibles implicancias de la evolución de los miembros del cúmulo y cómo se relaciona esto con los esquemas de las abundancias.

Figura 5.5: Relación Abundancia vs. Edad. *Panel Izquierdo:* Observamos una tendencia "*creciente*" de la abundancia con la edad de la estrella para el Sc. *Panel Derecho:* No se observa tendencia alguna para el Hg. Los símbolos corresponden a: triángulos negros para los datos de nuestro trabajo, los círculos rojos para Saffe et al. (2011) y los cuadrados verdes y azules para los datos de Smith, se indican también las barras de errores correspondientes

5.3. Correlación con respecto a la temperatura de las estrellas

Además de analizar cúales eran las tendencias de la abundancias respecto a la edad de las estrellas, quisimos analizar si existía algún tipo de relación con las temperaturas de las mismas. Para ello, también tuvimos en cuenta las estrellas estudiadas en los trabajos de la serie de Smith y la muestra estudiada por Saffe et al. (2011) ya que ambos autores publican la temperatura efectiva para toda la muestra.

Contruímos gráficos de abundancias vs. temperatura efectiva, distinguiendo a las tres muestras de la misma manera en que lo hicimos para el estudio realizado con las edades. Es decir, distinguimos con triángulos negros a los datos correspondientes a este trabajo, con círculos rojos los correspondientes a la muestra de Saffe et al. (2011) y con cuadrados verdes y azules los correspondientes a los trabajos de la serie de Smith. En los gráficos también se muestran los errores en las determinaciones de las abundancias. En lo que sigue, mostramos desde la figura 5.6 hasta la figura 5.12 las tendencias observadas para diferentes elementos.

En la figura 5.6 podemos observar la relación para el Hg y Mn. En el caso del Hg (panel izquierdo) podemos observar una tendencia "creciente" de la abundancia hacia temperaturas más elevadas. Podemos notar también que un grupo de 7 estrellas, las correspondientes a temperaturas mayores a 13000 K para la muesta de Smith, se separan de la tendencia mostrada para el resto de las estrellas con una pendiente levemente diferente pero desplazada hacia abundancias inferiores, los CCP obtenido para ambos grupos es: $(CCP)_{Hg(T_{ef} < 13000)} = +0.66$ y $(CCP)_{Hg(T_{ef}>13000)}$ =+0.50. Sin embargo, las dos estrellas más calientes de nuestra muestra HD 190229 ($T_{ef} = 13094$) y HD 53244 ($T_{ef} = 13400$) no caen dentro de esta tendencia desplazada, por lo cual debería analizarse con más detalle el comportamiento de las estrellas más calientes. Para el caso del Mn (panel derecho) también observamos una tendencia "creciente" con una pendiente más pronunciada que para el Hg. En este caso, debemos hacer notar que un grupo de 8 estrellas de la muestra de Smith con temperaturas mayores a 13000 K se apartan de la tendencia observada. 4 de las estrellas (cuadrados verdes) siguen la misma tendencia que el resto pero con un nivel de deficiencia en las abundancias menor que el resto, las otras 4 estrellas (cuadrados azules) no siguen la pendiente observada para el resto de las estrellas a altas temperaturas. Sin embargo, debemos recordar que se trata de las estrellas que no están catalogadas exclusivamente como de HgMn. Estos puntos corresponden a las estrellas: HD 79158 ubicado en la posición $(T_{ef}, \log N(Mn)/N(H)) = (13700, -6.80)$, HD 144667 en $(T_{ef}, \log N(Mn)/N(H)) = (T_{ef}, \log N(Mn)/N(H))$ $\log N(Mn)/N(H) = (14000, -5.30), \text{HD 53909 en } (T_{ef}, \log N(Mn)/N(H)) = (14050, -5.85)$ y HD 49606 en $(T_{ef}, \log N(Mn)/N(H)) = (14400, -4.50)$. Otro punto de conflicto en la tendencia a temperaturas bajas es HD 141556 (cuadrado azul) que corresponde a la posición (T_{ef} , $\log N(Mn)/N(H) = (10700, -7.15)$. En este caso, siendo el Mn el elemento crítico en este tipo de peculiaridad, vale la pena realizar un estudio más profundo de la clasificación de estas estrellas. Para ambos elementos se grafica en linea punteada negra la abundancia solar obtenida por Asplund et al. (2005).

En la figura 5.7 observamos las relaciones para dos de los elementos del pico de Hierro: en este caso Fe y Ni. Se grafica en linea punteada negra la abundancia solar obtenida por Asplund et al. (2005). Para ambos elementos no observamos tendencia alguna. En el caso del Fe (panel izquierdo), podemos notar el comportamiento típico de este elemento en este tipo de estrellas, comportándose solar o levemente subsolar para la mayor parte del grupo y para unos pocos

Figura 5.6: Relación Abundancia vs. Temperatura. Se observa una tendencia "creciente" para ambos elementos hacia temperaturas crecientes.

casos el comportamiento es levemente deficiente. En el caso del Ni, queda claro la deficiencia típica para este elemento, salvo un caso de sobreabundancia elevada y corresponde a HD 49024 miembro de NGC 2287 de nuestra muestra.

En la figura 5.8 mostramos las tendencias observadas para el Sc y Ti también pertenecientes a los elementos del pico del Hierro, y la abundancia solar obtenida por Asplund et al. (2005) en lineas punteadas negras. Para el Sc (panel izquierdo) observamos una tendencia "**decreciente**" de la abundancia hacia temperaturas más calientes. Observamos también, dos puntos pertenecientes a nuestra muestra que se apartan de la tendencia, ellos corresponden a las estrellas HD 175640 en la posición (T_{ef} , log N(Sc)/N(H))= (11400,-9.34) y HD 158704 en la posición (T_{ef} , log N(Sc)/N(H))= (12938,-4.95), si no consideramos estos dos puntos el CCP es: $(CCP)_{Sc} = -0.92$, confirmando la tendencia observada. Para el caso del Ti (panel derecho), observamos una tendecia "**creciente**" de las abundancia para temperaturas más calientes, el CCP para el Ti es: $(CCP)_{Ti} =+0.65$ apoyando nuestra sospecha. En en panel inferior observamos la relación para el Cr, en este caso vuelve a ser notorio el comportamiento bimodal de las abundancias respecto a la temperatura, aquellas estrellas más frías y más calientes que 13000 K podemos observar que ambos grupos presentan tendencias "**crecientes**" de las abundancias a medida que la estrella es más caliente. Para el grupo de estrellas más frías que 13000 K podemos

Figura 5.7: Relación Abundancia vs. Temperatura. No se observa tendencia alguna para ambos elementos.

observarlas más deficientes que aquellas estrellas más calientes, las pendientes de ambos grupos son diferentes pero sin embargo, es notable la presencia de una tendencia. De esta manera, los CCP calculados para ambos grupos corresponde a los valores: $(CCP)_{Cr(T_{ef} < 13000)} = +0.59$ y $(CCP)_{Cr(T_{ef} > 13000)} = +0.57$, para éste último coeficiente no tuvimos en cuenta el punto correspondiente a HD 53929 de la muestra de Smith ubicado en la posición $(T_{ef}, \log N(Cr)/N(H)) =$ (14050,-7.60) debido a que se aparta del grupo.

En la figura 5.9 mostramos las tendencias para el Mg y Al. Analizaremos en primer lugar lo observado para el Mg (panel izquierdo), vemos al igual que para el Cr un comportamiento bimodal. Podemos separar la muestra en dos grupos, siendo la línea divisoria nuevamente los 13000 K. Ambos grupos presentan un comportamiento "**creciente**" de las abundancias a temperaturas mayores. Para el grupo de las más calientes hay tres puntos pertenecientes a la muestra de Smith (cuadrados azules) que no se tuvieron en cuenta para calcular los CCP ya que se apartan un poco de la tendencia, por lo que los valores obtenidos fueron: $(CCP)_{Mg(T_{ef}<13000)} =$ +0.40 y $(CCP)_{Mg(T_{ef}>13000)} = +0.58$. Para el Al (panel derecho) observamos una tendencia "**decreciente**" de la abundancia hacia temperaturas mayores. Los datos presentan una dispersión importante, sin embargo la tendencia es notable. Para este elemento el CCP es: $(CCP)_{Al} =$ -0.41, confirmando lo observado en la gráfica. También podemos hacer notar que para ambos elementos las mayores deficiencias en las respectivas abundancias ocurren en las estrellas más calientes. Este comportamiento fue notado por Smith (1993), y en este trabajo agregando más

Figura 5.8: Relación Abundancia vs. Temperatura. Se observa una tendencia "*decreciente*" de la abundancia hacia temperaturas más calientes para el Sc, mientras que el Ti presenta un comportamiento opuesto. Para el Cr también se observa una tendencia "*creciente*" tanto para las estrellas más frías que 13000 K como para las más calientes.

puntos a temperaturas menores podemos apoyar la tendencia observada por el autor.

Figura 5.9: Relación Abundancia vs. Temperatura. Se observa una tendencia "*creciente*" de la abundancia a temperaturas mayores para el Mg, mientras que para el Al, la tendencia es opuesta.

En la figura 5.10 podemos observar el comportamiento del Si y Ga. En el caso del Si, (panel izquierdo), no se observa ninguna tendencia. Para el Ga (panel derecho), los datos se presentan con una dispersión notable pero sospechamos una tendencia "creciente" de la abundancia hacia temperaturas mayores. En el gráfico podemos observar 4 puntos pertenecientes a la muestra de Smith con temperaturas mayores a 13000 K que se apartan notablemente del resto de la muestra, estos puntos corresponden a las estrellas HD 186122 ubicado en la posición $(T_{ef}, \log N(Ga)/N(H)) = (13000, -8.15)$, HD 79158 ubicado en la posición $(T_{ef}, N(Ga)/N(H)) = (13000, -8.15)$ $\log N(Ga)/N(H) = (13700, -6.90), \text{HD 53929}$ ubicado en la posición $(T_{ef}, \log N(Ga)/N(H)) =$ (14050, -8.00) y HD 49606 ubicado en la posición $(T_{ef}, \log N(Ga)/N(H)) = (14400, -6.80).$ El primero de los puntos enumerados (HD 186122 cuadrado verde) también fue estudiado en este trabajo, los parámetros atmosféricos fundamentales (T_{ef} , log g) no difieren significativamente de los valores obtenidos en nuestro trabajo, sin embargo Smith (1996b) obtiene $\log N(Ga)/N(H)$ = -8.15, mientras que en este trabajo obtenemos ($\log N(Ga)/N(H)$) = -4.74. Es el único elemento en esta estrella, en que la abundancia obtenida por Smith difiere notablemente del valor obtenido en este trabajo, por lo tanto, decidimos considerar nuestro valor de abundancia obtenido para ser considerado en la tendencia. Finalmente, si no consideramos a estos puntos en el cálculo del CCP, el mismo presenta un valor de: $(CCP)_{Ga} = +0.64$ apoyan-

do nuestra sospecha.

Figura 5.10: Relación Abundancia vs. Temperatura. No se observa tendencia para el Si mientras que para el Ga sospechamos de una tendencia "*creciente*" de la abundancia a temperaturas mayores.

En la figura 5.11 presentamos las tendencias observadas para el Sr e Y. En el caso del Sr (panel izquierdo) observamos lo que podría ser un comportamiento bimodal de las abundancias con las temperaturas como ya se presentó en otros elementos. Sin embargo, la temperatura crítica para este elemento parece ser 12000 K. Para ambos grupos hay indicios de una tendencia "decreciente" de las abundancias con la temperatura, si calculamos los CCP para ambos grupos obtenemos: $(CCP)_{Sr(T_{ef} < 12000)} = -0.97$ y $(CCP)_{Sr(T_{ef} > 12000)} = -0.68$ lo que apoyaría nuestra sospecha. Por otra parte, no podemos estar seguros de estas tendencias, sería necesario incluir más datos en todo el rango de temperaturas para observar como se comportan otras estrellas. Para este elemento no contamos con los datos pertenecientes a la muestra de Smith, lo que nos poveería una idea del comportamiento de las abundancias al ser esta muestra la más numerosa. También existe la posibilidad de analizar este gráfico en cuanto a la bimodalidad, pero esta vez separar la muestra en aquel grupo que es más sobreabundante y que se encuentra ubicado en la parte superior del cuadro (grupo superior) y el grupo que es menos sobreabundante ubicado en la parte inferios del cuadro (grupo inferior). Ambos grupos muestran una tendencia "creciente" de las abundancias hacia temperaturas más altas. Si calculamos los CCP para ambos grupos obtenemos: $(CCP)_{Sr(Gr.Superiror)} = +0.50 \text{ y} (CCP)_{Sr(Gr.Inferiror)} = +0.34.$

Para el Y (panel derecho) también observamos un comportamiento bimodal con tendencia "cre-

ciente" de las abundancias con la temperatura. Sin embargo, para este elemento no es posible distinguir un temperatura crítica para la cual ambos grupos se separen. Si podemos observar un grupo de 5 estrellas (3 de nuestra muestra y 2 de la muestra de Saffe) que presentan una sobreabundancia mayor que el otro grupo. Al grupo que presentan sobreabundancias mayores las llamaremos grupo superior, ya que se ubican en la porción superior de la figura, mientras que al grupo de estrellas que se presentan más deficientes que el resto las llamaremos grupo inferior, por ubicarse en la porción inferiror de la figura. Si calculamos los CCP para ambos grupos obtenemos: $(CCP)_{Y(Gr.Superiror)} = -0.17 \text{ y} (CCP)_{Y(Gr.Inferiror)} = -0.30, ambos coeficientes son bajos para poder apoyarnos en ellos y confirmar las tendencias observadas, sería de utilidad agregar más puntos a las tendencias y verificar si ambas se mantienen.$

No podemos considerar concluyente la tendencia observadas para estos dos elementos ya que sería necesario estudiar un número mayor de estrellas, de todas maneras, es interesante resaltar este comportamiento observado ya que no ha sido reportado en la actualidad. No podemos asegurar que este comportamiento sea atribuíble a la temperatura de las estrellas, sin embargo, podemos preguntarnos: ¿Esta bimodalidad observada en algunos elementos, tiene relación con la distribución no homogénea de elementos en las atmósferas de las estrellas observadas por algunos autores?

Varios estudios se han realizado en los últimos años para estudiar este efecto, por ejemplo, Hubrig et al. (2006) reportan el descubrimiento de distribuciones no homogéneas de varios elementos en las atmósferas de AR Aur y α And. Encontraron variaciones intensas en los perfiles de las líneas de Pt, Hg, Sr, Y, Zr, He y Nd, mientras que los perfiles de las líneas de O, Na, Mg, Si, Ca, Ti y Fe mostraban distorciones débiles durante el período de rotación. Briquet et al. (2010) también estudian 3 estrellas de HgMn y detectan variabilidad en los perfiles de las líneas de los elementos Ti, Sr, Y, Zr para una de las estrellas estudiadas y sólo detectan variabilidad del Hg e Y para otras dos.

En la figura 5.12 mostramos las relaciones obtenidas para Zr y Xe. Para ambos elementos observamos una tendencia "**creciente**" de las abundancias hacia temperaturas más elevadas. Los CCP correspondientes son: $(CCP)_{Zr} =+0.55$ y $(CCP)_{Xe} =+0.70$, este último coeficiente fue obtenido sin considerar el punto que se aparta de la tendencia y que corresponde a HD 35548 ubicado en la posición $(T_{ef}, \log N(Xe)/N(H)) = (10950, -4.21)$.

Figura 5.11: Relación Abundancia vs. temperatura. Se observa una tendencia "*decreciente*" de la abundancia a medida que la estrella evoluciona para el Sr, mientras que para el Y se observa una tendencia opuesta.

Figura 5.12: Relación Abundancia vs. temperatura. Se observa una tendencia "*creciente*" de la abundancia a medida que la estrella evoluciona para el Zr y Xe.

5.4. Correlación con respecto a la velocidad de rotación de las estrellas

Una vez analizadas las tendencias de las abundancias químicas de algunas especies químicas con la edad y la temperatura efectiva, analizamos las posibles tendencias con la velocidad rotacional proyectada (*vseni*). Para llevarlo a cabo, también tuvimos en cuenta las estrellas estudiadas en los trabajos de la serie de Smith y la muestra estudiada por Saffe et al. (2011). Los valores de *vseni* para la muestra de Smith fue seleccionada de diversas fuentes obtenida de la bibliografía, ya que los autores no publican en sus estudios datos referidos a este parámetro. Los datos se extrajeron de Abt et al. (2002), Royer et al. (2002) y Royer et al. (2007). Para la muestra de Saffe et al. (2011) se tuvo en cuenta los valores publicados por los autores.

Contruímos gráficos de abundancias vs. *vseni*, distinguiendo a las tres muestras con el mismo criterio empleado en el estudio de edades y temperaturas. En los gráficos también se muestran los errores en las determinaciones de las abundancias.

En lo que sigue, mostramos desde la figura 5.13 hasta la figura 5.17 los análisis realizados para algunas especies químicas. En la figura 5.13 mostramos las relaciones correspondientes al Hg y Mn. Para ambos elementos no se observa claramente la existencia de alguna tendencia. Lo que si podemos observar en ambos casos es la existencia de una cota inferior para las abundancias que por debajo de la cual no hay datos excepto para el Mn, en el cual se ubica un punto en la región vacía y pertenece a HD 79158 ubicado en la posición (*vseni*, $\log N(Mn)/N(H)$)= (60,-6.8). Sin embargo, en el caso del Hg (panel izquierdo) podría sospecharse una posible tendencia "**creciente**" de las abundancias hacia aquellas estrellas con velocidades elevadas pero los datos presentan una dispersión notable por lo que se dificulta asumir un resultado respecto a este elemento, El CCP obtenido en este caso es: $(CCP)_{Hg} =+0.29$ siendo muy bajo para apoyar la sospecha observada. Para el Mn (panel derecho), el CCP obtenido es: $(CCP)_{Mn} =+0.24$ siendo un coeficiente muy bajo para apoyar algún tipo de sospecha.

En la figura 5.14 mostramos las relaciones para tres de los elementos del pico del Hierro: Fe, Ni y Sc. En el panel superior izquierdo, mostramos la relación para el Fe para el cual no se observa un comportamiento tendencioso de los puntos, esto queda apoyado con el cálculo del CCP cuyo valor es: $(CCP)_{Fe} = -0.05$. En el panel superior derecho, podemos observar la relación para el Ni, en este caso podemos observar una tendencia "**creciente**" de la abundancia para las estrellas con velocidades mayores, el CCP obtenido en este caso es: $(CCP)_{Ni} = +0.55$. Para el caso del Sc (panel inferiror), podemos observar una tendencia levemente "**decreciente**" con un CCP de $(CCP)_{Sc} = -0.20$.

Figura 5.13: Relación Abundancia vs. vseni. No observamos una clara relación para el Hg y el Mn.

En la figura 5.15 mostramos lo obtenido para el O, Al y Si. En el panel superior izquierdo, podemos observar una tendencia "**creciente**" para el O, también podemos identificar dos puntos que se apartan notablemente de la tendencia, ellos corresponden a HD 49024 (este trabajo) ubicado en (*vseni*, $\log N(O)/N(H)$)= (50,-2.78) y HR 8118 (Saffe) ubicado en (*vseni*, $\log N(O)/N(H)$)= (35,-3.71), eliminando estos puntos el CCP obtenido es: $(CCP)_O =+0.47$ lo que confirma la sospecha observada. En el panel superior derecho, se muestra la tendencia observada para el Al, podemos sospechar la presencia de una tendencia "**decreciente**" de las abundancias hacia velocidades altas, se evidencia también la presencia de tres puntos que se apartan de la tendencia general, ellas pertenecen a : HD 49024 (este trabajo) ubicado en (*vseni*, $\log N(Al)/N(H)$)= (50,-6.64), HD 79158 (Smith) ubicado en (*vseni*, $\log N(Al)/N(H)$)= (60,-6.10) y HR 8118 (Saffe) ubicado en (*vseni*, $\log N(Al)/N(H)$)= (35,-5.47). Si eliminamos estos puntos el CCP obtenido es: $(CCP)_{Al}$ =-0.31. Para el Si, (panel inferior), no se observa tendencia alguna.

En la figura 5.16 mostramos las relaciones para el Ga y Br. En el caso de Ga (panel izquierdo) no observamos tendencia alguna, mientras que para el Br (panel derecho) sospechamos una posible tendencia "**decreciente**" para el cual obtuvimos un CCP de: $(CCP)_{Br} = -0.33$.

En la figura 5.17 mostramos lo observado para el Sr y Nd. En el panel izquierdo pode-

Figura 5.14: Relación Abundancia vs. vseni. No se observa tendencia para el Fe, mientras que el Ni y Sc se observa una tendencia "*creciente*" y "*decreciente*" respectivamente.

Figura 5.15: Relación Abundancia vs. *vseni*. Se sospecha una tendencia "*creciente*" de la abundancia hacia las estrellas rotadoras lentas para el O, mientras que un comportamiento opuesto se observa para el Al. El Si no presenta alguna tendencia notable.

Figura 5.16: Relación Abundancia vs. *vseni*. Para el Ga no observamos tendencia, mientras que para el Br sospechamos una posible tendencia "*decreciente*" de las abundancias hacias las estrellas rotadoras lentas.

mos observar la tendencia para el Sr, nuevamente vuelve a ser notable el comportamineto bimodal de la muestra. Un grupo de estrellas, lo llamaremos grupo superior por estar ubicado en la porción superior del gráfico, son más deficientes que el otro grupo presentando un CCP de: $(CCP)_{Sr(Gr.Superiror)} =+0.35$, mientras que el grupo inferior presenta un CCP de: $(CCP)_{Sr(Gr.Inferior)} =-0.12$, por lo que no podemos concluir nada satisfactoriamente. En el panel derecho observamos una tendencia "**decreciente**" para el Nd, en el cálculo del CCP desestimamos al punto ubicado en (*vseni*, $\log N(Nd)/N(H)$)= (50,-8.91) por apartarse del resto de los puntos, de esta manera obtuvimos $(CCP)_{Nd} =-0.78$ confirmando nuestra sospecha.

Figura 5.17: Relación Abundancia vs. *vseni*. Observamos un comportamiento bimodal para el Sr y una tendencia "*decreciente*" para el Nd.

5.5. Discusión Final

En este trabajo de doctorado hemos llevado a cabo un estudio de las abundancias químicas de 10 estrellas de grupo CP3 (HgMn). Encontramos que todas ellas muestran en general el comportamiento típico para esta clase de estrellas peculiares. Sin embargo, se hace notar que el esquema de abundancias no se repite exactamente en toda la muestra, como ha sido revelado por los diferentes grupos de investigación llevadas a cabo bajo el liderazgo de Hubrig, Adelman, Cowley y Wahlgren, entre otros. En la bibliografía podemos encontrar numerosos trabajos de determinación de abundancias para muchos de los elementos críticos (Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Hg) (Adelman et al.(1993a,b), Smith (1993, 1994, 1996a, 1997)) y observamos que nuestras determinaciones se encuentran dentro de los rangos previstos. Particularmente el Ga que es uno de los elementos típicos de las CP3 no pudimos detectarlo en las únicas dos estrellas de cúmulo de nuestra muestra, aunque hace falta corroborar papertenencia de Hd 53244 a Cr121. Se abre la posibilidad de buscar correlaciones de este elemento con la pertenencia a cúmulos.

Respecto a las relaciones de las abundancias con los parámetros edad, temperatura y *vseni* pudimos agregar a las tendencias los datos correspondientes a los trabajos de la serie de Smith y el trabajo de Saffe et al. (2011). Respecto a las relaciones estudiadas con la edad, observa-

mos tendencias "**decreciente**" para el P, Zr, Xe, Y, Ga y posiblemente Mn, sin embargo, para éste último la tendencia no es clara ya que pudimos observar una posible tendencia decreciente, pero para edades mayores a log(edad)¿8.25 la tendencia se presenta opuesta, por lo que no podemos concluir al respecto. El Sc presentó una tendencia "**creciente**", mientras que el Hg no presentó ninguna tenencia. Es claro que sería un aporte importante poder llevar a cabo un estudio de las estrellas de HgMn pertenecientes a los cúmulos, ya que la única estrella de nuestra muestra perteneciente a cúmulo siempre presentó un comportamiento apartado de las tendencias observadas con la edad.

Respecto a la temperatura pudimos observar tendencias "**crecientes bimodales**" para Hg, Mn, Cr, Mg e Y, mientras que sospechamos una tendencia "**creciente**" para Ti, Ga, Zr y Xe y una tendencia "**decreciente**" para el Sc, Al y Sr presentándose este último con bimodalidad. Sería interesante poder realizar un análisis más detallado respecto a la posible relación entre el comportamiento bimodal observado y la distribución no uniforme de elementos químicos en la atmósferas de las estrellas de HgMn estudiados por algunos autores en las últimas décadas.

Respecto a la velocidad de rotación de las estrellas pudimos observar tendencias "**crecientes**" para el Ni y O y probablemente el Hg, se presentaron tendencias "**decrecientes**" para el Sc, Al, Br y Nd. El Sr presentó un comportamiento bimodal en su tendencia, mientras que no observamos tendencias para el Mn, Fe, Si y Ga.

Con éste análisis respecto a los parámetros físicos, no podemos asumir que estos resultados sean concluyentes ya que sería importante seguir sumando puntos para ampliar la muestra analizada y el rango de los parámetros analizados. No obstante, consideramos haber realizado un aporte importante en éste tipo de análisis ya que la bibliografía existente hasta el momento no presentan datos al respecto.

APÉNDICE A

Abundancias Químicas línea por línea

En este Apéndice mostramos las abundancias químicas obtenidas línea por línea para cada una de las estrellas estudiadas. En las tablas se lista de la primera a la octava columna: Código del elemento químico, designación de la especie química, multiplete, longitud de onda en nanómetro, logaritmo de la gravedad superficial (loggf), referencia de loggf, ancho equivalente medido en picómetro y finalmente la abundancia química obtenida. Se muestra también la abundancia química promedio para cada especie con el correspondiente error.

Las refrencias para los valores de *gf* son: MF = Fuhr et al. (1988); KX = Kurucz & Bell (1995); N4 = Fuhr & Wiese (2006); BBCB = Berry et al. (1971); CNO = Wiese et al. (1996); KP = Kurucz & Peytremann (1975); LA = Lanz & Artru (1985); NIST = http://physics.nist.gov /cgi-bin/AtData/linesform; SG = Schulz-Gulde (1969); WS = Wiese et al. (1966).

A.1. HD 149121

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	${\rm Log}\; N/N_T$
			$\log N/N_T$	- = -3.11	± 0.23		
6.01	CII	4	391.8968	-0.530	WF	2.93	-2.830
6.01	CII	6	426.7001	0.560	WF	2.72	-3.092
6.01	CII	-	392.0681	-0.230	WF	2.22	-3.402
			$\log N/N_T$	- = -3.38	± 0.18		
8.00	OI	9	645.3602	-1.288	CNO	0.53	-3.567
8.00	OI	12	532.9099	-1.240	WF	1.26	-3.301
8.00	OI	12	532.9673	-1.020	WF	1.21	-3.087
8.00	OI	12	533.0726	-0.870	WF	2.17	-3.403
8.00	OI	12	532.9681	-1.473	CNO	1.21	-3.096

Tabla A.1: Abundancias Químicas línea por línea para HD 149121.

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
			$\log N/N_T$	- = -4.83	E 0.17		
12.00	MgI	2	516.7321	-1.030	WS	1.83	-4.565
12.00	MgI	2	517.2684	-0.380	WS	2.68	-5.987
12.00	MgI	2	518.3604	-0.160	WS	3.86	-5.957
12.00	MgI	40	470.2991	-0.374	NIST	0.68	-4.825
			$\log N/N_2$	$T = -5.03 \pm$	0.18		
12.01	MgII	5	384.8211	-1.590	WS	1.48	-4.993
12.01	MgII	9	442.7994	-1.210	WS	1.09	-4.936
12.01	MgII	10	438.4637	-0.790	WS	1.48	-5.215
12.01	MgII	10	439.0572	-0.530	WS	2.24	-5.244
12.01	MgII	-	385.0386	-1.880	WM	1.33	-4.759
			$\log N/N_2$	$T = -4.36 \pm$	- 0.25		
14.01	SiII	4	597.8930	-0.061	NIST	5.98	-4.275
14.01	SiII	5	505.5984	0.441	NIST	9.56	-4.452
14.01	SiII	703	546.6432	-0.190	NIST	1.54	-4.407
14.01	SiII	706	420.0898	-0.670	KP	2.01	-4.024
14.01	SiII	726	419.0724	-0.351	LA	0.87	-4.528
14.01	SiII	726	419.8133	-0.611	LA	1.68	-3.927
14.01	SiII	733	566.9563	0.266	LA	0.52	-4.597
14.01	SiII	-	407.6780	-1.670	SG	1.00	-4.695
			$\log N/N_T$	$T = -5.59 \pm$	0.25		
15.01	PII	7	529.6077	-0.160	WS	0.72	-5.545
15.01	PII	10	525.3479	0.330	WS	2.20	-5.145
15.01	PII	10	542.5880	0.180	NIS3	0.92	-5.707
15.01	PII	15	460.2069	0.740	WS	0.85	-5.674
15.01	PII	-	417.8463	-0.410	KX	1.14	-5.889
			$\log N/N_T$	$T = -4.63 \pm$	- 0.24		
16.01	SII	1	499.1969	-0.650	WS	0.51	-4.413
16.01	SII	1	514.2322	-0.822	NIST	0.54	-4.345
16.01	SII	6	545.3855	0.482	NIST	1.17	-4.787
16.01	SII	7	500.9567	-0.090	WM	0.50	-4.977
16.01	SII	9	481.5552	0.180	WM	0.91	-4.923
16.01	SII	11	557.8870	-0.511	NIST	0.39	-4.450
16.01	SII	15	501.4042	0.030	KX	0.88	-4.534
16.01	SII	38	532.0723	0.460	WS	1.00	-4.306
16.01	SII	44	414.5060	0.230	KX	0.53	-4.751
16.01	SII	44	416.2665	0.780	WS	0.87	-4.926
16.01	SII	-	415.3068	0.620	WS	1.28	-4.488
	~ -		Log N	$/N_T = -5.2$	55		
20.00	CaI	2	422.6728	0.240	FW	1.02	-5.551
	~		Log N	$/N_T = -6.$	12		
20.01	CaII	1	393.3663	0.130	WM	24.90	-6.124
	~		Log N	$/N_T = -6.2$	23		
21.01	ScII	31	552.6803	0.130	MFW	0.60	-6.227
			$\log N/N_T$	$T = -6.77 \pm$	= 0.26		
22.01	TiII	11	398.1990	-2.530	KX	0.43	-7.052
22.01	TiII	18	451.8332	-2.560	KX	0.69	-6.544

Tabla A.1: Continuación HD 149121

onti	inuación	HD 149	9121	
	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
31	-0.660	MF	5.36	-7.026
73	-2.020	MF	1.44	-6.700
92	-0.600	MF	4.67	-7.213
34	-2.360	KX	1.61	-6.268
4	-1.430	MF	2.74	-6.852
5	-1.120	MF	3.62	-6.937
42	-0.770	MF	5.45	-6.795
71	-1.100	РТР	3.22	-7.060
33	-2.450	KX	0.86	-6.474
52	-2.210	MF	1.08	-6.589

Tabla A.1: Continuación HD 149121

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
22.01	TiII	19	439.5031	-0.660	MF	5.36	-7.026
22.01	TiII	20	428.7873	-2.020	MF	1.44	-6.700
22.01	TiII	31	446.8492	-0.600	MF	4.67	-7.213
22.01	TiII	33	422.7334	-2.360	KX	1.61	-6.268
22.01	TiII	40	441.7714	-1.430	MF	2.74	-6.852
22.01	TiII	41	429.0215	-1.120	MF	3.62	-6.937
22.01	TiII	41	430.0042	-0.770	MF	5.45	-6.795
22.01	TiII	41	431.4971	-1.100	PTP	3.22	-7.060
22.01	TiII	48	476.3883	-2.450	KX	0.86	-6.474
22.01	TiII	49	470.8662	-2.210	MF	1.08	-6.589
22.01	TiII	59	465.7200	-2.150	MF	2.03	-6.294
22.01	TiII	61	439.5839	-2.170	MF	1.50	-6.982
22.01	TiII	69	533.6786	-1.700	MF	1.84	-6.618
22.01	TiII	69	538.1021	-1.920	PTP	0.80	-6.851
22.01	TiII	70	518.8687	-1.210	MF	2.74	-6.888
22.01	TiII	70	522.6538	-1.300	MF	2.28	-6.895
22.01	TiII	71	501.3686	-1.940	KX	1.14	-6.643
22.01	TiII	82	457.1971	-0.530	MF	5.40	-6.839
22.01	TiII	86	512.9156	-1.390	MF	1.21	-6.988
22.01	TiII	86	518.5902	-1.350	MF	1.87	-6.785
22.01	TiII	87	402.8338	-1.000	MF	1.89	-7.104
22.01	TiII	92	477.9985	-1.370	MF	1.35	-6.861
22.01	TiII	92	480.5085	-1.100	MF	1.92	-6.924
22.01	TiII	93	442.1938	-1.770	MF	0.69	-6.787
22.01	TiII	94	431.6794	-1.420	MF	0.89	-7.016
22.01	TiII	103	521.1536	-1.360	KX	0.70	-6.905
22.01	TiII	104	436.7652	-1.270	MF	1.69	-6.530
22.01	TiII	105	416.3644	-0.400	MF	3.08	-6.996
22.01	TiII	106	406.4354	-1.610	KX	1.16	-6.380
22.01	TiII	113	501.0211	-1.340	KX	1.11	-6.416
22.01	TiII	113	507.2287	-0.750	MF	1.56	-6.806
22.01	TiII	114	487.4014	-0.790	MF	0.93	-7.057
22.01	TiII	114	491.1195	-0.340	MF	1.71	-7.164
22.01	TiII	115	441.1072	-1.060	MF	1.35	-6.590
22.01	TiII	117	479.8532	-2.430	MF	0.54	-6.798
22.01	TiII	-	393.2023	-1.780	MF	1.62	-6.826
22.01	TiII	-	401.2383	-1.610	MF	3.36	-6.822
22.01	TiII	-	402.5129	-1.980	MF	2.03	-6.790
22.01	TiII	-	405.3821	-1.210	MF	2.00	-6.860
22.01	TiII	-	415.8267	-0.480	KX	0.78	-6.202
22.01	TiII	-	417.4072	-1.250	MF	2.11	-6.406
22.01	TiII	-	429.4094	-1.110	MF	3.93	-6.912
22.01	TiII	-	430.1922	-1.160	MF	2.43	-7.240
22.01	TiII	-	430.7866	-1.290	MF	5.24	-6.343
22.01	TiII	-	431.2860	-1.160	MF	3.38	-6.949
22.01	TiII	-	432.0950	-1.870	MF	0.77	-7.126
22.01	TiII	-	438.6847	-1.260	MF	1.66	-6.546
22.01	TiII	-	439.9765	-1.270	MF	2.57	-7.018

Tabla	Tabla A.1: Continuación HD 149121								
Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$				
-	440.9520	-2.570	KX	0.86	-6.338				
-	441.8331	-2.460	MF	0.92	-6.412				
-	444.3801	-0.700	MF	4.57	-7.167				
-	445.0482	-1.450	MF	2.10	-7.055				
-	446.4448	-2.080	MF	1.60	-6.544				
-	447.0853	-2.280	MF	1.12	-6.533				
-	448.8325	-0.820	MF	1.88	-6.627				
-	450.1270	-0.750	MF	4.69	-7.067				
-	456.3757	-0.960	MF	3.86	-7.013				
-	526.2141	-2.110	KX	1.55	-6.344				
	$\log N/N_T$	$T = -5.88 \pm$	0.20						
1	425.4336	-0.114	MFW	1.08	-5.879				
1	427.4797	-0.231	MFW	0.90	-5.586				
1	428.9717	-0.361	MFW	0.48	-6.032				
7	520.4511	-0.210	MF	0.22	-6.038				
7	520.6037	0.020	MF	0.38	-6.019				
7	520.8425	0.160	MF	1.50	-5.473				
	$\log N/N_T$	$r = -6.15 \pm$	= 0.26						
19	405.1930	-2.190	KX	1.66	-6.346				
23	524.6768	-2.450	MF	1.29	-5.896				
23	524.9437	-2.430	KX	1.34	-5.871				
23	540.7604	-2.088	K88	1.17	-6.245				
23	542.0922	-2.360	MFW	1.89	-5.735				
26	407.2561	-2.410	KX	0.54	-6.379				
26	413.2419	-2.350	KX	0.52	-6.435				
30	481.2337	-1.800	MF	1.47	-6.401				
30	482.4127	-1.220	MF	4.34	-6.141				
30	483.6229	-2.250	MF	1.19	-6.070				
30	484.8235	-1.140	MF	3.15	-6.547				
30	487.6399	-1.460	KX	3.56	-6.117				

Tabl

Código

22.01

22.01

22.01

Especie

TiII

TiII

TiII

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.01	TiII	-	445.0482	-1.450	MF	2.10	-7.055	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.01	TiII	-	446.4448	-2.080	MF	1.60	-6.544	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.01	TiII	-	447.0853	-2.280	MF	1.12	-6.533	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22.01	TiII	-	448.8325	-0.820	MF	1.88	-6.627	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22.01	TiII	-	450.1270	-0.750	MF	4.69	-7.067	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22.01	TiII	-	456.3757	-0.960	MF	3.86	-7.013	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22.01	TiII	-	526.2141	-2.110	KX	1.55	-6.344	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				$\log N/N_T$	$T = -5.88 \pm$	= 0.20			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24.00	CrI	1	425.4336	-0.114	MFW	1.08	-5.879	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.00	CrI	1	427.4797	-0.231	MFW	0.90	-5.586	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24.00	CrI	1	428.9717	-0.361	MFW	0.48	-6.032	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24.00	CrI	7	520.4511	-0.210	MF	0.22	-6.038	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	24.00	CrI	7	520.6037	0.020	MF	0.38	-6.019	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24.00	CrI	7	520.8425	0.160	MF	1.50	-5.473	
24.01 CrII 19 405.1930 -2.190 KX 1.66 -6.346 24.01 CrII 23 524.6768 -2.450 MF 1.29 -5.896 24.01 CrII 23 524.9437 -2.430 KX 1.34 -5.871 24.01 CrII 23 540.7604 -2.088 K88 1.17 -6.245 24.01 CrII 23 542.0922 -2.360 MFW 1.89 -5.735 24.01 CrII 26 407.2561 -2.410 KX 0.54 -6.379 24.01 CrII 26 413.2419 -2.350 KX 0.52 -6.435 24.01 CrII 30 481.2337 -1.800 MF 1.47 -6.401 24.01 CrII 30 482.4127 -1.220 MF 4.34 -6.141 24.01 CrII 30 483.6229 -2.250 MF 1.19 -6.070 24.01 CrII 30 484.8235 -1.140 MF 3.15 -6.547	Log N/N_T = -6.15± 0.26								
24.01 CrII 23 524.6768 -2.450 MF 1.29 -5.896 24.01 CrII 23 524.9437 -2.430 KX 1.34 -5.871 24.01 CrII 23 540.7604 -2.088 K88 1.17 -6.245 24.01 CrII 23 542.0922 -2.360 MFW 1.89 -5.735 24.01 CrII 26 407.2561 -2.410 KX 0.54 -6.379 24.01 CrII 26 413.2419 -2.350 KX 0.52 -6.435 24.01 CrII 30 481.2337 -1.800 MF 1.47 -6.401 24.01 CrII 30 482.4127 -1.220 MF 4.34 -6.141 24.01 CrII 30 483.6229 -2.250 MF 1.19 -6.070 24.01 CrII 30 484.8235 -1.140 MF 3.15 -6.547 24.01 <t< td=""><td>24.01</td><td>CrII</td><td>19</td><td>405.1930</td><td>-2.190</td><td>KX</td><td>1.66</td><td>-6.346</td></t<>	24.01	CrII	19	405.1930	-2.190	KX	1.66	-6.346	
24.01 CrII 23 524.9437 -2.430 KX 1.34 -5.871 24.01 CrII 23 540.7604 -2.088 K88 1.17 -6.245 24.01 CrII 23 542.0922 -2.360 MFW 1.89 -5.735 24.01 CrII 26 407.2561 -2.410 KX 0.54 -6.379 24.01 CrII 26 413.2419 -2.350 KX 0.52 -6.435 24.01 CrII 30 481.2337 -1.800 MF 1.47 -6.401 24.01 CrII 30 482.4127 -1.220 MF 4.34 -6.141 24.01 CrII 30 483.6229 -2.250 MF 1.13 -6.267 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.262 24.01	24.01	CrII	23	524.6768	-2.450	MF	1.29	-5.896	
24.01 CrII 23 540.7604 -2.088 K88 1.17 -6.245 24.01 CrII 23 542.0922 -2.360 MFW 1.89 -5.735 24.01 CrII 26 407.2561 -2.410 KX 0.54 -6.379 24.01 CrII 26 413.2419 -2.350 KX 0.52 -6.435 24.01 CrII 30 481.2337 -1.800 MF 1.47 -6.401 24.01 CrII 30 482.4127 -1.220 MF 4.34 -6.141 24.01 CrII 30 483.6229 -2.250 MF 1.19 -6.070 24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.262 24.01	24.01	CrII	23	524.9437	-2.430	KX	1.34	-5.871	
24.01 CrII 23 542.0922 -2.360 MFW 1.89 -5.735 24.01 CrII 26 407.2561 -2.410 KX 0.54 -6.379 24.01 CrII 26 413.2419 -2.350 KX 0.52 -6.435 24.01 CrII 30 481.2337 -1.800 MF 1.47 -6.401 24.01 CrII 30 482.4127 -1.220 MF 4.34 -6.141 24.01 CrII 30 483.6229 -2.250 MF 1.19 -6.070 24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 488.4607 -2.080 MF 1.13 -6.266 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.262 24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 <tr< td=""><td>24.01</td><td>CrII</td><td>23</td><td>540.7604</td><td>-2.088</td><td>K88</td><td>1.17</td><td>-6.245</td></tr<>	24.01	CrII	23	540.7604	-2.088	K88	1.17	-6.245	
24.01 CrII 26 407.2561 -2.410 KX 0.54 -6.379 24.01 CrII 26 413.2419 -2.350 KX 0.52 -6.435 24.01 CrII 30 481.2337 -1.800 MF 1.47 -6.401 24.01 CrII 30 482.4127 -1.220 MF 4.34 -6.141 24.01 CrII 30 483.6229 -2.250 MF 1.19 -6.070 24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 24.01 <t< td=""><td>24.01</td><td>CrII</td><td>23</td><td>542.0922</td><td>-2.360</td><td>MFW</td><td>1.89</td><td>-5.735</td></t<>	24.01	CrII	23	542.0922	-2.360	MFW	1.89	-5.735	
24.01 CrII 26 413.2419 -2.350 KX 0.52 -6.435 24.01 CrII 30 481.2337 -1.800 MF 1.47 -6.401 24.01 CrII 30 482.4127 -1.220 MF 4.34 -6.141 24.01 CrII 30 483.6229 -2.250 MF 1.19 -6.070 24.01 CrII 30 484.8235 -1.140 MF 3.15 -6.547 24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 488.4607 -2.080 MF 1.13 -6.266 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.626 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 <t< td=""><td>24.01</td><td>CrII</td><td>26</td><td>407.2561</td><td>-2.410</td><td>KX</td><td>0.54</td><td>-6.379</td></t<>	24.01	CrII	26	407.2561	-2.410	KX	0.54	-6.379	
24.01 CrII 30 481.2337 -1.800 MF 1.47 -6.401 24.01 CrII 30 482.4127 -1.220 MF 4.34 -6.141 24.01 CrII 30 483.6229 -2.250 MF 1.19 -6.070 24.01 CrII 30 484.8235 -1.140 MF 3.15 -6.547 24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 488.4607 -2.080 MF 1.13 -6.266 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.642 24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 1.81 -6.219	24.01	CrII	26	413.2419	-2.350	KX	0.52	-6.435	
24.01 CrII 30 482.4127 -1.220 MF 4.34 -6.141 24.01 CrII 30 483.6229 -2.250 MF 1.19 -6.070 24.01 CrII 30 484.8235 -1.140 MF 3.15 -6.547 24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 488.4607 -2.080 MF 1.13 -6.266 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.262 24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791	24.01	CrII	30	481.2337	-1.800	MF	1.47	-6.401	
24.01 CrII 30 483.6229 -2.250 MF 1.19 -6.070 24.01 CrII 30 484.8235 -1.140 MF 3.15 -6.547 24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 488.4607 -2.080 MF 1.13 -6.266 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 24.01 CrII 39 453.9595 -2.280 SL 0.99 -6.039 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252	24.01	CrII	30	482.4127	-1.220	MF	4.34	-6.141	
24.01 CrII 30 484.8235 -1.140 MF 3.15 -6.547 24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 488.4607 -2.080 MF 1.13 -6.266 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 24.01 CrII 39 453.9595 -2.280 SL 0.99 -6.039 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 530.8440 -1.810 MF 1.52 -6.247 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252	24.01	CrII	30	483.6229	-2.250	MF	1.19	-6.070	
24.01 CrII 30 487.6399 -1.460 KX 3.56 -6.117 24.01 CrII 30 488.4607 -2.080 MF 1.13 -6.266 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 24.01 CrII 39 453.9595 -2.280 SL 0.99 -6.039 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 530.8440 -1.810 MF 1.52 -6.247 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 2	24.01	CrII	30	484.8235	-1.140	MF	3.15	-6.547	
24.01 CrII 30 488.4607 -2.080 MF 1.13 -6.266 24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 24.01 CrII 39 453.9595 -2.280 SL 0.99 -6.039 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 527.4964 -1.290 KX 2.96 -6.321 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.235 2	24.01	CrII	30	487.6399	-1.460	KX	3.56	-6.117	
24.01 CrII 30 484.8235 -1.140 MFW 3.15 -6.547 24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 24.01 CrII 39 453.9595 -2.280 SL 0.99 -6.039 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 527.4964 -1.290 KX 2.96 -6.321 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 2	24.01	CrII	30	488.4607	-2.080	MF	1.13	-6.266	
24.01 CrII 31 426.1913 -1.530 KX 2.78 -6.262 24.01 CrII 39 453.9595 -2.280 SL 0.99 -6.039 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 527.4964 -1.290 KX 2.96 -6.321 24.01 CrII 43 530.8440 -1.810 MF 1.52 -6.247 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235	24.01	CrII	30	484.8235	-1.140	MFW	3.15	-6.547	
24.01 CrII 39 453.9595 -2.280 SL 0.99 -6.039 24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 527.4964 -1.290 KX 2.96 -6.321 24.01 CrII 43 530.8440 -1.810 MF 1.52 -6.247 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 24.01 CrII 44 458.8199 -0.630 MF 2.98 -6.440	24.01	CrII	31	426.1913	-1.530	KX	2.78	-6.262	
24.01 CrII 39 456.5740 -2.110 MF 1.89 -5.849 24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 527.4964 -1.290 KX 2.96 -6.321 24.01 CrII 43 530.8440 -1.810 MF 1.52 -6.247 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 24.01 CrII 44 458.8199 -0.630 MF 4.98 -6.440 24.01 CrII 44 461.8803 -1.110 MF 4.02 -6.232	24.01	CrII	39	453.9595	-2.280	SL	0.99	-6.039	
24.01 CrII 43 523.7329 -1.160 MF 3.81 -6.219 24.01 CrII 43 527.4964 -1.290 KX 2.96 -6.321 24.01 CrII 43 530.8440 -1.810 MF 1.52 -6.247 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 24.01 CrII 44 458.8199 -0.630 MF 4.98 -6.440 24.01 CrII 44 461.6629 -1.290 MF 2.53 -6.459 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247	24.01	CrII	39	456.5740	-2.110	MF	1.89	-5.849	
24.01 CrII 43 527.4964 -1.290 KX 2.96 -6.321 24.01 CrII 43 530.8440 -1.810 MF 1.52 -6.247 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 24.01 CrII 44 458.8199 -0.630 MF 4.98 -6.440 24.01 CrII 44 461.6629 -1.290 MF 2.53 -6.459 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247	24.01	CrII	43	523.7329	-1.160	MF	3.81	-6.219	
24.01 CrII 43 530.8440 -1.810 MF 1.52 -6.247 24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 24.01 CrII 44 458.8199 -0.630 MF 4.98 -6.440 24.01 CrII 44 461.6629 -1.290 MF 2.53 -6.459 24.01 CrII 44 461.8803 -1.110 MF 4.02 -6.232 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180 <td>24.01</td> <td>CrII</td> <td>43</td> <td>527.4964</td> <td>-1.290</td> <td>KX</td> <td>2.96</td> <td>-6.321</td>	24.01	CrII	43	527.4964	-1.290	KX	2.96	-6.321	
24.01 CrII 43 531.0700 -2.280 MF 1.48 -5.791 24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 24.01 CrII 44 458.8199 -0.630 MF 4.98 -6.440 24.01 CrII 44 461.6629 -1.290 MF 2.53 -6.459 24.01 CrII 44 461.8803 -1.110 MF 4.02 -6.232 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180	24.01	CrII	43	530.8440	-1.810	MF	1.52	-6.247	
24.01 CrII 43 531.3590 -1.650 MF 1.96 -6.252 24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 24.01 CrII 44 455.4988 -1.380 MF 2.02 -6.235 24.01 CrII 44 458.8199 -0.630 MF 4.98 -6.440 24.01 CrII 44 461.6629 -1.290 MF 2.53 -6.459 24.01 CrII 44 461.8803 -1.110 MF 4.02 -6.232 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180	24.01	CrII	43	531.0700	-2.280	MF	1.48	-5.791	
24.01 CrII 43 533.4869 -1.560 KX 2.29 -6.240 24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 24.01 CrII 44 458.8199 -0.630 MF 4.98 -6.440 24.01 CrII 44 461.6629 -1.290 MF 2.53 -6.459 24.01 CrII 44 461.8803 -1.110 MF 4.02 -6.232 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180	24.01	CrII	43	531.3590	-1.650	MF	1.96	-6.252	
24.01 CrII 44 455.4988 -1.380 MF 3.02 -6.235 24.01 CrII 44 458.8199 -0.630 MF 4.98 -6.440 24.01 CrII 44 461.6629 -1.290 MF 2.53 -6.459 24.01 CrII 44 461.8803 -1.110 MF 4.02 -6.232 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180	24.01	CrII	43	533.4869	-1.560	KX	2.29	-6.240	
24.01 CrII 44 458.8199 -0.630 MF 4.98 -6.440 24.01 CrII 44 461.6629 -1.290 MF 2.53 -6.459 24.01 CrII 44 461.8803 -1.110 MF 4.02 -6.232 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180	24.01	CrII	44	455.4988	-1.380	MF	3.02	-6.235	
24.01 CrII 44 461.6629 -1.290 MF 2.53 -6.459 24.01 CrII 44 461.8803 -1.110 MF 4.02 -6.232 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180	24.01	CrII	44	458.8199	-0.630	MF	4.98	-6.440	
24.01 CrII 44 461.8803 -1.110 MF 4.02 -6.232 24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180	24.01	CrII	44	461.6629	-1.290	MF	2.53	-6.459	
24.01 CrII 44 463.4070 -1.240 MF 3.49 -6.247 24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180	24.01	CrII	44	461.8803	-1.110	MF	4.02	-6.232	
24.01 CrII 50 550.2067 -1.990 MFW 1.11 -6.180	24.01	CrII	44	463.4070	-1.240	MF	3.49	-6.247	
	24.01	CrII	50	550.2067	-1.990	MFW	1.11	-6.180	

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
24.01	CrII	50	550.3212	-2.306	K88	0.78	-6.059
24.01	CrII	129	391.1321	-2.060	KX	0.48	-6.137
24.01	CrII	130	386.6523	-2.070	KX	0.93	-5.804
24.01	CrII	162	414.5781	-1.160	KX	1.69	-6.190
24.01	CrII	165	408.2285	-1.230	KX	0.95	-6.436
24.01	CrII	167	386.5596	-0.780	KX	4.74	-5.673
24.01	CrII	180	422.1996	-1.930	KX	0.89	-5.591
24.01	CrII	181	412.7057	-1.770	KX	0.99	-5.693
24.01	CrII	183	397.9505	-0.730	KX	1.09	-6.683
24.01	CrII	190	490.1623	-0.830	KX	0.85	-6.261
24.01	CrII	190	491.2462	-0.950	KX	0.78	-6.185
24.01	CrII	191	446.5731	-1.180	KX	0.53	-6.162
24.01	CrII	193	407.0840	-0.750	KX	1.70	-5.991
24.01	CrII	-	390.5644	-0.900	KX	3.24	-5.980
24.01	CrII	-	401.2496	-0.890	KX	3.35	-5.785
24.01	CrII	-	405.4076	-2.480	KX	1.54	-6.099
24.01	CrII	-	408.6128	-2.420	KX	0.58	-6.335
24.01	CrII	-	417.9421	-1.770	KX	1.21	-6.558
24.01	CrII	-	420.7363	-2.480	KX	0.99	-5.953
24.01	CrII	-	427.5567	-1.700	KX	2.49	-6.176
24.01	CrII	-	455.8650	-0.660	MF	5.32	-6.305
24.01	CrII	-	458.7264	-1.648	MFW	0.58	-5.646
24.01	CrII	-	459.2049	-1.220	MF	2.76	-6.464
24.01	CrII	-	485.6186	-2.260	MF	1.15	-6.080
24.01	CrII	-	527.9880	-2.100	MF	1.85	-5.840
			$\log N/N_2$	$T = -5.11 \pm$	= 0.26		
25.00	MnI	16	475.4042	-0.090	MF	0.64	-5.390
25.00	MnI	21	470.9712	-0.340	MF	0.42	-5.007
25.00	MnI	21	473.9110	-0.490	MF	0.49	-4.757
25.00	MnI	27	602.1790	0.034	MFW	0.54	-5.141
25.00	MnI	57	401.8100	-0.310	MF	0.46	-5.396
25.00	MnI	-	392.2684	0.050	KX	0.63	-4.663
25.00	MnI	-	403.3062	-0.620	MF	2.89	-5.217
25.00	MnI	-	404.1355	0.290	MF	1.31	-5.474
25.00	MnI	-	405.8930	-0.450	MF	0.85	-4.926
25.00	MnI	-	446.2031	0.320	MF	0.70	-5.319
25.00	MnI	-	446.4682	-0.100	MF	1.25	-4.689
25.00	MnI	-	447.0144	-0.440	MF	0.30	-5.030
25.00	MnI	-	450.2213	-0.340	MF	0.29	-5.160
25.00	MnI	-	476.1512	-0.140	MF	0.60	-5.003
25.00	MnI	-	476.2367	0.420	MF	2.26	-4.869
25.00	MnI	-	476.6418	0.100	MF	0.43	-5.420
25.00	MnI	-	478.3430	0.040	MF	0.71	-5.461
			$\log N/N_{T}$	r = -5.46±	= 0.30		
25.01	MnII	2	417.4318	-3.550	KX	2.01	-5.685
25.01	MnII	2	420.5375	-3.380	KX	2.23	-5.807
25.01	MnII	-	384.4161	-1.380	KX	2.60	-5.704

Tabla A.1: Continuación HD 149121

26.00

26.00

42

42

FeI

FeI

420.2029

427.1760

-0.710

-0.160

N4

N4

1.44

3.17

-4.403

-4.418

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
25.01	MnII	-	385,9206	-2.560	KX	1.40	-5.004
25.01	MnII	-	387.8992	-1.710	KX	1.10	-5.896
25.01	MnII	-	391.7318	-1.150	KX	0.81	-5.926
25.01	MnII	-	394.1231	-2.620	K88	0.60	-5.348
25.01	MnII	-	400.0047	-1.210	KX	0.73	-5.496
25.01	MnII	-	413.6902	-1.290	KX	2.34	-5.547
25.01	MnII	-	414.0442	-2.460	KX	1.37	-5.012
25.01	MnII	-	417.1512	-2.120	KX	0.25	-5.877
25.01	MnII	-	418.4454	-1.950	KX	1.01	-5.370
25.01	MnII	-	420.0270	-1.740	KX	1.42	-5.392
25.01	MnII	-	420.7234	-4.470	KX	1.18	-5.059
25.01	MnII	-	423.9188	-2.250	KX	1.57	-5.243
25.01	MnII	-	424.0385	-2.070	KX	0.81	-5.366
25.01	MnII	-	424.4248	-2.390	KX	1.33	-5.197
25.01	MnII	-	425.1727	-1.060	KX	2.19	-5.797
25.01	MnII	-	426.0462	-4.250	KX	2.14	-4.926
25.01	MnII	-	437.7742	-2.140	KX	1.12	-5.504
25.01	MnII	-	437.9645	-1.850	KX	1.05	-5.828
25.01	MnII	-	447.8635	-0.950	KX	1.65	-5.843
25.01	MnII	-	450.0543	-2.070	KX	1.26	-5.217
25.01	MnII	-	450.3201	-2.160	KX	1.12	-5.193
25.01	MnII	-	451.8953	-1.330	KX	0.88	-5.812
25.01	MnII	-	451.9240	-2.570	KX	1.15	-5.075
25.01	MnII	-	472.7843	-2.020	KX	1.82	-5.364
25.01	MnII	-	473.0397	-2.150	KX	1.41	-5.385
25.01	MnII	-	474.9112	-2.000	KX	0.36	-5.800
25.01	MnII	-	475.5717	-1.240	KX	3.47	-5.626
25.01	MnII	-	476.4728	-1.350	KX	2.86	-5.692
25.01	MnII	-	479.1782	-1.720	KX	1.04	-5.556
25.01	MnII	-	480.6823	-1.560	KX	1.64	-5.860
25.01	MnII	-	481.1623	-2.340	KX	0.73	-5.518
25.01	MnII	-	483.0061	-1.850	KX	1.19	-5.355
25.01	MnII	-	483.9737	-1.860	KX	1.06	-5.403
25.01	MnII	-	484.7608	-1.810	KX	0.99	-5.881
25.01	MnII	-	492.0436	-2.089	K88	2.33	-5.064
25.01	MnII	-	492.1226	-1.583	K88	1.63	-5.190
25.01	MnII	-	510.2517	-1.930	KX	2.10	-5.008
25.01	MnII	-	510.7092	-1.478	K88	1.15	-5.099
25.01	MnII	-	557.8126	-1.400	K88	2.28	-5.338
25.01	MnII	-	390.2365	-2.720	KX	0.60	-5.183
25.01	MnII	-	423.8785	-3.630	KX	1.87	-5.639
25.01	MnII	-	437.9639	-1.850	KX	1.05	-5.828
$Log N/N_T = -4.49 \pm 0.17$							
26.00	FeI	4	385.9911	-0.710	N4	2.91	-4.730
26.00	FeI	20	382.5881	-0.040	N4	3.00	-4.873

Tabla A.1: Continuación HD 149121
26.01

26.01

26.01

26.01

FeII

FeII

FeII

FeII

J

J

J

J

491.3295

494.8096

494.8793

495.1584

0.010

-0.320

-0.010

0.180

KX

KΧ

KΧ

KΧ

1.73

1.30

1.67

1.62

-4.345

-4.190

-4.313

-4.542

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.00	FeI	41	438.3545	0.200	N4	3.81	-4.600
26.00	FeI	41	441.5122	-0.620	N4	1.59	-4.376
26.00	FeI	43	400.5242	-0.610	N4	1.61	-4.391
26.00	FeI	45	390.2945	-0.470	N4	2.15	-4.346
26.00	FeI	318	489.1492	-0.110	N4	1.23	-4.357
26.00	FeI	419	421.9360	0.000	N4	0.75	-4.331
26.00	FeI	-	404.5812	0.280	N4	3.86	-4.651
26.00	FeI	-	407.1738	-0.020	N4	2.47	-4.681
26.00	FeI	-	440.4750	-0.140	N4	3.00	-4.449
26.00	FeI	-	495.7596	0.230	N4	2.47	-4.287
			$\log N/N_T$	$r = -4.34 \pm$	0.27		
26.01	FeII	3	393.8290	-4.070	N4	2.46	-4.490
26.01	FeII	3	393.8970	-1.850	N4	1.73	-4.762
26.01	FeII	27	423.3172	-1.810	N4	7.55	-4.721
26.01	FeII	27	427.3326	-3.340	N4	2.93	-4.539
26.01	FeII	27	430.3176	-2.610	N4	4.87	-4.710
26.01	FeII	27	441.6830	-2.600	N4	4.27	-4.857
26.01	FeII	28	412.2668	-3.380	N4	2.75	-4.614
26.01	FeII	28	429.6572	-3.010	N4	3.96	-4.575
26.01	FeII	28	466.6758	-3.330	N4	2.49	-4.600
26.01	FeII	31	438.4319	-3.680	N4	2.75	-4.272
26.01	FeII	37	447.2929	-3.530	N4	2.12	-4.510
26.01	FeII	37	448.9183	-2.970	N4	3.55	-4.662
26.01	FeII	37	451.5339	-2.480	N4	4.79	-4.780
26.01	FeII	37	452.0224	-2.600	N4	4.36	-4.809
26.01	FeII	37	455.5893	-2.290	N4	5.94	-4.615
26.01	FeII	37	458.2835	-3.100	N4	2.60	-4.791
26.01	FeII	37	462.9339	-2.370	N4	4.97	-4.853
26.01	FeII	38	393.5962	-1.860	N4	2.47	-4.677
26.01	FeII	38	454.1524	-3.050	N4	3.17	-4.675
26.01	FeII	38	457.6340	-3.040	N4	3.55	-4.584
26.01	FeII	38	458.3837	-2.020	N4	6.67	-4.681
26.01	FeII	38	462.0521	-3.280	N4	3.20	-4.449
26.01	FeII	43	473.1453	-3.130	N4	3.17	-4.569
26.01	FeII	127	402.4547	-2.440	N4	2.49	-4.632
26.01	FeII	172	404.8832	-2.140	N4	2.16	-4.490
26.01	FeII	186	463.5316	-1.650	N4	3.03	-4.465
26.01	FeII	198	641.6919	-2.880	N4	2.36	-4.410
26.01	FeII	D	390.3756	-1.500	KX	1.78	-4.301
26.01	FeII	D	459.6015	-1.840	N4	2.28	-4.374
26.01	FeII	J	435.7584	-2.100	KX	2.27	-4.209
26.01	FeII	J	482.6683	-0.440	KX	0.68	-4.471
26.01	FeII	J	490.8151	-0.300	KX	0.96	-4.389

Tabla A.1: Continuación HD 149121

26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	495.3987 495.8822 497.7035 498.4473 499.0509 499.1440 499.3358 500.1959 500.4195 500.6841 500.7450 500.9022 501.8440 502.1594	-2.760 -0.650 0.040 0.010 0.180 -0.570 -3.650 0.900 0.500 -0.430 -0.360 -0.420 -1.220	KX KX KX KX KX KX KX KX KX KX	0.81 0.58 1.40 2.03 1.62 1.36 1.77 4.21 2.42 1.16 1.96	-4.382 -4.278 -4.278 -4.471 -4.158 -4.524 -3.944 -4.508 -4.390 -4.562 -4.105 -3.817
26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	495.8822 497.7035 498.4473 499.0509 499.1440 499.3358 500.1959 500.4195 500.6841 500.7450 500.9022 501.8440 502.1594	-0.650 0.040 0.010 0.180 -0.570 -3.650 0.900 0.500 -0.430 -0.360 -0.420 -1.220	KX KX KX KX MF KX KX KX KX	0.58 1.40 2.03 1.62 1.36 1.77 4.21 2.42 1.16 1.96	-4.278 -4.471 -4.158 -4.524 -3.944 -4.508 -4.390 -4.562 -4.105 -3.817
26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	497.7035 498.4473 499.0509 499.1440 499.3358 500.1959 500.4195 500.6841 500.7450 500.9022 501.8440 502.1594	0.040 0.010 0.180 -0.570 -3.650 0.900 0.500 -0.430 -0.360 -0.420 -1.220	KX KX KX MF KX KX KX KX	1.40 2.03 1.62 1.36 1.77 4.21 2.42 1.16 1.96	-4.471 -4.158 -4.524 -3.944 -4.508 -4.390 -4.562 -4.105 -3.817
26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	498.4473 499.0509 499.1440 499.3358 500.1959 500.4195 500.6841 500.7450 500.9022 501.8440 502.1594	0.010 0.180 -0.570 -3.650 0.900 0.500 -0.430 -0.360 -0.420 -1.220	KX KX MF KX KX KX KX	2.03 1.62 1.36 1.77 4.21 2.42 1.16 1.96	-4.158 -4.524 -3.944 -4.508 -4.390 -4.562 -4.105 -3.817
26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1 1 1 1 1 1 1 1	499.0509 499.1440 499.3358 500.1959 500.4195 500.6841 500.7450 500.9022 501.8440 502.1594	0.180 -0.570 -3.650 0.900 0.500 -0.430 -0.360 -0.420 -1.220	KX KX MF KX KX KX KX	1.62 1.36 1.77 4.21 2.42 1.16 1.96	-4.524 -3.944 -4.508 -4.390 -4.562 -4.105 -3.817
26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1 1 1 1 1 1 1	499.1440 499.3358 500.1959 500.4195 500.6841 500.7450 500.9022 501.8440 502.1594	-0.570 -3.650 0.900 0.500 -0.430 -0.360 -0.420 -1.220	KX MF KX KX KX KX	1.36 1.77 4.21 2.42 1.16 1.96	-3.944 -4.508 -4.390 -4.562 -4.105 -3.817
26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1 1 1 1 1	499.3358 500.1959 500.4195 500.6841 500.7450 500.9022 501.8440 502.1594	-3.650 0.900 0.500 -0.430 -0.360 -0.420 -1.220	MF KX KX KX KX	1.77 4.21 2.42 1.16 1.96	-4.508 -4.390 -4.562 -4.105 -3.817
26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1 1 1	500.1959 500.4195 500.6841 500.7450 500.9022 501.8440 502.1594	0.900 0.500 -0.430 -0.360 -0.420 -1.220	KX KX KX KX	4.21 2.42 1.16 1.96	-4.390 -4.562 -4.105
26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1 1 2	500.4195 500.6841 500.7450 500.9022 501.8440 502.1594	0.500 -0.430 -0.360 -0.420 -1.220	KX KX KX	2.42 1.16 1.96	-4.562 -4.105 -3.817
26.01 26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1 1 1	500.6841 500.7450 500.9022 501.8440 502.1594	-0.430 -0.360 -0.420 -1.220	KX KX	1.16 1.96	-4.105
26.01 26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII FeII	1 1 1 1 1	500.7450 500.9022 501.8440 502.1594	-0.360 -0.420 -1.220	KX	1.96	_3 817
26.01 26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII FeII	1 1 1 1	500.9022 501.8440 502.1594	-0.420 -1.220	UV		-3.017
26.01 26.01 26.01 26.01 26.01	FeII FeII FeII FeII FeII	1 1	501.8440 502.1594	-1 220	КЛ	0.89	-4.286
26.01 26.01 26.01 26.01	FeII FeII FeII FeII] J	502.1594	1.220	MF	9.90	-4.554
26.01 26.01 26.01	FeII FeII FeII	J		-0.300	KX	1.70	-4.029
26.01 26.01	FeII FeII		502.2792	-0.020	KX	1.73	-4.334
26.01	FeII	J	502.6806	-0.220	KX	1.41	-4.224
	E.H	J	503.0630	0.400	KX	2.01	-4.605
26.01	Fell	J	503.2712	0.110	KX	1.85	-4.321
26.01	FeII	J	503.5708	0.610	KX	2.87	-4.504
26.01	FeII	J	504.5114	-0.130	KX	1.06	-4.487
26.01	FeII	J	506.0257	-0.520	KX	0.87	-4.141
26.01	FeII	J	506.1718	0.220	KX	1.99	-4.410
26.01	FeII	J	506.7893	-0.200	KX	1.19	-4.334
26.01	FeII	J	507.0899	0.240	KX	1.97	-4.443
26.01	FeII	J	507.5764	0.280	KX	1.55	-4.579
26.01	FeII	J	508.2230	-0.100	KХ	1.73	-4.139
26.01	FeII	J	509.3576	0.110	KX	2.18	-4.185
26.01	FeII	J	509.7271	0.310	KX	2.39	-4.307
26.01	FeII	J	510.6109	-0.280	KХ	1.87	-3.939
26.01	FeII	J	511.7034	-0.130	KХ	1.36	-4.260
26.01	FeII	J	512.7866	-2.540	KX	1.53	-4.233
26.01	FeII	J	513.2669	-4.180	MF	0.60	-4.552
26.01	FeII	Ţ	514,3880	0.100	KX	1 47	-4 424
26.01	FeII	J	514,4355	0.280	KX	1.58	-4.545
26.01	FeII	Ţ	514,9465	0.400	KX	3.13	-4.093
26.01	FeII	Ţ	515 0489	-0.120	KX	1 12	-4 376
26.01	FeII	J	516 0839	-2.640	KX	1.12	-4.023
26.01	FeII	Ţ	516 6555	_0.030	KY	0.07	-4 545
26.01	FeII	ј Т	518 031/	0.030	KY	2.07	_4 138
26.01	Fell	J	518 6872	-0.300	KY	0.96	-1 272
26.01	Fell	J T	510.0073	-0.300	KY	1 44	-4.167
26.01	Fell	ј Т	520 2620	-0.150	KA KV	1.44 2.75	-4.107
20.01	Fell	J T	521 5240	-0.050	кл kv	2.13	-3.191
20.01	Fell	J T	521.5349	-0.100	лл VV	2.52	-3.888
20.01	ген	J T	521.5844	-0.230	КĂ VV	1.51	-4.104
20.01	ген	J T	521.0854	0.300	КĂ VV	2.71	-4.00/
20.01	Fell	J	521.8842	-0.200	KX	1.28	-4.204
26.01	Fell	J	522.2361	-0.330	KX	1.40	-3.977

Tabla A.1: Continuación HD 149121

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	522.3800	-0.590	KX	0.68	-4.211
26.01	FeII	J	522.4411	-0.570	KX	0.76	-4.153
26.01	FeII	J	522.7483	0.850	N4	5.67	-3.804
26.01	FeII	J	523.1907	-0.640	KX	1.11	-3.808
26.01	FeII	J	523.4625	-2.050	MF	5.81	-4.654
26.01	FeII	J	523.7950	0.140	КX	2.32	-4.095
26.01	FeII	J	523.9813	-0.460	КX	1.46	-3.878
26.01	FeII	J	524.7952	0.550	N4	3.10	-4.190
26.01	FeII	J	525.1233	0.420	N4	2.53	-4.268
26.01	FeII	J	525.3647	-0.090	KX	1.72	-4.104
26.01	FeII	J	525.4400	-0.770	KX	0.98	-3.762
26.01	FeII	J	525.4929	-3.230	KX	2.62	-4.415
26.01	FeII	J	525.7122	0.030	KX	1.82	-4.155
26.01	FeII	J	526.0254	1.070	KX	4.27	-4.413
26.01	FeII	J	526.4177	0.300	N4	2.65	-4.111
26.01	FeII	J	526.4812	-3.190	MF	2.98	-4.351
26.01	FeII	J	527.0027	0.070	KX	1.38	-4.386
26.01	FeII	J	527.2397	-2.030	MF	2.61	-4.150
26.01	FeII	J	529.1666	0.580	KX	2.50	-4.450
26.01	FeII	J	530.3395	-1.610	KX	1.05	-4.027
26.01	FeII	J	531.6214	0.340	N4	1.60	-4.590
26.01	FeII	J	531.6615	-1.850	MF	9.92	-3.777
26.01	FeII	J	531.8057	-0.140	KX	0.70	-4.579
26.01	FeII	J	531.8750	-0.570	KX	1.11	-3.917
26.01	FeII	J	533.9592	0.540	KX	3.56	-4.061
			$\log N/N_T$	r = -6.48±	0.29		
31.01	GaII	-	425.1149	0.350	RS	0.14	-6.771
31.01	GaII	-	541.6318	0.640	RS	0.20	-6.184
			$\log N_{i}$	$/N_T = -6.4$	49		
35.01	BrII	-	478.5500	0.208	NIST	0.20	-6.486
			$\log N/N_T$	$r = -7.03 \pm$	0.15		
38.01	SrII	1	407.7709	0.150	WM	7.44	-7.212
38.01	SrII	1	421.5519	-0.170	WM	7.15	-7.016
38.01	SrII	3	416.1792	-0.500	KX	2.83	-6.856
			$\log N/N_T$	$r = -6.67 \pm$	= 0.24		
39.01	YII	1	420.4692	-1.760	HL	2.58	-6.940
39.01	YII	5	423.5727	-1.500	HL	4.25	-6.506
39.01	YII	5	430.9620	-0.750	HL	4.53	-7.113
39.01	YII	5	435.8723	-1.320	HL	3.62	-6.963
39.01	YII	6	395.0349	-0.490	HL	5.03	-7.139
39.01	YII	12	468.2321	-1.510	HL	3.29	-6.736
39.01	YII	14	412.4904	-1.500	HL	3.97	-6.454
39.01	YII	16	393.0658	-1.610	HL	3.32	-6.578
39.01	YII	16	395.1590	-1.980	HL	1.52	-6.855
39.01	YII	20	498.2129	-1.290	HL	2.61	-6.842
39.01	YII	20	508.7418	-0.170	HL	6.44	-6.397
39.01	YII	20	511.9110	-1.360	HL	3.17	-6.601

Tabla A.1: Continuación HD 149121

Código 39.01 39.01 39.01 39.01 39.01 39.01 39.01 39.01 39.01 39.01 39.01 39.01

40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01

54.01 54.01 54.01 54.01

60.02

70.01 70.01

79.01

79.01

80.01

AuII

AuII

HgII

-

_

_

Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\mathrm{Log}\;N/N_T$
YII	20	520.0406	-0.570	HL	5.78	-6.327
YII	20	520.5722	-0.340	HL	6.29	-6.318
YII	22	478.6576	-1.290	HL	3.39	-6.568
YII	22	482.3304	-1.110	HL	4.29	-6.421
YII	22	488.3682	0.070	HL	6.56	-6.579
YII	22	490.0120	-0.090	HL	6.34	-6.540
YII	27	547.3384	-1.020	HL	3.29	-6.464
YII	27	548.0730	-0.990	HL	3.37	-6.474
YII	27	554.4611	-1.090	HL	2.06	-6.830
YII	28	519.6422	-0.880	KX	2.67	-6.826
YII	38	566.2922	0.160	CC	6.07	-6.377
YII	-	439.8008	-1.000	HL	4.58	-6.879
YII	-	442.2583	-1.270	HL	3.92	-6.901
		$\log N/N_T$	$T = -8.02 \pm$	0.23		
ZrII	17	391.5959	-0.820	KX	0.71	-8.357
ZrII	43	393.4791	-0.900	KX	1.55	-7.741
ZrII	86	437.9742	-0.360	KX	0.91	-8.155
ZrII	99	417.9807	-0.780	KX	0.48	-7.974
ZrII	-	399.8954	-0.670	GB	1.74	-7.988
ZrII	-	405.0316	-1.000	BG	1.17	-7.817
ZrII	-	415.6276	-0.710	GB	0.95	-8.230
ZrII	-	416.1213	-0.720	BG	1.40	-8.000
ZrII	-	420.8977	-0.460	BG	1.20	-8.353
ZrII	-	421.0631	-0.800	KX	0.47	-7.966
ZrII	-	444.0452	-1.190	GB	0.73	-7.622
		$\log N/N_{T}$	$T = -5.73 \pm$	0.28		
XeII	-	460.3005	0.017	NIS3	0.65	-5.790
XeII	-	484.4330	0.491	NIS3	0.82	-6.106
XeII	-	529.2220	0.351	NIS3	0.92	-5.711
XeII	-	541.9150	0.214	NIS3	1.03	-5.315
		$\log N$	$/N_T = -8.1$	31		
NdIII	-	512.7044	-1.080	DREA	1.84	-8.306
		$\log N/N_T$	$T = -7.89 \pm$	0.23		
YbII	-	418.0810	-0.290	DREA	0.57	-8.125
YbII	-	535.2954	-0.340	DREA	1.19	-7.663

 $\mathrm{Log}\;N/N_T=\text{-}6.58\pm0.03$

 $\log N/N_T = -6.77$

-1.880

-1.690

-1.730

RW

RW

DW

0.97

1.16

2.33

-6.557

-6.610

-6.770

401.6067

405.2790

398.3941

Tabla A.1: Continuación HD 149121

A.2. HD 35548

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	${\rm Log}\; N/N_T$
			$\log N$	$/N_T = -3.$	16		
6.00	CI	6	477.1742	-1.866	CNO	1.10	-3.160
			$\log N/N_2$	$T = -3.77 \pm$	= 0.10		
6.01	CII	2	657.8052	-0.030	WF	1.26	-3.696
6.01	CII	2	658.2882	-0.328	CNO	0.77	-3.695
6.01	CII	64	391.8968	-0.530	WF	1.05	-3.745
6.01	CII	-	392.0681	-0.230	WF	1.24	-3.935
			$\log N/N_2$	$T = -3.39 \pm$	- 0.23		
8.00	OI	9	645.3602	-1.288	CNO	0.43	-3.620
8.00	OI	11	543.5775	-1.544	CNO	0.83	-3.151
			$\log N/N_2$	$T = -5.13 \pm$	- 0.17		
12.00	MgI	2	517.2684	-0.380	WS	1.18	-5.302
12.00	MgI	2	518.3604	-0.160	WS	3.43	-5.900
12.00	MgI	40	470.2991	-0.374	NIST	0.24	-5.193
			$\log N/N_2$	$T = -4.96 \pm$	- 0.21		
12.01	MgII	5	384.8211	-1.590	WS	2.21	-4.712
12.01	MgII	9	442.7994	-1.210	WS	1.55	-4.714
12.01	MgII	10	438.4637	-0.790	WS	1.46	-5.187
12.01	MgII	25	485.1099	-0.420	KX	0.55	-5.203
12.01	MgII	-	385.0386	-1.880	WM	0.75	-4.991
			$\log N$	$/N_T = -6.$	51		
13.01	AlII	2	466.3046	-0.280	FW	0.68	-6.506
			$\log N/N_2$	$T = -5.14 \pm$	- 0.16		
14.01	SiII	3	412.8054	0.380	LA	7.04	-5.130
14.01	SiII	4	595.7559	-0.349	NIST	1.99	-5.034
14.01	SiII	4	597.8930	-0.061	NIST	2.10	-5.272
14.01	SiII	5	504.1024	0.290	SG	4.75	-5.148
14.01	SiII	5	505.5984	0.441	NIST	5.67	-5.104
14.01	SiII	706	420.0658	-0.820	KP	0.34	-4.860
14.01	SiII	-	413.0894	0.530	LA	6.25	-5.418
			$\log N/N_2$	$T = -5.17 \pm$	= 0.09		
15.01	PII	5	603.4039	-0.220	NIS3	0.92	-5.165
15.01	PII	10	525.3479	0.330	WS	2.42	-5.057
15.01	PII	10	542.5880	0.180	NIS3	1.73	-5.279
			$\log N/N_2$	$T = -4.53 \pm$	- 0.27		
16.01	SII	1	499.1969	-0.650	WS	0.83	-4.098
16.01	SII	7	500.9567	-0.090	WM	0.46	-5.016
16.01	SII	6	542.8655	-0.129	NIST	0.98	-4.358
16.01	SII	6	543.2797	0.257	NIST	2.16	-4.076
16.01	SII	6	545.3855	0.482	NIST	1.63	-4.547
16.01	SII	9	481.5552	0.180	WM	1.11	-4.776
16.01	SII	11	557.8870	-0.511	NIST	0.37	-4.478
16.01	SII	11	560.6151	0.309	NIST	0.91	-4.710
16.01	SII	15	501.4042	0.030	KX	1.10	-4.377
16.01	SII	38	532.0723	0.460	WS	1.09	-4.262

Tabla A.2: Abundancias Químicas línea por línea para HD 35548.

Código $W_{eq}[pm]$ $\log N/N_T$ Especie Mult. λ [nm] Ref. loggf SII 0.050 WS 16.01 39 520.1027 0.60 -4.306 16.01 SII 39 521.2620 0.240WS 0.68 -4.412 16.01 SII 44 414.5060 0.230 KΧ 0.75 -4.519 0.780 WS -4.918 16.01 SII 44 416.2665 0.88 16.01 SII 415.3068 0.620 WS 0.72 -4.920 503.2434 16.01 SII 0.180 WS 1.00-4.762 $\log N/N_T = -5.38$ 20.00 422.6728 0.240 FW -5.381 CaI 2 0.99 $\log N/N_T = -6.03$ 20.01 CaII 393.3663 0.130 1 WM 23.82 -6.029 $\log N/N_T = -6.29$ 21.01 ScII 31 552.6799 0.130 MFW 0.34 -6.289 $\log N/N_T = -6.66 \pm 0.24$ 22.01 TiII 11 398.1990 -2.530 KΧ 0.57 -6.711 22.01 TiII 19 439.5031 -0.660 MF 4.72 -7.035 TiII 20 428.7873 -2.020 22.01 MF 1.76 -6.384 22.01 TiII 33 422.7334 -2.360 KΧ 1.21 -6.222 22.01 TiII 40 441.7714 -1.430 -6.785 MF 2.24 22.01 TiII 41 429.0215 -1.120 MF 3.83 -6.677 22.01 TiII 41 430.0042 -0.770 MF 5.09 -6.685 22.01 TiII 41 431.4971 -1.100 PTP 2.60 -7.015 TiII 22.01 50 453.3960 -0.770 MF 5.32 -6.591 22.01 TiII 51 439.4059 -1.590 1.34 MF -6.894 22.01 TiII 61 439.5839 -2.170 MF 1.29 -6.323 TiII 22.01 69 533.6786 -1.700 MF 1.43 -6.560 22.01 TiII 69 538.1021 -1.920 PTP 0.58 -6.807 22.01 TiII 70 515.4070 -1.920 0.72 MF -6.704 22.01 TiII 70 518.8687 -1.210 3.54 -6.438 MF TiII 22.01 70 522.6538 -1.300 MF 2.71 -6.573 22.01 TiII 82 457.1971 -0.530 MF 4.51 -6.876 512.9156 22.01 TiII 86 -1.390 MF 1.21 -6.795 22.01 TiII 86 518.5902 -1.350 MF 1.26 -6.813 22.01 TiII 87 402.8338 -1.000 MF 2.34 -6.784 TiII 92 477.9985 -1.370 22.01 MF 1.79 -6.514 22.01 TiII 92 480.5085 -1.100 MF 1.41 -6.912 22.01 TiII 93 442.1938 -1.770 MF 1.03 -6.404 22.01 TiII 94 431.6794 -1.420 0.79 -6.892 MF TiII 103 521.1536 22.01 -1.360 0.68 -6.740 KΧ 436.7652 22.01 TiII 104 -1.270 MF 1.39 -6.465 22.01 TiII 105 416.3644 -0.400 MF 2.62-6.941 22.01 TiII 113 501.0211 -1.340 KΧ 0.27 -6.923 22.01 TiII 113 507.2287 -0.750 MF 1.17 -6.793 TiII 487.4014 22.01 114 -0.790 MF 0.68 -7.044 22.01 TiII 114 491.1195 -0.340 MF 1.75 -7.982 22.01 TiII 441.1072 -1.060 -6.470 115 MF 1.24 22.01 TiII 393.2023 -1.780 MF 1.64 -6.620 22.01 TiII 398.7606 -2.730 MF 1.08 -6.179 -

Tabla A.2: Continuación HD 35548

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
22.01	TiII	-	401.2383	-1.610	MF	3.27	-6.631
22.01	TiII	-	405.3821	-1.210	MF	1.75	-6.754
22.01	TiII	-	418.8988	-0.590	KX	0.25	-6.508
22.01	TiII	-	429.4094	-1.110	MF	3.51	-6.810
22.01	TiII	-	430.1922	-1.160	MF	2.28	-7.042
22.01	TiII	-	430.7866	-1.290	MF	4.48	-6.340
22.01	TiII	-	431.2860	-1.160	MF	2.57	-6.952
22.01	TiII	-	432.0950	-1.870	MF	1.91	-6.441
22.01	TiII	-	438.6847	-1.260	MF	1.49	-6.433
22.01	TiII	-	439.9765	-1.270	MF	2.73	-6.772
22.01	TiII	-	441.8331	-2.460	MF	0.79	-6.287
22.01	TiII	-	444.1729	-2.410	MF	1.04	-6.231
22.01	TiII	-	445.0482	-1.450	MF	1.79	-6.947
22.01	TiII	-	446.4448	-2.080	MF	1.33	-6.442
22.01	TiII	-	448.8325	-0.820	MF	1.31	-6.666
22.01	TiII	-	456.3757	-0.960	MF	3.27	-6.953
22.01	TiII	-	476.3883	-2.450	KX	0.66	-6.400
22.01	TiII	-	526.2141	-2.110	KX	0.92	-6.383
22.01	TiII	-	526.8615	-1.620	MF	0.92	-6.326
			$\log N/N_T$	r = -5.37±	= 0.13		
24.00	CrI	1	425.4336	-0.114	MFW	2.60	-5.165
24.00	CrI	1	427.4797	-0.231	MFW	1.08	-5.575
24.00	CrI	1	428.9717	-0.361	MFW	1.12	-5.426
24.00	CrI	7	520.4511	-0.210	MF	0.69	-5.332
24.00	CrI	7	520.8425	0.160	MF	1.40	-5.335
			$\log N/N_T$	r = -5.84±	= 0.23		
24.01	CrII	19	405.1930	-2.190	KX	2.51	-5.924
24.01	CrII	23	524.6768	-2.450	MF	1.41	-5.695
24.01	CrII	23	524.9437	-2.430	KX	1.05	-5.852
24.01	CrII	23	540.7604	-2.088	K88	1.76	-5.863
24.01	CrII	23	542.0922	-2.360	MFW	1.72	-5.641
24.01	CrII	24	530.5853	-2.360	KX	2.02	-5.508
24.01	CrII	26	407.2561	-2.410	KX	2.12	-5.501
24.01	CrII	26	413.2419	-2.350	KX	0.73	-6.125
24.01	CrII	30	481.2337	-1.800	MF	2.33	-5.967
24.01	CrII	30	482.4127	-1.220	MF	4.30	-6.997
24.01	CrII	30	483.6229	-2.250	MF	2.27	-5.538
24.01	CrII	30	484.8235	-1.140	MF	4.21	-6.105
24.01	CrII	30	487.6399	-1.460	KX	4.88	-5.592
24.01	CrII	30	488.4607	-2.080	MF	2.32	-5.692
24.01	CrII	30	484.8235	-1.140	MFW	4.21	-6.105
24.01	CrII	31	426.1913	-1.530	KX	3.75	-5.850
24.01	CrII	39	456.5740	-2.110	MF	2.82	-5.428
24.01	CrII	43	523.2496	-2.090	KX	1.36	-5.886
24.01	CrII	43	523.7329	-1.160	MF	4.38	-5.907
24.01	CrII	43	527.4964	-1.290	KX	3.57	-6.003
24.01	CrII	43	530.8440	-1.810	MF	2.37	-5.820

Tabla A.2: Continuación HD 35548

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
24.01	CrII	43	531.0700	-2.280	MF	1.79	-5.533
24.01	CrII	43	531.3590	-1.650	MF	3.47	-5.668
24.01	CrII	43	533.4869	-1.560	KX	2.78	-5.949
24.01	CrII	44	455.4988	-1.380	MF	3.22	-6.033
24.01	CrII	44	458.8199	-0.630	MF	4.70	-6.369
24.01	CrII	44	461.6629	-1.290	MF	3.42	-6.067
24.01	CrII	44	461.8803	-1.110	MF	4.14	-6.048
24.01	CrII	44	463.4070	-1.240	MF	3.37	-6.131
24.01	CrII	50	550.2067	-1.990	MFW	1.80	-5.761
24.01	CrII	50	550.8606	-2.110	MFW	1.38	-5.804
24.01	CrII	105	605.3466	-2.160	MFW	1.64	-5.312
24.01	CrII	129	391.1321	-2.060	KX	0.97	-5.665
24.01	CrII	130	386.6003	-2.350	KX	0.58	-5.638
24.01	CrII	162	414.5781	-1.160	KX	2.20	-5.900
24.01	CrII	165	408.2285	-1.230	KX	1.37	-6.119
24.01	CrII	167	386.5596	-0.780	KX	3.60	-5.880
24.01	CrII	178	469.7598	-1.880	MF	0.73	-5.606
24.01	CrII	181	412.7057	-1.770	KX	1.04	-5.549
24.01	CrII	183	397.9505	-0.730	KX	2.65	-6.018
24.01	CrII	190	490.1623	-0.830	KX	1.35	-5.906
24.01	CrII	190	491.2462	-0.950	KX	1.46	-5.742
24.01	CrII	191	446.5731	-1.180	KX	0.49	-6.092
24.01	CrII	193	407.0840	-0.750	KX	1.77	-5.860
24.01	CrII	-	386.6523	-2.070	KX	0.57	-5.918
24.01	CrII	-	390.5644	-0.900	KX	3.91	-5.668
24.01	CrII	-	401.2496	-0.890	KX	3.13	-5.726
24.01	CrII	-	405.4076	-2.480	KX	2.03	-5.775
24.01	CrII	-	408.6128	-2.420	KX	0.74	-6.070
4.01	CrII	-	417.9421	-1.770	KX	2.00	-6.122
24.01	CrII	-	420.7363	-2.480	KX	1.41	-5.619
24.01	CrII	-	427.5567	-1.700	KX	2.80	-5.942
24.01	CrII	-	455.8650	-0.660	MF	5.15	-6.204
24.01	CrII	-	458.7264	-1.648	MFW	0.75	-5.413
24.01	CrII	-	485.6186	-2.260	MF	1.07	-5.970
			$\log N/N_T$	n = -4.59 =	± 0.18		
25.00	MnI	5	403.5719	-0.190	KX	1.28	-4.843
25.00	MnI	16	475.4042	-0.090	MF	1.36	-4.853
25.00	MnI	21	473.9110	-0.490	MF	0.57	-4.549
25.00	MnI	22	441.4890	-0.290	MF	1.15	-4.426
25.00	MnI	23	423.5142	-0.260	KX	0.72	-4.670
25.00	MnI	27	602.1790	0.034	MFW	0.67	-4.897
25.00	MnI	28	445.7044	-0.555	MFW	0.55	-4.430
25.00	MnI	28	445.7549	-0.120	MF	0.66	-4.777
25.00	MnI	48	404.5114	0.250	KX	0.50	-4.617
25.00	MnI	-	392.2684	0.050	KX	0.87	-4.390
25.00	MnI	-	405.8930	-0.450	MF	1.60	-4.440
25.00	N 1		107 0070	0.050	ME	0.22	1 500

Tabla A.2: Continuación HD 35548

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\mathrm{Log}\;N/N_T$
25.00	MnI	-	445.3012	-0.490	MF	0.68	-4.462
25.00	MnI	-	445.5014	-0.390	KX	0.79	-4.251
25.00	MnI	-	445.5814	-0.510	MF	0.87	-4.338
25.00	MnI	-	446.1079	-0.380	MF	0.46	-4.689
25.00	MnI	-	446.4682	-0.100	MF	1.65	-4.400
25.00	MnI	-	447.0144	-0.440	MF	0.95	-4.345
25.00	MnI	-	449.0080	-0.520	MF	0.52	-4.555
25.00	MnI	-	450.2213	-0.340	MF	0.57	-4.715
25.00	MnI	-	476.1512	-0.140	MF	0.85	-4.696
25.00	MnI	-	476.5846	-0.080	MF	1.46	-4.473
25.00	MnI	-	476.6418	0.100	MF	1.04	-4.850
			$\log N/N_2$	$r = -4.88 \pm$	0.29		
25.01	MnII	2	420.7234	-4.470	KX	2.57	-4.416
25.01	MnII	6	428.4429	-2.260	KX	3.97	-4.377
25.01	MnII	-	384.8574	-3.330	KX	0.68	-4.426
25.01	MnII	-	385.9206	-2.560	KX	1.57	-4.824
25.01	MnII	-	390.2365	-2.720	KX	0.45	-5.210
25.01	MnII	-	392.6115	-2.420	KX	1.18	-4.817
25.01	MnII	-	393.0952	-2.150	KX	2.56	-4.328
25.01	MnII	-	395.2418	-1.500	KX	0.52	-5.295
25.01	MnII	-	395.3590	-2.270	KX	0.73	-4.358
25.01	MnII	-	400.0047	-1.210	KX	1.07	-5.216
25.01	MnII	-	408.1444	-2.240	KX	2.00	-4.618
25.01	MnII	-	408.5390	-2.560	KX	1.60	-4.721
25.01	MnII	-	413.6902	-1.290	KX	3.80	-5.007
25.01	MnII	-	414.0442	-2.460	KX	1.65	-4.792
25.01	MnII	-	417.2281	-2.810	KX	1.05	-4.392
25.01	MnII	-	418.0064	-2.830	KX	1.36	-4.599
25.01	MnII	-	418.4454	-1.950	KX	1.46	-5.064
25.01	MnII	-	420.0270	-1.740	KX	2.43	-4.940
25.01	MnII	-	423.9188	-2.250	KX	1.99	-4.981
25.01	MnII	-	424.0385	-2.070	KX	1.77	-4.829
25.01	MnII	-	424.4248	-2.390	KX	1.67	-4.950
25.01	MnII	-	425.1727	-1.060	KX	4.18	-5.096
25.01	MnII	-	426.0462	-4.250	KX	2.26	-4.720
25.01	MnII	-	432.6637	-1.250	KX	4.60	-4.274
25.01	MnII	-	437.7742	-2.140	KX	1.33	-5.297
25.01	MnII	-	437.9639	-1.850	KX	1.99	-5.342
25.01	MnII	-	439.1961	-2.890	KX	1.73	-4.372
25.01	MnII	-	439.3379	-2.320	KX	1.13	-5.188
25.01	MnII	-	440.3512	-1.800	KX	1.48	-5.002
25.01	MnII	-	444.1991	-2.360	KX	1.09	-5.165
25.01	MnII	-	447.8635	-0.950	KX	3.12	-5.272
25.01	MnII	-	449.7941	-2.590	KX	1.01	-5.012
25.01	MnII	-	450.0543	-2.070	KX	1.37	-5.064
25.01	MnII	-	450.3201	-2.160	KX	1.54	-4.906
			451 0052	1 220	1/3/	2.54	

Tabla A.2: Continuación HD 35548

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
25.01	MnII	-	451.9240	-2.570	KX	2.65	-4.430
25.01	MnII	-	471.7264	-1.860	KX	1.29	-5.023
25.01	MnII	-	472.7843	-2.020	KX	2.43	-5.050
25.01	MnII	-	473.0397	-2.150	KX	2.66	-4.849
25.01	MnII	-	474.9112	-2.000	KX	1.45	-4.990
25.01	MnII	-	475.5717	-1.240	KX	5.37	-4.926
25.01	MnII	-	476.4728	-1.350	KX	4.65	-5.043
25.01	MnII	-	479.1782	-1.720	KX	1.79	-5.138
25.01	MnII	-	481.1623	-2.340	KX	1.41	-5.054
25.01	MnII	-	483.0061	-1.850	KX	1.88	-4.979
25.01	MnII	-	483.9737	-1.860	KX	1.62	-5.058
25.01	MnII	-	484.2325	-2.010	KX	1.38	-5.004
25.01	MnII	-	510.2517	-1.930	KX	2.39	-4.807
25.01	MnII	-	517.7648	-1.770	KX	3.30	-4.676
25.01	MnII	-	525.1823	-1.830	KX	0.69	-5.085
25.01	MnII	-	660.9255	-2.050	KX	0.81	-4.769
			$\log N/N_{2}$	$r = -4.42 \pm$	0.11		
26.00	FeI	4	385.9911	-0.710	N4	2.91	-4.554
26.00	FeI	20	382.5881	-0.040	N4	4.58	-4.241
26.00	FeI	318	489.1492	-0.110	N4	0.80	-4.453
26.00	FeI	318	495.7596	0.230	N4	1.59	-4.444
			$\log N/N_{2}$	$_{T} = -4.47 \pm$	0.28		
26.01	FeII	3	393.8290	-4.070	N4	1.96	-4.489
26.01	FeII	27	427.3326	-3.340	N4	1.80	-4.744
26.01	FeII	27	430.3176	-2.610	N4	4.20	-4.764
26.01	FeII	27	441.6830	-2.600	N4	3.24	-5.008
26.01	FeII	28	429.6572	-3.010	N4	2.80	-4.763
26.01	FeII	28	466.6758	-3.330	N4	2.50	-4.456
26.01	FeII	32	438.4319	-3.680	N4	1.87	-4.401
26.01	FeII	37	447.2929	-3.530	N4	1.55	-4.567
26.01	FeII	37	448.9183	-2.970	N4	3.10	-4.648
26.01	FeII	37	449.1405	-2.700	N4	3.79	-4.705
26.01	FeII	37	452.0224	-2.600	N4	3.60	-4.885
26.01	FeII	37	458.2835	-3.100	N4	1.55	-4.995
26.01	FeII	38	393.5962	-1.860	N4	1.29	-5.002
26.01	FeII	38	454.1524	-3.050	N4	2.15	-4.834
26.01	FeII	38	457.6340	-3.040	N4	2.76	-4.666
26.01	FeII	38	462.0521	-3.280	N4	3.89	-4.110
26.01	FeII	43	473.1453	-3.130	N4	2.08	-4.752
26.01	FeII	127	402.4547	-2.440	N4	2.32	-4.572
26.01	FeII	173	390.6035	-1.830	N4	1.38	-4.993
26.01	FeII	186	463.5316	-1.650	N4	2.72	-4.465
26.01	FeII	190	393.8970	-1.850	N4	2.08	-4.545
26.01	FeII	198	641.6919	-2.880	N4	2.13	-4.366
26.01	FeII	D	390.3756	-1.500	KX	2.36	-4.025
26.01	FeII	D	459.6015	-1.840	N4	1.33	-4 638
-0.01		~		1.010		1.00	

Tabla A.2: Continuación HD 35548

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	457.9527	-2.510	KX	0.45	-4.530
26.01	FeII	J	482.6683	-0.440	KX	1.34	-4.041
26.01	FeII	J	490.8151	-0.300	KX	0.57	-4.629
26.01	FeII	J	491.3295	0.010	KX	1.55	-4.385
26.01	FeII	J	494.8096	-0.320	KX	1.10	-4.254
26.01	FeII	J	494.8793	-0.010	KX	0.92	-4.649
26.01	FeII	J	495.1584	0.180	KX	1.32	-4.642
26.01	FeII	J	497.7035	0.040	KX	0.68	-4.852
26.01	FeII	J	498.4473	0.010	KX	1.74	-4.239
26.01	FeII	J	499.3358	-3.650	MF	1.36	-4.525
26.01	FeII	J	500.1959	0.900	KX	4.08	-4.405
26.01	FeII	J	500.4195	0.500	KX	2.13	-4.635
26.01	FeII	J	500.7450	-0.360	KX	0.70	-4.422
26.01	FeII	J	500.7739	-0.200	KX	0.97	-4.444
26.01	FeII	J	500.9022	-0.420	KX	0.81	-4.299
26.01	FeII	J	502.1594	-0.300	KX	1.70	-3.994
26.01	FeII	J	502.2792	-0.020	KX	1.09	-4.585
26.01	FeII	J	502.6806	-0.220	KX	0.94	-4.432
26.01	FeII	J	503.0630	0.400	KX	1.37	-4.838
26.01	FeII	J	503.5708	0.610	KX	2.18	-4.714
26.01	FeII	J	504.5114	-0.130	KX	0.96	-4.506
26.01	FeII	J	506.1718	0.220	KX	0.65	-5.066
26.01	FeII	J	506.7893	-0.200	KX	1.05	-4.372
26.01	FeII	J	507.0899	0.240	KX	1.73	-4.506
26.01	FeII	J	507.5764	0.280	KX	1.33	-4.646
26.01	FeII	J	508.2230	-0.100	KX	1.60	-4.160
26.01	FeII	J	509.3576	0.110	KX	2.08	-4.191
26.01	FeII	J	509.7271	0.310	KX	1.35	-4.697
26.01	FeII	J	510.6109	-0.280	KX	0.75	-4.472
26.01	FeII	J	511.7034	-0.130	KX	0.78	-4.552
26.01	FeII	J	513.2669	-4.180	MF	1.34	-3.997
26.01	FeII	J	514.3880	0.100	KX	1.67	-4.303
26.01	FeII	J	514.4355	0.280	KX	1.29	-4.646
26.01	FeII	J	514.5772	-0.400	KX	1.04	-4.122
26.01	FeII	J	514.9465	0.400	KX	2.40	-4.316
26.01	FeII	J	515.0489	-0.120	KX	0.58	-4.704
26.01	FeII	J	516.0839	-2.640	KX	1.43	-4.073
26.01	FeII	J	516.6555	-0.030	KX	1.18	-4.393
26.01	FeII	J	517.7020	-0.180	KX	0.89	-4.443
26.01	FeII	J	518.0314	0.040	KX	1.08	-4.546
26.01	FeII	J	518.6873	-0.300	KX	1.14	-4.134
26.01	FeII	J	519.9122	0.100	KX	1.80	-4.266
26.01	FeII	J	520.0804	-0.370	KX	0.98	-4.190
26.01	FeII	J	520.3638	-0.050	KX	2.01	-4.034
26.01	FeII	J	521.5349	-0.100	KX	2.14	-3.995
26.01	FeII	J	521.5844	-0.230	KX	1.80	-3.949
26.01	FeII	J	521.6854	0.810	KX	2.92	-4.507
26.01	FeII	J	521.8842	-0.200	KX	1.31	-4.223

Tabla A.2: Continuación HD 35548

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	${\rm Log}\;N/N_T$
26.01	FeII	J	522.2361	-0.330	KX	0.57	-4.458
26.01	FeII	J	522.3260	-0.410	KX	1.26	-3.993
26.01	FeII	J	522.4411	-0.570	KX	1.07	-3.923
26.01	FeII	J	522.7483	0.850	N4	4.18	-4.190
26.01	FeII	J	523.7950	0.140	KX	1.66	-4.324
26.01	FeII	J	523.9813	-0.460	KX	0.88	-4.144
26.01	FeII	J	524.5455	-0.510	KX	0.95	-4.028
26.01	FeII	J	524.7952	0.550	N4	2.08	-4.525
26.01	FeII	J	525.1233	0.420	N4	1.28	-4.747
26.01	FeII	J	525.3647	-0.090	KX	0.98	-4.432
26.01	FeII	J	525.4929	-3.230	KX	1.59	-4.619
26.01	FeII	J	525.7122	0.030	KX	1.31	-4.351
26.01	FeII	J	526.0254	1.070	KX	3.22	-4.711
26.01	FeII	J	526.4177	0.300	N4	1.96	-4.336
26.01	FeII	J	526.4812	-3.190	MF	2.40	-4.387
26.01	FeII	J	527.2397	-2.030	MF	1.65	-4.389
26.01	FeII	J	529.1666	0.580	KX	1.71	-4.723
26.01	FeII	J	531.6214	0.340	N4	0.96	-4.879
26.01	FeII	J	531.6615	-1.850	MF	6.22	-4.612
26.01	FeII	J	531.8057	-0.140	KX	0.56	-4.660
26.01	FeII	J	533.9592	0.540	KX	2.55	-4.370
			$\log N/N_{2}$	$_{T} = -6.26 \pm$	0.14		
31.01	GaII	-	425.4075	-0.230	RS	0.16	-6.105
31.01	GaII	-	536.0402	0.420	RS	0.13	-6.218
31.01	GaII	-	541.6318	0.640	RS	0.12	-6.446
			$\log N$	$/N_T = -5.3$	86		
35.01	BrII	-	478.5500	0.208	NIST	1.11	-5.363
			$\log N/N_{2}$	$_{T} = -7.42 \pm$	0.23		
38.01	SrII	1	407.7709	0.150	WM	6.24	-7.589
38.01	SrII	1	421.5519	-0.170	WM	5.60	-7.568
38.01	SrII	3	416.1792	-0.500	KX	1.95	-7.016
			$\log N/N_2$	$_{T} = -6.36 \pm$	0.19		
39.01	YII	1	420.4692	-1.760	HL	3.57	-6.350
39.01	YII	5	423.5727	-1.500	HL	3.72	-6.483
39.01	YII	5	430.9620	-0.750	HL	4.80	-6.751
39.01	YII	5	435.8723	-1.320	HL	3.49	-6.771
39.01	YII	12	468.2321	-1.510	HL	3.51	-6.416
39.01	YII	14	412.4904	-1.500	HL	3.95	-6.230
39.01	YII	16	393.0658	-1.610	HL	4.07	-6.050
39.01	YII	16	395.1590	-1.980	HL	2.33	-6.335
39.01	YII	20	498.2129	-1.290	HL	3.28	-6.380
39.01	YII	20	508.7418	-0.170	HL	5.53	-6.540
39.01	YII	20	511.9110	-1.360	HL	3.48	-6.254
39.01	YII	20	520.0406	-0.570	HL	4.98	-6.427
39.01	YII	20	520.5722	-0.340	HL	5.91	-6.238
39.01	YII	22	478.6576	-1.290	HL	3.68	-6.231
39.01	YII	22	482.3304	-1.110	HL	4.65	-6.034

Tabla A.2: Continuación HD 35548

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
39.01	YII	22	488.3682	0.070	HL	6.49	-6.381
39.01	YII	22	490.0120	-0.090	HL	6.09	-6.410
39.01	YII	27	548.0730	-0.990	HL	3.26	-6.294
39.01	YII	27	549.7405	-0.580	HL	4.28	-6.283
39.01	YII	27	554.6009	-1.100	HL	3.56	-6.051
39.01	YII	28	519.6422	-0.880	KX	3.14	-6.444
39.01	YII	34	572.8886	-1.120	HL	2.93	-6.207
39.01	YII	38	566.2922	0.160	CC	5.43	-6.417
39.01	YII	-	442.2583	-1.270	HL	3.99	-6.628
			$\log N/N_{2}$	$T = -7.50 \pm$	0.23		
40.01	ZrII	16	395.8230	-0.310	KX	2.44	-7.887
40.01	ZrII	29	409.0535	-1.100	GB	1.20	-7.461
40.01	ZrII	42	403.4101	-1.550	BG	0.69	-7.280
40.01	ZrII	43	393.4791	-0.900	KX	1.13	-7.710
40.01	ZrII	86	437.9742	-0.360	KX	2.24	-7.387
40.01	ZrII	97	418.6672	-0.580	KX	1.23	-7.438
40.01	ZrII	129	446.1251	-1.180	KX	1.02	-7.352
40.01	ZrII	-	399.8954	-0.670	GB	2.22	-7.591
40.01	ZrII	-	402.4417	-0.970	KX	1.92	-7.163
40.01	ZrII	-	404.5638	-0.600	KX	2.55	-7.467
40.01	ZrII	-	415.6276	-0.710	GB	1.65	-7.688
40.01	ZrII	-	416.1213	-0.720	BG	1.19	-7.874
40.01	ZrII	-	421.0631	-0.800	KX	1.35	-7.213
40.01	ZrII	-	423.1668	-1.020	KX	0.79	-7.240
40.01	ZrII	-	445.7431	-0.800	KX	0.85	-7.735
			$\log N/N_2$	$T = -4.21 \pm$	0.01		
54.01	XeII	-	571.9598	-0.746	NIST	1.03	-4.204
54.01	XeII	-	605.1150	-0.252	NIST	0.84	-4.222
			$\log N$	$/N_T = -8.0$)4		
60.02	NdIII	-	512.7044	-1.080	DREA	2.03	-8.043
			$\log N/N_2$	$T = -7.64 \pm$	0.23		
70.01	YbII	-	418.0810	-0.290	DREA	1.44	-7.414
70.01	YbII	-	535.2954	-0.340	DREA	0.63	-7.865
			Log N	$/N_T = -3.$	88		
80.00	HgI	-	404.6609	-0.818	BLD	2.00	-3.878
			Log N	$/N_T = -5.$	08		
80.01	HgII	-	398.3941	-1.730	DW	6.28	-5.083

Tabla A.2: Continuación HD 35548

A.3. HD 175640

Tabla A.3: Abundancias Químicas línea por línea para HD 175640.

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$			
	Log N/N_T = -3.63 \pm 0.19									
6.00	CI	6	477.1742	-1.866	CNO	0.49	-3.443			

1]	$\log N/N_T$
	-3.815
	-3.918
	-3.936

Tabla A.3: Continuación HD 175640

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
6.00	CI	13	493.2049	-1.658	CNO	0.27	-3.815
			$\log N/N$	$T_T = -3.94$	± 0.03		
6.01	CII	4	391.8968	-0.530	WF	1.08	-3.918
6.01	CII	-	392.0681	-0.230	WF	1.64	-3.936
6.01	CII	-	426.7261	0.720	WF 1.78	-3.979	
			$\log N/N$	$T_T = -3.09$	± 0.18		
8.00	OI	3	394.7295	-2.096	CNO	1.92	-2.991
8.00	OI	11	543.5775	-1.544	CNO	0.80	-3.128
8.00	OI	11	543.6862	-1.398	CNO	0.94	-3.198
8.00	OI	12	532.9673	-1.020	WF	1.96	-2.752
8.00	OI	12	533.0726	-0.870	WF	3.28	-3.084
8.00	OI	12	532.9681	-1.473	CNO	1.96	-2.205
8.00	OI	13	502.0218	-1.725	CNO	0.83	-2.964
8.00	OI	14	496.8790	-1.280	WF	0.87	-3.392
			$\log N/N$	$T_T = -4.93$	± 0.04		
12.00	MgI	2	517.2684	-0.380	WS	1.38	-4.966
12.00	MgI	2	518.3604	-0.160	WS	2.32	-4.894
			$\log N/N$	$T_T = -4.99$	± 0.14		
12.01	MgII	5	384.8211	-1.590	WS	0.88	-5.181
12.01	MgII	9	442.7994	-1.210	WS	1.27	-4.811
12.01	MgII	10	438.4637	-0.790	WS	1.76	-5.078
12.01	MgII	25	485.1099	-0.420	KX	1.18	-4.859
12.01	MgII	-	385.0386	-1.880	WM	0.68	-5.015
			Log N	$V/N_T = -6$.63		
13.01	AlII	2	466.3046	-0.280	FW	0.62	-6.629
			$\log N/N$	$T_T = -4.38$	± 0.16		
14.01	SiII	703	546.6432	-0.190	NIST	1.56	-4.520
14.01	SiII	706	420.0658	-0.820	KP	1.42	-4.177
14.01	SiII	726	419.0724	-0.351	LA	0.85	-4.597
14.01	SiII	726	419.8133	-0.611	LA	1.00	-4.258
14.01	SiII	-	407.6780	-1.670	SG	1.47	-4.502
14.01	SiII	-	420.0898	-0.670	KP	1.63	-4.240
			$\log N/N$	$T_T = -6.04$	± 0.21		
15.01	PII	7	529.6077	-0.160	WS	0.36	-6.041
15.01	PII	10	525.3479	0.330	WS	1.09	-5.831
15.01	PII	10	542.5880	0.180	NIS3	0.52	-6.163
15.01	PII	15	460.2069	0.740	WS	0.83	-5.821
15.01	PII	-	417.8463	-0.410	KX	0.54	-6.367
			$\log N/N$	$T_T = -4.83$	± 0.11		
16.01	SII	1	502.7203	-0.720	WS	0.53	-4.695
16.01	SII	6	542.8655	-0.129	NIST	0.68	-4.791
16.01	SII	6	545.3855	0.482	NIST	1.33	-4.904
16.01	SII	7	500.9567	-0.090	WM	0.75	-4.903
16.01	SII	9	481.5552	0.180	WM	1.08	-4.980
16.01	SII	11	557.8870	-0.511	NIST	0.33	-4.734
16.01	SII	15	501.4042	0.030	KX	0.69	-4.885
16.01	SII	38	532.0723	0.460	WS	0.68	-4.791
		-	-				

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
16.01	SII	39	521.2620	0.240	WS	0.68	-4.615
16.01	SII	44	414.5060	0.230	KX	0.65	-4.786
16.01	SII	44	416.2665	0.780	WS	1.07	-4.954
16.01	SII	-	415.3068	0.620	WS	1.12	-4.781
16.01	SII	-	503.2434	0.180	WS	0.97	-4.972
			Log N	$V/N_T = -4.$	89		
20.00	CaI	2	422.6728	0.240	FW	1.21	-4.891
			Log N	$V/N_T = -6.$	10		
20.01	CaII	1	393.3663	0.130	WM	18.40	-6.099
			Log N	$V/N_T = -9.$	34		
21.01	ScII	7	424.6822	0.240	LD	0.82	-9.342
			$\log N/N$	$T_T = -6.16$	± 0.20		
22.01	TiII	11	398.1990	-2.530	KX	1.05	-6.238
22.01	Till	18	451.8332	-2.560	KX	0.71	-6.160
22.01	TiII	19	439.5031	-0.660	MF	6.41	-6.266
22.01	Till	21	416.1529	-2.360	MF	1.95	-5.809
22.01	Till	31	446.8492	-0.600	MF	5.93	-6.458
22.01	TiII	33	422.7334	-2.360	KX	1.07	-6.120
22.01	TiII	40	441.7714	-1.430	MF	4.24	-6.095
22.01	TiII	41	429.0215	-1.120	MF	5.31	-6.108
22.01	TiII	41	431.4971	-1.100	PTP	4.17	-6.445
22.01	TiII	48	476.3883	-2.450	KX	1.25	-5.914
22.01	TiII	49	470.8662	-2.210	MF	1.10	-6.212
22.01	TiII	50	453.3960	-0.770	MF	6.97	-5.903
22.01	TiII	51	439.4059	-1.590	MF	2.27	-6.420
22.01	TiII	59	465.7200	-2.150	MF	1.30	-6.180
22.01	TiII	60	454.4016	-2.580	PTP	0.86	-5.961
22.01	TiII	61	439.5839	-2.170	MF	2.05	-5.894
22.01	TiII	69	533.6786	-1.700	MF	2.75	-5.989
22.01	TiII	69	538.1021	-1.920	PTP	1.57	-6.136
22.01	TiII	70	515.4070	-1.920	MF	2.12	-5.958
22.01	Till	70	518.8687	-1.210	MF	3.71	-6.231
22.01	TiII	70	522.6538	-1.300	MF	3.54	-6.193
22.01	TiII	71	501.3686	-1.940	KX	0.99	-6.357
22.01	TiII	82	457.1971	-0.530	MF	6.80	-6.031
22.01	TiII	86	512.9156	-1.390	MF	3.04	-6.063
22.01	TiII	86	518.5902	-1.350	MF	3.00	-6.111
22.01	TiII	87	402.8338	-1.000	MF	3.02	-6.447
22.01	TiII	92	477.9985	-1.370	MF	3.30	-5.936
22.01	Till	92	480.5085	-1.100	MF	3.89	-6.046
22.01	TiII	93	442.1938	-1.770	MF	1.79	-5.951
22.01	TiII	94	431.6794	-1.420	MF	1.63	-6.360
22.01	TiII	103	521.1536	-1.360	KX	1.10	-6.354
22.01	TiII	104	436.7652	-1.270	MF	3.12	-5.799
22.01	TiII	105	416.3644	-0.400	MF	4.53	-6.293
22.01	TiII	106	406.4354	-1.610	KX	0.58	-6.436
22.01	тан	112	501 0211	1 3/0	KV	1 17	6 082

Tabla A.3: Continuación HD 175640

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
22.01	TiII	113	507.2287	-0.750	MF	1.70	-6.449
22.01	TiII	114	487.4014	-0.790	MF	1.95	-6.344
22.01	TiII	114	491.1195	-0.340	MF	3.32	-6.395
22.01	TiII	115	441.1072	-1.060	MF	2.68	-5.865
22.01	TiII	115	445.6649	-1.410	KX	0.60	-6.333
22.01	TiII	117	479.8532	-2.430	MF	1.12	-6.066
22.01	TiII	-	393.2023	-1.780	MF	2.07	-6.317
22.01	TiII	-	398.7606	-2.730	MF	1.27	-5.921
22.01	TiII	-	401.2383	-1.610	MF	4.73	-6.073
22.01	TiII	-	402.5129	-1.980	MF	2.07	-6.394
22.01	TiII	-	405.3821	-1.210	MF	3.23	-6.183
22.01	TiII	-	415.8267	-0.480	KX	0.97	-5.871
22.01	TiII	-	417.4072	-1.250	MF	1.14	-6.438
22.01	TiII	-	429.4094	-1.110	MF	5.39	-6.130
22.01	TiII	-	430.1922	-1.160	MF	4.23	-6.368
22.01	TiII	-	431.2860	-1.160	MF	4.49	-6.290
22.01	TiII	-	432.0950	-1.870	MF	1.34	-6.476
22.01	TiII	-	438.6847	-1.260	MF	2.45	-5.985
22.01	TiII	-	439.8292	-2.390	KX	0.60	-6.332
22.01	TiII	-	439.9765	-1.270	MF	4.45	-6.164
22.01	TiII	-	440.9235	-2.640	KX	0.38	-6.286
22.01	TiII	-	440.9520	-2.570	KX	0.74	-6.048
22.01	TiII	-	444.1729	-2.410	MF	1.08	-6.046
22.01	TiII	-	444.3801	-0.700	MF	5.50	-6.516
22.01	TiII	-	445.0482	-1.450	MF	3.51	-6.305
22.01	TiII	-	446.4448	-2.080	MF	2.80	-5.818
22.01	TiII	-	447.0853	-2.280	MF	1.97	-5.850
22.01	TiII	-	448.8325	-0.820	MF	2.87	-6.039
22.01	TiII	-	450.1270	-0.750	MF	5.85	-6.342
22.01	TiII	-	456.3757	-0.960	MF	5.18	-6.278
22.01	TiII	-	471.9515	-3.220	KX	0.28	-5.852
22.01	TiII	-	526.2141	-2.110	KX	1.23	-6.073
22.01	TiII	-	526.8615	-1.620	MF	1.85	-5.799
			$\log N/N$	$T_T = -5.12$	± 0.27		
24.00	CrI	1	425.4336	-0.114	MFW	3.32	-4.689
24.00	CrI	1	427.4797	-0.231	MFW	0.77	-5.469
24.00	CrI	1	428.9717	-0.361	MFW	1.59	-4.956
24.00	CrI	7	520.4511	-0.210	MF	0.68	-5.075
24.00	CrI	7	520.6037	0.020	MF	0.99	-5.117
24.00	CrI	7	520.8425	0.160	MF	0.71	-5.424
			$\log N/N$	$T_T = -5.68$	± 0.26		
24.01	CrII	19	405.1930	-2.190	KX	2.01	-6.007
24.01	CrII	23	524.6768	-2.450	MF	3.16	-5.100
24.01	CrII	23	524.9437	-2.430	KX	1.62	-5.561
24.01	CrII	23	540.7604	-2.088	K88	1.48	-5.916
24.01	CrII	23	542.0922	-2.360	MFW	1.64	-5.619
24.01	CrII	24	530.5853	-2.360	KX	2.73	-5.248

Tabla A.3: Continuación HD 175640

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
24.01	CrII	26	407.2561	-2.410	KX	1.84	-5.531
24.01	CrII	26	413.2419	-2.350	KX	1.33	-5.758
24.01	CrII	30	481.2337	-1.800	MF	2.01	-6.012
24.01	CrII	30	482.4127	-1.220	MF	5.60	-5.561
24.01	CrII	30	483.6229	-2.250	MF	2.30	-5.477
24.01	CrII	30	484.8235	-1.140	MF	4.47	-5.980
24.01	CrII	30	487.6399	-1.460	KX	5.31	-5.413
24.01	CrII	30	488.4607	-2.080	MF	1.90	-5.770
24.01	CrII	30	484.8235	-1.140	MFW	4.47	-5.980
24.01	CrII	31	426.1913	-1.530	KX	6.09	-5.088
24.01	CrII	39	453.9595	-2.280	SL	1.40	-5.658
24.01	CrII	39	456.5740	-2.110	MF	2.05	-5.601
24.01	CrII	43	523.2496	-2.090	KX	1.33	-5.851
24.01	CrII	43	523.7329	-1.160	MF	4.91	-5.708
24.01	CrII	43	527.4964	-1.290	KX	3.98	-5.844
24.01	CrII	43	530.8440	-1.810	MF	2.40	-5.765
24.01	CrII	43	531.0700	-2.280	MF	1.52	-5.584
24.01	CrII	43	531.3590	-1.650	MF	3.60	-5.587
24.01	CrII	43	533.4869	-1.560	KX	3.97	-5.574
24.01	CrII	44	455.4988	-1.380	MF	3.77	-5.833
24.01	CrII	44	458.8199	-0.630	MF	5.87	-5.960
24.01	CrII	44	461.6629	-1.290	MF	3.72	-5.936
24.01	CrII	44	461.8803	-1.110	MF	5.57	-5.575
24.01	CrII	44	463.4070	-1.240	MF	4.57	-5.746
24.01	CrII	50	550.2067	-1.990	MFW	1.96	-5.663
24.01	CrII	129	391.1321	-2.060	KX	1.05	-5.576
24.01	CrII	130	386.6003	-2.350	KX	0.63	-5.549
24.01	CrII	162	414.5781	-1.160	KX	2.30	-5.828
24.01	CrII	165	408.2285	-1.230	KX	1.15	-6.171
24.01	CrII	167	386.5596	-0.780	KX	2.95	-6.017
24.01	CrII	178	469.7598	-1.880	MF	0.90	-5.466
24.01	CrII	180	422.1996	-1.930	KX	0.76	-5.512
24.01	CrII	181	412.7057	-1.770	KX	0.87	-5.601
24.01	CrII	183	397.9505	-0.730	KX	2.02	-6.168
24.01	CrII	190	490.1623	-0.830	KX	1.88	-5.684
24.01	CrII	190	491.2462	-0.950	KX	1.42	-5.734
24.01	CrII	191	446.5731	-1.180	KX	0.86	-5.787
24.01	CrII	193	407.0840	-0.750	KX	1.31	-6.002
24.01	CrII	-	386.6523	-2.070	KX	0.83	-5.684
24.01	CrII	-	390.5644	-0.900	KX	4.74	-5.380
24.01	CrII	-	401.2496	-0.890	KX	4.70	-5.235
24.01	CrII	-	405.4076	-2.480	KX	1.76	-5.798
24.01	CrII	-	407.7511	-2.780	KX	1.51	-5.588
24.01	CrII	-	408.6128	-2.420	KX	0.80	-5.973
24.01	CrII	-	417.9421	-1.770	KX	2.35	-5.958
24.01	CrII	-	420,7363	-2.480	KX	2.21	-5.290
24.01	CrII	-	427,5567	-1.700	KX	3,18	-5.782
24.01	CrII	_	455 8650	-0.660	MF	7 57	-5 382

Tabla A.3: Continuación HD 175640

Código	Especie	Mult.	λ [nm]	loggf	Ref.	W _{eq} [pm]	$\log N/N_T$
24.01	CrII	-	458.7264	-1.648	MFW	0.96	-5.259
24.01	CrII	-	459.2049	-1.220	MF	3.90	-5.956
24.01	CrII	-	485.6186	-2.260	MF	1.47	-5.745
24.01	CrII	-	527.9880	-2.100	MF	3.55	-5.152
			$\log N/N$	$T_T = -4.36$	± 0.21		
25.00	MnI	5	405.5544	-0.070	MFW	1.29	-4.719
25.00	MnI	16	475.4042	-0.090	MF	1.96	-4.397
25.00	MnI	16	482.3515	0.140	MF	2.83	-4.345
25.00	MnI	21	470.9712	-0.340	MF	0.76	-4.355
25.00	MnI	21	473.9110	-0.490	MF	0.47	-4.410
25.00	MnI	22	441.4890	-0.290	MF	0.69	-4.452
25.00	MnI	23	423.5142	-0.260	KX	1.87	-3.920
25.00	MnI	27	601.3479	-0.251	MFW	0.32	-4.012
25.00	MnI	28	445.7549	-0.120	MF	0.89	-4.399
25.00	MnI	48	404.5114	0.250	KX	0.48	-4.421
25.00	MnI	57	401.8100	-0.310	MF	1.29	-4.491
25.00	MnI	-	403.3062	-0.620	MF	4.43	-4.307
25.00	MnI	-	404.1355	0.290	MF	2.69	-4.626
25.00	MnI	-	405.8930	-0.450	MF	1.17	-4.373
25.00	MnI	-	407.0278	-0.950	MF	0.93	-3.990
25.00	MnI	-	407.9235	-0.420	MF	1.84	-4.163
25.00	MnI	-	408.2939	-0.350	MF	0.95	-4.584
25.00	MnI	-	443.6357	-0.290	MF	0.80	-4.360
25.00	MnI	-	445.3012	-0.490	MF	0.72	-4.202
25.00	MnI	-	445.5014	-0.390	KX	0.89	-4.129
25.00	MnI	-	445.5814	-0.510	MF	0.50	-4.291
25.00	MnI	-	445.8254	0.040	MF	0.70	-4.679
25.00	MnI	-	446.1079	-0.380	MF	0.53	-4.392
25.00	MnI	-	446.2031	0.320	MF	1.43	-4.586
25.00	MnI	-	447.0144	-0.440	MF	1.15	-4.013
25.00	MnI	-	449.0080	-0.520	MF	0.84	-4.090
25.00	MnI	-	450.2213	-0.340	MF	0.49	-4.554
25.00	MnI	-	472.7461	-0.470	MF	0.70	-4.249
25.00	MnI	-	476.1512	-0.140	MF	1.08	-4.341
25.00	MnI	-	476.2367	0.420	MF	2.06	-4.559
25.00	MnI	-	476.5846	-0.080	MF	1.15	-4.374
25.00	MnI	-	476.6418	0.100	MF	1.19	-4.547
25.00	MnI	-	478.3430	0.040	MF	1.65	-4.625
			$\log N/N$	$T_T = -4.63$	± 0.24		
25.01	MnII	2	417.4318	-3.550	KX	4.21	-4.829
25.01	MnII	2	420.5375	-3.380	KX	4.74	-4.864
25.01	MnII	6	428.4429	-2.260	KX	3.26	-4.572
25.01	MnII	-	384.4161	-1.380	KX	5.54	-4.658
25.01	MnII	-	384.8574	-3.330	KX	0.99	-4.203
25.01	MnII	-	385.9206	-2.560	KX	1.12	-4.982
25.01	MnII	-	387.8992	-1.710	KX	2.98	-5.109
25.01	MnII	-	389.8056	-1.500	KX	3.55	-5.144

Tabla A.3: Continuación HD 175640

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
25.01	MnII	-	390.2365	-2.720	KX	1.42	-4.594
25.01	MnII	-	391.7318	-1.150	KX	2.85	-5.033
25.01	MnII	-	392.6115	-2.420	KX	1.54	-4.641
25.01	MnII	-	393.0952	-2.150	KX	1.09	-4.844
25.01	MnII	-	394.1231	-2.620	K88	2.91	-4.272
25.01	MnII	-	395.2418	-1.500	KX	1.36	-4.783
25.01	MnII	-	398.6581	-2.600	KX	1.81	-4.616
25.01	MnII	-	399.5306	-2.440	KX	1.65	-4.879
25.01	MnII	-	400.0047	-1.210	KX	2.91	-4.543
25.01	MnII	-	408.1444	-2.240	KX	3.03	-4.281
25.01	MnII	-	408.5390	-2.560	KX	2.15	-4.505
25.01	MnII	-	408.7912	-2.910	KX	1.26	-4.567
25.01	MnII	-	411.0615	-1.510	KX	3.22	-4.945
25.01	MnII	-	414.0442	-2.460	КХ	1.98	-4.650
25.01	MnII	-	417.1512	-2.120	КХ	1.91	-4.712
25.01	MnII	-	418.0064	-2.830	KX	1.43	-4.542
25.01	MnII	-	418 4454	-1.950	KX	3.28	-4 458
25.01	MnII	_	420 0270	-1 740	KX	3.63	-4 566
25.01	MnII	_	420 7234	-4 470	KX	2.06	-4 504
25.01	MnII		423 8785	-3 630	KX	4 31	-4 710
25.01	MnII	_	423.0703	-2 250	KX	4.25	-4 287
25.01	MnII	_	423.9100	2.230	KX	3 32	4 330
25.01	MnII	-	424.0385	-2.070	KA VV	2 75	4 202
25.01	MnII	-	424.4240	-2.390	KX KY	5.75	-4.292
25.01	MnII	-	425.1727	-1.000	KA VV	2.02	4 720
25.01	MaII	-	420.0402	-4.230	NA VV	2.02	-4.750
25.01	MaII	-	437.7742	-2.140	KA VV	2.15	-4.970
25.01	MaII	-	437.9039	-1.650	KA VV	2 22	-4.947
25.01	MaII	-	437.9043	-1.650	NA VV	0.84	-4.947
25.01	Mall	-	430.3730	-3.030		1.07	-4.024
25.01	Mall	-	439.1901	-2.890	KA VV	1.07	-4.620
25.01	MINII	-	439.3379	-2.320	KA	2.33	-4.722
25.01	MnII	-	440.3512	-1.800	KX	2.20	-4.733
25.01	MnII	-	444.1991	-2.360	KX	1.69	-4.890
25.01	MnII	-	447.8635	-0.950	KX	4.74	-4.770
25.01	MnII	-	449.7941	-2.590	KX	1.67	-4.704
25.01	Mnll	-	450.0543	-2.070	KX	2.62	-4.619
25.01	MnII	-	450.3201	-2.160	KX	2.22	-4.653
25.01	Mnll	-	451.0206	-0.720	KX	1.71	-4.019
25.01	Mnll	-	451.8953	-1.330	KX	3.68	-4.714
25.01	MnII	-	451.9240	-2.570	KX	1.75	-4.694
25.01	MnII	-	468.9546	-2.540	KX	2.00	-4.266
25.01	MnII	-	470.2734	-2.340	KX	1.48	-4.629
25.01	MnII	-	471.7264	-1.860	KX	2.20	-4.677
25.01	MnII	-	473.0397	-2.150	KX	5.03	-4.119
25.01	MnII	-	474.9112	-2.000	KX	1.83	-4.833
25.01	MnII	-	479.1782	-1.720	KX	2.93	-4.763
25.01	MnII	-	480.6823	-1.560	KX	5.56	-4.511
25.01	MnII	-	481.1623	-2.340	KX	1.86	-4.865

Tabla A.3: Continuación HD 175640

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
25.01	MnII	-	483.0061	-1.850	KX	3.21	-4.554
25.01	MnII	-	483.9737	-1.860	KX	2.72	-4.684
25.01	MnII	-	484.2325	-2.010	KX	3.03	-4.442
25.01	MnII	-	484.7608	-1.810	KX	3.38	-4.919
25.01	MnII	-	492.0436	-2.089	K88	3.97	-4.443
25.01	MnII	-	492.1226	-1.583	K88	3.00	-4.641
25.01	MnII	-	510.2517	-1.930	KX	3.67	-4.412
25.01	MnII	-	510.7092	-1.478	K88	2.32	-4.567
25.01	MnII	-	525.1823	-1.830	KX	2.72	-4.243
25.01	MnII	-	530.7351	-2.070	KX	1.81	-4.299
25.01	MnII	-	542.1919	-2.184	K88	2.95	-4.278
			$\log N/N$	$T_T = -4.83$	± 0.18		
26.00	FeI	4	385.9911	-0.710	N4	1.28	-4.852
26.00	FeI	20	382.5881	-0.040	N4	1.19	-5.089
26.00	FeI	41	438.3545	0.200	N4	1.27	-5.024
26.00	FeI	41	441.5122	-0.620	N4	0.35	-4.777
26.00	FeI	42	420.2029	-0.710	N4	0.24	-4.917
26.00	FeI	42	427.1760	-0.160	N4	1.41	-4.603
26.00	FeI	45	390.2945	-0.470	N4	0.58	-4.698
26.00	FeI	-	404.5812	0.280	N4	1.46	-5.016
26.00	FeI	-	407.1738	-0.020	N4	1.28	-4.728
26.00	FeI	-	440.4750	-0.140	N4	0.67	-4.976
26.00	FeI	-	495.7596	0.230	N4	1.03	-4.488
			$\log N/N$	$T_T = -4.78$	± 0.29		
26.01	FeII	3	393.8290	-4.070	N4	1.00	-4.840
26.01	FeII	27	423.3172	-1.810	N4	7.11	-4.686
26.01	FeII	27	427.3326	-3.340	N4	1.31	-4.912
26.01	FeII	27	438.5387	-2.570	N4	2.29	-5.299
26.01	FeII	27	441.6830	-2.600	N4	2.33	-5.256
26.01	FeII	28	412.2668	-3.380	N4	1.15	-5.002
26.01	FeII	28	417.8862	-2.480	N4	2.96	-5.292
26.01	FeII	28	429.6572	-3.010	N4	2.15	-4.940
26.01	FeII	28	466.6758	-3.330	N4	1.08	-4.958
26.01	FeII	29	387.2766	-3.320	KX	0.77	-5.206
26.01	FeII	32	438.4319	-3.680	N4	2.14	-4.296
26.01	FeII	37	447.2929	-3.530	N4	1.55	-4.553
26.01	FeII	37	448.9183	-2.970	N4	1.87	-5.006
26.01	FeII	37	449.1405	-2.700	N4	1.87	-5.262
26.01	FeII	37	451.5339	-2.480	N4	2.70	-5.230
26.01	FeII	37	452.0224	-2.600	N4	2.52	-5.183
26.01	FeII	37	458.2835	-3.100	N4	0.94	-5.254
26.01	FeII	37	462.9339	-2.370	N4	2.86	-5.310
26.01	FeII	38	393.5962	-1.860	N4	1.01	-5.137
26.01	FeII	38	454.1524	-3.050	N4	1.58	-5.015
26.01	FeII	38	457.6340	-3.040	N4	1.54	-5.045
26.01	FeII	38	458.3837	-2.020	N4	4.30	-5.251
26.01	FeII	38	462.0521	-3.280	N4	1.46	-4.844

Tabla A.3: Continuación HD 175640

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	43	473.1453	-3.130	N4	1.04	-5.145
26.01	FeII	127	384.5180	-2.290	KX	1.58	-4.980
26.01	FeII	127	402.4547	-2.440	N4	0.61	-5.325
26.01	FeII	172	404.8832	-2.140	N4	1.50	-4.632
26.01	FeII	173	390.6035	-1.830	N4	1.01	-5.167
26.01	FeII	186	463.5316	-1.650	N4	2.00	-4.719
26.01	FeII	190	393.8970	-1.850	N4	1.17	-4.904
26.01	FeII	D	390.3756	-1.500	KX	0.67	-4.787
26.01	FeII	D	459.6015	-1.840	N4	1.19	-4.719
26.01	FeII	J	435.7584	-2.100	KX	1.39	-4.452
26.01	FeII	J	482.6683	-0.440	KX	0.70	-4.461
26.01	FeII	J	490.8151	-0.300	KX	0.80	-4.501
26.01	FeII	J	491.3295	0.010	KX	0.95	-4.736
26.01	FeII	J	494.8096	-0.320	KX	0.87	-4.441
26.01	FeII	J	494.8793	-0.010	KX	1.00	-4.654
26.01	FeII	J	495.1584	0.180	KX	0.94	-4.897
26.01	FeII	J	495.8822	-0.650	KX	0.66	-4.222
26.01	FeII	J	497.7035	0.040	KX	1.52	-4.440
26.01	FeII	J	498.4473	0.010	KX	0.94	-4.683
26.01	FeII	J	499.0509	0.180	KX	1.08	-4.802
26.01	FeII	J	499.3358	-3.650	MF	0.89	-4.741
26.01	FeII	J	500.1959	0.900	KX	2.08	-5.117
26.01	FeII	J	500.4195	0.500	КХ	1.36	-5.010
26.01	FeII	J	500.7739	-0.200	KX	0.45	-4.898
26.01	FeII	J	500.9022	-0.420	КХ	0.76	-4.386
26.01	FeII	J	501.8440	-1.220	MF	7.12	-5.113
26.01	FeII	Ţ	502.1594	-0.300	KX	0.75	-4.540
26.01	FeII	Ţ	502.2792	-0.020	KX	1.34	-4.517
26.01	FeII	Ţ	502 6806	-0.220	кх	0.75	-4 609
26.01	FeII	Ţ	503.0630	0.400	KX	1.13	-5.013
26.01	FeII	Ţ	503 2712	0.110	KX	0.89	-4 807
26.01	FeII	J	503.2712	0.610	KX	1 74	-4 945
26.01	FeII	J	506 1718	0.220	KX	0.99	-4 892
26.01	FeII	J	506 7893	-0.220	KX	0.70	-4.650
26.01	FeII	J	507.0899	0.240	KX	0.93	-4.050
26.01	Fall	J	507 5764	0.240	KX VV	0.55	5 100
26.01	Fell	J	508 2230	0.280	KA KY	0.03	-5.109
26.01	БеЦ	J	500.2230	-0.100	KA VV	0.50	-4.011
26.01	Ген	J	500 7271	0.110	КЛ VV	1.40	-5.020
26.01	Fell	J	510 6100	0.310	NA VV	0.40	-4.095
20.01	Fell	J т	511 7024	-0.280	КЛ VV	1.09	-4.844
20.01	Fell	J т	512 2660	-0.130	КЛ ME	1.08	-4.427
20.01	Fell	J	513.2009	-4.180	MF	0.53	-4.463
26.01	Fell	J	514.3880	0.100	KX	0.74	-4.854
26.01	Fell	J	514.4355	0.280	KX	0.84	-4.957
26.01	Fell	J	514.9465	0.400	KX	1.60	-4.695
26.01	FeII	J	515.0489	-0.120	KX	1.03	-4.450
26.01	FeII	J	516.0839	-2.640	KX	0.86	-4.375
26.01	FeII	J	516.6555	-0.030	KX	0.94	-4.586

Tabla A.3: Continuación HD 175640

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	517.7020	-0.180	KX	0.91	-4.489
26.01	FeII	J	518.0314	0.040	KX	0.59	-4.933
26.01	FeII	J	518.6873	-0.300	KX	0.51	-4.629
26.01	FeII	J	519.9122	0.100	KX	0.75	-4.869
26.01	FeII	J	520.3638	-0.050	KX	0.57	-4.857
26.01	FeII	J	521.5349	-0.100	KX	1.54	-4.275
26.01	FeII	J	521.5844	-0.230	KX	0.61	-4.648
26.01	FeII	J	521.6854	0.810	KX	1.63	-5.057
26.01	FeII	J	522.2361	-0.330	KX	0.86	-4.298
26.01	FeII	J	522.3260	-0.410	KX	0.50	-4.560
26.01	FeII	J	522.5968	-0.400	KX	0.70	-4.396
26.01	FeII	J	522.7483	0.850	N4	2.50	-4.795
26.01	FeII	J	523.1907	-0.640	KX	0.53	-4.235
26.01	FeII	J	523.4625	-2.050	MF	3.38	-5.240
26.01	FeII	J	523.7950	0.140	KX	1.39	-4.513
26.01	FeII	J	524.5455	-0.510	KX	0.54	-4.388
26.01	FeII	J	525.1233	0.420	N4	1.38	-4.765
26.01	FeII	J	525.3647	-0.090	KX	0.79	-4.612
26.01	FeII	J	525.4929	-3.230	KX	1.10	-4.824
26.01	FeII	J	525.7122	0.030	KX	0.90	-4.637
26.01	FeII	J	526.0254	1.070	KX	2.68	-4.964
26.01	FeII	J	526.4812	-3.190	MF	1.48	-4.699
26.01	FeII	J	527.2397	-2.030	MF	1.89	-4.327
26.01	FeII	J	529.1666	0.580	KX	1.63	-4.827
26.01	FeII	J	531.6214	0.340	N4	1.13	-4.847
26.01	FeII	J	531.6615	-1.850	MF	5.61	-4.798
26.01	FeII	J	531.8750	-0.570	KХ	0.53	-4.345
26.01	FeII	J	532.2234	-0.520	KХ	0.46	-4.447
26.01	FeII	J	533.9592	0.540	KХ	2.71	-4.391
			Log A	$V/N_T = -7.$	32		
28.01	NiII	-	406.7031	-1.290	KX	0.70	-7.317
			$\log N/N$	$T_T = -5.23$	± 0.10		
31.01	GaII	-	425.1149	0.350	RS	1.70	-5.328
31.01	GaII	-	536.0402	0.420	RS	0.90	-5.256
31.01	GaII	-	541.6318	0.640	RS	1.40	-5.091
			Log N	$V/N_T = -6.$	23		
35.01	BrII	-	470.4850	0.408	NIST	0.58	-6.231
			$\log N/N$	$T_T = -7.18$	± 0.19		
39.01	YII	1	420.4692	-1.760	HL	1.07	-7.066
39.01	YII	5	423.5727	-1.500	HL	1.05	-7.270
39.01	YII	5	435.8723	-1.320	HL	1.07	-7.457
39.01	YII	6	395.0349	-0.490	HL	3.20	-7.455
39.01	YII	12	468.2321	-1.510	HL	0.94	-7.186
39.01	YII	14	412.4904	-1.500	HL	0.99	-7.152
39.01	YII	16	393.0658	-1.610	HL	1.32	-6.871
39.01	YII	16	395.1590	-1.980	HL	0.87	-6.733
39.01	YП	20	498.2129	-1.290	HL	0.69	-7.241

Tabla A.3: Continuación HD 175640

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_2$
39.01	YII	20	508.7418	-0.170	HL	3.36	-7.219
39.01	YII	20	511.9110	-1.360	HL	1.25	-6.872
39.01	YII	20	520.0406	-0.570	HL	2.11	-7.315
39.01	YII	20	520.5722	-0.340	HL	3.05	-7.188
39.01	YII	22	478.6576	-1.290	HL	0.94	-7.080
39.01	YII	22	485.4861	-0.380	HL	2.18	-7.484
39.01	YII	22	488.3682	0.070	HL	3.97	-7.224
39.01	YII	22	490.0120	-0.090	HL	3.61	-7.235
39.01	YII	27	548.0730	-0.990	HL	0.94	-7.013
39.01	YII	27	554.4611	-1.090	HL	0.52	-7.206
39.01	YII	28	519.6422	-0.880	KX	0.91	-7.132
39.01	YII	-	439.8008	-1.000	HL	1.92	-7.405
39.01	YII	-	442.2583	-1.270	HL	1.65	-7.252
			$\log N/N$	$T_T = -7.58$	± 0.16		
40.01	ZrII	29	409.0535	-1.100	GB	0.40	-7.827
40.01	ZrII	43	393.4791	-0.900	KX	0.83	-7.681
40.01	ZrII	54	401.8368	-0.990	KX	0.58	-7.649
40.01	ZrII	79	441.4539	-1.170	KX	0.35	-7.582
40.01	ZrII	88	444.3008	-0.330	BG	1.16	-7.687
40.01	ZrII	-	402.4417	-0.970	KX	0.79	-7.493
40.01	ZrII	-	404.0236	-1.530	KX	0.37	-7.341
40.01	ZrII	-	404.5638	-0.600	KX	1.53	-7.643
40.01	ZrII	-	445.7431	-0.800	KX	1.32	-7.300
			$\log N/N$	$T_T = -5.54$	± 0.20		
54.01	XeII	-	460.3005	0.017	NIS3	0.96	-5.621
54.01	XeII	-	484.4330	0.491	NIS3	1.25	-5.890
54.01	XeII	-	529.2220	0.351	NIS3	1.26	-5.600
54.01	XeII	-	537.2390	-0.211	NIS3	0.82	-5.268
54.01	XeII	-	541.9150	0.214	NIS3	1.18	-5.371
54.01	XeII	-	571.9598	-0.746	NIST	0.16	-5.580
			$Log \Lambda$	$V/N_T = -9$.04		
60.02	NdIII	-	520.3924	-1.190	DREA	0.45	-9.038
			$\log N/N$	$T_T = -7.33$	± 0.05		
70.01	YbII	-	418.0810	-0.290	DREA	1.23	-7.357
70.01	YbII	-	535.2954	-0.340	DREA	1.30	-7.256
			Log A	$V/N_{T} = -7$.26		
79.01	AuII	-	401.6067	-1.880	RW	0.26	-7.259
			$\log N/N$	$T_T = -5.30$	± 0.09		
80.01	HgII	-	398.3941	-1.730	DW	5.90	-5.211
80.01	HgII	-	614.9469	0.150	SR	0.55	-5.382

Tabla A.3: Continuación HD 175640

A.4. HD 49024

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$				
			$\log N_{i}$	$/N_T = -3.4$	41						
6.00	CI	13	493.2049	-1.658	CNO	0.48	-3.407				
			$\log N/N_2$	$T = -3.35 \pm$	= 0.08						
6.01	CII	6	426.7001	0.560	WF	4.93	-3.274				
6.01	CII	-	392.0681	-0.230	WF	4.31	-3.434				
$\log N/N_T = -2.78 \pm 0.28$											
8.00	OI	3	394.7295	-2.096	CNO	2.36	-2.716				
8.00	OI	11	543.5775	-1.544	CNO	0.92	-2.962				
8.00	OI	11	543.6862	-1.398	CNO	1.13	-3.009				
8.00	OI	12	533.0726	-0.870	WF	2.74	-3.070				
8.00	OI	12	533.0735	-1.570	CNO	2.74	-2.370				
8.00	OI	13	502.0218	-1.725	CNO	0.69	-2.949				
$\log N/N_T = -3.94 \pm 0.22$											
12.00	MgI	2	516.7321	-1.030	WS	1.20	-3.718				
12.00	MgI	40	470.2991	-0.374	NIST	0.35	-4.163				
			$\log N/N_T$	$T = -5.08 \pm$	0.16						
12.01	MgII	9	442.7994	-1.210	WS	0.39	-5.311				
12.01	MgII	10	438.4637	-0.790	WS	1.84	-4.981				
12.01	MgII	10	439.0572	-0.530	WS	2.96	-4.948				
			$\log N_{i}$	$/N_T = -6.6$	64						
13.01	AlII	2	466.3046	-0.280	FW	0.78	-6.645				
			$\log N/N_T$	- = -4.80	± 0.29						
14.01	SiII	5	504.1024	0.290	SG	5.39	-5.300				
14.01	SiII	5	505.5984	0.441	NIST	10.80	-4.494				
14.01	SiII	301	407.2709	-2.367	SG	0.24	-4.773				
14.01	SiII	301	407.5452	-1.400	SG	2.07	-4.664				
14.01	SiII	703	546.6432	-0.190	NIST	2.07	-4.556				
14.01	SiII	726	419.8133	-0.611	LA	0.56	-4.649				

Tabla A.4: Abundancias Químicas línea por línea para HD 49024.

	$Log N/N_T = -6.64$										
13.01	AlII	2	466.3046	-0.280	FW	0.78	-6.645				
			$\log N/N_T$	4.80 ±	± 0.29						
14.01	SiII	5	504.1024	0.290	SG	5.39	-5.300				
14.01	SiII	5	505.5984	0.441	NIST	10.80	-4.494				
14.01	SiII	301	407.2709	-2.367	SG	0.24	-4.773				
14.01	SiII	301	407.5452	-1.400	SG	2.07	-4.664				
14.01	SiII	703	546.6432	-0.190	NIST	2.07	-4.556				
14.01	SiII	726	419.8133	-0.611	LA	0.56	-4.649				
14.01	SiII	-	407.6780	-1.670	SG	0.47	-5.162				
Log N/N_T = -5.20 \pm 0.24											
15.01	PII	6	534.4729	-0.390	NIS3	2.66	-4.900				
15.01	PII	7	529.6077	-0.160	WS	2.05	-5.321				
15.01	PII	10	525.3479	0.330	WS	4.41	-4.964				
15.01	PII	10	542.5880	0.180	NIS3	2.29	-5.551				
15.01	PII	15	460.2069	0.740	WS	2.81	-5.240				
			$\log N/N_T$	$T = -5.08 \pm$	= 0.24						
16.01	SII	1	499.1969	-0.650	WS	0.50	-5.014				
16.01	SII	1	514.2322	-0.822	NIST	0.63	-4.853				
16.01	SII	6	542.8655	-0.129	NIST	0.94	-5.045				
16.01	SII	6	543.2797	0.257	NIST	1.12	-5.300				
16.01	SII	6	545.3855	0.482	NIST	1.12	-5.497				
16.01	SII	9	481.5552	0.180	WM	1.10	-5.400				
16.01	SII	15	501.4042	0.030	KX	1.31	-4.901				
16.01	SII	39	520.1027	0.050	WS	0.76	-4.829				

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
16.01	SII	-	415.3068	0.620	WS	1.69	-4.873
			$\log N_{i}$	$/N_T = -3.5$	58		
20.00	CaI	2	422.6728	0.240	FW	2.80	-3.576
			$\log N_{i}$	$/N_T = -6.3$	39		
20.01	CaII	1	393.3663	0.130	WM	11.92	-6.388
			$\log N_{i}$	$/N_T = -8.5$	51		
21.01	ScII	7	424.6822	0.240	LD	1.75	-8.514
			$\log N/N_T$	$r = -6.21 \pm$	0.28		
22.01	TiII	11	398.1990	-2.530	KX	0.42	-6.280
22.01	TiII	19	439.5031	-0.660	MF	5.37	-6.194
22.01	TiII	20	428.7873	-2.020	MF	1.11	-6.082
22.01	TiII	21	416.1529	-2.360	MF	1.21	-5.691
22.01	Till	33	422.7334	-2.360	KX	0.89	-5.828
22.01	TiII	40	441.7714	-1.430	MF	2.78	-6.082
22.01	TiII	41	429.0215	-1.120	MF	2.37	-6.502
22.01	TiII	41	430.0042	-0.770	MF	4.87	-6.184
22.01	TiII	50	453.3960	-0.770	MF	5.86	-5.863
22.01	TiII	51	439.4059	-1.590	MF	1.04	-6.479
22.01	Till	59	465.7200	-2.150	MF	1.33	-5.782
22.01	Till	61	439.5839	-2.170	MF	1.12	-5.851
22.01	Till	69	533.6786	-1.700	MF	0.97	-6.229
22.01	Till	70	515.4070	-1.920	MF	0.44	-6.402
22.01	Till	70	518.8687	-1.210	MF	1.70	-6.417
22.01	1111 T'H	70	522.6538	-1.300	MF	1.40	-6.445
22.01	1111 T:H	82	457.1971	-0.530	MF	4.74	-6.268
22.01	1111 T:11	80	512.9150	-1.390	ME	1.47	-0.109
22.01	1111 Till	80 87	102 8228	-1.550	МЕ	1.70	-0.337
22.01	THI	07	402.8558	-1.000	ME	1.70	-0.409
22.01	TIII	92	477.9905	1 100	ME	1.08	-0.280
22.01	TIII	03	400.5005	1.770	ME	0.34	6.420
22.01	Till	103	521 1536	-1.360	KX	0.54	-6.427
22.01	Till	103	436 7652	-1 270	MF	1.46	-5 964
22.01	Till	105	416 3644	-0.400	MF	3 34	-6.267
22.01	Till	113	507.2287	-0.750	MF	0.81	-6.521
22.01	Till	114	491.1195	-0.340	MF	2.54	-6.279
22.01	Till	115	441.1072	-1.060	MF	0.66	-6.331
22.01	TiII	117	479.8532	-2.430	MF	0.39	-6.186
22.01	TiII	-	393.2023	-1.780	MF	0.69	-6.523
22.01	TiII	-	398.7606	-2.730	MF	0.54	-5.946
22.01	TiII	-	405.3821	-1.210	MF	0.74	-6.696
22.01	TiII	-	429.4094	-1.110	MF	2.32	-6.565
22.01	TiII	-	430.1922	-1.160	MF	2.87	-6.329
22.01	TiII	-	430.7866	-1.290	MF	4.41	-5.798
22.01	TiII	-	431.2860	-1.160	MF	3.64	-6.122
22.01	TiII	-	432.0950	-1.870	MF	0.87	-6.315
22.01	Till	-	438.6847	-1.260	MF	1.66	-5.889

Tabla A.4: Continuación HD 49024

Código

22.01

Especie

TiII

Mult.

-

nuación HD 49024									
loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$						
-1.270	MF	1.69	-6.529						
-2.640	KX	0.63	-5.667						
-2.460	MF	0.77	-5.753						
-2.410	MF	0.63	-5.928						
-1.450	MF	1.25	-6.591						
-2.080	MF	2.13	-5.616						
-0.820	MF	1.44	-6.157						
-0.750	MF	3.63	-6.567						
-2.110	KX	0.43	-6.214						
= -4.81±	0.12								
-0.114	MFW	0.57	-5.014						
-0.231	MFW	0.70	-4.799						
-0.361	MFW	0.60	-4.744						
0.160	MF	0.79	-4.684						
= -5.78±	0.25								
-2.190	KX	1.12	-6.119						
-2.430	KX	0.79	-5.751						
-2.360	KX	1.46	-5.464						
-2.410	KX	0.59	-5.923						

Tabla A.4: Continuad

 λ [nm]

439.9765

22.01	TiII	-	440.9235	-2.640	KX	0.63	-5.667
22.01	TiII	-	441.8331	-2.460	MF	0.77	-5.753
22.01	TiII	-	444.1729	-2.410	MF	0.63	-5.928
22.01	TiII	-	445.0482	-1.450	MF	1.25	-6.591
22.01	TiII	-	446.4448	-2.080	MF	2.13	-5.616
22.01	TiII	-	448.8325	-0.820	MF	1.44	-6.157
22.01	TiII	-	450.1270	-0.750	MF	3.63	-6.567
22.01	TiII	-	526.2141	-2.110	KX	0.43	-6.214
			$\log N/N_T$	$T = -4.81 \pm$	= 0.12		
24.00	CrI	1	425.4336	-0.114	MFW	0.57	-5.014
24.00	CrI	1	427.4797	-0.231	MFW	0.70	-4.799
24.00	CrI	1	428.9717	-0.361	MFW	0.60	-4.744
24.00	CrI	7	520.8425	0.160	MF	0.79	-4.684
			$\log N/N_T$	r = -5.78±	- 0.25		
24.01	CrII	19	405.1930	-2.190	KX	1.12	-6.119
24.01	CrII	23	524.9437	-2.430	KX	0.79	-5.751
24.01	CrII	24	530.5853	-2.360	KX	1.46	-5.464
24.01	CrII	26	407.2561	-2.410	KX	0.59	-5.923
24.01	CrII	26	413.2419	-2.350	KX	0.61	-5.948
24.01	CrII	30	483.6229	-2.250	MF	1.80	-5.440
24.01	CrII	30	487.6399	-1.460	KX	2.73	-5.948
24.01	CrII	30	488.4607	-2.080	MF	1.81	-5.607
24.01	CrII	43	523.2496	-2.090	KX	2.09	-5.398
24.01	CrII	43	523.7329	-1.160	MF	3.13	-6.029
24.01	CrII	43	527.4964	-1.290	KX	2.09	-6.197
24.01	CrII	43	530.8440	-1.810	MF	0.90	-6.150
24.01	CrII	43	533.4869	-1.560	KX	2.70	-5.746
24.01	CrII	44	455.4988	-1.380	MF	2.02	-6.134
24.01	CrII	44	455.8650	-0.660	MF	5.05	-5.999
24.01	CrII	44	458.8199	-0.630	MF	5.41	-5.921
24.01	CrII	44	461.6629	-1.290	MF	4.17	-5.625
24.01	CrII	44	461.8803	-1.110	MF	4.76	-5.636
24.01	CrII	129	391.1321	-2.060	KX	1.30	-5.282
24.01	CrII	130	386.6003	-2.350	KX	0.33	-5.670
24.01	CrII	180	422.1996	-1.930	KX	0.43	-5.623
24.01	CrII	181	412.7057	-1.770	KX	0.80	-5.481
24.01	CrII	183	397.9505	-0.730	KX	2.26	-5.933
24.01	CrII	190	490.1623	-0.830	KX	1.25	-5.793
24.01	CrII	190	491.2462	-0.950	KX	0.73	-5.953
24.01	CrII	191	446.5731	-1.180	KX	1.29	-5.435
24.01	CrII	193	407.0840	-0.750	KX	0.88	-6.068
24.01	CrII	-	390.5644	-0.900	KX	2.67	-5.805
24.01	CrII	-	405.4076	-2.480	KX	1.81	-5.561
24.01	CrII	-	407.7511	-2.780	KX	1.41	-5.405
24.01	CrII	-	408.6128	-2.420	KX	0.38	-6.120
24.01	CrII	_	420.7363	-2.480	KX	0.54	-5.845

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
24.01	CrII	-	485.6186	-2.260	MF	0.97	-5.772
			$\log N/N_T$	$T = -3.84 \pm$	0.25		
25.00	MnI	16	475.4042	-0.090	MF	1.03	-4.140
25.00	MnI	21	470.9712	-0.340	MF	0.45	-4.000
25.00	MnI	23	423.5142	-0.260	KX	1.33	-3.512
25.00	MnI	28	445.7549	-0.120	MF	0.49	-4.087
25.00	MnI	57	401.8100	-0.310	MF	0.57	-4.276
25.00	MnI	-	392.2684	0.050	KX	0.58	-3.785
25.00	MnI	-	403.3062	-0.620	MF	3.00	-4.035
25.00	MnI	-	405.8930	-0.450	MF	1.63	-3.559
25.00	MnI	-	407.0278	-0.950	MF	0.69	-3.510
25.00	MnI	-	413.5034	-0.030	MF	0.60	-3.507
25.00	MnI	-	446.1079	-0.380	MF	0.52	-3.798
25.00	MnI	-	446.2031	0.320	MF	1.38	-4.003
25.00	MnI	-	446.4682	-0.100	MF	0.77	-3.965
25.00	MnI	-	447.0144	-0.440	MF	0.55	-3.777
25.00	MnI	-	449.0080	-0.520	MF	0.81	-3.502
25.00	MnI	-	450.2213	-0.340	MF	0.30	-4.172
25.00	MnI	-	472.7461	-0.470	MF	0.78	-3.590
25.00	MnI	-	476.1512	-0.140	MF	0.67	-3.979
			$\log N/N_{T}$	$T = -4.92 \pm$	- 0.29		
25.01	MnII	2	417.4318	-3.550	KX	1.95	-5.258
25.01	MnII	2	420.5375	-3.380	KX	1.92	-5.439
25.01	MnII	6	428.4429	-2.260	KX	2.77	-4.579
25.01	MnII	-	385.9206	-2.560	KX	0.89	-4.965
25.01	MnII	-	393.0952	-2.150	KX	1.54	-4.539
25.01	MnII	-	395.2418	-1.500	KX	1.08	-4.821
25.01	MnII	-	399.5306	-2.440	KX	0.65	-5.238
25.01	MnII	-	408.1444	-2.240	KX	1.36	-4.714
25.01	MnII	-	408.5390	-2.560	KX	1.12	-4.765
25.01	MnII	-	410.9217	-3.320	KX	0.53	-4.449
25.01	MnII	-	413.6902	-1.290	KX	2.95	-5.132
25.01	MnII	-	418.0064	-2.830	KX	1.29	-4.470
25.01	MnII	-	418.4454	-1.950	KX	0.92	-5.178
25.01	MnII	-	420.0270	-1.740	KX	1.87	-4.990
25.01	MnII	-	420.7234	-4.470	KX	1.10	-4.652
25.01	MnII	-	423.9188	-2.250	KX	3.16	-4.481
25.01	MnII	-	424.0385	-2.070	KX	2.19	-4.560
25.01	MnII	-	424.4248	-2.390	KX	1.03	-5.062
25.01	MnII	-	425.1727	-1.060	KX	4.08	-5.011
25.01	MnII	-	439.1961	-2.890	KX	0.46	-4.912
25.01	MnII	-	439.3379	-2.320	KX	0.54	-5.406
25.01	MnII	-	440.3512	-1.800	KX	2.25	-4.621
25.01	MnII	-	444.1991	-2.360	KX	0.83	-5.155
25.01	MnII	-	447.8635	-0.950	KX	2.91	-5.236
25.01	MnII	-	451.8953	-1.330	KX	1.54	-5.296
25.01	MnII	-	451.9240	-2.570	KX	0.82	-4.986

Tabla A.4: Continuación HD 49024

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\mathrm{Log}\;N/N_T$
25.01	MnII	-	472.7843	-2.020	KX	1.65	-5.167
25.01	MnII	-	473.0397	-2.150	KX	2.85	-4.658
25.01	MnII	-	475.5717	-1.240	KX	5.71	-4.689
25.01	MnII	-	476.4728	-1.350	KX	4.65	-4.916
25.01	MnII	-	479.1782	-1.720	KX	1.10	-5.305
25.01	MnII	-	480.6823	-1.560	KX	2.80	-5.238
25.01	MnII	-	484.7608	-1.810	KX	2.12	-5.183
25.01	MnII	-	510.2517	-1.930	KX	2.33	-4.721
25.01	MnII	-	517.7648	-1.770	KX	3.25	-4.596
25.01	MnII	-	390.2365	-2.720	KX	0.89	-4.713
25.01	MnII	-	392.6115	-2.420	KX	0.65	-4.972
25.01	MnII	-	423.8785	-3.630	KX	3.59	-4.706
			$\log N/N_2$	$T = -4.25 \pm$	0.25		
26.00	FeI	20	382.5881	-0.040	N4	2.01	-4.225
26.00	FeI	41	438.3545	0.200	N4	1.02	-4.600
26.00	FeI	45	390.2945	-0.470	N4	1.01	-3.880
26.00	FeI	-	404.5812	0.280	N4	2.45	-4.145
26.00	FeI	-	407.1738	-0.020	N4	0.66	-4.528
26.00	FeI	-	440.4750	-0.140	N4	1.27	-4.108
			$\log N/N_2$	$T = -4.31 \pm$	0.29		
26.01	FeII	3	393.8290	-4.070	N4	2.09	-4.308
26.01	FeII	27	430.3176	-2.610	N4	5.93	-4.140
26.01	FeII	27	438.5387	-2.570	N4	3.76	-4.808
26.01	FeII	27	441.6830	-2.600	N4	4.39	-4.597
26.01	FeII	28	412.2668	-3.380	N4	3.86	-4.057
26.01	FeII	28	429.6572	-3.010	N4	3.13	-4.576
26.01	FeII	32	438.4319	-3.680	N4	2.14	-4.217
26.01	FeII	37	447.2929	-3.530	N4	1.74	-4.408
26.01	FeII	37	452.0224	-2.600	N4	4.01	-4.693
26.01	FeII	37	462.9339	-2.370	N4	5.65	-4.420
26.01	FeII	38	450.8288	-2.210	N4	5.50	-4.690
26.01	FeII	38	452.2634	-2.030	N4	6.32	-4.537
26.01	FeII	38	454.1524	-3.050	N4	2.73	-4.578
26.01	FeII	38	458.3837	-2.020	N4	5.88	-4.706
26.01	FeII	38	462.0521	-3.280	N4	1.98	-4.586
26.01	FeII	43	473.1453	-3.130	N4	2.67	-4.497
26.01	FeII	153	382.7083	-2.360	N4	3.35	-4.181
26.01	FeII	186	463.5316	-1.650	N4	2.57	-4.531
26.01	FeII	D	459.6015	-1.840	N4	2.43	-4.258
26.01	FeII	J	435.7584	-2.100	KX	1.39	-4.431
26.01	FeII	J	457.9527	-2.510	KX	0.81	-4.238
26.01	FeII	J	482.6683	-0.440	KX	1.44	-4.115
26.01	FeII	J	495.1584	0.180	KX	2.47	-4.339
26.01	FeII	J	495.3987	-2.760	KX	0.53	-4.491
26.01	FeII	J	495.8822	-0.650	KX	0.91	-4.112
26.01	FeII	J	498.4473	0.010	KX	3.56	-3.788
26.01	FeII	J	500.7450	-0.360	KX	0.70	-4.534

Tabla A.4: Continuación HD 49024

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	501.8440	-1.220	MF	10.14	-4.306
26.01	FeII	J	502.1594	-0.300	KX	1.15	-4.370
26.01	FeII	J	502.2792	-0.020	KX	3.50	-3.884
26.01	FeII	J	502.6806	-0.220	KX	2.61	-3.886
26.01	FeII	J	503.0630	0.400	KX	1.79	-4.799
26.01	FeII	J	506.0257	-0.520	KX	0.88	-4.220
26.01	FeII	J	506.1718	0.220	KX	2.42	-4.383
26.01	FeII	J	506.7893	-0.200	KX	1.99	-4.102
26.01	FeII	J	507.5764	0.280	KX	2.13	-4.473
26.01	FeII	J	509.3576	0.110	KX	2.62	-4.170
26.01	FeII	J	509.7271	0.310	KX	3.78	-4.006
26.01	FeII	J	510.6109	-0.280	KX	0.84	-4.534
26.01	FeII	J	511.7034	-0.130	KX	0.84	-4.637
26.01	FeII	J	511.9341	-0.560	KX	1.94	-3.724
26.01	FeII	J	513.2669	-4.180	MF	1.53	-3.847
26.01	FeII	J	514.4355	0.280	KX	1.66	-4.632
26.01	FeII	J	514.9465	0.400	KX	1.62	-4.775
26.01	FeII	J	516.0839	-2.640	KX	1.87	-3.925
26.01	FeII	J	516.6555	-0.030	KX	1.52	-4.381
26.01	FeII	J	518.0314	0.040	KX	1.50	-4.489
26.01	FeII	J	518.6873	-0.300	KX	1.06	-4.317
26.01	FeII	J	519.9122	0.100	KX	1.22	-4.675
26.01	FeII	J	520.0804	-0.370	KX	0.81	-4.426
26.01	FeII	J	520.3638	-0.050	KX	1.23	-4.515
26.01	FeII	J	522.3260	-0.410	KX	1.14	-4.197
26.01	FeII	J	522.4411	-0.570	KX	0.99	-4.105
26.01	FeII	J	522.7483	0.850	N4	5.62	-3.966
26.01	FeII	J	523.4625	-2.050	MF	7.33	-4.011
26.01	FeII	J	523.7950	0.140	КХ	2.09	-4.328
26.01	FeII	J	525.1233	0.420	N4	4.61	-3.787
26.01	FeII	J	525,4400	-0.770	кх	0.97	-3.874
26.01	FeII	J	525.4929	-3.230	KX	3.55	-3.967
26.01	FeII	J	526.0254	1.070	KX	5.34	-4.275
26.01	FeII	J	526.4177	0.300	N4	2.65	-4.275
26.01	FeII	J	526.4812	-3.190	MF	1.27	-4.733
26.01	FeII	J	527,6002	-1.940	MF	5.37	-4.732
26.01	FeII	J	533,9592	0.540	KX	3.87	-4,146
26.01	FeII	Ţ	540,2059	0.469	FW06	4.05	-3.954
26.01	FeII	J	540 8811	-2.393	K88	1.05	-4 313
26.01	FeII	J	542,5257	-3,390	FW06	3.62	-3 795
26.01	FeII	J	544,2351	-0.303	K88	0.90	-4 342
26.01	FeII	Ţ	544 3440	-0 591	K88	0.73	-4 197
26.01	FeII	Ţ	544 5807	-0 106	K88	0.58	-4 766
26.01	Fell	J	545 0000	-0.100	K 88	0.56	-4.240
26.01	Fell	J	550 2671	-0.550	K 88 1700	0.00	-4.240 _/ 915
26.01	Fell	J T	550.2071	-0.137	107	0.40 1.60	-4.015
26.01	Fall	J T	558 8000	0.923	101	-+.00 2 40	-4.232
20.01	ren	J	556.8220	0.000	V 00	2.49	-4.040

Tabla A.4: Continuación HD 49024

C(1)	г [,]			1 6	D (Т Г Г 1	τ λ7/λ7
Codigo	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	496.9365	-0.776	K03	1.53	-3.696
			$\log N$	$/N_T = -3.$	68		
28.01	NiII	-	406.7031	-1.290	KX	16.40	-3.676
			$\log N$	$/N_T = -6.$	66		
35.01	BrII	-	470.4850	0.408	NIST	0.53	-6.656
			$\log N$	$/N_T = -6.$	88		
38.01	SrII	3	416.1792	-0.500	KX	1.16	-6.882
			$\log N/N_{2}$	$T = -7.05 \pm$	= 0.22		
39.01	YII	1	420.4692	-1.760	HL	0.42	-7.096
39.01	YII	5	423.5727	-1.500	HL	1.01	-6.853
39.01	YII	5	430.9620	-0.750	HL	3.16	-6.745
39.01	YII	5	435.8723	-1.320	HL	1.18	-6.961
39.01	YII	20	508.7418	-0.170	HL	2.49	-7.114
39.01	YII	20	520.0406	-0.570	HL	1.46	-7.149
39.01	YII	20	520.5722	-0.340	HL	2.32	-7.027
39.01	YII	22	482.3304	-1.110	HL	1.06	-6.802
39.01	YII	22	490.0120	-0.090	HL	1.60	-7.556
39.01	YII	-	442.2583	-1.270	HL	0.86	-7.185
			$\log N/N_{2}$	$T = -7.31 \pm$	= 0.29		
40.01	ZrII	15	421.1907	-0.980	KX	0.44	-7.596
40.01	ZrII	54	401.8368	-0.990	KX	0.22	-7.691
40.01	ZrII	86	437.9742	-0.360	KX	0.58	-7.598
40.01	ZrII	88	444.3008	-0.330	BG	0.72	-7.543
40.01	ZrII	97	418.6672	-0.580	KX	0.89	-7.047
40.01	ZrII	130	449.4418	-0.480	KX	0.59	-7.047
40.01	ZrII	-	399.8954	-0.670	GB	1.00	-7.468
40.01	ZrII	-	404.0236	-1.530	KX	0.41	-6.877
40.01	ZrII	-	404.5638	-0.600	KX	2.39	-6.898
40.01	ZrII	-	415.6276	-0.710	GB	0.72	-7.533
40.01	ZrII	-	416.1213	-0.720	BG	1.56	-7.089
40.01	ZrII	-	445.7431	-0.800	KX	0.55	-7.354
			$\log N$	$/N_T = -5.$	60		
54.01	XeII	-	537.2390	-0.211	NIS3	0.89	-5.600
			$\log N$	$/N_T = -8.$	85		
56.01	BaII	1	493.4066	0.000	WM	0.55	-8.853
			$\log N$	$/N_T = -8.$	90		
60.02	NdIII	-	512.7044	-1.080	DREA	0.68	-8.903
			$\log N$	$N_T = -7.4$	45		
70.01	YbII	-	535.2954	-0.340	DREA	0.53	-7.453
			$\log N/N$	$T = -6.62 \pm$	- 0.10		
79.01	AuII	-	401.6067	-1.880	RW	0.88	-6.722
79.01	AuII	-	405.2790	-1.690	RW	1.50	-6.517
			Log N	$N_T = -3.5$	92		
80.00	HgI	-	404.6609	-0.818	BLD	1.10	-3.919
	8*		Log N	$N_T = -5$	55		
80.01	Holl	-	398 3941	-1.730	DW	5.11	-5.551
50.01	11511		575.5741	1.730	211	5.11	5.551

Tabla A.4: Continuación HD 49024

A.5. HD 129174

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$			
			$\log N$	$/N_T = -3.0$	07					
6.00	CI	6	477.1742	-1.866	CNO	0.81	-3.073			
			$\log N/N_{2}$	$T = -3.74 \pm$	0.27					
6.01	CII	2	657.8052	-0.030	WF	2.13	-3.956			
6.01	CII	4	391.8968	-0.530	WF	3.03	-3.349			
6.01	CII	-	392.0681	-0.230	WF	2.31	-3.903			
			$\log N/N_2$	$T = -2.82 \pm$	0.17					
8.00	OI	3	394.7295	-2.096	CNO	2.50	-2.693			
8.00	OI	9	645.4444	-1.088	CNO	1.79	-3.006			
8.00	OI	11	543.5775	-1.544	CNO	1.26	-2.817			
8.00	OI	11	543.6862	-1.398	CNO	0.97	-3.088			
8.00	OI	12	532.9673	-1.020	WF	4.25	-2.629			
8.00	OI	13	502.0218	-1.725	CNO	1.26	-2.672			
			$\log N$	$/N_T = -4.4$	44					
11.00	NaI	-	439.3379	-2.320	KX	2.70	-4.438			
			$\log N/N_2$	$T = -3.64 \pm$	0.06					
12.00	MgI	2	516.7321	-1.030	WS	1.66	-3.701			
12.00	MgI	40	470.2991	-0.374	NIST	1.70	-3.575			
Log N/N_T = -4.78± 0.09										
12.01	MgII	5	384.8211	-1.590	WS	1.83	-4.692			
12.01	MgII	9	442.7994	-1.210	WS	1.25	-4.745			
12.01	MgII	10	438.4637	-0.790	WS	2.14	-4.898			
			$\log N$	$/N_T = -6.3$	81					
13.01	AlII	2	466.3046	-0.280	FW	0.47	-6.812			
			$\log N/N_2$	$T = -4.18 \pm$	0.20					
14.01	SiII	5	505.5984	0.441	NIST	15.77	-4.002			
14.01	SiII	4	595.7559	-0.349	NIST	5.88	-4.289			
14.01	SiII	4	597.8930	-0.061	NIST	9.38	-3.919			
14.01	SiII	301	407.2709	-2.367	SG	1.24	-3.930			
14.01	SiII	301	407.5452	-1.400	SG	3.19	-4.312			
14.01	SiII	703	546.6432	-0.190	NIST	4.48	-3.957			
14.01	SiII	706	420.0658	-0.820	KP	2.28	-3.959			
14.01	SiII	726	419.8133	-0.611	LA	0.87	-4.401			
14.01	SiII	733	566.9563	0.266	LA	1.53	-4.318			
14.01	SiII	733	568.8817	0.106	LA	1.13	-4.340			
14.01	SiII	-	407.6780	-1.670	SG	2.01	-4.355			
14.01	SiII	-	420.0898	-0.670	KP	1.41	-4.412			
			$\log N/N_2$	$T = -5.41 \pm$	0.15					
15.01	PII	5	603.4039	-0.220	NIS3	1.55	-5.233			
15.01	PII	5	604.3084	0.416	NIS3	3.13	-5.216			
15.01	PII	6	534.4729	-0.390	NIS3	1.09	-5.416			
15.01	PII	7	529.6077	-0.160	NIS3	1.71	-5.332			
15.01	PII	10	525.3479	0.330	WS	2.81	-5.308			
15.01	PII	10	542.5880	0.180	NIS3	1.85	-5.602			
15.01	PII	15	460.2069	0.740	WS	1.80	-5.506			

Tabla A.5: Abundancias Químicas línea por línea para HD 129174.

22.01

22.01

22.01

22.01

TiII

TiII

TiII

TiII

-

-

_

_

401.2383

405.3821

429.4094

431.2860

-1.610

-1.210

-1.110

-1.160

MF

MF

MF

MF

3.26

1.99

2.50

2.07

-6.034

-6.150

-6.496

-6.525

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$				
15.01	PII	-	417.8463	-0.410	KX	2.14	-5.653				
			$\log N/N_{2}$	$T = -4.67 \pm$	0.19						
16.01	SII	1	499.1969	-0.650	WS	1.07	-4.395				
16.01	SII	1	502.7203	-0.720	WS	0.92	-4.622				
16.01	SII	1	514.2322	-0.822	NIST	0.96	-4.434				
16.01	SII	6	542.8655	-0.129	NIST	1.30	-4.665				
16.01	SII	6	545.3855	0.482	NIST	2.48	-4.659				
16.01	SII	7	500.9567	-0.090	WM	1.39	-4.767				
16.01	SII	9	481.5552	0.180	WM	1.89	-4.838				
16.01	SII	11	560.6151	0.309	NIST	1.54	-4.860				
16.01	SII	15	501.4042	0.030	KX	1.46	-4.662				
16.01	SII	38	532.0723	0.460	WS	1.21	-4.729				
16.01	SII	39	520.1027	0.050	WS	0.51	-4.909				
16.01	SII	39	521.2620	0.240	WS	1.43	-4.428				
16.01	SII	44	416.2665	0.780	WS	1.57	-4.936				
16.01	SII	-	415.3068	0.620	WS	1.42	-4.877				
16.01	SII	-	503.2434	0.180	WS	2.95	-4.318				
			$\log N$	$/N_T = -5.2$	73						
20.01	CaII	1	393.3663	0.130	WM	18.09	-5.731				
			$\log N/N_2$	$T = -7.36 \pm$	0.27						
21.01	ScII	7	424.6822	0.240	LD	5.02	-7.627				
21.01	ScII	15	431.4083	-0.100	MFW	5.23	-7.084				
			$\log N/N_2$	$T = -6.29 \pm$	0.28						
22.01	TiII	19	439.5031	-0.660	MF	4.09	-6.530				
22.01	TiII	40	441.7714	-1.430	MF	1.36	-6.509				
22.01	TiII	41	429.0215	-1.120	MF	2.62	-6.415				
22.01	TiII	50	453.3960	-0.770	MF	3.65	-6.461				
22.01	TiII	59	465.7200	-2.150	MF	1.16	-5.838				
22.01	TiII	61	439.5839	-2.170	MF	1.25	-5.776				
22.01	TiII	69	533.6786	-1.700	MF	1.19	-6.104				
22.01	TiII	70	518.8687	-1.210	MF	1.39	-6.513				
22.01	TiII	82	457.1971	-0.530	MF	3.43	-6.596				
22.01	TiII	86	518.5902	-1.350	MF	2.66	-5.815				
22.01	TiII	87	402.8338	-1.000	MF	2.61	-6.180				
22.01	TiII	92	477.9985	-1.370	MF	1.35	-6.146				
22.01	TiII	92	480.5085	-1.100	MF	1.19	-6.477				
22.01	TiII	93	442.1938	-1.770	MF	0.39	-6.352				
22.01	TiII	94	431.6794	-1.420	MF	1.25	-6.137				
22.01	TiII	104	436.7652	-1.270	MF	0.60	-6.397				
22.01	TiII	105	416.3644	-0.400	MF	1.83	-6.679				
22.01	TiII	106	406.4354	-1.610	KX	0.32	-6.342				
22.01	TiII	114	487.4014	-0.790	MF	0.68	-6.571				
22.01	TiII	115	441.1072	-1.060	MF	0.95	-6.140				

Tabla A.5: Continuación HD 129174

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
22.01	Till	-	439.9765	-1.270	MF	1.89	-6.445
22.01	Till	-	446.4448	-2.080	MF	1.43	-5.833
22.01	Till	-	448.8325	-0.820	MF	1.17	-6.258
22.01	Till	-	450.1270	-0.750	MF	3.12	-6.678
22.01	TiII	-	456.3757	-0.960	MF	2.22	-6.663
22.01	TiII	-	526.2141	-2.110	KX	0.89	-5.846
22.01	TiII	-	526.8615	-1.620	MF	0.78	-5.907
			$\log N/N_2$	$T = -4.45 \pm$	= 0.17		
24.00	CrI	1	425.4336	-0.114	MFW	1.69	-4.573
24.00	CrI	1	428.9717	-0.361	MFW	2.05	-4.208
24.00	CrI	7	520.6037	0.020	MF	0.97	-4.563
			$\log N/N_2$	$T = -5.48 \pm$	- 0.19		
24.01	CrII	19	405.1930	-2.190	KX	1.74	-5.820
24.01	CrII	23	524.9437	-2.430	KX	1.76	-5.261
24.01	CrII	26	407.2561	-2.410	KX	0.92	-5.655
24.01	CrII	26	413.2419	-2.350	KX	1.44	-5.457
24.01	CrII	30	481.2337	-1.800	MF	2.17	-5.713
24.01	CrII	30	482.4127	-1.220	MF	5.24	-5.420
24.01	CrII	30	483.6229	-2.250	MF	2.28	-5.233
24.01	CrII	30	484.8235	-1.140	MF	4.63	-5.683
24.01	CrII	30	487.6399	-1.460	KX	5.13	-5.215
24.01	CrII	30	488.4607	-2.080	MF	1.69	-5.591
24.01	CrII	39	456.5740	-2.110	MF	2.66	-5.175
24.01	CrII	43	523.2496	-2.090	KX	1.43	-5.569
24.01	CrII	43	523.7329	-1.160	MF	5.50	-5.288
24.01	CrII	43	527.4964	-1.290	KX	3.82	-5.647
24.01	CrII	43	531.3590	-1.650	MF	3.26	-5.440
24.01	CrII	43	533.4869	-1.560	KX	2.73	-5.677
24.01	CrII	44	455.4988	-1.380	MF	4.29	-5.443
24.01	CrII	44	458.8199	-0.630	MF	7.08	-5.325
24.01	CrII	44	461.6629	-1.290	MF	3.64	-5.712
24.01	CrII	44	461.8803	-1.110	MF	5.26	-5.424
24.01	CrII	44	463.4070	-1.240	MF	4.57	-5.500
24.01	CrII	129	391.1321	-2.060	KX	1.28	-5.245
24.01	CrII	162	414.5781	-1.160	KX	3.27	-5.341
24.01	CrII	165	408.2285	-1.230	KX	1.89	-5.673
24.01	CrII	167	386.5596	-0.780	KX	3.61	-5.621
24.01	CrII	178	469.7598	-1.880	MF	1.11	-5.156
24.01	CrII	180	422.1996	-1.930	KX	0.73	-5.328
24.01	CrII	181	412.7057	-1.770	KX	0.75	-5.471
24.01	CrII	190	490.1623	-0.830	KX	1.71	-5.567
24.01	CrII	190	491.2462	-0.950	KX	1.74	-5.438
24.01	CrII	191	446.5731	-1.180	KX	1.00	-5.530
24.01	CrII	193	407.0840	-0.750	KX	1.66	-5.683
24.01	CrII	-	386.6003	-2.350	KX	0.25	-5.754
24.01	CrII	-	386.6523	-2.070	KX	0.88	-5.431
24.01	CrII	-	401.2496	-0.890	KX	3.09	-5.495

Tabla A.5: Continuación HD 129174

Código

24.01

24.01

24.01

24.01

24.01

24.01

24.01

25.00

25.00

25.00

25.00

25.00

25.00 25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00

25.00 25.00

25.00

Especie

CrII

CrII

CrII

CrII

CrII

CrII

CrII

MnI

MnI

MnI

MnI

MnI MnI

MnI

MnI

MnI

MnI

MnI

MnI

MnI

MnI

MnI

MnI

MnI

MnI

MnI

MnI MnI

MnI

MnI

Tabla A.5: Continuación HD 129174											
Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$						
-	405.4076	-2.480	KX	2.50	-5.296						
-	408.6128	-2.420	KX	0.81	-5.709						
-	427.5567	-1.700	KX	4.60	-5.135						
-	455.8650	-0.660	MF	6.90	-5.350						
-	459.2049	-1.220	MF	3.90	-5.710						
-	485.6186	-2.260	MF	1.38	-5.530						
-	527.9880	-2.100	MF	2.84	-5.107						
	Log N/N_T -3.87 \pm 0.19										
2	403.0753	-0.470	MF	3.06	-4.281						
5	403.5719	-0.190	KX	1.85	-3.884						
16	475.4042	-0.090	MF	2.01	-3.878						
21	470.9712	-0.340	MF	0.89	-3.794						
21	473.9110	-0.490	MF	0.51	-3.892						
22	441.4890	-0.290	MF	0.90	-3.839						
28	445.7549	-0.120	MF	0.76	-4.003						
29	406.1730	-0.560	MF	0.55	-3.710						
48	404.5114	0.250	KX	1.04	-3.604						
57	401.8100	-0.310	MF	1.13	-4.058						
-	403.3062	-0.620	MF	5.21	-3.458						
-	404.1355	0.290	MF	3.24	-3.962						
-	405.8930	-0.450	MF	1.43	-3.760						
-	407.9235	-0.420	MF	1.84	-3.659						
-	408.2939	-0.350	MF	0.78	-4.181						
-	445.5014	-0.390	KX	1.04	-3.574						
-	445.8254	0.040	MF	1.53	-3.792						
-	446.1079	-0.380	MF	0.53	-3.918						
-	446.2031	0.320	MF	1.75	-3.993						
-	446.4682	-0.100	MF	1.56	-3.720						
-	447.0144	-0.440	MF	0.92	-3.651						
-	450.2213	-0.340	MF	0.43	-4.136						
-	476.1512	-0.140	MF	1.04	-3.882						
-	476.2367	0.420	MF	2.64	-3.898						
-	476.5846	-0.080	MF	1.06	-3.938						
-	476.6418	0.100	MF	1.60	-3.899						
-	478.3430	0.040	MF	2.02	-3.997						

25.00	MnI	-	476.2367	0.420	MF	2.64	-3.898			
25.00	MnI	-	476.5846	-0.080	MF	1.06	-3.938			
25.00	MnI	-	476.6418	0.100	MF	1.60	-3.899			
25.00	MnI	-	478.3430	0.040	MF	2.02	-3.997			
$\log N/N_T = -4.12 \pm 0.23$										
25.01	MnII	2	417.4318	-3.550	KX	5.25	-4.233			
25.01	MnII	2	420.5375	-3.380	KX	5.53	-4.316			
25.01	MnII	17	451.0206	-0.720	KX	2.24	-3.789			
25.01	MnII	-	384.4161	-1.380	KX	7.34	-3.862			
25.01	MnII	-	384.8574	-3.330	KX	1.93	-3.643			
25.01	MnII	-	385.9206	-2.560	KX	2.52	-4.299			
25.01	MnII	-	387.8992	-1.710	KX	4.58	-4.459			
25.01	MnII	-	391.7318	-1.150	KX	4.55	-4.374			
25.01	MnII	-	395.2418	-1.500	KX	2.90	-4.141			
25.01	MnII	-	395.3590	-2.270	KX	1.53	-3.819			
25.01	MnII	-	398.6581	-2.600	KX	2.58	-4.195			

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/L$
25.01	MnII	-	400.0047	-1.210	KX	4.56	-3.926
25.01	MnII	-	408.1444	-2.240	KX	4.17	-3.780
25.01	MnII	-	408.5390	-2.560	KX	3.79	-3.848
25.01	MnII	-	408.7912	-2.910	KX	1.29	-4.374
25.01	MnII	-	411.0615	-1.510	KX	5.31	-4.14
25.01	MnII	-	414.0442	-2.460	KX	2.85	-4.21
25.01	MnII	-	417.1512	-2.120	KX	4.22	-3.85
25.01	MnII	-	418.0064	-2.830	KX	1.65	-4.28
25.01	MnII	-	418.4454	-1.950	KX	3.87	-4.13
25.01	MnII	-	420.0270	-1.740	KX	5.12	-3.94
25.01	MnII	-	420.7234	-4.470	KX	2.00	-4.24
25.01	MnII	-	423.8785	-3.630	KX	4.88	-4.26
25.01	MnII	-	423.9188	-2.250	KX	4.97	-3.88
25.01	MnII	-	424.0385	-2.070	KX	4.12	-3.93
25.01	MnII	-	424.4248	-2.390	KX	4.83	-3.79
25.01	MnII	-	425.1727	-1.060	KX	5.72	-4.43
25.01	MnII	-	426.0462	-4.250	KX	2.31	-4.36
25.01	MnII	-	437.9645	-1.850	KX	4.21	-4.51
25.01	MnII	-	439.1961	-2.890	KX	1.67	-4.19
25.01	MnII	-	439.3379	-2.320	KX	3.48	-4.21
25.01	MnII	-	440.3512	-1.800	KX	3.09	-4.32
25.01	MnII	-	444.1991	-2.360	KX	3.40	-4.19
25.01	MnII	-	447.8635	-0.950	KX	5.60	-4.35
25.01	MnII	-	449.7941	-2.590	KX	2.92	-4.13
25.01	MnII	-	450.0543	-2.070	КХ	2.88	-4.38
25.01	MnII	-	450.3201	-2.160	KX	3.50	-4.11
25.01	MnII	-	468.9546	-2.540	кх	2.97	-3.81
25.01	MnII	-	470.2734	-2.340	KX	1.94	-4.30
25.01	MnII	_	471.7264	-1.860	кх	3.57	-4.12
25.01	MnII	_	473 0397	-2.150	кх	5.60	-3.76
25.01	MnII	_	474 9112	-2 000	KX	3.07	-4 30
25.01	MnII	_	479 1782	-1 720	KX	4 13	-4 25
25.01	MnII	_	480 6823	-1.560	кх	6 38	-4 07
25.01	MnII	_	481.1623	-2.340	кх	3.51	-4.19
25.01	MnII	_	483.0061	-1.850	кх	4 09	-4.14
25.01	MnII	_	483 9737	-1.860	KX	3 21	-4 39
25.01	MnII	_	484 2325	-2 010	KX	3.85	-4.05
25.01	MnII		510 2517	-1.930	KX	4 78	-3.92
25.01	MnII		525 1823	-1.830	KX	3.87	-3.72
25.01	MnII	_	530 7351	-2.070	KX	2.60	-3.01
25.01	MnII	-	660 0255	2.070	KX KV	2.00	-3.91
23.01	1411111	=	Log N/N	$r = -4.55 \pm$: 0.11	2.07	-5.04
26.00	FeI	4	385.9911	-0.710	N4	1.15	-4.41
26.00	FeI	20	382.5881	-0.040	N4	1.68	-4.42
26.00	FeI	41	438.3545	0.200	N4	1.03	-4.68
26.00	FeI	-	404.5812	0.280	N4	1.24	-4.65
26.00	FeI		407 1738	-0.020	N4	0.79	1 53

Tabla A.5: Continuación HD 129174

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
			$\log N/N_T$	¬ = -4.62±	0.27		
26.01	FeII	3	393.8970	-1.850	N4	2.64	-4.278
26.01	FeII	27	427.3326	-3.340	N4	1.98	-4.497
26.01	FeII	28	412.2668	-3.380	N4	1.81	-4.569
26.01	FeII	28	429.6572	-3.010	N4	1.60	-4.957
26.01	FeII	28	466.6758	-3.330	N4	1.30	-4.695
26.01	FeII	37	448.9183	-2.970	N4	1.95	-4.816
26.01	FeII	37	449.1405	-2.700	N4	2.27	-4.972
26.01	FeII	37	451.5339	-2.480	N4	3.24	-4.916
26.01	FeII	37	452.0224	-2.600	N4	2.46	-5.038
26.01	FeII	37	458.2835	-3.100	N4	1.78	-4.735
26.01	FeII	38	393.5962	-1.860	N4	1.25	-4.910
26.01	FeII	38	452.2634	-2.030	N4	4.11	-5.121
26.01	FeII	38	454.1524	-3.050	N4	1.45	-4.902
26.01	FeII	38	457.6340	-3.040	N4	1.29	-4.983
26.01	FeII	38	458.3837	-2.020	N4	4.95	-4.897
26.01	FeII	38	462.0521	-3.280	N4	1.34	-4.729
26.01	FeII	43	473.1453	-3.130	N4	1.25	-4.886
26.01	FeII	127	384.5180	-2.290	КХ	1.79	-4.770
26.01	FeII	127	402.4547	-2.440	N4	0.92	-4.986
26.01	FeII	153	382.7083	-2.360	N4	0.94	-4.945
26.01	FeII	186	463.5316	-1.650	N4	1.24	-4.926
26.01	FeII	198	641 6919	-2.880	N4	1.42	-4.518
26.01	FeII	D	459 6015	-1.840	N4	1.27	-4 609
26.01	FeII	I	435 7584	-2 100	KX	0.89	-4 603
26.01	FeII	J	490 8151	-0.300	KX	1 31	-4 232
26.01	FeII	J	490.0191	0.010	KX	2.00	-4.254
26.01	FeII	J	491.3293	-0.010	KX	1.41	-4.465
26.01	FeII	J	495 1584	0.180	KX	1.41	-4.813
26.01	Fell	J	495.1584	0.130	KX KV	1.11	4 280
26.01	Fell	J	497.7033	0.040	KX KV	1.50	-4.209
26.01	Fell	J	400.0500	0.010	KA VV	1.14	4.307
20.01	Fell	J	499.0309	2.650	ме	0.01	-4.655
26.01	Ген	J	499.3330 500 1050	-3.030	WIF VV	2.80	-4.370
20.01	ген	J	500.1959	0.900	KA VV	2.60	-4.900
26.01	Fell	J	500.4195	0.500	KA VV	1.04	-4.908
26.01	Fell	J	500.7739	-0.200	KA	1.38	-4.305
26.01	Fell	J	500.9022	-0.420	KX	0.82	-4.355
26.01	Fell	J	501.8440	-1.220	MF	1.22	-4.934
26.01	Fell	J	503.5708	0.610	KX	1.89	-4.912
26.01	Fell	J	506.1718	0.220	KX	1.21	-4.791
26.01	Fell	J	507.0899	0.240	KX	0.86	-5.002
26.01	Fell	J	507.5764	0.280	KX	1.56	-4.630
26.01	Fell	J	508.2230	-0.100	KX	1.25	-4.402
26.01	FeII	J	509.3576	0.110	KX	1.75	-4.414
26.01	FeII	J	509.7271	0.310	KX	1.59	-4.677
26.01	FeII	J	511.7034	-0.130	KX	0.82	-4.595
26.01	FeII	J	512.7866	-2.540	KX	1.26	-4.183
26.01	FeII	J	514.3880	0.100	KX	1.29	-4.561

Tabla A.5: Continuación HD 129174
Código

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

26.01

Especie FeII

Tabla A.5: Continuación HD 129174										
Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$					
J	514.4355	0.280	KX	1.51	-4.636					
J	514.5772	-0.400	KX	1.14	-4.148					
J	514.9465	0.400	KX	2.03	-4.560					
J	515.0489	-0.120	KX	1.18	-4.392					
J	516.0839	-2.640	KX	1.15	-4.133					
J	516.6555	-0.030	KX	2.06	-4.116					
J	516.9033	-0.870	MF	8.24	-4.998					
J	518.0314	0.040	KX	1.13	-4.601					
J	518.6873	-0.300	KX	0.63	-4.537					
J	519.4892	-0.150	KX	0.56	-4.745					
J	519.9122	0.100	KX	1.57	-4.461					
J	520.3638	-0.050	KX	1.42	-4.372					
J	521.5349	-0.100	KX	2.06	-4.113					
J	521.5844	-0.230	KX	0.96	-4.425					
J	521.6854	0.810	KX	1.79	-5.027					
J	522.2361	-0.330	KX	0.83	-4.337					
J	522.3260	-0.410	KX	0.96	-4.236					
J	522.7483	0.850	N4	2.93	-4.700					
J	523.2787	-0.060	KX	1.76	-4.222					
J	523.4625	-2.050	MF	4.21	-4.859					
J	525.1233	0.420	N4	1.46	-4.761					
J	525.4929	-3.230	KX	1.51	-4.503					
J	525.7122	0.030	KX	1.26	-4.468					
J	526.0254	1.070	KX	3.84	-4.651					
J	526.4177	0.300	N4	2.73	-4.185					
J	526.4812	-3.190	MF	1.29	-4.633					
J	527.0027	0.070	KX	1.37	-4.456					
J	529.1666	0.580	KX	1.81	-4.792					
J	531.6784	-2.780	N4	2.13	-4.741					
J	531.8057	-0.140	KX	1.21	-4.324					
J	533.9592	0.540	KX	2.55	-4.498					
	$\log N/N_T$	$T = -4.65 \pm$	0.06							
-	425 1149	0.350	RS	4 00	-4 592					

Tab

26.01	FeII	J	531.6784	-2.780	N4	2.13	-4.741	
26.01	FeII	J	531.8057	-0.140	KX	1.21	-4.324	
26.01	FeII	J	533.9592	0.540	KX	2.55	-4.498	
			$\log N/N_T$	$T = -4.65 \pm$	0.06			
31.01	GaII	-	425.1149	0.350	RS	4.00	-4.592	
31.01	GaII	-	425.4075	-0.230	RS	2.33	-4.648	
31.01	GaII	-	536.0402	0.420	RS	2.60	-4.597	
31.01	GaII	-	541.6318	0.640	RS	2.70	-4.747	
			$\log N/N_T$	$T = -6.64 \pm$	0.10			
35.01	BrII	-	470.4850	0.408	NIST	0.35	-6.740	
35.01	BrII	-	478.5500	0.208	NIST	0.33	-6.548	
			$\log N/N_T$	$T = -7.09 \pm$	0.19			
38.01	SrII	1	407.7709	0.150	WM	5.24	-7.274	
38.01	SrII	1	421.5519	-0.170	WM	5.38	-6.901	
			$\log N/N_T$	$T = -6.01 \pm$	0.18			
39.01	YII	5	423.5727	-1.500	HL	2.65	-6.191	
39.01	YII	5	442.2583	-1.270	HL	3.88	-5.975	
39.01	YII	14	412.4904	-1.500	HL	2.86	-5.978	
39.01	YII	20	498.2129	-1.290	HL	2.56	-5.988	

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
39.01	YII	20	508.7418	-0.170	HL	6.00	-5.685
39.01	YII	20	511.9110	-1.360	HL	2.80	-5.847
39.01	YII	20	520.0406	-0.570	HL	4.87	-5.802
39.01	YII	22	485.4861	-0.380	HL	4.20	-6.289
39.01	YII	22	490.0120	-0.090	HL	5.60	-5.959
39.01	YII	28	519.6422	-0.880	KX	2.09	-6.213
39.01	YII	-	439.8008	-1.000	HL	4.05	-6.162
			$\log N/N_T$	r = -7.39±	- 0.11		
40.01	ZrII	17	391.5959	-0.820	KX	0.71	-7.498
40.01	ZrII	88	444.3008	-0.330	BG	1.21	-7.252
40.01	ZrII	-	399.8954	-0.670	GB	0.85	-7.543
40.01	ZrII	-	404.5638	-0.600	KX	1.33	-7.292
40.01	ZrII	-	416.1213	-0.720	BG	0.94	-7.371
			$\log N/N_2$	r = -5.18∃	- 0.17		
54.01	XeII	-	529.2220	0.351	NIS3	2.16	-5.279
54.01	XeII	-	541.9150	0.214	NIS3	1.51	-5.399
54.01	XeII	-	597.6460	-0.222	NIST	1.34	-4.940
54.01	XeII	-	609.7590	-0.237	NIST	1.04	-5.102
			$\log N_{i}$	$/N_T = -8.$	85		
56.01	BaII	1	493.4066	0.000	WM	0.55	-8.854
			$\log N/N_2$	r = -8.34∃	- 0.08		
60.02	NdIII	-	512.7044	-1.080	DREA	1.44	-8.254
60.02	NdIII	-	520.3924	-1.190	DREA	1.18	-8.419
			$\log N/N_{2}$	$T = -6.99 \pm$: 0.04		
70.01	YbII	-	418.0810	-0.290	DREA	1.22	-7.036
70.01	YbII	-	535.2954	-0.340	DREA	1.24	-6.950
			$\log N_{i}$	$/N_T = -3.$	96		
80.00	HgI	-	404.6609	-0.818	BLD	1.09	-3.961
			Log N	$/N_T = -3.$	42		
80.01	HgII	-	614.9469	0.150	SR	4.14	-3.424

Tabla A.5: Continuación HD 129174

A.6. HD 186122

Tabla A.6: Abundancias Químicas línea por línea para HD 186122.

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	${\rm Log}\; N/N_T$
			$\log N$	$/N_T = -3.1$	31		
6.00	CI	13	493.2049	-1.658	CNO	0.56	-3.308
			$\log N/N_T$	$T = -4.52 \pm$	0.11		
6.01	CII	2	658.2882	-0.328	CNO	0.98	-4.408
6.01	CII	4	391.8968	-0.530	WF	0.73	-4.672
6.01	CII	6	426.7001	0.560	WF	1.64	-4.471
			$\log N/N_T$	$T = -3.15 \pm$	0.11		
8.00	OI	9	645.3602	-1.288	CNO	0.95	-3.091
8.00	OI	9	645.4444	-1.088	CNO	1.10	-3.220
8.00	OI	12	532.9099	-1.240	WF	1.42	-3.029

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\mathrm{Log}\;N/N_T$
8.00	OI	12	532.9673	-1.020	WF	2.22	-3.035
8.00	OI	12	533.0726	-0.870	WF	2.26	-3.169
8.00	OI	14	496.8790	-1.280	WF	0.72	-3.355
			$\log N_{i}$	$/N_T = -3.2$	71		
12.00	MgI	40	470.2991	-0.374	NIST	0.71	-3.710
			$\log N/N_T$	$T = -5.88 \pm$	= 0.02		
12.01	MgII	10	438.4637	-0.790	WS	0.26	-5.895
12.01	MgII	-	439.0572	-0.530	WS	0.49	-5.865
			$\log N_{i}$	$/N_T = -5.9$	99		
13.01	AlII	2	466.3046	-0.280	FW	2.46	-5.990
			$\log N/N_T$	$T = -4.81 \pm$	= 0.19		
14.01	SiII	301	407.5452	-1.400	SG	0.97	-5.079
14.01	SiII	703	546.6432	-0.190	NIST	1.80	-4.655
14.01	SiII	706	420.0658	-0.820	KP	0.79	-4.628
14.01	SiII	706	420.0898	-0.670	KP	0.62	-4.899
14.01	SiII	726	419.8133	-0.611	LA	0.60	-4.623
14.01	SiII	733	566.9563	0.266	LA	0.51	-4.997
			$\log N/N_T$	$T = -5.20 \pm$	0.20		
15.01	PII	5	603.4039	-0.220	NIS3	1.89	-5.253
15.01	PII	6	534.4729	-0.390	NIS3	2.41	-5.023
15.01	PII	7	529.6077	-0.160	WS	3.10	-4.996
15.01	PII	10	525.3479	0.330	WS	2.88	-5.469
15.01	PII	10	542.5880	0.180	NIS3	4.14	-5.016
15.01	PII	15	460.2069	0.740	WS	2.78	-5.284
15.01	PII	-	417.8463	-0.410	KX	3.13	-5.484
			$\log N/N_T$	$T = -5.00 \pm$	= 0.24		
16.01	SII	1	499.1969	-0.650	WS	0.77	-4.812
16.01	SII	1	502.7203	-0.720	WS	0.66	-5.029
16.01	SII	1	514.2322	-0.822	NIST	0.89	-4.693
16.01	SII	6	542.8655	-0.129	NIST	0.99	-5.066
16.01	SII	7	500.9567	-0.090	WM	1.01	-5.197
16.01	SII	44	414.5060	0.230	KX	1.48	-4.650
16.01	SII	44	416.2665	0.780	WS	1.20	-5.323
16.01	SII	-	415.3068	0.620	WS	1.16	-5.208
			$\log N_{i}$	$/N_T = -4.2$	22		
20.00	CaI	2	422.6728	0.240	FW	0.68	-4.220
			$\log N_{i}$	$/N_T = -6.2$	22		
20.01	CaII	1	393.3663	0.130	WM	12.23	-6.221
			$\log N_{i}$	$/N_T = -7.2$	55		
21.01	ScII	7	424.6822	0.240	LD	4.92	-7.554
			$\log N/N_T$	$T = -6.21 \pm$	0.27		
22.01	TiII	11	398.1990	-2.530	KX	0.86	-5.842
22.01	TiII	19	439.5031	-0.660	MF	3.25	-6.667
22.01	TiII	19	439.5839	-2.170	MF	1.42	-5.631
22.01	TiII	34	388.2284	-1.710	MF	0.86	-6.400
22.01	TiII	40	441.7714	-1.430	MF	1.61	-6.338
22.01	TiII	41	429.0215	-1.120	MF	2.13	-6.477

|--|

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
22.01	TiII	41	430.0042	-0.770	MF	3.95	-6.327
22.01	TiII	51	439.4059	-1.590	MF	0.86	-6.483
22.01	TiII	69	533.6786	-1.700	MF	2.16	-5.680
22.01	TiII	70	515.4070	-1.920	MF	1.05	-5.886
22.01	TiII	70	518.8687	-1.210	MF	2.33	-6.123
22.01	TiII	70	522.6538	-1.300	MF	2.47	-5.999
22.01	TiII	82	457.1971	-0.530	MF	4.06	-6.347
22.01	TiII	86	512.9156	-1.390	MF	1.01	-6.279
22.01	TiII	86	518.5902	-1.350	MF	1.56	-6.082
22.01	TiII	92	477.9985	-1.370	MF	1.12	-6.174
22.01	TiII	92	480.5085	-1.100	MF	1.71	-6.203
22.01	TiII	93	442.1938	-1.770	MF	0.68	-6.019
22.01	TiII	94	431.6794	-1.420	MF	1.87	-5.837
22.01	TiII	103	521.1536	-1.360	KX	0.64	-6.200
22.01	TiII	104	436.7652	-1.270	MF	1.81	-5.749
22.01	TiII	105	416.3644	-0.400	MF	2.37	-6.445
22.01	TiII	114	487.4014	-0.790	MF	1.01	-6.307
22.01	TiII	114	491.1195	-0.340	MF	1.50	-6.529
22.01	TiII	115	441.1072	-1.060	MF	1.17	-5.966
22.01	TiII	115	445.6649	-1.410	KX	0.38	-6.152
22.01	TiII	-	393.2023	-1.780	MF	1.19	-6.158
22.01	TiII	-	401.2383	-1.610	MF	1.74	-6.386
22.01	TiII	-	402.5129	-1.980	MF	1.16	-6.225
22.01	TiII	-	405.3821	-1.210	MF	1.97	-6.084
22.01	TiII	-	417.4072	-1.250	MF	0.61	-6.336
22.01	TiII	-	429.4094	-1.110	MF	2.46	-6.429
22.01	TiII	-	430.1922	-1.160	MF	2.19	-6.421
22.01	TiII	-	430.7866	-1.290	MF	2.65	-6.158
22.01	TiII	-	431.2860	-1.160	MF	3.74	-5.993
22.01	TiII	-	432.0950	-1.870	MF	0.63	-6.382
22.01	TiII	-	438.6847	-1.260	MF	1.54	-5.850
22.01	TiII	-	439.9765	-1.270	MF	1.67	-6.442
22.01	TiII	-	440.9235	-2.640	KX	0.29	-5.937
22.01	TiII	-	441.8331	-2.460	MF	0.78	-5.655
22.01	TiII	-	444.3801	-0.700	MF	2.87	-6.730
22.01	TiII	-	445.0482	-1.450	MF	1.15	-6.541
22.01	TiII	-	446.4448	-2.080	MF	0.40	-6.389
22.01	TiII	-	448.8325	-0.820	MF	0.94	-6.306
22.01	TiII	-	450.1270	-0.750	MF	3.04	-6.618
22.01	TiII	-	456.3757	-0.960	MF	2.57	-6.485
			$\log N/N_T$	- = -4.59	± 0.10		
24.00	CrI	1	427.4797	-0.231	MFW	0.62	-4.693
24.00	CrI	1	428.9717	-0.361	MFW	0.73	-4.484
			$\log N/N_T$	$r = -6.15 \pm$	0.23		
24.01	CrII	23	524.6768	-2.450	MF	0.33	-6.091
24.01	CrII	24	530.5853	-2.360	KX	0.26	-6.234
24.01	CrII	30	487.6399	-1.460	KX	1.21	-6.377

[pm]	${\rm Log}\; N/N_T$
03	-6.388
43	-6.153
16	-5.939

Tabla A.6: Continuación HD 186122

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
24.01	CrII	31	426.1913	-1.530	KX	1.03	-6.388
24.01	CrII	39	456.5740	-2.110	MF	0.43	-6.153
24.01	CrII	43	523.7329	-1.160	MF	3.16	-5.939
24.01	CrII	43	527.4964	-1.290	KX	1.11	-6.489
24.01	CrII	43	531.3590	-1.650	MF	1.30	-6.041
24.01	CrII	44	455.4988	-1.380	MF	1.63	-6.191
24.01	CrII	44	461.6629	-1.290	MF	1.11	-6.493
24.01	CrII	162	414.5781	-1.160	KX	1.00	-6.083
24.01	CrII	165	408.2285	-1.230	KX	0.51	-6.343
24.01	CrII	167	386.5596	-0.780	KX	0.87	-6.529
24.01	CrII	190	490.1623	-0.830	KX	0.65	-6.073
24.01	CrII	190	491.2462	-0.950	KX	0.63	-5.970
24.01	CrII	191	446.5731	-1.180	KX	0.55	-5.812
24.01	CrII	-	386.6523	-2.070	KX	0.28	-5.954
24.01	CrII	-	401.2496	-0.890	KX	1.95	-5.812
24.01	CrII	-	405.4076	-2.480	KX	0.32	-6.356
24.01	CrII	-	408.6128	-2.420	KX	0.55	-5.875
24.01	CrII	-	417.9421	-1.770	KX	0.55	-6.474
24.01	CrII	-	420.7363	-2.480	KX	0.44	-5.869
24.01	CrII	-	427.5567	-1.700	KX	1.51	-6.014
24.01	CrII	-	486.4326	-1.370	KX	2.59	-6.001
			$\log N/N_T$	r = -4.11±	= 0.27		
25.00	MnI	5	403.5719	-0.190	KX	0.29	-4.556
25.00	MnI	5	405.5544	-0.070	MFW	0.38	-4.552
25.00	MnI	16	475.4042	-0.090	MF	0.87	-4.083
25.00	MnI	16	482.3523	0.144	MFW	0.62	-3.761
25.00	MnI	21	473.9110	-0.490	MF	0.32	-3.845
25.00	MnI	27	602.1790	0.034	MFW	0.34	-4.260
25.00	MnI	28	445.7044	-0.555	MFW	0.13	-4.120
25.00	MnI	57	401.8100	-0.310	MF	0.53	-4.168
25.00	MnI	-	392.2684	0.050	KX	0.25	-4.048
25.00	MnI	-	403.3062	-0.620	MF	2.64	-3.972
25.00	MnI	-	407.9235	-0.420	MF	0.20	-4.322
25.00	MnI	-	407.9412	-0.420	MF	0.28	-4.351
25.00	MnI	-	408.2939	-0.350	MF	0.58	-4.057
25.00	MnI	-	445.8254	0.040	MF	0.65	-3.976
25.00	MnI	-	446.2031	0.320	MF	0.87	-4.111
25.00	MnI	-	446.4682	-0.100	MF	0.69	-3.881
25.00	MnI	-	450.2213	-0.340	MF	0.44	-3.858
25.00	MnI	-	462.6530	0.210	MFW	0.33	-3.688
25.00	MnI	-	472.7461	-0.470	MF	0.31	-3.889
25.00	MnI	-	476.5846	-0.080	MF	0.83	-3.799
25.00	MnI	-	476.6418	0.100	MF	0.85	-3.978
25.00	MnI	-	478.3430	0.040	MF	0.38	-4.631
			$\log N/N_T$	_ = -4.89±	0.19		
25.01	MnII	17	451.0206	-0.720	KX	0.48	-4.652
25.01	MnII	-	385.9206	-2.560	KX	0.75	-4.998

Códig	go Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
25.01	l MnII	-	390.2365	-2.720	KX	0.61	-4.849
25.01	l MnII	-	408.1444	-2.240	KX	1.03	-4.815
25.01	l MnII	-	417.1512	-2.120	KX	0.62	-5.161
25.01	l MnII	-	418.0064	-2.830	KX	0.85	-4.637
25.01	l MnII	-	418.4454	-1.950	KX	1.18	-4.998
25.01	l MnII	-	420.7234	-4.470	KX	0.89	-4.683
25.01	l MnII	-	423.8785	-3.630	KX	2.06	-5.054
25.01	l MnII	-	425.9175	-1.590	KX	1.16	-4.750
25.01	l MnII	-	426.0462	-4.250	KX	1.20	-4.742
25.01	l MnII	-	432.6637	-1.250	KX	1.44	-5.038
25.01	l MnII	-	439.1961	-2.890	KX	0.43	-4.891
25.01	l MnII	-	439.3379	-2.320	KX	0.97	-5.063
25.01	l MnII	-	440.3512	-1.800	KX	0.97	-5.070
25.01	l MnII	-	449.7941	-2.590	KX	0.96	-4.832
25.01	l MnII	-	450.0543	-2.070	KX	0.82	-5.154
25.01	l MnII	-	451.9240	-2.570	KX	1.19	-4.738
25.01	l MnII	-	471.7264	-1.860	KX	0.81	-5.113
25.01	l MnII	-	473.0397	-2.150	KX	1.38	-5.083
25.01	l MnII	-	479.1782	-1.720	KX	2.36	-4.786
25.01	l MnII	-	510.2517	-1.930	KX	1.39	-4.996
25.01	l MnII	-	517.7648	-1.770	KX	3.53	-4.452
25.01	l MnII	-	525.1823	-1.830	KX	0.54	-5.081
25.01	l MnII	-	529.4315	-0.037	K88	1.59	-4.992
25.01	l MnII	-	529.7000	-0.214	K88	1.35	-4.914
25.01	l MnII	-	529.9302	-0.418	K88	0.97	-4.895
25.01	l MnII	-	660.9255	-2.050	KX	1.10	-4.517
			$\log N/N_T$	$T = -3.90 \pm$	= 0.22		
26.00) FeI	4	385.9911	-0.710	N4	1.17	-4.179
26.00) FeI	20	382.5881	-0.040	N4	1.49	-4.274
26.00) FeI	41	438.3545	0.200	N4	2.50	-3.927
26.00) FeI	41	441.5122	-0.620	N4	0.62	-3.842
26.00) FeI	42	420.2029	-0.710	N4	0.93	-3.603
26.00) Fel	42	427.1760	-0.160	N4	1.41	-3.932
26.00) Fel	43	400.5242	-0.610	N4	0.92	-3.666
26.00) Fel	45	390.2945	-0.470	N4	0.77	-3.891
26.00) Fel	-	404.5812	0.280	N4	1.59	-4.294
26.00) Fel	-	407.1738	-0.020	N4	2.14	-3.750
26.00) Fel	-	440.4750	-0.140	N4	1.66	-3.825
26.00) Fel	-	495.7596	0.230	N4	1.47	-3.668
26.03				$T = -4.00 \pm$	= 0.27	2.12	2.0.10
26.01		3	393.8290	-4.070	N4	3.12	-3.949
26.01		27	425.3172	-1.810	N4	8.36	-4.17/0
26.01		21	427.3326	-5.540	N4	5.45 2.42	-4.101
26.0		28	412.2008	-3.380	IN4	2.43	-4.400
20.0		28 28	429.03/2	-5.010	1N4 N4	5.95 2.01	-4.290
20.0	I Fell	28 20	400.0/38	-3.330	1N4 KV	2.91	-4.203
20.01	i Fell	29	301.2700	-5.520	KΛ	5.15	-4.027

Tabla A.6: Continuación HD 186122

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	32	438.4319	-3.680	N4	3.43	-3.788
26.01	FeII	37	447.2929	-3.530	N4	2.77	-4.036
26.01	FeII	37	448.9183	-2.970	N4	3.41	-4.421
26.01	FeII	37	449.1405	-2.700	N4	2.08	-5.068
26.01	FeII	37	458.2835	-3.100	N4	3.75	-4.185
26.01	FeII	38	454.1524	-3.050	N4	3.06	-4.429
26.01	FeII	38	457.6340	-3.040	N4	3.64	-4.280
26.01	FeII	38	462.0521	-3.280	N4	3.17	-4.181
26.01	FeII	43	473.1453	-3.130	N4	3.21	-4.288
26.01	FeII	127	384.5180	-2.290	KX	2.71	-4.512
26.01	FeII	172	404.8832	-2.140	N4	2.74	-4.150
26.01	FeII	186	463.5316	-1.650	N4	3.31	-4.273
26.01	FeII	190	393.8970	-1.850	N4	4.78	-3.651
26.01	FeII	198	641.6919	-2.880	N4	3.60	-3.853
26.01	FeII	D	390.3756	-1.500	KX	2.38	-4.004
26.01	FeII	D	459.6015	-1.840	N4	2.85	-4.095
26.01	FeII	J	435.7584	-2.100	KX	2.74	-3.941
26.01	FeII	J	457.9527	-2.510	KX	2.39	-3.565
26.01	FeII	J	482.6683	-0.440	KX	1.47	-4.088
26.01	FeII	J	488.3292	-0.640	KX	2.23	-3.608
26.01	FeII	J	490.8151	-0.300	KX	1.80	-4.072
26.01	FeII	J	491.3295	0.010	KX	3.73	-3.773
26.01	FeII	J	494.8096	-0.320	кх	2.14	-3.937
26.01	FeII	J	494.8793	-0.010	KX	3.27	-3.862
26.01	FeII	I	495 1584	0.180	кх	2.98	-4 160
26.01	FeII	J	495.3987	-2.760	KX	1.73	-3.827
26.01	FeII	Ţ	495 8822	-0.650	KX	1.25	-3.923
26.01	FeII	J	497.7035	0.040	KX	2.13	-4.273
26.01	FeII	Ţ	498 4473	0.010	KX	3.73	-3.718
26.01	FeII	Ţ	499.0509	0.180	KX	3.06	-4 120
26.01	FeII	ī	499 1440	-0.570	KX	1.90	-3 803
26.01	FeII	Ţ	499 3358	-3 650	ME	2.16	-4 112
26.01	FeII	J	500 1959	0.900	KX	5.65	-4.098
26.01	Fall	J	500.1757	0.500	KX	4.10	4 148
26.01	FeII	J	500.4175	-0.430	KX	2.14	-3.787
26.01	Fall	J	500.7450	0.360	KX VV	1.91	2 076
26.01	Fell	J	500.7450	-0.300	KX KX	1.01	-3.970
26.01	Fell	J	500.0022	-0.200		2.75	-4.150
26.01	Fell	J	501.9022	-0.420	NA ME	2.75	-5.010
20.01	ген	J	502 1504	-1.220	MIF VV	9.04	-4.554
26.01	Fell	J	502.1594	-0.300	KA VV	2.79	-3.747
20.01	Fell E-U	J	502.2792	-0.020	KX	5.08	-3.983
26.01	Fell	J	502.6806	-0.220	KX	2.17	-4.018
26.01	Fell	J	503.0630	0.400	KX	3.63	-4.187
26.01	Fell	J	503.2712	0.110	KX	1.79	-4.446
26.01	FeII	J	503.5708	0.610	KX	3.59	-4.402
26.01	FeII	J	504.5114	-0.130	KX	3.05	-3.818
26.01	FeII	J	506.0257	-0.520	KX	1.29	-3.994
26.01	FeII	J	506.1718	0.220	KX	3.63	-3.985

Tabla A.6: Continuación HD 186122

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N$
26.01	FeII	J	506.7893	-0.200	KX	2.46	-3.927
26.01	FeII	J	507.0899	0.240	KX	2.81	-4.267
26.01	FeII	J	507.5764	0.280	KX	2.45	-4.351
26.01	FeII	J	508.2230	-0.100	KX	2.58	-3.945
26.01	FeII	J	509.3576	0.110	KX	4.14	-3.680
26.01	FeII	J	509.7271	0.310	KX	2.82	-4.290
26.01	FeII	J	510.6109	-0.280	KX	2.53	-3.819
26.01	FeII	J	511.7034	-0.130	KX	2.69	-3.868
26.01	FeII	J	511.9341	-0.560	KX	1.14	-4.045
26.01	FeII	J	512.7866	-2.540	KX	2.06	-3.924
26.01	FeII	J	513.2669	-4.180	MF	2.07	-3.608
26.01	FeII	J	514.3880	0.100	KX	2.41	-4.179
26.01	FeII	J	514.4355	0.280	KX	3.29	-4.066
26.01	FeII	J	514.9465	0.400	KX	5.32	-3.570
26.01	FeII	J	516.0839	-2.640	KX	2.48	-3.689
26.01	FeII	J	516.6555	-0.030	KX	2.12	-4.142
26.01	FeII	J	517.7020	-0.180	KX	2.29	-3.968
26.01	FeII	J	518.0314	0.040	KX	2.04	-4.270
26.01	FeII	J	518.6873	-0.300	KX	1.31	-4.184
26.01	FeII	J	519.4892	-0.150	KX	2.17	-3.996
26.01	FeII	J	519.9122	0.100	KX	2.86	-4.051
26.01	FeII	J	520.0804	-0.370	KX	1.94	-3.894
26.01	FeII	J	520.3638	-0.050	KX	2.96	-3.869
26.01	FeII	J	521.5349	-0.100	KX	4.45	-3.455
26.01	FeII	J	521.5844	-0.230	KX	2.71	-3.787
26.01	FeII	J	521.6854	0.810	KX	3.55	-4.487
26.01	FeII	J	521.8842	-0.200	KX	2.21	-4.002
26.01	FeII	J	522.2361	-0.330	KX	1.40	-4.086
26.01	FeII	J	522.3260	-0.410	KX	2.56	-3.638
26.01	FeII	J	522.3800	-0.590	KX	1.69	-3.772
26.01	FeII	J	522.4411	-0.570	KX	1.21	-3.981
26.01	FeII	J	522.5968	-0.400	KX	2.76	-3.578
26.01	FeII	J	522.7483	0.850	N4	6.07	-3.819
26.01	FeII	J	522.8896	-0.300	KX	2.07	-3.892
26.01	FeII	J	523.1907	-0.640	KX	2.17	-3.477
26.01	FeII	J	523.2787	-0.060	кх	4.00	-3.531
26.01	FeII	J	523.7950	0.140	KX	3.41	-3.879
26.01	FeII	I	523,9813	-0.460	кх	2.85	-3.504
26.01	FeII	I	524,5455	-0.510	кх	1.51	-3.886
26.01	FeII	Ţ	524 7952	0.550	N4	3.81	-4 127
26.01	FeII	J	524.7952	0.330	N4	4 87	-3 690
26.01	FeII	J	525 4400	-0 770	KX	1 44	-3 634
26.01	FeII	J	525.4920	-3 230	KX	3 37	-3 961
26.01	FeII	J	525.4929	0.030	KY	3.37	-3.901
26.01	FeII	J	526 0254	1.070	KY	1.62	-3.700
26.01	FeII	J T	526.0254	0.300	кл N4	4.05	-4.455
26.01	Foll	J T	526 1912	-3 100	184 ME	2 /1	-3.070
20.01	ren	J	520.4812	-3.190	IVIT	5.41	-3.992

Tabla A.6: Continuación HD 186122

Código

26.01

26.01 26.01

26.01

26.01 26.01

26.01

26.01 26.01

28.01 28.01

30.01

31.01

31.01

35.01

Especie

FeII FeII

FeII

FeII FeII

FeII FeII

FeII

FeII

NiII

NiII

ZnII

GaII

GaII

BrII

Tabla A.6: Continuación HD 186122											
Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$						
J	527.2397	-2.030	MF	3.72	-3.733						
J	527.6002	-1.940	MF	5.87	-4.502						
J	529.1666	0.580	KX	3.05	-4.417						
J	530.3395	-1.610	KX	1.35	-3.891						
J	530.6180	0.090	N4	1.98	-4.268						
J	531.8057	-0.140	KX	3.08	-3.684						
J	531.8750	-0.570	KX	1.13	-4.008						
J	532.2234	-0.520	KX	1.85	-3.734						
J	533.9592	0.540	KX	4.48	-3.941						
$\log N/N_T = -6.89 \pm 0.22$											
11	384.9554	-1.880	KX	0.79	-6.676						
-	406.7031	-1.290	KX	1.08	-7.107						
	$\log N_{/}$	$/N_T = -5.3$	32								
2	472.2153	-0.340	KX	0.94	-5.324						
	$\log N/N_T$	$r = -4.74 \pm$: 0.03								
-	425.1149	0.350	RS	3.73	-4.767						
-	541.6318	0.640	RS	3.12	-4.714						
	$\log N_{/}$	$/N_T = -6.7$	75								
-	470.4850	0.408	NIST	0.48	-6.749						
	$\log N_{/}$	$/N_T = -8.6$	54								
1	407.7709	0.150	WM	1.59	-8.638						
1	421.5519	-0.170	WM	0.92	-8.640						
	$\log N/N_T$	$r = -7.19 \pm$: 0.19								
5	430.9620	-0.750	HL	1.30	-7.342						
5	435.8723	-1.320	HL	0.49	-7.322						
16	393.0658	-1.610	HL	0.21	-7.273						
20	498.2129	-1.290	HL	0.36	-7.056						
20	508.7418	-0.170	HL	1.99	-7.197						
20	520.5722	-0.340	HL	1.36	-7.308						
22	482.3304	-1.110	HL	0.66	-6.962						
27	549.7405	-0.580	HL	0.70	-7.085						
-	439.8008	-1.000	HL	0.71	-7.446						
-	442.2583	-1.270	HL	1.49	-6.776						

		$\log N/N_T = -8.64$									
38.01	SrII	1	407.7709	0.150	WM	1.59	-8.638				
38.01	SrII	1	421.5519	-0.170	WM	0.92	-8.640				
	Log N/N_T = -7.19± 0.19										
39.01	YII	5	430.9620	-0.750	HL	1.30	-7.342				
39.01	YII	5	435.8723	-1.320	HL	0.49	-7.322				
39.01	YII	16	393.0658	-1.610	HL	0.21	-7.273				
39.01	YII	20	498.2129	-1.290	HL	0.36	-7.056				
39.01	YII	20	508.7418	-0.170	HL	1.99	-7.197				
39.01	YII	20	520.5722	-0.340	HL	1.36	-7.308				
39.01	YII	22	482.3304	-1.110	HL	0.66	-6.962				
39.01	YII	27	549.7405	-0.580	HL	0.70	-7.085				
39.01	YII	-	439.8008	-1.000	HL	0.71	-7.446				
39.01	YII	-	442.2583	-1.270	HL	1.49	-6.776				
			$\log N/N_T$	$ - = -7.01 \pm$	0.22						
40.01	ZrII	15	421.1907	-0.980	KX	0.73	-7.249				
40.01	ZrII	17	391.5959	-0.820	KX	1.00	-7.233				
40.01	ZrII	42	403.4101	-1.550	BG	0.44	-6.792				
40.01	ZrII	43	393.4094	-1.630	KX	0.80	-6.641				
40.01	ZrII	43	393.4791	-0.900	KX	1.13	-6.996				
40.01	ZrII	54	401.8368	-0.990	KX	1.00	-6.860				
40.01	ZrII	79	444.0452	-1.190	GB	0.44	-6.968				
40.01	ZrII	97	418.6672	-0.580	KX	0.62	-7.145				
40.01	ZrII	99	417.9807	-0.780	KX	0.73	-6.906				
40.01	ZrII	129	446.1251	-1.180	KX	1.05	-6.628				
40.01	ZrII	-	399.8954	-0.670	GB	1.23	-7.254				
40.01	ZrII	-	404.5638	-0.600	KX	1.61	-7.087				
40.01	ZrII	-	445.7431	-0.800	KX	0.49	-7.317				

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$			
			$\log N/N_T$	r = -5.58±	= 0.18					
54.01	XeII	-	460.3005	0.017	NIS3	1.13	-5.863			
54.01	XeII	-	484.4330	0.491	NIS3	2.21	-5.686			
54.01	XeII	-	537.2390	-0.211	NIS3	0.96	-5.581			
54.01	XeII	-	541.9150	0.214	NIS3	1.77	-5.425			
54.01	XeII	-	571.9598	-0.746	NIST	0.51	-5.353			
$\log N/N_T = -8.85$										
56.01	BaII	1	493.4066	0.000	WM	0.47	-8.852			
$\log N/N_T = -7.90$										
60.02	NdIII	-	512.7044	-1.080	DREA	2.56	-7.897			
			$\log N/N_T$	$T = -6.87 \pm$	= 0.05					
70.01	YbII	-	418.0810	-0.290	DREA	1.48	-6.821			
70.01	YbII	-	533.5159	-0.260	DREA	1.25	-6.928			
			$\log N/N_T$	$T = -6.42 \pm$	= 0.05					
79.01	AuII	-	401.6067	-1.880	RW	1.43	-6.366			
79.01	AuII	-	405.2790	-1.690	RW	1.56	-6.475			
			$\log N_{i}$	$/N_T = -4.$	05					
80.00	HgI	-	404.6609	-0.818	BLD	0.79	-4.051			
			Log N	$/N_T = -4.$	54					
80.01	HgII	-	398.3941	-1.730	DW	11.43	-4.537			

Tabla A.6: Continuación HD 186122

A.7. HD 78316

Tabla A.7: Abundancias Químicas línea por línea para HD 78316.

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$				
			$\log N/N_2$	$T = -3.38 \pm$	0.23						
6.00	CI	6	477.1742	-1.866	CNO	0.21	-3.608				
6.00	CI	13	493.2049	-1.658	CNO	0.76	-3.143				
	Log N/N_T = -3.94± 0.04										
6.01	CII	2	658.2882	-0.328	CNO	2.06	-3.895				
6.01	CII	4	391.8968	-0.530	WF	1.96	-4.003				
6.01	CII	-	392.0681	-0.230	WF	2.71	-3.926				
6.01	CII	-	426.7261	0.720	WF	3.25	-3.920				
$\mathrm{Log}\;N/N_T=-2.88\pm0.18$											
8.00	OI	9	645.4444	-1.088	CNO	1.20	-3.149				
8.00	OI	11	543.5178	-1.766	CNO	0.74	-2.790				
8.00	OI	11	543.5775	-1.544	CNO	0.78	-2.988				
8.00	OI	12	532.9673	-1.020	WF	3.38	-2.749				
8.00	OI	12	533.0726	-0.870	WF	2.97	-2.975				
8.00	OI	13	502.0218	-1.725	CNO	1.25	-2.619				
			$\log N/N_T$	$T = -4.15 \pm$	0.11						
12.00	MgI	2	516.7321	-1.030	WS	0.43	-4.015				
12.00	MgI	2	517.2684	-0.380	WS	1.25	-4.157				
12.00	MgI	2	518.3604	-0.160	WS	1.48	-4.288				

$\log N/N_T = -5.25 \pm 0.01$,										
12.01 MgII 10 438.4637 -0.790 WS 0.99 -	5.237										
12.01 MgII 10 439.0572 -0.530 WS 1.57 -	5.263										
$\log N/N_T = -4.66 \pm 0.22$											
14.01 SiII 3 412.8054 0.380 LA 10.08	4.800										
14.01 SiII 4 595.7559 -0.349 NIST 3.21	4.974										
14.01 SiII 5 504.1024 0.290 SG 9.22 -	4.573										
14.01 SiII 5 505.5984 0.441 NIST 11.46	4.416										
14.01 SiII 301 407.5452 -1.400 SG 2.05	4.620										
14.01 SiII 703 546.6432 -0.190 NIST 2.92	4.323										
14.01 SiII 726 419.0724 -0.351 LA 1.42	4.449										
14.01 SiII - 386.2595 -0.817 BBCB 8.46	4.995										
14.01 SiII - 407.6780 -1.670 SG 1.25	4.628										
14.01 SiII - 413.0894 0.530 LA 11.16	4.810										
$\mathrm{Log}\;N/N_T=-4.07\pm0.13$											
15.01 PII 6 531.6055 -0.294 NIS3 6.75 -	3.892										
15.01 PII 6 534.4729 -0.390 NIS3 4.94	4.234										
15.01 PII 7 529.6077 -0.160 WS 6.10	4.089										
15.01 PII 10 525.3479 0.330 WS 8.21	3.949										
15.01 PII 10 542.5880 0.180 NIS3 7.41	4.175										
Log N/N_T -5.51 \pm 0.21											
16.01 SII 6 545.3855 0.482 NIST 0.77 -	5.734										
16.01 SII 7 500.9567 -0.090 WM 0.68 -	5.381										
16.01 SII 15 501.4042 0.030 KX 0.70 -	5.306										
16.01 SII 39 521.2620 0.240 WS 0.57 -	5.191										
16.01 SII 38 532.0723 0.460 WS 0.33	5.672										
16.01 SII 44 414.5060 0.230 KX 0.31 -	5.561										
16.01 SII 44 416.2665 0.780 WS 0.59 -	5.734										
16.01 SII - 415.3068 0.620 WS 0.97 -	5.289										
$Log N/N_T = -3.82$											
20.00 Cal 2 422.6728 0.240 FW 1.45	3.820										
$Log N/N_T = -6.38$	c 292										
20.01 Call 1 395.3665 0.150 WM 11.00 -	0.382										
$\frac{101}{21.01} \text{ ScH} = 7 - 424.6822 - 0.240 \text{ J} \text{D} = 3.18 \text{ cm}^{-1}$	7 871										
$\frac{100}{100} \frac{N}{N\pi} = -6.35 \pm 0.30$	/.0/1										
22.01 Till 19 439.5031 -0.660 MF 2.51 -	5 720										
22.01 Till 34 388.2284 -1.710 MF 0.70 -	6 362										
22.01 Till 40 441.7714 -1.430 MF 1.09 -	6.302 6.407										
22.01 Till 41 429.0215 -1.120 MF 0.99 -	6 766										
22.01 Till 41 430.0042 -0.770 MF 5.01 -	5.880										
22.01 Till 49 470.8662 -2.210 MF 0.70 -	5.817										
22.01 Till 50 453.3960 -0.770 MF 3.41	6.295										
22.01 TiII 51 439.4059 -1.590 MF 1.78 -	5.948										
22.01 TiII 69 533.6786 -1.700 MF 0.41	6.412										
22.01 TiII 70 518.8687 -1.210 MF 2.64	5.888										
22.01 Till 70 522.6538 -1.300 MF 1.13 -	6.324										

Tabla A.7: Continuación HD 78316

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\mathrm{Log}\;N/N_T$
22.01	TiII	71	501.3686	-1.940	KX	0.71	-5.917
22.01	TiII	82	457.1971	-0.530	MF	2.75	-6.555
22.01	TiII	86	512.9156	-1.390	MF	0.40	-6.592
22.01	TiII	87	402.8338	-1.000	MF	1.15	-6.469
22.01	TiII	92	477.9985	-1.370	MF	1.66	-5.959
22.01	TiII	92	480.5085	-1.100	MF	0.94	-6.395
22.01	TiII	93	442.1938	-1.770	MF	0.30	-6.273
22.01	TiII	94	431.6794	-1.420	MF	0.57	-6.331
22.01	Till	104	436.7652	-1.270	MF	0.69	-6.139
22.01	TiII	105	416.3644	-0.400	MF	1.36	-6.660
22.01	TiII	114	487.4014	-0.790	MF	0.65	-6.410
22.01	TiII	115	441.1072	-1.060	MF	0.71	-6.104
22.01	Till	115	445.6649	-1.410	KX	0.37	-6.050
22.01	TiII	117	479.8532	-2.430	MF	0.38	-5.991
22.01	TiII	-	390.0539	-0.450	MF	2.80	-6.820
22.01	TiII	-	391.3461	-0.530	MF	2.91	-6.718
22.01	TiII	-	393.2023	-1.780	MF	0.79	-6.228
22.01	Till	-	401.2383	-1.610	MF	1.12	-6.480
22.01	TiII	-	429.4094	-1.110	MF	1.23	-6.699
22.01	TiII	-	430.1922	-1.160	MF	1.12	-6.664
22.01	TiII	-	431.2860	-1.160	MF	2.30	-6.236
22.01	TiII	-	438.6847	-1.260	MF	0.82	-6.061
22.01	TiII	-	439.8292	-2.390	KX	0.27	-6.087
22.01	Till	-	439.9765	-1.270	MF	1.16	-6.501
22.01	TiII	-	444.3801	-0.700	MF	2.25	-6.757
22.01	TiII	-	445.0482	-1.450	MF	0.94	-6.501
22.01	TiII	-	450.1270	-0.750	MF	2.10	-6.736
22.01	TiII	-	456.3757	-0.960	MF	1.55	-6.660
			$\log N/N_2$	$T = -4.67 \pm$: 0.29		
24.00	CrI	1	425.4336	-0.114	MFW	0.41	-4.909
24.00	CrI	1	428.9717	-0.361	MFW	0.93	-4.266
24.00	CrI	7	520.4511	-0.210	MF	0.29	-4.540
24.00	CrI	7	520.8425	0.160	MF	0.25	-4.978
			$\log N/N_2$	$T = -5.79 \pm$	0.26		
24.01	CrII	19	405.1930	-2.190	KX	1.26	-5.824
24.01	CrII	23	540.7604	-2.088	K88	0.74	-5.862
24.01	CrII	23	542.0922	-2.360	MFW	0.67	-5.671
24.01	CrII	24	530.5853	-2.360	KX	1.21	-5.338
24.01	CrII	26	407.2561	-2.410	KX	0.59	-5.706
24.01	CrII	26	413.2419	-2.350	KX	0.89	-5.544
24.01	CrII	30	482.4127	-1.220	MF	2.70	-5.962
24.01	CrII	30	483.6229	-2.250	MF	0.62	-5.780
24.01	CrII	30	487.6399	-1.460	KX	2.10	-5.902
24.01	CrII	30	488.4607	-2.080	MF	1.54	-5.476
24.01	CrII	39	453.9595	-2.280	SL	0.87	-5.498
24.01	CrII	39	456.5740	-2.110	MF	0.31	-6.160
24.01	CrII	43	523.2496	-2.090	KX	0.32	-6.146

Tabla A.7: Continuación HD 78316

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
24.01	CrII	43	523.7329	-1.160	MF	2.05	-6.112
24.01	CrII	43	527.4964	-1.290	KX	1.51	-6.170
24.01	CrII	43	530.8440	-1.810	MF	1.18	-5.787
24.01	CrII	43	531.0700	-2.280	MF	0.97	-5.419
24.01	CrII	43	531.3590	-1.650	MF	1.61	-5.770
24.01	CrII	43	533.4869	-1.560	KX	2.25	-5.647
24.01	CrII	44	455.4988	-1.380	MF	4.25	-5.275
24.01	CrII	44	461.8803	-1.110	MF	2.53	-6.027
24.01	CrII	44	463.4070	-1.240	MF	2.04	-6.046
24.01	CrII	50	550.2067	-1.990	MFW	1.06	-5.613
24.01	CrII	130	386.6003	-2.350	KX	0.25	-5.607
24.01	CrII	162	414.5781	-1.160	KX	1.50	-5.737
24.01	CrII	167	386.5596	-0.780	KX	1.96	-5.953
24.01	CrII	181	412.7057	-1.770	KX	0.43	-5.601
24.01	CrII	183	397.9505	-0.730	KX	1.15	-6.154
24.01	CrII	190	490.1623	-0.830	KX	1.18	-5.654
24.01	CrII	190	491.2462	-0.950	KX	0.57	-5.905
24.01	CrII	191	446.5731	-1.180	KX	0.57	-5.685
24.01	CrII	193	407.0840	-0.750	KX	0.70	-6.019
24.01	CrII	-	386.6523	-2.070	KX	0.74	-5.370
24.01	CrII	-	390.5644	-0.900	KX	3.71	-5.320
24.01	CrII	-	401.2496	-0.890	KX	1.69	-5.780
24.01	CrII	-	405.4076	-2.480	KX	0.84	-5.744
24.01	CrII	-	417.9421	-1.770	KX	0.99	-6.039
24.01	CrII	-	427.5567	-1.700	KX	2.46	-5.559
24.01	CrII	-	455.8650	-0.660	MF	3.83	-6.114
24.01	CrII	-	458.7264	-1.648	MFW	0.32	-5.485
24.01	CrII	-	459.2049	-1.220	MF	1.53	-6.241
24.01	CrII	-	485.6186	-2.260	MF	1.10	-5.483
24.01	CrII	-	527.9880	-2.100	MF	1.23	-5.474
			$\log N/N$	$T_T - 3.63 \pm$	0.22		
25.00	MnI	16	475.4042	-0.090	MF	1.11	-3.888
25.00	MnI	21	470.9712	-0.340	MF	0.96	-3.432
25.00	MnI	22	441.4890	-0.290	MF	1.07	-3.428
25.00	MnI	23	423.5142	-0.260	KX	1.08	-3.432
25.00	MnI	29	406.1730	-0.560	MF	0.59	-3.361
25.00	MnI	48	404.5114	0.250	KX	0.40	-3.778
25.00	MnI	-	403.3062	-0.620	MF	3.06	-3.752
25.00	MnI	-	405.8930	-0.450	MF	0.64	-3.845
25.00	MnI	-	445.3012	-0.490	MF	0.82	-3.338
25.00	MnI	-	445.5814	-0.510	MF	0.68	-3.351
25.00	MnI	-	445.8254	0.040	MF	0.67	-3.908
25.00	MnI	-	446.2031	0.320	MF	1.79	-3.658
25.00	MnI	-	449.0080	-0.520	MF	0.51	-3.535
25.00	MnI	-	476.1512	-0.140	MF	0.69	-3.768
25.00	MnI	-	476.6418	0.100	MF	0.84	-3.926
			$\log N/N_T$	$T = -4.20 \pm$	- 0.28		

Tabla A.7: Continuación HD 78316

Código	Especie	Mult.	λ [nm]	loggf	Ref.	Weq[pm]	$\log N/N_T$
25.01	MnII	2	417.4318	-3.550	KX	4.12	-4.386
25.01	MnII	2	420.5375	-3.380	KX	5.23	-4.213
25.01	MnII	6	428.4429	-2.260	KX	3.70	-4.127
25.01	MnII	17	451.0206	-0.720	KX	1.94	-3.835
25.01	MnII	-	384.8574	-3.330	KX	1.70	-3.601
25.01	MnII	_	385,7899	-3.810	KX	0.55	-3 794
25.01	MnII	_	390,2365	-2.720	KX	1.03	-4 473
25.01	MnII	_	392 6115	-2 420	KX	2 25	-4 117
25.01	MnII	_	393 0952	-2 150	KX	1.58	-4 374
25.01	MnII		394 1231	-2 620	K 88	1.86	-4 294
25.01	MnII		395 2418	-1 500	KX	2 29	-4 235
25.01	MnII		395 3590	-2 270	KX	1.80	-3 628
25.01	MnII		308 6581	2.270	KY	1.65	4 372
25.01	MnII	-	400.0047	-2.000	KX KY	3.27	4.372
25.01	MnII	-	400.0047	-1.210	KA VV	2.54	-4.224
25.01	MnII	-	408.1444	-2.240	KA VV	2.04	-3.830
25.01	MnII	-	408.3390	-2.300	KA VV	2.00	-4.237
25.01	MnII	-	406.7912	-2.910	NA VV	1.05	-4.302
25.01	MnII	-	410.9217	-5.520	NA VV	2.00	-3.021
25.01	Mall	-	414.0442	-2.460	KA VV	2.00	-4.548
25.01	Mall	-	417.1512	-2.120	KA VV	2.01	-4.408
25.01	MINI	-	417.2281	-2.810	KA	0.94	-4.156
25.01	MnII	-	418.0064	-2.830	KX	1.38	-4.262
25.01	Mnll	-	418.4454	-1.950	KX	3.40	-4.151
25.01	MnII	-	420.0270	-1.740	KX	4.43	-4.047
25.01	Mnll	-	420.7234	-4.470	KX	1.93	-4.088
25.01	Mnll	-	423.8785	-3.630	KX	3.64	-4.434
25.01	Mnll	-	423.9188	-2.250	KX	4.29	-3.965
25.01	Mnll	-	424.0385	-2.070	KX	2.98	-4.159
25.01	Mnll	-	424.4248	-2.390	KX	3.90	-3.941
25.01	MnII	-	425.1727	-1.060	KX	4.69	-4.643
25.01	MnII	-	426.0462	-4.250	KX	1.65	-4.398
25.01	MnII	-	437.7742	-2.140	KX	2.07	-4.702
25.01	MnII	-	437.9654	-1.850	K88	2.61	-3.758
25.01	MnII	-	439.1961	-2.890	KX	0.96	-4.380
25.01	MnII	-	439.3379	-2.320	KX	2.78	-4.289
25.01	MnII	-	440.3512	-1.800	KX	2.31	-4.446
25.01	MnII	-	444.1991	-2.360	KX	1.92	-4.513
25.01	MnII	-	447.8635	-0.950	KX	4.16	-4.698
25.01	MnII	-	449.7941	-2.590	KX	1.51	-4.464
25.01	MnII	-	450.0543	-2.070	KX	2.14	-4.493
25.01	MnII	-	450.3201	-2.160	KX	2.15	-4.400
25.01	MnII	-	450.9217	-3.600	KX	1.13	-3.624
25.01	MnII	-	451.8953	-1.330	KX	4.83	-4.100
25.01	MnII	-	468.9546	-2.540	KX	2.42	-3.864
25.01	MnII	-	470.2734	-2.340	KX	1.59	-4.321
25.01	MnII	-	471.7264	-1.860	KX	2.20	-4.427
25.01	MnII	-	472.7843	-2.020	KX	4.87	-3.987
25.01	MnII	-	473.0397	-2.150	KX	3.78	-4.196

Tabla A.7: Continuación HD 78316

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	${\rm Log}\; N/N_T$				
25.01	MnII	-	474.2954	-2.978	K88	2.44	-3.763				
25.01	MnII	-	474.9112	-2.000	KX	2.04	-4.496				
25.01	MnII	-	475.5717	-1.240	KX	8.00	-3.737				
25.01	MnII	-	476.4728	-1.350	KX	6.57	-4.076				
25.01	MnII	-	479.1782	-1.720	KX	3.23	-4.409				
25.01	MnII	-	480.6823	-1.560	KX	4.78	-4.450				
25.01	MnII	-	481.1623	-2.340	KX	2.14	-4.476				
25.01	MnII	-	483.0061	-1.850	KX	2.18	-4.603				
25.01	MnII	-	483.9737	-1.860	KX	2.43	-4.509				
25.01	MnII	-	484.2325	-2.010	KX	3.08	-4.163				
25.01	MnII	-	484.7608	-1.810	KX	3.45	-4.601				
25.01	MnII	-	492.0436	-2.089	K88	3.93	-4.156				
25.01	MnII	-	510.2517	-1.930	KX	3.45	-4.206				
25.01	MnII	-	510.7092	-1.478	K88	3.26	-4.065				
25.01	MnII	-	512.3327	-1.876	K88	5.20	-3.705				
25.01	MnII	-	525.1823	-1.830	KX	2.30	-4.157				
25.01	MnII	-	530.7351	-2.070	KX	1.69	-4.124				
25.01	MnII	-	542.1919	-2.184	K88	2.60	-4.128				
Log N/N_T = -4.07± 0.23											
26.00	FeI	4	385.9911	-0.710	N4	1.33	-4.014				
26.00	FeI	41	438.3545	0.200	N4	0.78	-4.530				
26.00	FeI	42	420.2029	-0.710	N4	0.29	-4.086				
26.00	FeI	43	400.5242	-0.610	N4	0.40	-3.997				
26.00	FeI	45	390.2945	-0.470	N4	0.57	-3.966				
26.00	FeI	152	423.5936	-0.340	N4	0.63	-3.657				
26.00	FeI	318	489.1492	-0.110	N4	0.21	-4.204				
26.00	FeI	-	404.5812	0.280	N4	1.32	-4.325				
26.00	FeI	-	407.1738	-0.020	N4	0.99	-4.123				
26.00	FeI	-	495.7596	0.230	N4	0.97	-3.834				
			$\log N/N$	T_T -4.24±	0.27						
26.01	FeII	27	423.3172	-1.810	N4	6.40	-4.610				
26.01	FeII	27	427.3326	-3.340	N4	1.55	-4.531				
26.01	FeII	27	430.3176	-2.610	N4	5.60	-4.019				
26.01	FeII	27	438.5387	-2.570	N4	3.94	-4.542				
26.01	FeII	27	441.6830	-2.600	N4	3.81	-4.550				
26.01	FeII	28	412.2668	-3.380	N4	2.19	-4.328				
26.01	FeII	28	429.6572	-3.010	N4	3.23	-4.339				
26.01	FeII	28	438.4319	-3.680	N4	2.43	-3.923				
26.01	FeII	28	466.6758	-3.330	N4	1.59	-4.467				
26.01	FeII	37	447.2929	-3.530	N4	1.28	-4.385				
26.01	FeII	37	449.1405	-2.700	N4	2.83	-4.692				
26.01	FeII	37	451.5339	-2.480	N4	3.39	-4.757				
26.01	FeII	37	452.0224	-2.600	N4	3.32	-4.675				
26.01	FeII	37	458.2835	-3.100	N4	1.60	-4.687				
26.01	FeII	38	393.5962	-1.860	N4	3.59	-4.066				
26.01	FeII	38	454.1524	-3.050	N4	2.34	-4.488				
26.01	FeII	38	457.6340	-3.040	N4	2.25	-4.530				

Tabla A.7: Continuación HD 78316

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	38	458.3837	-2.020	N4	5.22	-4.685
26.01	FeII	38	462.0521	-3.280	N4	2.04	-4.364
26.01	FeII	43	473.1453	-3.130	N4	1.65	-4.616
26.01	FeII	127	384.5180	-2.290	KX	1.72	-4.703
26.01	FeII	127	402.4547	-2.440	N4	1.10	-4.801
26.01	FeII	173	390.6035	-1.830	N4	1.82	-4.639
26.01	FeII	186	463.5316	-1.650	N4	2.60	-4.374
26.01	FeII	198	641.6919	-2.880	N4	1.58	-4.379
26.01	FeII	D	390.3756	-1.500	KX	0.89	-4.509
26.01	FeII	D	459.6015	-1.840	N4	1.92	-4.281
26.01	FeII	J	435.7584	-2.100	KX	1.60	-4.208
26.01	FeII	J	457.9527	-2.510	KX	0.96	-4.014
26.01	FeII	J	482.6683	-0.440	KX	1.52	-4.009
26.01	FeII	J	490.8151	-0.300	KX	1.26	-4.237
26.01	FeII	J	491.3295	0.010	KX	2.29	-4.170
26.01	FeII	J	494.8096	-0.320	KX	1.75	-4.024
26.01	FeII	J	494.8793	-0.010	KX	2.04	-4.205
26.01	FeII	J	495.1584	0.180	KX	2.26	-4.335
26.01	FeII	J	495.8822	-0.650	KX	1.24	-3.869
26.01	FeII	J	497.7035	0.040	KX	2.10	-4.225
26.01	FeII	J	498.4473	0.010	KX	2.58	-4.018
26.01	FeII	J	499.0509	0.180	KX	2.11	-4.373
26.01	FeII	J	499.1440	-0.570	KX	0.96	-4.148
26.01	FeII	J	499.3358	-3.650	MF	1.07	-4.375
26.01	FeII	J	500.1959	0.900	KX	4.46	-4.390
26.01	FeII	J	500.4195	0.500	KX	2.27	-4.664
26.01	FeII	J	500.6841	-0.430	KX	1.60	-3.929
26.01	FeII	J	500.9022	-0.420	KX	1.39	-4.041
26.01	FeII	J	501.8440	-1.220	MF	7.64	-4.677
26.01	FeII	J	502.1594	-0.300	КХ	2.41	-3.811
26.01	FeII	J	502.2792	-0.020	КХ	2.49	-4.113
26.01	FeII	J	502.6806	-0.220	КХ	1.46	-4.227
26.01	FeII	J	503.0630	0.400	кх	2.56	-4.463
26.01	FeII	J	503.2712	0.110	КХ	1.86	-4.362
26.01	FeII	J	503.5708	0.610	КХ	3.01	-4.524
26.01	FeII	Ţ	504.5114	-0.130	KX	1.61	-4 253
26.01	FeII	J	506.0257	-0.520	KX	1.38	-3.896
26.01	FeII	Ţ	506 1718	0.220	KX	2.43	-4 305
26.01	FeII	Ţ	506 7893	-0.200	KX	1.53	-4 205
26.01	FeII	Ţ	507.0899	0.240	KX	2.19	-4.412
26.01	FeII	Ţ	507 5764	0.280	KX	2.28	-4 351
26.01	FeII	ĩ	508.2230	-0.100	KX	1.55	-4 256
26.01	FeII	J	509 3576	0.110	KX	2.76	-4 052
26.01	FeII	J	510 6109	-0.280	KX	2.70	-3 846
26.01	FeII	J	511 7034	-0.130	KX	1 44	-4 261
26.01	FeII	ј Т	511.034	-0.130	KV KV	1.44	-4.201
20.01	Fell	ј Т	512 7966	-0.500	KV KV	1.10	-3.900
20.01	Fell	J т	514 2000	-2.340	NA VV	1.42	-4.041
26.01	Fell	J	514.3880	0.100	КX	1.64	-4.398

Tabla A.7: Continuación HD 78316

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	514.4355	0.280	KX	1.59	-4.590
26.01	FeII	J	514.9465	0.400	KX	3.22	-4.154
26.01	FeII	J	515.0489	-0.120	KX	1.52	-4.226
26.01	FeII	J	516.0839	-2.640	KX	2.02	-3.719
26.01	FeII	J	516.6555	-0.030	KX	1.65	-4.258
26.01	FeII	J	517.7020	-0.180	KX	1.46	-4.219
26.01	FeII	J	518.0314	0.040	KX	2.09	-4.194
26.01	FeII	J	518.6873	-0.300	KX	1.77	-3.934
26.01	FeII	J	519.4892	-0.150	KX	2.01	-3.993
26.01	FeII	J	519.9122	0.100	KX	1.99	-4.286
26.01	FeII	J	520.0804	-0.370	KX	1.47	-4.018
26.01	FeII	J	520.3638	-0.050	KX	1.59	-4.287
26.01	FeII	J	521.5349	-0.100	KX	2.71	-3.897
26.01	FeII	J	521.5844	-0.230	KX	1.73	-4.062
26.01	FeII	J	521.6854	0.810	KX	2.87	-4.644
26.01	FeII	J	521.8842	-0.200	KX	1.89	-4.061
26.01	FeII	J	522.2361	-0.330	KX	2.07	-3.768
26.01	FeII	J	522.3260	-0.410	КХ	1.10	-4.146
26.01	FeII	J	522.3800	-0.590	кх	0.77	-4.165
26.01	FeII	J	522.4411	-0.570	KX	1.51	-3 788
26.01	FeII	J	522,7483	0.850	N4	5.95	-3.810
26.01	FeII	Ţ	522.7 105	-0.300	KX	0.78	-4 418
26.01	FeII	Ţ	523 1907	-0.640	KX	1 17	-3 820
26.01	FeII	J	523.1707	-0.040	KX	1.17	-3.820
26.01	Fell	т	523.4625	2 050	ME	1.77	4 705
26.01	Fell	J	523.4025	-2.030		2.61	-4.705
26.01	Fell	J	523.7950	0.140	KA VV	2.01	-4.077
20.01	Ген	J	524.5455	-0.510	NA NA	1.50	-3.631
26.01	Ген	J	525 1222	0.330	1N4 N4	2.00	-3.995
20.01	ген	J	525.1255	0.420	IN4 WW	2.69	-4.240
26.01	Fell	J	525.4400	-0.770	KA VV	0.76	-3.935
26.01	Fell	J	525.4929	-3.230	KA	2.22	-4.152
26.01	Fell	J	525./122	0.030	KX	1.91	-4.190
26.01	Fell	J	526.0254	1.070	KX	6.39	-3.932
26.01	Fell	J	526.4177	0.300	N4	3.53	-3.923
26.01	Fell	J	526.4812	-3.190	MF	2.08	-4.238
26.01	FeII	J	527.0027	0.070	KX	1.49	-4.396
26.01	FeII	J	527.2397	-2.030	MF	2.27	-4.062
26.01	FeII	J	527.6002	-1.940	MF	4.45	-4.790
26.01	FeII	J	529.1666	0.580	KX	2.68	-4.480
26.01	FeII	J	530.3395	-1.610	KX	0.68	-4.173
26.01	FeII	J	530.6180	0.090	N4	2.44	-4.049
26.01	FeII	J	531.6615	-1.850	MF	7.03	-4.097
26.01	FeII	J	531.8057	-0.140	KX	1.20	-4.317
26.01	FeII	J	531.8750	-0.570	KX	0.77	-4.157
26.01	FeII	J	532.2234	-0.520	KX	1.34	-3.883
			$\log N/N_T$	$- = -6.33 \pm$: 0.30		
28.01	NiII	11	384 9554	-1 878	K88	1.95	-6.036

Tabla A.7: Continuación HD 78316

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$			
28.01	NiII	-	406.7031	-1.290	KX	1.93	-6.631			
			$\log N/N_T$	r = -4.74±	± 0.15					
31.01	GaII	-	425.1149	0.350	RS	4.24	-4.607			
31.01	GaII	-	425.4075	-0.230	RS	1.78	-4.996			
31.01	GaII	-	536.0402	0.420	RS	2.61	-4.738			
31.01	GaII	-	541.6318	0.640	RS	3.37	-4.634			
			$\log N_{i}$	$/N_T = -6.$	48					
35.01	BrII	-	478.5500	0.208	NIST	0.46	-6.480			
			$\log N/N_T$	r = -8.24±	± 0.29					
38.01	SrII	1	407.7709	0.150	WM	1.56	-8.533			
38.01	SrII	1	421.5519	-0.170	WM	2.23	-7.954			
$\log N/N_T = -6.59 \pm 0.12$										
39.01	YII	16	393.0658	-1.610	HL	0.61	-6.643			
39.01	YII	20	511.9110	-1.360	HL	0.98	-6.370			
39.01	YII	22	482.3304	-1.110	HL	1.04	-6.595			
39.01	YII	28	519.6422	-0.880	KX	0.80	-6.606			
39.01	YII	27	547.3384	-1.020	HL	0.47	-6.731			
$\log N/N_T = -6.41 \pm 0.21$										
40.01	ZrII	15	421.1907	-0.980	KX	1.30	-6.786			
40.01	ZrII	43	393.4791	-0.900	KX	1.52	-6.676			
40.01	ZrII	54	401.8368	-0.990	KX	1.20	-6.618			
40.01	ZrII	86	437.9742	-0.360	KX	2.70	-6.392			
40.01	ZrII	97	418.6672	-0.580	KX	2.20	-6.253			
40.01	ZrII	99	417.9807	-0.780	KX	1.54	-6.352			
40.01	ZrII	129	466.1784	-0.800	KX	1.17	-6.154			
40.01	ZrII	-	402.4417	-0.970	KX	2.14	-6.234			
40.01	ZrII	-	404.0236	-1.530	KX	1.06	-6.162			
40.01	ZrII	-	407.7038	-1.600	KX	0.40	-6.575			
40.01	ZrII	-	444.0452	-1.190	GB	1.21	-6.303			
			$\log N/N_T$	r = -4.77±	E 0.16					
54.01	XeII	-	484.4330	0.491	NIS3	3.64	-4.883			
54.01	Xell	-	529.2220	0.351	NIS3	3.60	-4.652			
54.01	Xell	-	537.2390	-0.211	NIS3	2.30	-4.651			
54.01	Xell	-	541.9150	0.214	NIS3	3.09	-4.635			
54.01	Xell	-	597.6460	-0.222	NIST	1.45	-5.021			
				r = -8.423	E 0.17	0.04	0.505			
60.02	NdIII	-	512.7044	-1.080	DREA	0.86	-8.585			
60.02	NdIII	-	520.3924	-1.190	DREA	1.49	-8.249			
70.01	A 11		Log N	$N_T = -7.$	01 DW	0.10	7 (10			
/9.01	Aull	-	405.2790	-1.690	KW	0.18	-7.612			
20.00	11 1			$V_T = -4.$		0.71	4.057			
80.00	Hgl	-	404.6609	-0.818	BLD	0.71	-4.057			
90.01	11.11		Log N	1.720	09	6.22	5 001			
80.01	Hgll	-	398.3941	-1./30	DW	6.32	-5.091			

Tabla A.7: Continuación HD 78316

A.8. HD 158704

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
			$\log N/N_T$	$= -2.55 \pm 0.2$	0		
6.00	CI	6	477.1742	-1.866	CNO	2.85	-2.352
6.00	CI	13	493.2049	-1.658	CNO	1.86	-2.757
			$\log N/N_T$	= -3.10± 0.1	3		
6.01	CII	4	391.8968	-0.530	WF	3.14	-3.255
6.01	CII	6	426.7001	0.560	WF	5.12	-3.108
6.01	CII	-	392.0681	-0.230	WF	5.93	-2.930
			$\log N/N_T$	$= -2.65 \pm 0.1$	6		
8.00	OI	11	543.6862	-1.398	CNO	1.56	-2.803
8.00	OI	13	502.0218	-1.725	CNO	1.73	-2.490
			$\log N/N_T$	$= -3.79 \pm 0.1$	2		
12.00	MgI	2	517.2684	-0.380	WS	3.42	-3.914
12.00	MgI	2	518.3604	-0.160	WS	4.94	-3.829
12.00	MgI	40	470.2991	-0.374	NIST	1.70	-3.634
			$\log N/N_T$	$= -4.98 \pm 0.2$	0		
12.01	MgII	5	384.8211	-1.590	WS	1.26	-4.821
12.01	MgII	9	442.7994	-1.210	WS	1.10	-4.757
12.01	MgII	10	438.4637	-0.790	WS	0.96	-5.259
12.01	MgII	10	439.0572	-0.530	WS	2.25	-5.089
			$\log N/l$	$V_T = -6.70$			
13.01	AlII	2	466.3046	-0.280	FW	0.46	-6.704
			$\log N/N_T$	$= -4.68 \pm 0.2$.8		
14.01	SiII	3	412.8054	0.380	LA	9.51	-4.863
14.01	SiII	5	504.1024	0.290	SG	6.34	-5.008
14.01	SiII	5	505.5984	0.441	NIST	8.52	-4.816
14.01	SiII	4	597.8930	-0.061	NIST	3.32	-5.070
14.01	SiII	301	407.5452	-1.400	SG	1.15	-4.840
14.01	SiII	726	419.0724	-0.351	LA	1.02	-4.529
14.01	SiII	733	568.8817	0.106	LA	1.13	-4.299
14.01	SiII	-	407.6780	-1.670	SG	1.82	-4.324
14.01	SiII	-	420.0898	-0.670	KP	1.28	-4.408
			$\log N/N_T$	$= -4.99 \pm 0.2$.2		
15.01	PII	6	534.4729	-0.390	NIS3	2.13	-4.823
15.01	PII	7	529.6077	-0.160	WS	2.10	-5.021
15.01	PII	10	525.3479	0.330	WS	4.69	-4.631
15.01	PII	10	542.5880	0.180	NIS3	3.34	-4.963
15.01	PII	15	460.2069	0.740	WS	2.31	-5.213
15.01	PII	-	417.8463	-0.410	KX	2.83	-5.274
			$\log N/N_T$	$= -4.94 \pm 0.2$.7		
16.01	SII	1	499.1969	-0.650	WS	0.39	-4.856
16.01	SII	1	502.7203	-0.720	WS	0.82	-4.556
16.01	SII	6	543.2797	0.257	NIST	2.03	-4.537
16.01	SII	11	560.6151	0.309	NIST	0.59	-5.356
16.01	SII	15	501.4042	0.030	KX	0.64	-5.082
16.01	SII	38	532.0723	0.460	WS	0.66	-5.011

Tabla A.8: Abundancias Químicas línea por línea para HD 158704.

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
16.01	SII	39	521.2620	0.240	WS	0.60	-4.885
16.01	SII	44	414.5060	0.230	KX	0.82	-4.791
16.01	SII	44	416.2665	0.780	WS	0.72	-5.387
16.01	SII	-	415.3068	0.620	WS	1.12	-4.959
			$\log N/N$	$V_T = -4.04$			
20.00	CaI	2	422.6728	0.240	FW	2.05	-4.042
			$\log N/N$	$N_T = -5.75$			
20.01	CaII	1	393.3663	0.130	WM	18.45	-5.749
			$\log N/N$	$N_T = -4.94$			
21.01	ScII	31	552.6799	0.130	MFW	1.20	-4.943
			$\log N/N_T$	$= -5.89 \pm 0.3$	30		
22.01	TiII	11	398.1990	-2.530	KX	0.80	-5.769
22.01	TiII	19	439.5031	-0.660	MF	4.16	-6.328
22.01	TiII	33	422.7334	-2.360	KX	1.47	-5.369
22.01	TiII	40	441.7714	-1.430	MF	1.97	-6.114
22.01	TiII	41	429.0215	-1.120	MF	2.88	-6.165
22.01	TiII	41	430.0042	-0.770	MF	6.01	-5.643
22.01	TiII	48	476.3883	-2.450	KX	0.55	-5.739
22.01	TiII	50	453.3960	-0.770	MF	5.98	-5.618
22.01	TiII	51	439.4059	-1.590	MF	1.18	-6.218
22.01	TiII	59	465.7200	-2.150	MF	1.49	-5.522
22.01	TiII	61	439.5839	-2.170	MF	1.40	-5.536
22.01	TiII	69	533.6786	-1.700	MF	1.79	-5.696
22.01	TiII	70	518.8687	-1.210	MF	3.07	-5.815
22.01	TiII	70	522.6538	-1.300	MF	1.98	-6.044
22.01	TiII	82	457.1971	-0.530	MF	4.77	-6.060
22.01	TiII	86	512.9156	-1.390	MF	1.37	-6.018
22.01	TiII	86	518.5902	-1.350	MF	1.16	-6.146
22.01	TiII	87	402.8338	-1.000	MF	1.37	-6.411
22.01	TiII	92	477.9985	-1.370	MF	1.59	-5.887
22.01	TiII	92	480.5085	-1.100	MF	1.56	-6.161
22.01	Till	93	442.1938	-1.770	MF	0.79	-5.852
22.01	TiII	103	521.1536	-1.360	KX	0.92	-5.929
22.01	TiII	104	436.7652	-1.270	MF	1.78	-5.672
22.01	Till	105	416.3644	-0.400	MF	2.62	-6.290
22.01	TiII	106	406.4354	-1.610	KX	1.38	-5.472
22.01	Till	113	501.0211	-1.340	KX	1.27	-5.549
22.01	Till	113	507.2287	-0.750	MF	1.55	-6.013
22.01	Till	114	487.4014	-0.790	MF	0.86	-6.306
22.01	Till	114	491.1195	-0.340	MF	1.55	-6.427
22.01	11II T'''	115	441.1072	-1.060	MF	1.10	-5.917
22.01	Till	115	445.6649	-1.410	KX	0.48	-5.962
22.01	Till	117	479.8532	-2.430	MF	0.89	-5.590
22.01	Till	-	393.2023	-1.780	MF	1.46	-5.945
22.01	Till	-	398.7606	-2.730	MF	0.88	-5.506
22.01	1111 T:11	-	401.2383	-1.010	ME	2.11	-0.139
44.UI	1111	-	40.00/1	-1.210	IVIE	2.09	-1.711

Tabla A.8: Continuación HD 158704

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
22.01	TiII	-	415.8267	-0.480	KX	0.88	-5.564
22.01	TiII		416.1529	-2.360	MFW	1.44	-5.401
22.01	TiII	-	429.4094	-1.110	MF	2.58	-6.293
22.01	TiII	-	430.1922	-1.160	MF	1.95	-6.391
22.01	TiII	-	431.2860	-1.160	MF	3.29	-6.011
22.01	TiII		431.6794	-1.420	MF	1.14	-6.021
22.01	TiII	-	432.0950	-1.870	MF	1.67	-5.772
22.01	TiII	-	438.6847	-1.260	MF	1.85	-5.656
22.01	TiII	-	439.9765	-1.270	MF	2.53	-6.077
22.01	TiII	-	440.9235	-2.640	KX	0.76	-5.382
22.01	TiII		441.8331	-2.460	MF	0.60	-5.679
22.01	TiII	-	445.0482	-1.450	MF	2.03	-6.113
22.01	Till	-	446.4448	-2.080	MF	2.16	-5.407
22.01	TiII	-	448.8325	-0.820	MF	1.83	-5.858
22.01	TiII	-	450.1270	-0.750	MF	3.74	-6.333
22.01	TiII		456.3757	-0.960	MF	3.37	-6.170
22.01	TiII	-	526.2141	-2.110	KX	1.32	-5.462
22.01	TiII	-	526.8615	-1.620	MF	0.96	-5.642
			$\log N/N_T$	$= -4.27 \pm 0.2$	23		
24.00	CrI	1	427.4797	-0.231	MFW	1.21	-4.589
24.00	CrI	1	428.9717	-0.361	MFW	2.01	-4.166
24.00	CrI	7	520.4511	-0.210	MF	1.48	-4.061
			$\log N/N_T$	$= -5.81 \pm 0.2$	27		
24.01	CrII	19	405.1930	-2.190	KX	1.26	-5.790
24.01	CrII	23	540.7604	-2.088	K88	1.05	-5.646
24.01	CrII	23	542.0922	-2.360	MFW	0.37	-5.914
24.01	CrII	26	407.2561	-2.410	KX	0.47	-5.780
24.01	CrII	26	413.2419	-2.3	KX	0.42	-5.873
24.01	CrII	30	481.2337	-1.800	MF	0.78	-6.079
24.01	CrII	30	482.4127	-1.220	MF	2.90	-5.873
24.01	CrII	30	484.8235	-1.140	MF	1.91	-6.249
24.01	CrII	30	487.6399	-1.460	KX	1.94	-5.919
24.01	CrII	30	488.4607	-2.080	MF	0.72	-5.841
24.01	CrII	30	484.8235	-1.140	MFW	1.91	-6.257
24.01	CrII	31	426.1913	-1.530	KX	3.82	-5.321
24.01	CrII	39	456.5740	-2.110	MF	1.28	-5.431
24.01	CrII	43	523.7329	-1.160	MF	2.87	-5.834
24.01	CrII	43	527.4964	-1.290	KX	1.55	-6.118
24.01	CrII	43	530.8440	-1.810	MF	1.36	-5.671
24.01	CrII	43	531.3590	-1.650	MF	2.52	-5.442
24.01	CrII	43	533.4869	-1.560	KX	1.23	-5.976
24.01	CrII	44	455.4988	-1.380	MF	2.52	-5.730
24.01	CrII	44	458.8199	-0.630	MF	4.74	-5.859
24.01	CrII	44	461.6629	-1.290	MF	1.38	-6.195
24.01	CrII	44	461.8803	-1.110	MF	1.92	-6.180
24.01	CrII	44	463.4070	-1.240	MF	2.13	-5.984
24.01	CrII	50	550.3212	-2.306	K88	0.70	-5.482

Tabla A.8: Continuación HD 158704

Código	o Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	${\rm Log}\;N/N_T$
24.01	CrII	129	391.1321	-2.060	KX	0.54	-5.501
24.01	CrII	162	414.5781	-1.160	KX	0.71	-6.098
24.01	CrII	165	408.2285	-2.780	KX	0.97	-5.871
24.01	CrII	167	386.5596	-0.780	KX	2.21	-5.845
24.01	CrII	178	469.7598	-1.880	MF	0.69	-5.225
24.01	CrII	181	412.7057	-1.770	KX	0.38	-5.626
24.01	CrII	190	490.1623	-0.830	KX	0.77	-5.841
24.01	CrII	190	491.2462	-0.950	KX	0.86	-5.666
24.01	CrII	191	446.5731	-1.180	KX	0.21	-6.114
24.01	CrII	193	407.0840	-0.750	KX	1.20	-5.712
24.01	CrII	-	390.5644	-0.900	KX	2.79	-5.552
24.01	CrII	-	401.2496	-0.890	KX	2.04	-5.632
24.01	CrII	-	407.7511	-2.780	KX	0.96	-5.343
24.01	CrII	-	408.6128	-2.420	KX	0.45	-5.790
24.01	CrII	-	417.9421	-1.770	KX	0.76	-6.139
24.01	CrII	-	427.5567	-1.70	KX	1.21	-5.956
24.01	CrII	-	455.8650	-0.660	MF	3.38	-6.211
24.01	CrII	-	485.6186	-2.260	MF	0.63	-5.728
24.01	CrII	-	527.9880	-2.100	MF	1.37	-5.377
			$\log N/N_T$	$= -3.94 \pm 0.28$	3		
25.00	MnI	2	403.0753	-0.470	MF	2.24	-4.460
25.00	MnI	5	403.5719	-0.190	KX	1.01	-4.204
25.00	MnI	16	475.4042	-0.090	MF	1.22	-4.149
25.00	MnI	16	482.3515	0.140	MF	1.69	-4.176
25.00	MnI	21	470.9712	-0.340	MF	0.91	-3.770
25.00	MnI	22	441.4890	-0.290	MF	1.27	-3.654
25.00	MnI	23	423.5142	-0.260	KX	1.86	-3.434
25.00	MnI	27	602.1790	0.034 M	FW	0.75	-4.126
25.00	MnI	28	445.7549	-0.120	MF	0.67	-4.059
25.00	MnI	28	445.8254	0.040	MF	1.00	-4.018
25.00	MnI	29	406.1730	-0.560	MF	0.90	-3.473
25.00	MnI	57	401.8100	-0.310	MF	0.60	-4.356
25.00	MnI	-	392.2684	0.050	KX	0.61	-3.906
25.00	Mnl	-	403.3062	-0.620	MF	4.18	-3.747
25.00	MnI	-	403.4483	-0.810	MF	1.73	-4.285
25.00	Mnl	-	404.1355	0.290	MF	2.72	-4.089
25.00	Mnl	-	405.8930	-0.450	MF	0.92	-3.976
25.00	Mnl	-	407.0278	-0.950	MF	0.53	-3.744
25.00	Mnl	-	408.2939	-0.350	MF	0.51	-4.367
25.00	Mnl	-	443.6357	-0.290	MF	0.47	-4.129
25.00	Mnl	-	445.3012	-0.490	MF	0.52	-3.872
25.00	Mnl	-	445.5014	-0.390	KX	1.10	-3.538
25.00	Mnl	-	445.5814	-0.510	MF	0.74	-3.621
25.00	Mnl	-	446.2031	0.320	MF	1.88	-3.945
25.00	Mini	-	440.4682	-0.100	MF	2.12	-3.333
25.00	IVINI Mart	-	447.0144	-0.440	ME	0.90	-3.032
25.00	Mnl	-	449.0080	-0.520	MF	0.48	-3.8/4

Tabla A.8: Continuación HD 158704

Código	Especie	Mult	λ[nm]	loggf	Ref	W _{ea} [pm]	Log N/NT
25.00	Mal		450.2212	0.240	ME	0.97	2 700
25.00	Mal	-	450.2213	-0.340	MEW	0.87	-3.799
25.00	MnI	-	402.0330	0.210	ME	0.97	-3.444
25.00	MnI	-	476.1312	-0.140	ME	0.74	-4.044
25.00	MnI	-	470.2307	0.420	ME	0.62	-4.091
25.00	Mal	-	470.5840	-0.080	ME	0.03	-4.189
25.00	MINI	-	470.0418	0.100	MF	1.24	-4.031
25.00	MINI	-	$\frac{478.3430}{1 \text{ og } N/N_{T}}$ –	-4.37 ± 0.2	MF 24	1.52	-4.149
25.01	MnII	2	417 4318	3 550	KV	3 10	1 628
25.01	MnII	2	417.4318	-3.350	KX KX	1.13	-4.028
25.01	MnII	6	428.3375	2 260	KY KY	2.07	4 206
25.01	MnII	17	428.4429	-2.200	KX KV	1.00	-4.290
25.01	MnII	17	385 7800	-0.720	KX KV	0.20	4.134
25.01	MnII	-	385 9206	-5.810	KX KV	2.00	-4.040
25.01	MnII	-	300 2365	-2.500	KX KV	1.02	-4.292
25.01	MnII	-	392 6115	-2.720	KV KV	1.02	-4.435
25.01	MnII	-	392.0113	-2.420	KA VV	2.19	-4.547
25.01	MnII	-	202.0052 2.150	-1.150 VV	КЛ 1 25	J.10 1 122	-4.031
25.01	MnII	-	393.0932 -2.130	КЛ 1 500	1.55 VV	-4.425	4 617
25.01	MnII	-	205 2500	-1.500	КЛ VV	0.46	-4.017
25.01	MnII	-	208 6581	-2.270	KA VV	1.22	-4.512
25.01	MnII	-	200 5206	-2.000	KA VV	1.55	-4.432
25.01	MnII	-	400.0047	-2.440	NA VV	2.10	-4.747
25.01	Mall	-	400.0047	-1.210	КЛ VV	2.10	-4.544
25.01	Mall	-	408.1444	-2.240	KA VV	3.28	-5.892
25.01	Mall	-	408.5390	-2.560	KA VV	2.28	-4.122
25.01	Mall	-	408.7912	-2.910	KA VV	0.96	-4.302
25.01	MnII	-	414.0442	-2.460	KX	2.00	-4.302
25.01	Mall	-	417.1512	-2.120	KA VV	1.41	-4.580
25.01	Mall	-	418.0064	-2.830	KA VV	1.10	-4.311
25.01	MIII	-	418.4454	-1.950	KA	2.02	-4.525
25.01	MnII	-	420.0270	-1./40	KX	3.03	-4.990
25.01	Mall	-	420.7234	-4.470	KA VV	2.02	-4.009
25.01	Mall	-	423.8785	-3.030	KA VV	3.29	-4.480
25.01	Minii	-	423.9188	-2.250	KA	3.70	-4.101
25.01	MnII	-	424.0385	-2.070	KX VV	3.04	-4.098
25.01	MIII	-	424.4248	-2.390	KA	2.72	-4.240
25.01	MnII	-	425.1727	-1.060	KX	4.34	-4.720
25.01	MnII	-	426.0462	-4.250	KX	2.24	-4.156
25.01	MnII	-	437.7742	-2.140	KX	2.08	-4.652
25.01	Minii	-	439.1961	-2.890	KX	1.03	-4.296
25.01	Mnll	-	439.33/9	-2.320	KX	1.70	-4.584
25.01	Mnll	-	440.3512	-1.800	KX	2.46	-4.353
25.01	Mnll	-	444.1991	-2.360	KX	1.93	-4.462
25.01	Mnll	-	447.8635	-0.950	KX	3.95	-4.725
25.01	Mnll	-	449.7941	-2.590	KX	1.53	-4.408
25.01	MnII	-	450.0543	-2.070	KX	1.84	-4.545
25.01	MnII	-	450.3201	-2.160	KX	1.80	-4.469

Tabla A.8: Continuación HD 158704

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
25.01	MnII	-	451.8953	-1.330	KX	3.12	-4.588
25.01	MnII	-	451.9240	-2.570	KX	3.37	-3.852
25.01	MnII	-	468.9546	-2.540	KX	1.96	-3.963
25.01	MnII	-	470.2734	-2.340	KX	2.15	-4.078
25.01	MnII	-	471.7264	-1.860	KX	1.92	-4.471
25.01	MnII	-	472.7843	-2.020	KX	4.51	-4.067
25.01	MnII	-	473.0397	-2.150	KX	3.37	-4.273
25.01	MnII	-	474.9112	-2.000	KX	1.25	-4.745
25.01	MnII	-	475.5717	-1.240	KX	7.60	-3.844
25.01	MnII	-	476.4728	-1.350	KX	6.04	-4.232
25.01	MnII	-	479.1782	-1.720	KX	2.17	-4.684
25.01	MnII	-	480.6823	-1.560	KX	4.28	-4.570
25.01	MnII	-	481.1623	-2.340	KX	1.40	-4.690
25.01	MnII	-	483.0061	-1.850	KX	2.78	-4.370
25.01	MnII	-	483.9737	-1.860	КX	2.03	-4.588
25.01	MnII	-	484.2325	-2.010	КX	2.21	-4.380
25.01	MnII	-	484.7608	-1.810	KX	2.63	-4.795
25.01	MnII	-	510.2517	-1.930	KX	2.76	-4.365
25.01	MnII	-	525.1823	-1.830	KX	1.72	-4.304
25.01	MnII	-	530.7351	-2.070	KX	2.04	-3.948
25.01	MnII	-	542.1919	-2.184	K88	2.53	-4.097
			$\log N/N_T$:	= -3.81± 0.2	2		
26.00	FeI	4	385.9911	-0.710	N4	1.81	-4.085
26.00	FeI	20	382.5881	-0.040	N4	2.88	-4.002
26.00	FeI	41	438.3545	0.200	N4	3.14	-3.915
26.00	FeI	41	441.5122	-0.620	N4	1.80	-3.447
26.00	FeI	42	420.2029	-0.710	N4	1.35	-3.580
26.00	FeI	318	489.1492	-0.110	N4	1.55	-3.468
26.00	FeI	419	421.9360	0.000	N4	0.43	-3.905
26.00	FeI	-	404.5812	0.280	N4	3.62	-3.851
26.00	FeI	-	407.1738	-0.020	N4	1.79	-4.044
26.00	FeI	-	440.4750	-0.140	N4	2.41	-3.755
			$\log N/N_T$:	= -4.19± 0.2	4		
26.01	FeII	3	393.5962	-1.860	N4	2.34	-4.348
26.01	FeII	27	423.3172	-1.810	N4	6.96	-4.346
26.01	FeII	27	427.3326	-3.340	N4	2.19	-4.208
26.01	FeII	27	430.3176	-2.610	N4	3.36	-4.600
26.01	FeII	27	438.5387	-2.570	N4	4.08	-4.400
26.01	FeII	27	441.6830	-2.600	N4	3.71	-4.476
26.01	FeII	28	412.2668	-3.380	N4	1.97	-4.293
26.01	FeII	28	417.8862	-2.480	N4	4.10	-4.573
26.01	FeII	28	429.6572	-3.010	N4	2.90	-4.328
26.01	FeII	28	466.6758	-3.330	N4	2.13	-4.174
26.01	FeII	29	387.2766	-3.320	КХ	3.90	-3.730
26.01	FeII	32	438.4319	-3.680	N4	2.89	-3.683
26.01	FeII	37	447.2929	-3.530	N4	1.59	-4.154
26.01	FeII	37	448.9183	-2.970	N4	2.66	-4.377

Tabla A.8: Continuación HD 158704

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	37	449.1405	-2.700	N4	3.06	-4.520
26.01	FeII	37	451.5339	-2.480	N4	4.13	-4.439
26.01	FeII	37	452.0224	-2.600	N4	3.76	-4.444
26.01	FeII	37	458.2835	-3.100	N4	2.04	-4.427
26.01	FeII	37	462.9339	-2.370	N4	4.49	-4.457
26.01	FeII	38	450.8288	-2.210	N4	4.40	-4.628
26.01	FeII	38	452.2634	-2.030	N4	5.25	-4.553
26.01	FeII	38	454.1524	-3.050	N4	2.32	-4.386
26.01	FeII	38	457.6340	-3.040	N4	2.92	-4.225
26.01	FeII	38	458.3837	-2.020	N4	6.30	-4.251
26.01	FeII	38	462.0521	-3.280	N4	2.92	-3.992
26.01	FeII	43	473.1453	-3.130	N4	2.43	-4.252
26.01	FeII	48	531.6214	0.340	N4	3.02	-4.077
26.01	FeII	74	641.6919	-2.880	N4	2.14	-4.045
26.01	FeII	127	402.4547	-2.440	N4	1.69	-4.460
26.01	FeII	153	382.7083	-2.360	N4	1.38	-4.555
26.01	FeII	167	512.7866	-2.540	KX	1.11	-4.073
26.01	FeII	167	516.0839	-2.640	КХ	1.72	-3.716
26.01	FeII	173	390.6035	-1.830	N4	1.39	-4.710
26.01	FeII	186	463.5316	-1.650	N4	2.42	-4.328
26.01	FeII	190	393.8290	-4.070	N4	2.70	-3.800
26.01	FeII	190	393 8970	-1.850	N4	2.51	-4 152
26.01	FeII	198	641 6919	-2 880	N4	2.14	-4 041
26.01	FeII	D	390.3756	-1.500	кх	1.61	-4 099
26.01	FeII	D	459 6015	-1.840	N4	2.08	-4 128
26.01	FeII	I	435 7584	-2 100	KX	2.00	-3.963
26.01	FeII	J	457 9527	-2.510	KX	1 10	-3 800
26.01	FeII	J	482 6683	-0.440	KX	0.99	-4.178
26.01	Fall	J	400 8151	0.300	KY KY	1.00	4.178
26.01	Fell	J	490.8131	-0.300	KX KY	1.09	-4.238
26.01	Fall	J	491.3293	0.010	KA VV	1.27	-4.201
26.01	Ген	J	494.8090	-0.320	KA VV	1.30	-4.087
26.01	Fell	J	495.1584	0.160	KA VV	1.00	-4.387
20.01	Fell	J T	473.0022	-0.030	лл VV	1.20	-4.082
20.01	Fell	J	491.1033	0.040		1.60	-4.230
20.01	Fell	J	498.4473	0.010	KĂ	2.12	-4.086
20.01	Fell	J	499.3358	-3.650	MF	1.8/	-3.941
20.01	Fell	J	500.1959	0.900	KX	4.73	-4.269
26.01	Fell	J	500.4195	0.500	KX	2.66	-4.459
26.01	Fell	J	500.6841	-0.430	KX	1.54	-3.8/1
26.01	Fell	J	500.7450	-0.360	KX	0.72	-4.367
26.01	Fell	J	500.7739	-0.200	KX	1.64	-4.091
26.01	FeII	J	500.9022	-0.420	KX	0.95	-4.176
26.01	FeII	J	501.8440	-1.220	MF	9.07	-4.216
26.01	FeII	J	502.1594	-0.300	KX	1.38	-4.109
26.01	FeII	J	502.2792	-0.020	KX	1.79	-4.283
26.01	FeII	J	502.6806	-0.220	KX	1.24	-4.241
26.01	FeII	J	503.5708	0.610	KX	2.80	-4.516
26.01	FeII	J	504.5114	-0.130	KX	1.20	-4.347

Tabla A.8: Continuación HD 158704

_

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	506.0257	-0.520	KX	1.34	-3.832
26.01	FeII	J	506.1718	0.220	KX	1.93	-4.393
26.01	FeII	J	506.7893	-0.200	KX	1.42	-4.167
26.01	FeII	J	507.0899	0.240	KX	2.03	-4.389
26.01	FeII	J	507.5764	0.280	KX	1.40	-4.600
26.01	FeII	J	508.2230	-0.100	KX	1.41	-4.229
26.01	FeII	J	509.3576	0.110	KX	2.51	-4.049
26.01	FeII	J	509.7271	0.310	KX	2.33	-4.309
26.01	FeII	J	510.6109	-0.280	KX	1.64	-3.987
26.01	FeII	J	514.5772	-0.400	KX	1.98	-3.698
26.01	FeII	J	515.0489	-0.120	KX	1.20	-4.282
26.01	FeII	J	516.9033	-0.870	MF	9.11	-4.562
26.01	FeII	J	511.9341	-0.560	KX	0.94	-4.008
26.01	FeII	J	514.3880	0.100	KX	1.85	-4.233
26.01	FeII	J	514.4355	0.280	KX	1.87	-4.398
26.01	FeII	J	516.6555	-0.030	KX	1.60	-4.192
26.01	FeII	J	518.0314	0.040	KX	2.04	-4.127
26.01	FeII	J	518.6873	-0.300	КХ	1.20	-4.086
26.01	FeII	J	519.4892	-0.150	KX	1.84	-3.967
26.01	FeII	J	520.0804	-0.370	КХ	0.98	-4.167
26.01	FeII	J	520.3638	-0.050	КХ	1.50	-4.238
26.01	FeII	J	521.5349	-0.100	KX	3.10	-3.752
26.01	FeII	J	521.5844	-0.230	КX	1.52	-4.057
26.01	FeII	J	519.9122	0.100	KX	2.09	-4.158
26.01	FeII	J	521.6854	0.810	KX	2.44	-4.700
26.01	FeII	J	522.2361	-0.330	KX	1.39	-3,947
26.01	FeII	J	522.3260	-0.410	KX	1.49	-3,877
26.01	FeII	J	522.3800	-0.590	KX	1.03	-3.926
26.01	FeII	J	522.4411	-0.570	KX	1.24	-3.821
26.01	FeII	J	522.5968	-0.400	KX	2.02	-3 674
26.01	FeII	ĩ	522.7483	0.850	N4	5.87	-3 817
26.01	FeII	J	522.7405	-0 300	KX	0.94	-4 231
26.01	FeII	J	523 1907	-0.640	KX	0.82	-3 927
26.01	FeII	J	523 4625	-2 050	ME	5 51	-4 240
26.01	FeII	J	523 7950	0.140	KX	2.21	-4 114
26.01	FeII	J	523.1750	_0.1+0	KV KV	2.22	-3.617
26.01	FeII	J T	523.3015	-0.400	KX KX	2.17 0.60	-3.017
26.01	Eall	л Т	524.5455	0.510	N/	2 77	-4.170
20.01	Fell	J T	525 4020	3 220	IN4 KV	3.21 2.05	-4.133
20.01	rell Ecu	J	525.4929	-5.250	KA VV	2.05	-4.092
20.01	Fell	J	525./122	0.030	KX VV	1.85	-4.125
20.01	Fell	J	520.0254	1.070	KX N4	4.39	-4.420
26.01	Fell	J	526.4177	0.300	N4	2.72	-4.092
26.01	Fell	J	526.4812	-3.190	MF	1.67	-4.264
26.01	Fell	J	527.2397	-2.030	MF	2.04	-4.029
26.01	Fell	J	527.6002	-1.940	MF	5.26	-4.437
26.01	Fell	J	529.1666	0.580	KX	2.28	-4.526
26.01	Fell	J	530.6180	0.090	N4	2.80	-3.840
26.01	Fell	J	531.8750	-().57()	КX	0.96	-3.953

Tabla A.8: Continuación HD 158704

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	532.2234	-0.520	KX	1.15	-3.884
26.01	FeII	-	494.8793	-0.010	KX	1.76	-4.226
26.01	FeII	-	503.0630	0.400	KX	1.90	-4.607
26.01	FeII	-	503.2712	0.110	KX	1.59	-4.383
26.01	FeII	-	511.7034	-0.130	KX	1.32	-4.229
26.01	FeII	-	514.9465	0.400	KX	3.09	-4.113
26.01	FeII	-	531.8057	-0.140	KX	0.94	-4.366
			$\log N/N$	$N_T = -6.06$			
28.01	NiII	-	406.7031	-1.290	KX	3.17	-6.063
			$\log N/N$	$N_T = -5.47$			
30.01	ZnII	2	472.2153	-0.340	KX	0.85	-5.466
			$\log N/N_T$	$\textbf{-5.33} {\pm 0.08}$			
31.01	GaII	-	425.4075	-0.230	RS	0.75	-5.448
31.01	GaII	-	425.5722	0.634	NK	2.91	-5.259
31.01	GaII	-	536.0402	0.420	RS	1.04	-5.350
31.01	GaII	-	541.6318	0.640	RS	1.55	-5.247
			$\log N/2$	N _T -6.56			
35.01	BrII	-	478.5500	0.208	NIST	0.24	-6.561
			$\log N/N_T$	-8.38 ± 0.37			
38.01	SrII	1	407.7709	0.150	WM	1.20	-8.756
38.01	SrII	1	421.5519	-0.170	WM	2.27	-8.010
			$\log N/N_T$	-6.73± 0.25			
39.01	YII	1	420.4692	-1.760	HL	0.71	-6.671
39.01	YII	5	430.9620	-0.750	HL	1.67	-7.113
39.01	YII	5	435.8723	-1.320	HL	1.00	-6.884
39.01	YII	14	412.4904	-1.500	HL	0.81	-6.672
39.01	YII	22	478.6576	-1.290	HL	1.12	-6.417
39.01	YII	22	490.0120	-0.090	HL	2.27	-7.143
39.01	YII	20	498.2129	-1.290	HL	1.08	-6.434
39.01	YII	20	508.7418	-0.170	HL	2.38	-6.992
39.01	YII	20	511.9110	-1.360	HL	0.60	-6.690
39.01	YII	28	519.6422	-0.880	KX	1.28	-6.404
39.01	YII	20	520.0406	-0.570	HL	1.49	-6.975
39.01	YII	20	520.5722	-0.340	HL	2.25	-6.890
39.01	YII	27	547.3384	-1.020	HL	1.15	-6.322
39.01	YII	27	548.0730	-0.990	HL	0.50	-6.798
39.01	YII	27	554.4611	-1.090	HL	0.54	-6.650
39.01	YII	-	442.2583	-1.270	HL	1.54	-6.682
			$\log N/N_T$	-6.82± 0.23			
40.01	ZrII	15	421.1907	-0.980	KX	0.79	-7.113
40.01	ZrII	43	393.4791	-0.900	KX	1.98	-6.548
40.01	ZrII	67	446.1251	-1.180	KX	0.34	-7.103
40.01	ZrII	86	437.9742	-0.360	КХ	2.09	-6.674
40.01	ZrII	99	417.9807	-0.780	KX	1.15	-6.579
40.01	ZrII	-	415.6276	-0.710	GB	1.12	-7.108
40.01	ZrII	-	421.0631	-0.800	KX	0.96	-6.660
40.01	ZrII	-	444.0452	-1.190	GB	0.70	-6.650

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
40.01	ZrII	-	445.7431	-0.800	KX	0.84	-6.957
			$\log N/N_T$	$= -5.01 \pm 0.2$.6		
54.01	XeII	-	460.3005	0.017	NIS3	1.99	-5.024
54.01	XeII	-	484.4330	0.491	NIS3	2.66	-5.175
54.01	XeII	-	529.2220	0.351	NIS3	2.66	-4.915
54.01	XeII	-	537.2390	-0.211	NIS3	1.22	-5.068
54.01	XeII	-	541.9150	0.214	NIS3	1.38	-5.371
54.01	XeII	-	571.9598	-0.746	NIST	1.04	-4.528
			$\log N/N$	$N_T = -7.48$			
56.01	BaII	1	493.4066	0.000	WM	2.89	-7.480
			$\log N/N$	$N_T = -8.58$			
60.02	NdIII	-	512.7044	-1.080	DREA	0.49	-8.585
			$\log N/l$	V _T = -6.61			
70.01	YbII	-	533.5159	-0.260	DREA	1.77	-6.611
			$\log N/N_T$	$= -4.53 \pm 0.1$	8		
80.01	HgII	-	398.3941	-1.730	DW	7.36	-4.710
80.01	HgII	-	614.9469	0.150	SR	2.12	-4.346

Tabla A.8: Continuación HD 158704

A.9. HD 190229

Tabla A.9: Abundancias Químicas línea por línea para HD 190229.

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	${\rm Log}\; N/N_T$				
			Log N	$V/N_T = -3$.37						
6.00	CI	13	493.2049	-1.658	CNO	0.43	-3.373				
			$\log N/N$	$T_T = -4.75$	± 0.25						
6.01	CII	4	391.8968	-0.530	WF	1.10	-4.497				
6.01	CII	6	657.8052	-0.030	WF	0.69	-4.998				
			$\log N/N$	$T_T = -3.02$	± 0.11						
8.00	OI	11	543.5775	-1.544	CNO	0.78	-2.965				
8.00	OI	11	543.6862	-1.398	CNO	0.97	-3.008				
8.00	OI	12	532.9673	-1.020	WF	1.50	-3.165				
8.00	OI	12	533.0726	-0.870	WF	3.04	-2.937				
8.00	OI	14	496.8790	-1.280	WF	0.98	-3.164				
8.00	OI	-	645.4444	-1.088	CNO	1.93	-2.881				
			Log N	$V/N_T = -4$.11						
12.00	MgI	2	518.3604	-0.160	WS	1.44	-4.113				
			$\log N/N$	$T_T = -4.87$	± 0.19						
12.01	MgII	5	384.8211	-1.590	WS	0.70	-5.081				
12.01	MgII	9	442.7994	-1.210	WS	1.37	-4.613				
12.01	MgII	-	385.0386	-1.880	WM	0.53	-4.921				
			Log N	$V/N_T = -6$.53						
13.01	AlII	2	466.3046	-0.280	FW	0.91	-6.534				
	$\mathrm{Log}\;N/N_T=-4.68\pm\;0.25$										
14.01	SiII	3	412.8054	0.380	LA	8.62	-5.022				

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
14.01	SiII	5	504.1024	0.290	SG	8.34	-4.716
14.01	SiII	5	505.5984	0.441	NIST	10.47	-4.533
14.01	SiII	301	407.2709	-2.367	SG	0.73	-4.215
14.01	SiII	301	407.5452	-1.400	SG	1.72	-4.737
14.01	SiII	703	546.6432	-0.190	NIST	3.37	-4.243
14.01	SiII	706	420.0658	-0.820	KP	0.45	-4.893
14.01	SiII	706	420.0898	-0.670	KP	0.62	-4.889
14.01	SiII	726	419.0724	-0.351	LA	0.95	-4.665
14.01	SiII	-	407.6780	-1.670	SG	0.86	-4.832
14.01	SiII	-	566.9563	0.266	LA	0.66	-4.893
14.01	SiII	-	568.8817	0.106	LA	1.01	-4.515
			$\log N/N$	$T_T = -4.37$	± 0.29		
15.01	PII	6	531.6055	-0.294	NIS3	7.02	-3.895
15.01	PII	6	534.4729	-0.390	NIS3	3.82	-4.620
15.01	PII	7	529.6077	-0.160	WS	4.50	-4.615
15.01	PII	10	525.3479	0.330	WS	7.66	-4.162
15.01	PII	10	542.5880	0.180	NIS3	6.15	-4.533
			$\log N/N$	$T_T = -5.65$	± 0.22		
16.01	SII	6	542.8655	-0.129	NIST	0.64	-5.383
16.01	SII	7	500.9567	-0.090	WM	0.66	-5.501
16.01	SII	9	481.5552	0.180	WM	0.72	-5.754
16.01	SII	44	416.2665	0.780	WS	0.42	-6.003
16.01	SII	-	415.3068	0.620	WS	0.44	-5.838
16.01	SII	-	557.8870	-0.511	NIST	0.26	-5.399
16.01	SII	-	560.6151	0.309	NIST	0.73	-5.640
			Log N	$V/N_T = -4$.14		
20.00	CaI	2	422.6728	0.240	FW	0.52	-4.141
			Log N	$V/N_T = -5$.70		
20.01	CaII	1	393.3663	0.130	WM	14.73	-5.704
			$\log N/N$	$T_T = -8.45$	± 0.08		
21.01	ScII	7	424.6822	0.240	LD	1.28	-8.375
21.01	ScII	15	431.4083	-0.100	MFW	0.35	-8.530
			$\log N/N$	$T_T = -5.88$	± 0.28		
22.01	TiII	11	398.1990	-2.530	KX	0.74	-5.690
22.01	TiII	17	476.2778	-2.740	PTP	0.46	-5.481
22.01	TiII	19	439.5031	-0.660	MF	3.95	-6.248
22.01	TiII	20	428.7873	-2.020	MF	0.38	-6.291
22.01	TiII	31	446.8492	-0.600	MF	4.05	-6.259
22.01	TiII	33	422.7334	-2.360	KX	0.99	-5.465
22.01	TiII	34	388.2284	-1.710	MF	1.76	-5.799
22.01	TiII	40	441.7714	-1.430	MF	1.41	-6.192
22.01	TiII	41	429.0215	-1.120	MF	3.11	-6.026
22.01	TiII	41	430.0042	-0.770	MF	4.57	-5.922
22.01	TiII	42	431.4971	-1.100	PTP	2.16	-6.269
22.01	TiII	49	470.8662	-2.210	MF	0.78	-5.687
22.01	TiII	59	465.7200	-2.150	MF	0.84	-5.708
22.01	TiII	69	533.6786	-1.700	MF	2.17	-5.454

Tabla A.9: Continuación HD 190229

=	Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
_	22.01	TiII	69	538.1021	-1.920	PTP	1.58	-5.438
	22.01	TiII	70	518.8687	-1.210	MF	3.20	-5.652
	22.01	TiII	70	522.6538	-1.300	MF	3.02	-5.618
	22.01	TiII	82	457.1971	-0.530	MF	4.85	-5.892
	22.01	TiII	86	512.9156	-1.390	MF	1.05	-6.048
	22.01	TiII	87	402.8338	-1.000	MF	1.45	-6.272
	22.01	TiII	92	477.9985	-1.370	MF	1.38	-5.856
	22.01	TiII	92	480.5085	-1.100	MF	1.92	-5.925
	22.01	TiII	93	442.1938	-1.770	MF	1.10	-5.576
	22.01	TiII	94	431.6794	-1.420	MF	1.02	-5.972
	22.01	TiII	103	521.1536	-1.360	KX	0.47	-6.151
	22.01	TiII	104	436.7652	-1.270	MF	1.95	-5.511
	22.01	TiII	105	416.3644	-0.400	MF	2.87	-6.111
	22.01	TiII	106	406.4354	-1.610	KX	0.70	-5.722
	22.01	TiII	114	487.4014	-0.790	MF	0.87	-6.200
	22.01	TiII	113	501.0211	-1.340	KX	1.40	-5.393
	22.01	TiII	113	507.2287	-0.750	MF	0.81	-6.257
	22.01	TiII	115	441.1072	-1.060	MF	2.04	-5.462
	22.01	TiII	-	391.3461	-0.530	MF	4.39	-6.235
	22.01	TiII	-	393.2023	-1.780	MF	1.14	-6.966
	22.01	TiII	-	398.7606	-2.730	MF	0.63	-5.553
	22.01	TiII	-	401.2383	-1.610	MF	3.15	-5.747
	22.01	TiII	-	402.5129	-1.980	MF	0.92	-6.118
	22.01	TiII	-	405.3821	-1.210	MF	2.38	-5.756
	22.01	TiII	-	417.4072	-1.250	MF	0.62	-6.142
	22.01	TiII	-	429.4094	-1.110	MF	3.59	-5.896
	22.01	TiII	-	430.7866	-1.290	MF	3.31	-5.757
	22.01	TiII	-	431.2860	-1.160	MF	3.28	-5.888
	22.01	TiII	-	438.6847	-1.260	MF	1.24	-5.779
	22.01	TiII	-	439.9765	-1.270	MF	2.17	-6.061
	22.01	TiII	-	440.8759	-0.900	KX	0.32	-5.425
	22.01	TiII	-	445.0482	-1.450	MF	1.53	-6.163
	22.01	TiII	-	446.4448	-2.080	MF	1.89	-5.373
	22.01	TiII	-	447.0853	-2.280	MF	0.40	-5.970
	22.01	TiII	-	448.8325	-0.820	MF	1.17	-6.011
	22.01	TiII	-	450.1270	-0.750	MF	4.15	-6.087
_	22.01	TiII	-	456.3757	-0.960	MF	2.68	-6.229
_				$\log N/N$	$T_T = -4.63$	± 0.13		
	24.00	CrI	1	425.4336	-0.114	MFW	0.31	-4.835
	24.00	CrI	1	427.4797	-0.231	MFW	0.47	-4.526
	24.00	CrI	1	428.9717	-0.361	MFW	0.28	-4.636
_	24.00	CrI	7	520.6037	0.020	MF	0.32	-4.526
_				Log N/N	T = -5.85	± 0.22		
	24.01	CrII	19	405.1930	-2.190	KX	0.86	-5.962
	24.01	CrII	23	524.6768	-2.450	MF	0.38	-5.816
	24.01	CrII	23	540.7604	-2.088	K88	0.46	-6.033
	24.01	CrII	24	530.5853	-2.360	KX	0.51	-5.715

Tabla A.9: Continuación HD 190229

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
24.01	CrII	26	407.2561	-2.410	KX	0.66	-5.594
24.01	CrII	26	413.2419	-2.350	KX	0.38	-5.896
24.01	CrII	30	482.4127	-1.220	MF	2.12	-6.075
24.01	CrII	30	483.6229	-2.250	MF	0.38	-5.954
24.01	CrII	30	487.6399	-1.460	KX	1.79	-5.945
24.01	CrII	30	488.4607	-2.08	MF	1.42	-5.464
24.01	CrII	30	484.8235	-1.140	MFW	1.56	-6.347
24.01	CrII	31	426.1913	-1.530	KX	2.51	-5.653
24.01	CrII	39	456.5740	-2.110	MF	0.43	-5.952
24.01	CrII	43	527.4964	-1.290	KX	2.63	-5.747
24.01	CrII	43	530.8440	-1.810	MF	1.29	-5.681
24.01	CrII	43	531.3590	-1.650	MF	0.79	-6.097
24.01	CrII	43	533.4869	-1.560	KX	1.03	-6.051
24.01	CrII	44	455.4988	-1.380	MF	2.05	-5.846
24.01	CrII	44	458.8199	-0.630	MF	4.68	-5.831
24.01	CrII	44	461.8803	-1.110	MF	2.27	-6.046
24.01	CrII	44	463.4070	-1.240	MF	1.52	-6.168
24.01	CrII	50	550.2067	-1.990	MFW	0.54	-5.895
24.01	CrII	129	391.1321	-2.060	KX	0.42	-5.601
24.01	CrII	130	386.6523	-2.070	KX	0.36	-5.662
24.01	CrII	167	386.5596	-0.780	KX	2.21	-5.824
24.01	CrII	178	469.7598	-1.880	MF	0.48	-5.387
24.01	CrII	183	397.9505	-0.730	KX	1.59	-5.925
24.01	CrII	193	407.0840	-0.750	KX	0.57	-6.076
24.01	CrII	162	414.5781	-1.160	KX	0.81	-6.016
24.01	CrII	165	408.2285	-1.230	KX	0.62	-6.078
24.01	CrII	190	490.1623	-0.830	KX	0.91	-5.747
24.01	CrII	190	491.2462	-0.950	KX	0.60	-5.836
24.01	CrII	-	408.6128	-2.420	KX	0.49	-5.727
24.01	CrII	-	420.7363	-2.480	KX	0.50	-5.608
24.01	CrII	-	427.5567	-1.700	KX	0.64	-6.257
24.01	CrII	-	459.2049	-1.220	MF	2.84	-5.770
24.01	CrII	-	527.9880	-2.100	MF	0.60	-5.782
24.01	CrII	-	550.8606	-2.110	MFW	0.88	-5.539
24.01	CrII	-	605.3466	-2.160	MFW	0.55	-5.431
			$\log N/N$	T _T = -3.47	± 0.26		
25.00	MnI	21	470.9712	-0.340	MF	0.86	-3.307
25.00	MnI	21	473.9110	-0.490	MF	0.59	-3.320
25.00	MnI	22	441.4890	-0.290	MF	1.44	-3.084
25.00	MnI	28	445.7044	-0.555	MFW	0.30	-3.512
25.00	MnI	28	445.7549	-0.120	MF	0.46	-3.748
25.00	MnI	29	406.1730	-0.560	MF	0.56	-3.207
25.00	MnI	48	404.5114	0.250	KX	0.28	-3.771
25.00	MnI	-	403.3062	-0.620	MF	3.61	-3.390
25.00	MnI	-	405.8930	-0.450	MF	0.57	-3.717
25.00	MnI	-	407.9235	-0.420	MF	0.47	-3.856
25.00	MnI	-	408.2939	-0.350	MF	0.60	-3.794

Tabla A.9: Continuación HD 190229

Código	Especie	Mult	λ[nm]	loggf	Ref	W _{ea} [pm]	$\log N/N_T$			
25.00	Mal	iviuit.	445 5914	0.510	ME	0.77	2 100			
25.00	Mini	-	445.5814	-0.510	MF	0.77	-3.109			
25.00	MnI	-	445.8254	0.040	ME	0.70	-3.005			
25.00	Mini	-	440.1079	-0.380	MF	0.85	-3.200			
25.00	Mnl	-	446.2031	0.320	MF	1.37	-3.635			
25.00	Mnl	-	447.0144	-0.440	MF	1.09	-3.060			
25.00	Mnl	-	450.2213	-0.340	MF	0.91	-3.273			
25.00	Mnl	-	4/6.5846	-0.080	MF	0.87	-3.537			
25.00	Mnl	-	4/6.6418	0.100	MF	1.00 - 3.654				
$Log N/N_T = -4.58 \pm 0.29$ 25.01 MpH 2 420.5275 3.380 VV 2.25 5.044										
25.01	MnII	2	420.5375	-3.380	KX	2.35	-5.044			
25.01	MnII	-	384.8574	-3.330	KX	0.48	-4.221			
25.01	MnII	-	393.0952	-2.150	KX	1.03	-4.577			
25.01	MnII	-	395.2418	-1.500	KX	0.76	-4.847			
25.01	MnII	-	395.3590	-2.270	KX	0.40	-4.386			
25.01	MnII	-	399.5306	-2.440	KX	0.70	-4.993			
25.01	MnII	-	400.0047	-1.210	KX	0.98	-5.004			
25.01	MnII	-	410.9217	-3.320	KX	0.69	-4.112			
25.01	Mnll	-	418.0064	-2.830	KX	0.64	-4.621			
25.01	Mnll	-	418.4454	-1.950	KX	1.77	-4.617			
25.01	Mnll	-	424.0385	-2.070	KX	2.02	-4.414			
25.01	Mnll	-	425.9175	-1.590	KX	2.01	-4.265			
25.01	MnII	-	426.0462	-4.250	KX	1.43	-4.421			
25.01	Mnll	-	432.5042	-2.300	KX	0.95	-4.163			
25.01	MnII	-	432.6637	-1.250	KX	3.45	-4.239			
25.01	MnII	-	439.3379	-2.320	KX	1.80	-4.555			
25.01	MnII	-	440.3512	-1.800	KX	0.83	-5.012			
25.01	MnII	-	449.7941	-2.590	KX	0.70	-4.832			
25.01	MnII	-	451.8953	-1.330	KX	1.69	-5.051			
25.01	MnII	-	451.9240	-2.570	KX	1.79	-4.339			
25.01	MnII	-	471.7264	-1.860	KX	1.39	-4.681			
25.01	MnII	-	472.7843	-2.020	KX	1.68	-4.935			
25.01	MnII	-	473.0397	-2.150	KX	1.84	-4.747			
25.01	MnII	-	474.9112	-2.000	KX	1.28	-4.744			
25.01	MnII	-	481.1623	-2.340	KX	1.22	-4.777			
25.01	MnII	-	483.0061	-1.850	KX	1.04	-5.009			
25.01	MnII	-	483.9737	-1.860	KX	2.67	-4.397			
25.01	MnII	-	484.2325	-2.010	KX	1.51	-4.636			
25.01	MnII	-	492.0436	-2.089	K88	2.78	-4.456			
25.01	MnII	-	510.7092	-1.478	K88	2.86	-4.154			
25.01	MnII	-	529.4315	-0.037	K88	1.46	-4.956			
25.01	MnII	-	529.5384	-0.660	KX	1.77	-4.211			
25.01	MnII	-	529.7000	-0.214	K88	2.73	-4.330			
25.01	MnII	-	529.9302	-0.418	K88	1.92	-4.396			
25.01	MnII	-	390.2365	-2.720	KX	1.18	-4.360			
			$\log N/N$	T = -3.46	± 0.18					
26.00	FeI	4	385.9911	-0.710	N4	1.72	-3.691			
26.00	FeI	41	438.3545	0.200	N4	2.50	-3.679			

Tabla A.9: Continuación HD 190229

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_2$			
26.00	FeI	42	420.2029	-0.710	N4	1.24	-3.208			
26.00	FeI	42	427.1760	-0.160	N4	1.59	-3.618			
26.00	FeI	43	400.5242	-0.610	N4	0.80	-3.498			
26.00	FeI	45	390.2945	-0.470	N4	1.51	-3.294			
26.00	FeI	152	423.5936	-0.340	N4	1.12	-3.203			
26.00	FeI	318	489.1492	-0.110	N4	1.02	-3.289			
26.00	FeI	-	404.5812	0.280	N4	3.38	-3.490			
26.00	FeI	-	407.1738	-0.020	N4	1.54	-3.715			
26.00	FeI	-	440.4750	-0.140	N4	1.96	-3.476			
26.00	FeI	-	495.7596	0.230	N4	1.69	-3.361			
$Log N/N_T = -3.78 \pm 0.27$										
26.01	FeII	27	427.3326	-3.340	N4	4.22	-3.689			
26.01	FeII	27	430.3176	-2.610	N4	5.86	-3.891			
26.01	FeII	27	438.5387	-2.570	N4	4.76	-4.257			
26.01	FeII	28	412.2668	-3.380	N4	3.49	-3.915			
26.01	FeII	28	417.8862	-2.480	N4	5.46	-4.197			
26.01	FeII	28	429.6572	-3.010	N4	4.84	-3.819			
26.01	FeII	28	466.6758	-3.330	N4	3.42	-3.871			
26.01	FeII	29	387.2766	-3.320	KX	2.82	-4.106			
26.01	FeII	32	438.4319	-3.680	N4	4.07	-3.412			
26.01	FeII	37	447.2929	-3.530	N4	3.02	-3.781			
26.01	FeII	37	448.9183	-2.970	N4	3.47	-4.219			
26.01	FeII	37	449.1405	-2.700	N4	4.72	-4.097			
26.01	FeII	37	452.0224	-2.600	N4	5.16	-4.078			
26.01	FeII	37	455.5893	-2.290	N4	5.50	-4.266			
26.01	FeII	37	458.2835	-3.100	N4	3.54	-4.060			
26.01	FeII	37	462.9339	-2.370	N4	5.49	-4.199			
26.01	FeII	38	393.5962	-1.860	N4	2.65	-4.324			
26.01	FeII	38	450.8288	-2.210	N4	6.04	-4.168			
26.01	FeII	38	452.2634	-2.030	N4	6.06	-4.346			
26.01	FeII	38	454.1524	-3.050	N4	4.27	-3.891			
26.01	FeII	38	457.6340	-3.040	N4	4.37	-3.876			
26.01	FeII	38	458.3837	-2.020	N4	7.85	-3.831			
26.01	FeII	38	462.0521	-3.280	N4	3.94	-3.772			
26.01	FeII	43	473.1453	-3.130	N4	3.60	-3.990			
26.01	FeII	127	402.4547	-2.440	N4	2.73	-4.200			
26.01	FeII	172	404.8832	-2.140	N4	2.25	-4.166			
26.01	FeII	186	463.5316	-1.650	N4	4.37	-3.816			
26.01	FeII	D	390.3756	-1.500	KX	3.29	-3.627			
26.01	FeII	D	459.6015	-1.840	N4	3.14	-3.881			
26.01	FeII	J	435.7584	-2.100	KX	2.80	-3.796			
26.01	FeII	J	457.9527	-2.510	KX	2.78	-3.319			
26.01	FeII	J	482.6683	-0.440	КX	1.77	-3.908			
26.01	FeII	J	490.8151	-0.300	KX	2.20	-3.868			
26.01	FeII	J	491.3295	0.010	KX	3.68	-3.727			
26.01	FeII	J	494.8096	-0.320	KX	2.98	-3.601			
26.01	Eall	J	104 8702	_0.010	KV	2.20	3 870			

Tabla A.9: Continuación HD 190229

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	495.1584	0.180	KX	4.28	-3.797
26.01	FeII	J	495.3987	-2.760	KX	1.79	-3.670
26.01	FeII	J	495.8822	-0.650	KX	1.65	-3.692
26.01	FeII	J	497.7035	0.040	KX	3.22	-3.857
26.01	FeII	J	498.4473	0.010	KX	3.84	-3.623
26.01	FeII	J	499.0509	0.180	KX	3.61	-3.888
26.01	FeII	J	499.1440	-0.570	KX	1.70	-3.818
26.01	FeII	J	499.3358	-3.650	MF	2.53	-3.814
26.01	FeII	J	500.1959	0.900	KX	5.18	-4.169
26.01	FeII	J	500.4195	0.500	KX	3.60	-4.238
26.01	FeII	J	500.6841	-0.430	KX	2.51	-3.603
26.01	FeII	J	500.9022	-0.420	KX	2.62	-3.592
26.01	FeII	J	501.8440	-1.220	MF	10.62	-3.946
26.01	FeII	J	502.1594	-0.300	KX	2.10	-3.914
26.01	FeII	J	502.2792	-0.020	KX	4.13	-3.653
26.01	FeII	J	502.6806	-0.220	KX	2.69	-3.785
26.01	FeII	J	503.0630	0.400	KX	4.17	-3.966
26.01	FeII	J	503.2712	0.110	KX	3.33	-3.873
26.01	FeII	J	503.5708	0.610	КX	4.95	-3.935
26.01	FeII	J	504.5114	-0.130	КX	2.53	-3.924
26.01	FeII	J	506.0257	-0.520	KX	2.02	-3.645
26.01	FeII	J	506.1718	0.220	KX	3.87	-3.849
26.01	FeII	J	506.7893	-0.200	KX	3.26	-3.612
26.01	FeII	J	507.0899	0.240	KX	4.95	-3.566
26.01	FeII	J	507.5764	0.280	KX	2.69	-4.214
26.01	FeII	J	508.2230	-0.100	KX	3.74	-3.519
26.01	FeII	J	509.3576	0.110	KX	5.46	-3.228
26.01	FeII	J	509.7271	0.310	KX	3.60	-3.983
26.01	FeII	J	510.6109	-0.280	KX	2.68	-3.709
26.01	FeII	J	511.7034	-0.130	КХ	2.55	-3.855
26.01	FeII	J	511.9341	-0.560	КХ	1.80	-3.703
26.01	FeII	J	512,7866	-2.540	кх	3.47	-3.346
26.01	FeII	J	513.2669	-4.180	MF	2.35	-3.336
26.01	FeII	Ţ	514.3880	0.100	KX	3.28	-3.840
26.01	FeII	J	514.4355	0.280	KX	3.80	-3.850
26.01	FeII	Ţ	514,9465	0.400	KX	5.88	-3 349
26.01	FeII	J	515.0489	-0.120	KX	2.93	-3.727
26.01	FeII	Ţ	516.0839	-2.640	KX	3.59	-3 209
26.01	FeII	J	516.6555	-0.030	KX	2.62	-3 914
26.01	FeII	J	516 9033	-0.870	MF	10.68	_4 293
26.01	FeII	J	518.0314	0.040	KX	3.34	-3 785
26.01	FeII	J	518 6873	-0 300	KX	2 90	-3 548
26.01	FeII	J	510.0075	-0.150	KY	2.90	-3.540
26.01	Fell	ј Т	510 0122	0.100	KY	2.72	-3.732
20.01	Fell	Ј Т	571 5944	0.100	кл VV	5./1 1 71	-3./19
20.01	Fell	J т	J21.J844	-0.230	лл VV	4.24	-3.2/1
20.01	Fell	J т	521.0854	0.810	КЛ VV	4.//	-4.054
20.01	ген	J	321.8842	-0.200	кл	2.03	-3.821

Tabla A.9: Continuación HD 190229

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	J	522.3260	-0.410	KX	2.62	-3.558
26.01	FeII	J	522.3800	-0.590	KX	2.13	-3.552
26.01	FeII	J	522.4411	-0.570	KX	1.97	-3.611
26.01	FeII	J	522.5968	-0.400	KX	3.68	-3.223
26.01	FeII	J	522.8896	-0.300	KX	3.22	-3.457
26.01	FeII	J	523.1907	-0.640	KX	2.07	-3.454
26.01	FeII	J	523.2787	-0.060	KX	4.18	-3.416
26.01	FeII	J	523.4625	-2.050	MF	6.57	-3.964
26.01	FeII	J	523.7950	0.140	KX	3.50	-3.790
26.01	FeII	J	524.5455	-0.510	KX	1.67	-3.763
26.01	FeII	J	524.7952	0.550	N4	4.78	-3.771
26.01	FeII	J	525.1233	0.420	N4	5.54	-3.440
26.01	FeII	J	525.4400	-0.770	KX	1.44	-3.576
26.01	FeII	J	525.4929	-3.230	KX	4.02	-3.854
26.01	FeII	J	525.7122	0.030	KX	3.55	-3.647
26.01	FeII	J	526.0254	1.070	KX	7.05	-3.756
26.01	FeII	J	527.0027	0.070	KX	3.40	-3.733
26.01	FeII	J	527.2397	-2.030	MF	4.56	-3.333
26.01	FeII	J	527.6002	-1.940	MF	6.51	-4.104
26.01	FeII	J	529.1666	0.580	KX	4.40	-3.941
26.01	FeII	J	530.3395	-1.610	KX	2.12	-3.507
26.01	FeII	J	530.6180	0.090	N4	2.97	-3.877
26.01	FeII	J	531.8057	-0.140	KX	2.40	-3.850
26.01	FeII	J	532.2234	-0.520	KX	3.04	-3.272
26.01	FeII	J	533.9592	0.540	KX	6.99	-3.206
26.01	FeII	J	641.6919	-2.880	N4	3.29	-3.773
			$\log N/N$	$T_T = -6.34$	± 0.25		
31.01	GaII	-	425.4075	-0.230	RS	0.11	-6.589
31.01	GaII	-	541.6318	0.640	RS	0.67	-6.094
			Log N	$V/N_T = -6$.36		
35.01	BrII	-	470.4850	0.408	NIST	0.92	-6.364
			Log N	$V/N_T = -8$.23		
38.01	SrII	1	421.5519	-0.170	WM	1.35	-8.232
			$\log N/N$	$T_T = -6.86$	± 0.26		
39.01	YII	1	420.4692	-1.760	HL	0.77	-6.489
39.01	YII	5	430.9620	-0.750	HL	1.97	-6.851
39.01	YII	5	435.8723	-1.320	HL	0.79	-6.869
39.01	YII	20	508.7418	-0.170	HL	3.09	-6.564
39.01	YII	20	520.5722	-0.340	HL	1.19	-7.182
39.01	YII	22	482.3304	-1.110	HL	0.34	-7.084
39.01	YII	-	442.2583	-1.270	HL	0.88	-6.862
39.01	YII	-	549.7405	-0.580	HL	0.39	-7.184
39.01	YII	-	554.6009	-1.100	HL	0.57	-6.477
			$\log N/N$	$T_T = -6.94$	± 0.26		
40.01	ZrII	7	393.4094	-1.630	KX	0.54	-6.331
40.01	ZrII	15	421.1907	-0.980	KX	1.07	-6.817
40.01	ZrII	16	395.8230	-0.310	KX	1.23	-7.401

Tabla A.9: Continuación HD 190229

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$				
40.01	ZrII	17	391.5959	-0.820	KX	1.26	-6.876				
40.01	ZrII	43	393.4791	4791 -0.900 KX 0.38		-7.378					
40.01	ZrII	54	401.8368	-0.990	KX	0.64	-6.878				
40.01	ZrII	86	437.9742	-0.360	KX	1.43	-6.805				
40.01	ZrII	97	418.6672	-0.580	KX	0.48	-7.071				
40.01	ZrII	130	449.4418	-0.480	KX	0.71	-6.678				
$\log N/N_T = -5.50 \pm 0.25$											
54.01	XeII	-	460.3005	0.017	NIS3	1.04	-5.950				
54.01	XeII	-	484.4330	0.491	NIS3	2.57	-5.526				
54.01	XeII	-	529.2220	0.351	NIS3	2.75	-5.182				
54.01	XeII	-	537.2390	-0.211	NIS3	1.15	-5.474				
54.01	XeII	-	541.9150	0.214	NIS3	1.95	-5.367				
			$\log N$	$V/N_T = -8$.65						
56.01	BaII	1	493.4066	0.000	WM	0.50	-8.646				
			Log N	$V/N_T = -8$.28						
60.02	NdIII	-	512.7044	-1.080	DREA	1.51	-8.281				
	$Log N/N_T = -7.05$										
70.01	YbII	-	533.5159	-0.260	DREA	0.80	-7.048				
$\text{Log } N/N_T = -4.05$											
80.00	HgI	-	404.6609	-0.818	BLD	0.62	-4.046				
	$\log N/N_T = -5.93 \pm 0.12$										
80.01	HgII	-	398.3941	-1.730	DW	3.60	-6.056				
80.01	HgII	-	614.9469	0.150	SR	0.55	-5.808				

Tabla A.9: Continuación HD 190229

A.10. HD 53244

Tabla A.10: Abundancias Químicas línea por línea para HD 53244.

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$				
	$\log N/N_T = -3.52 \pm 0.23$										
6.01	CII	2	657.8052	-0.030	WF	3.89	-3.776				
6.01	CII	4	391.8968	-0.530	WF	4.67	-3.290				
6.01	CII	6	426.7001	0.560	WF	6.28	-3.295				
6.01	CII	-	392.0681	-0.230	WF	4.10	-3.727				
	$\log N/N_T = -2.95$										
8.00	OI	12	533.0726	-0.870	WF	2.84	-2.946				
			$\log N/$	$N_T = -3.66 \pm 0.18$							
10.00	NeI	1	588.1895	-0.607	KP	1.90	-3.563				
10.00	NeI	1	594.4834	-0.120	KP	2.60	-3.691				
10.00	NeI	1	614.3063	-0.350	KP	2.10	-3.613				
10.00	NeI	1	633.4428	-0.310	KP	2.60	-3.418				
10.00	NeI	1	640.2246	0.360	KP	3.50	-3.784				
10.00	NeI	3	607.4337	-0.470	KP	1.20	-3.920				
10.00	NeI	3	638.2991	-0.260	KP	2.60	-3.436				
10.00	NeI	6	585.2488	-0.460	KP	1.20	-3.894				
Cádigo	Espacia	Mult	\[nm]	logaf	Pof	W [nm]	$L_{00} N/N_{-}$				
--------	---------	----------	----------------------	------------------------	---------------	----------------------	------------------				
Codigo	Especie	wiuit.	A[IIII]	loggi	Kel.	w _{eq} [pm]	$\log N/N_T$				
			Log A	$V/N_T = -5.90$							
11.00	Nal	1	588.9951	0.117	WS	1.30	-5.896				
			Log N/N	$T_T = -4.86 \pm 0.17$		0.17	5.001				
12.01	MgII	-	439.0572	-0.530	WS	2.17	-5.024				
12.01	MgII	9	442.7994	-1.210	WS	1.11	-4.689				
14.01	0:11	2	Log N/N	$T_T = -4.59 \pm 0.28$	12 (0	4.200					
14.01	SIII	3	412.8054 0.380		13.69 NUCT	-4.369	4 451				
14.01	5111	4	597.8930	-0.061	NIST	0.80	-4.451				
14.01	5111	5	505 5084	0.290	NIST	0.41 12.56	-4.700				
14.01	5111	3 201	303.3984 407 5452	1.400	NIST SC	2.30	-4.203				
14.01	SII	733	407.3432	-1.400	14	2.41	-4.329				
14.01	SII		386 2595	-0.740		8.49	-5.026				
14.01	Sill	_	413 0894	0.530	LA	9.43	-5.020				
11.01	5111		Log N/N	$V_T = -4.36 \pm 0.20$	En	9.15	5.055				
15.01	PII	5	603.4039	-0.220	NIS3	5.72	-4.183				
15.01	PII	5	604.3084	0.416	NIS3	7.88	-4.233				
15.01	PII	10	525.3479	0.330	WS	6.84	-4.437				
15.01	PII	10	542.5880	0.180	NIS3	7.69	-4.224				
15.01	PII	-	417.8463	-0.410	KX	6.09	-4.710				
			$\log N/N$	$T_T = -5.03 \pm 0.15$							
16.01	SII	6	542.8655	-0.129	NIST	1.03	-5.179				
16.01	SII	6	543.2797	0.257	NIST	1.79	-5.171				
16.01	SII	11	560.6151	0.309	NIST	2.37	-4.838				
16.01	SII	-	503.2434	0.180	WS	2.34	-4.916				
			Log N	$V/N_T = -5.50$							
20.01	CaII	1	393.3663	0.130	WM	15.69	-5.502				
			Log N	$N/N_T = -8.04$							
21.01	ScII	7	424.6822	0.240	LD	1.93	-8.043				
			$\log N/N$	$V_T = -6.08 \pm 0.24$							
22.01	TiII	19	439.5031	-0.660	MF	4.18	-6.082				
22.01	TiII	31	446.8492	-0.600	MF	4.89	-5.912				
22.01	TiII	50	453.3960	-0.770	MF	4.58	-5.783				
22.01	TiII	69	533.6786	-1.700	MF	0.57	-6.085				
22.01	Till	69	538.1021	-1.920	РТР	0.63	-5.823				
22.01	Till	70	515.4070	-1.920	MF	0.35	-6.105				
22.01	Till	70	522.6538	-1.300	MF	0.55	-6.512				
22.01	TiII	82	457.1971	-0.530	MF	4.19	-5.984				
22.01	Till	105	416.3644	-0.400	MF	2.00	-6.281				
22.01	TiII	114	487.4014	-0.790	MF	0.36	-6.542				
22.01	TiII	115	441.1072	-1.060	MF	0.22	-6.506				
22.01	TiII	-	391.3461	-0.530	MF	4.78	-6.020				
22.01	TiII	-	401.2383	-1.610	MF	2.38	-5.857				
22.01	Till	-	405.3821	-1.210	MF	1.31	-6.029				
22.01	Till	-	429.4094	-1.110	MF	2.67	-6.047				
22.01	Till	-	430.0042	-0.770	MF	4.28	-5.904				
22.01	Till	-	430.7866	-1.290	MF	3.56	-5.590				

Tabla A.10: Continuación HD 53244

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	Log N/N
22.01	TiII	-	431.2860	-1.160	MF	1.55	-6.305
22.01	TiII	-	444.3801	-0.700	MF	3.69	-6.179
22.01	TiII	-	445.0482	-1.450	MF	1.10	-6.245
22.01	TiII	-	450.1270	-0.750	MF	3.02	-6.294
22.01	TiII	-	456.3757	-0.960	MF	3.13	-6.006
22.01	TiII	-	526.8615	-1.620	MF	0.43	-5.840
			$\log N/$	$N_T = -5.38 \pm 0.29$			
24.01	CrII	23	542.0922	-2.360	MFW	0.47	-5.693
24.01	CrII	26	413.2419	-2.350	KX	0.87	-5.411
24.01	CrII	30	482.4127	-1.220	MF	3.20	-5.669
24.01	CrII	30	487.6399	-1.460	KX	3.07	-5.467
24.01	CrII	31	426.1913	-1.530	KX	2.79	-5.484
24.01	CrII	43	523.2496	-2.090	KX	2.60	-4.867
24.01	CrII	43	523.7329	-1.160	MF	4.02	-5.384
24.01	CrII	43	527.4964	-1.290	KX	3.89	-5.291
24.01	CrII	43	531.0700	-2.280	MF	1.07	-5.223
24.01	CrII	43	531.3590	-1.650	MF	2.37	-5.372
24.01	CrII	44	455.4988	-1.380	MF	4.18	-5.141
24.01	CrII	44	458.8199	-0.630	MF	7.39	-4.863
24.01	CrII	44	461.8803	-1.110	MF	3.84	-5.508
24.01	CrII	44	463.4070	-1.240	MF	2.60	-5.73
24.01	CrII	50	550.2067	-1.990	MFW	2.87	-4.83
24.01	CrII	105	605.3466	-2.160	MFW	0.40	-5.498
24.01	CrII	129	391.1321	-2.060	КХ	0.46	-5.48
24.01	CrII	162	414.5781	-1.160	KX	1.12	-5.774
24.01	CrII	167	386 5596	-0.780	КХ	2.65	-5.612
24.01	CrII	180	422,1996	-1.930	КХ	1.04	-4.891
24.01	CrII	183	397 9505	-0.730	кх	3 77	-5.189
24.01	CrII	193	407 0840	-0.750	кх	0.89	-5 78
24.01	CrII	-	386 6523	-2 070	кх	0.32	-5 638
24.01	CrII	_	401 2496	-0.890	кх	2.95	-5.269
24.01	CrII		405 4076	-2 480	KX	1.08	-5.462
24.01	CrII		417 9421	-1 770	KX	1.00	-5 84(
24.01	CrII		455 8650	-0.660	ME	5 57	-5 424
24.01	CrII	-	456 5740	2 110	ME	1.00	-5.42-
24.01	CrII	-	527 9880	-2.110	ME	2.46	-1 896
24.01	CIII		1 og N/	$\frac{-2.100}{N_{T}3.45 \pm 0.17}$	IVII	2.40	-4.070
25.00	MnI	21	473 0110	_0.400	ME	0.26	_3 525
25.00	MnI	20	406 1730	-0.420	ME	0.20	-3.55
25.00	MnI	27	405 2472	-0.300	ME	0.35	-3.203
25.00	MnT	-	405.2472	-0.130	ME	0.20	-3.221
25.00	Med	-	450.2215	-0.540	МГ МЕ	0.35	-3.388
23.00	11111	-	4/0.1312	-0.140 $N_{T} = -4.44 \pm 0.29$	MF	0.43	-3.047
25.01	MnII	-	387.8992	-1.710	КХ	3.43	-4.567
25.01	MnII	_	391.7318	-1 150	KX	3,22	-4 580
25.01	MnII	_	400 0047	-1 210	KX	1.68	-4 647
25.01				/ /			······································

Tabla A.10: Continuación HD 53244

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
25.01	MnII	-	423.8785	-3.630	KX	2.20	-4.687
25.01	MnII	-	423.9188	-2.250	KX	3.98	-3.940
25.01	MnII	-	424.4248	-2.390	KX	3.49	-3.946
25.01	MnII	-	425.1727	-1.060	KX	5.11	-4.390
25.01	MnII	-	437.9645	-1.850	KX	2.26	-4.820
25.01	MnII	-	439.1961	-2.890	KX	1.21	-4.149
25.01	MnII	-	447.8635	-0.950	KX	3.52	-4.792
25.01	MnII	-	451.8953	-1.330	KX	2.44	-4.740
25.01	MnII	-	451.9240	-2.570	KX	2.22	-4.126
25.01	MnII	-	472.7843	-2.020	KX	3.47	-4.303
25.01	MnII	-	473.0397	-2.150	KX	3.29	-4.225
25.01	MnII	-	475.5717	-1.240	KX	6.29	-4.146
25.01	MnII	-	476.4728	-1.350	KX	5.82	-4.195
25.01	MnII	-	480.6823	-1.560	KX	3.88	-4.611
25.01	MnII	-	483.0061	-1.850	KX	2.30	-4.461
25.01	MnII	-	484.2325	-2.010	KX	1.12	-4.742
25.01	MnII	-	484.7608	-1.810	KX	2.26	-4.845
25.01	MnII	-	517.7648	-1.770	KX	4.23	-3.997
25.01	MnII	-	555.9047	-1.318	K88	3.33	-4.623
25.01	MnII	-	557.0539	-1.444	K88	2.95	-4.619
25.01	MnII	-	557.8126	-1.400	K88	4.05	-4.311
25.01	MnII	-	660.9255	-2.050	KX	0.57	-4.657
25.01	MnII	-	423.8785	-3.630	KX	3.05	-4.440
25.01	MnII	-	437.9639	-1.850	KX	2.26	-4.820
			$\log N/$	$N_T = -4.34 \pm 0.26$			
26.01	FeII	25	467.0182	-4.070	NA	1.00	-3.995
26.01	FeII	27	427.3326	-3.300	NA	1.90	-4.345
26.01	FeII	27	441.6830	-2.600	MF	3.50	-4.534
26.01	FeII	27	435.1769	-2.082	NA	6.61	-4.110
26.01	FeII	27	430.3176	-2.610	NA	4.40	-4.289
26.01	FeII	27	438.5387	-2.580	NA	3.40	-4.583
26.01	FeII	28	417.8862	-2.443	NA	5.36	-4.192
26.01	FeII	28	429.6572	-2.930	NA	2.60	-4.497
26.01	FeII	28	436.9411	-3.580	NA	0.60	-4.652
26.01	FeII	28	412.2668	-3.300	NA	1.90	-4.398
26.01	FeII	37	448.9183	-2.970	MF	2.80	-4.341
26.01	FeII	37	451.5339	-2.362	NA	3.90	-4.621
26.01	FeII	37	452.0224	-2.620	NA	3.00	-4.642
26.01	FeII	37	449.1405	-2.640	NA	2.90	-4.630
26.01	FeII	37	466.6758	-3.370	NA	0.80	-4.698
26.01	FeII	37	462.9339	-2.257	NA	3.70	-4.800
26.01	FeII	38	458.3837	-1.740	NA	7.40	-4.162
26.01	FeII	38	452.2634	-1.990	NA	5.33	-4.549
26.01	FeII	38	450.8288	-2.350	NA	4.17	-4.550
26.01	FeII	38	457.6340	-2.920	NA	2.90	-4.355
26.01	FeII	38	454.1524	-2.970	NA	2.20	-4.510
20.01							

Tabla A.10: Continuación HD 53244

Ξ

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$
26.01	FeII	41	528.4109	-3.188	NA	2.50	-4.166
26.01	FeII	42	501.8440	-1.350	NA	7.54	-4.457
26.01	FeII	43	465.6981	-3.570	NA	0.70	-4.536
26.01	FeII	43	473.1453	-3.130	NA	1.10	-4.745
26.01	FeII	46	608.4111	-3.880	NA	0.60	-4.128
26.01	FeII	49	519.7577	-2.054	NA	3.60	-4.818
26.01	FeII	49	527.6002	-1.900	NA	6.00	-4.229
26.01	FeII	49	523.4625	-2.210	NA	4.90	-4.263
26.01	FeII	55	553.4847	-2.930	MF	2.50	-4.251
26.01	FeII	57	565.7935	-4.100	KX	0.30	-4.145
26.01	FeII	74	614.9258	-2.840	NA	1.80	-4.248
26.01	FeII	74	641.6919	-2.880	NA	2.10	-4.090
26.01	FeII	127	386.3951	-2.528	KX	1.60	-4.313
26.01	FeII	152	386.3386	-2.870	KX	1.60	-3.973
26.01	FeII	153	382.7083	-2.360	NA	1.40	-4.560
26.01	FeII	153	381.4124	-2.190	NA	2.50	-4.351
26.01	FeII	172	404.8832	-2.145	KX	3.20	-3.823
26.01	FeII	173	393.5962	-1.720	NA	3.20	-4.248
26.01	FeII	185	527.2397	-2.010	NA	1.80	-4.177
26.01	FeII	186	463.5316	-1.580	NA	2.20	-4.502
26.01	FeII	189	406.1782	-2.018	KX	2.00	-4.147
26.01	FeII	190	400.2543	-1.709	KX	3.00	-4.147
26.01	FeII	199	644.6410	-2.080	NA	0.80	-4.385
26.01	FeII	200	604.5465	-2.419	KX	1.20	-3.857
26.01	FeII	219	459.8494	-1.497	КХ	1.30	-4.109
26.01	FeII	222	428.6280	-1.622	КХ	0.40	-4.638
26.01	FeII	222	445.1551	-1.844	КХ	0.80	-4.753
26.01	FeII	_	459.6015	-1.837	КХ	2.10	-4.160
26.01	FeII	J	482.6683	-0.442	KX	1.70	-3.914
26.01	FeII	J	491.3292	0.012	КХ	2.00	-4.249
26.01	FeII	J	497.7035	0.041	КХ	1.90	-4.278
26.01	FeII	J	498.4488	0.011	КХ	1.00	-4.649
26.01	FeII	J	499.0509	0.195	NA	1.20	-4.730
26.01	FeII	J	500.1959	0.920	NA	3.40	-4.702
26.01	FeII	J	500.4195	0.497	KX	2.50	-4.562
26.01	FeII	I	502.1594	-0.300	KX	1.00	-4.352
26.01	FeII	I	502.6806	-0.222	KX	1.30	-4.273
26.01	FeII	Ţ	503.0630	0.630	NA	3.00	-4 530
26.01	FeII	J	503.5708	0.630	NA	2 70	-4 621
26.01	FeII	J	506 1718	0.030	KX	1.80	-4 506
26.01	FeII	J	507 5764	0.277	KX	2.40	-4 289
26.01	FeII	J	508 2230	_0.000	KX KX	1 30	-4 3/15
26.01	FeII	J	508.2250	-0.035	KX KX	1.30	- <u>4</u> 402
26.01	FeII	J T	500.2214	0.055	KY KY	2 30	-1 180
20.01	Fell	J T	509.5570	0.112	KV KV	2.30	-4.107
26.01	Fell	J T	510 6100	0.306	лл VV	2.10	3 802
20.01	Fell	J T	514 4255	-0.270	кл NA	2.10	-3.093
20.01	Fell	J т	521 9942	0.307	INA	1.20	-4.709
26.01	Fell	J	521.8842	-0.205	KX	0.80	-4.509

Tabla A.10: Continuación HD 53244

Código	Especie	Mult.	λ[nm]	loggf	Ref.	Weg[pm]	$\log N/N_T$
26.01	FeII	I	522 7481	0.850	NA	3 70	-4 435
26.01	FeII	J	525 7122	0.032	KX	2.00	-4 144
26.01	FeII	J	526 0259	1.069	кх	4.10	-4 541
26.01	FeII	J	529.1666	0.575	KX	4.00	-4.057
26.01	FeII	J	539,5857	0.285	NA	1.90	-4.375
26.01	FeII	J	540.2059	0.469	NA	3.30	-4.108
26.01	FeII	J	542.7826	-1.580	NA	0.80	-4.715
26.01	FeII	J	542.9988	0.427	NA	1.40	-4.714
26.01	FeII	J	525.7122	0.032	KX	2.00	-4.144
26.01	FeII	J	526.0259	1.069	KX	4.10	-4.541
26.01	FeII	J	529.1666	0.575	KX	4.00	-4.057
26.01	FeII	J	548.2308	0.413	NA	1.90	-4.512
26.01	FeII	J	548.7619	0.357	KX	2.30	-4.297
26.01	FeII	J	549.8576	-0.393	KX	1.50	-3.844
26.01	FeII	J	550.2671	-0.137	KX	2.40	-3.790
26.01	FeII	J	550.3211	-0.087	KX	2.40	-3.862
26.01	FeII	J	550.6195	0.860	NA	3.60	-4.390
26.01	FeII	J	553.2088	-0.327	KX	0.80	-4.297
26.01	FeII	J	554.4196	-0.230	KX	1.90	-3.839
26.01	FeII	J	556.7842	-1.887	KX	1.90	-3.897
26.01	FeII	J	564.5392	0.085	KX	1.00	-4.565
26.01	FeII	J	564.8904	-0.242	KX	0.80	-4.355
26.01	FeII	J	565.1539	-0.580	KX	0.60	-4.134
26.01	FeII	J	578.0128	0.325	KX	2.10	-4.269
26.01	FeII	J	578.3630	0.365	NA	1.40	-4.566
26.01	FeII	J	604.9445	-0.417	KX	0.70	-4.145
26.01	FeII	J	606.9675	-0.371	KX	0.60	-4.267
26.01	FeII	J	607.1426	-0.188	KX	0.90	-4.240
26.01	FeII	J	649.3035	-2.575	KX	0.90	-4.117
26.01	FeII	J	662.1979	0.042	KX	1.40	-4.023
			$\log N/2$	$N_T = -4.62 \pm 0.29$			
26.02	FeIII	4	439.5755	-2.595	K88	0.80	-4.470
26.02	FeIII	4	441.9596	-2.218	K88	0.70	-4.927
26.02	FeIII	4	443.1019	-2.572	K88	1.20	-4.224
26.02	FeIII	118	416.4731	0.923	K88	0.10	-4.867
			$\log N/2$	$N_T = -5.14 \pm 0.28$			
28.01	NiII	11	384.9554	-1.880	KX	3.50	-5.535
28.01	NiII	11	406.7031	-1.834	KX	5.40	-4.965
28.01	NiII	12	401.5474	-2.420	KX	3.80	-4.910
			Log	$N/N_{T} = -6.87$			
35.01	BrII	-	470.4850	0.408	NIST	0.44	-6.871
			$\log N/$	$N_T = -6.59 \pm 0.21$			
39.01	YII	5	423.5727	-1.500	HL	0.84	-6.550
39.01	YII	12	468.2321	-1.510	HL	0.46	-6.715
39.01	YII	14	412.4904	-1.500	HL	0.49	-6.697
39.01	YII	16	395.1590	-1.980	HL	0.41	-6.301
39.01	YII	20	520.0406	-0.570	HL	2.44	-6.358

Tabla A.10: Continuación HD 53244

Código	Especie	Mult.	λ [nm]	loggf	Ref.	$W_{eq}[pm]$	$\log N/N_T$		
39.01	YII	27	548.0730	-0.990	HL	0.51	-6.571		
39.01	YII	-	442.2583	-1.270	HL	0.59	-6.972		
$\log N/N_T = -7.51 \pm 0.04$									
40.01	ZrII	16	395.8230	-0.310	KX	0.76	-7.566		
40.01	ZrII	-	399.8954	-0.670	GB	0.41	-7.498		
40.01	ZrII	-	404.5638	-0.600	KX	0.44	-7.468		
54.01	XeII	-	484.4330	0.491	NIS3	3.90	-4.896		
54.01	XeII	-	597.6460	-0.222	NIST	2.46	-4.598		
			Log	g N/N_T = -8.95					
60.02	NdIII	-	520.3924	-1.190	DREA	0.53	-8.952		
			Log	$N/N_T = -4.29$					
80.00	HgI	-	404.6609	-0.818	BLD	0.32	-4.293		
			Log	g $N/N_T = -5.15$					
80.01	HgII	-	614.9469	0.150 SR 1.39 -5.145					

Tabla A.10: Continuación HD 53244

ÍNDICE DE FIGURAS

4.1.	Síntesis espectral de He para las estrellas de la muestra	35
4.2.	Síntesis de H γ para HD 35548. El espectro negro corresponde al observado, mientras	
	que el rojo al espectro sintético.	38
4.3.	Síntesis de H γ para HD 175640. El espectro negro corresponde al observado, mientras	
	que el rojo al espectro sintético.	40
4.4.	Síntesis de H γ para HD 129174. El espectro negro corresponde al observado, mientras	
	que el rojo corresponde al espectro sintético	45
4.5.	Síntesis de H γ para HD 186122. El espectro negro corresponde al observado, mientras	
	que el rojo corresponde al espectro sintético	46
4.6.	Síntesis de H γ para HD 78316. El espectro negro corresponde al observado, mientras	
	que el rojo corresponde al espectro sintético	49
4.7.	Síntesis de H γ para HD 53244. La línea negra corresponde al espectro observado mien-	
	tras que la linea roja correpsonde al espectro sintético	54
4.8.	Estimación de edades mediante el ajuste de isócronas teóricas	60
4.9.	Estimación de edades mediante el ajuste de isócronas teóricas.	61
5.1.	Abundancias relativas. Triángulos y círculos abiertos negros son las cotas superior e	
	inferior respectivamente, cuadrado lleno negro corresponde a los valores medios, círculo	
	azul corresponde a los datos obtenidos por Adelman et al. (2006), mientras que el círculo	
	rojo representan a los valores obtenidos en este trabajo	68
5.2.	Relación Abundancia vs. Edad. Se observa una tendencia "decreciente" de la abundancia	
	a medida que la estrella evoluciona para P y Zr. Los triángulos negros son los correspon-	
	diente a este trabajo, mientras que los círculos rojos corresponden a Saffe et al. (2011).	
	También están indicadas las barras de error en abundancias de aquellas estrellas para las	
	cuales fue posible determinarlas.	75

5.3. Relación Abundancia vs. Edad. Se observa una posible tendencia "decreciente" de la abundancia a medida que la estrella evoluciona para ambos elementos. Para mayores detalles del comportamiento de los puntos refiérase al texto. Nuevamente los triángulos negros representan los datos de nuestro trabajo y los círculos rojos los de Saffe et al. (2011), se indican también las barras de error. 75 5.4. Relación Abundancia vs. Edad. Panel Izquierdo: No observamos una clara relación para el Mn. Panel Derecho: Para el Ga observamos una posible tendencia "decreciente" a pesar de que los datos presentan una gran dispersión. Los triángulos negros representan los datos de nuestro trabajo, los círculos rojos los de Saffe et al. (2011) y los cuadrados verdes y azules los de Smith, se indican también las barras de errores correspondientes. 76 5.5. Relación Abundancia vs. Edad. Panel Izquierdo: Observamos una tendencia "creciente" de la abundancia con la edad de la estrella para el Sc. Panel Derecho: No se observa tendencia alguna para el Hg. Los símbolos corresponden a: triángulos negros para los datos de nuestro trabajo, los círculos rojos para Saffe et al. (2011) y los cuadrados verdes y azules para los datos de Smith, se indican también las barras de errores correspondientes 77 5.6. Relación Abundancia vs. Temperatura. Se observa una tendencia "creciente" para ambos 79 5.7. Relación Abundancia vs. Temperatura. No se observa tendencia alguna para ambos ele-80 5.8. Relación Abundancia vs. Temperatura. Se observa una tendencia "decreciente" de la abundancia hacia temperaturas más calientes para el Sc, mientras que el Ti presenta un comportamiento opuesto. Para el Cr también se observa una tendencia "creciente" tanto 81 5.9. Relación Abundancia vs. Temperatura. Se observa una tendencia "creciente" de la abundancia a temperaturas mayores para el Mg, mientras que para el Al, la tendencia es opuesta. 82 5.10. Relación Abundancia vs. Temperatura. No se observa tendencia para el Si mientras que para el Ga sospechamos de una tendencia "creciente" de la abundancia a temperaturas mayores..... 83 5.11. Relación Abundancia vs. temperatura. Se observa una tendencia "decreciente" de la abundancia a medida que la estrella evoluciona para el Sr, mientras que para el Y se observa una tendencia opuesta. 85 5.12. Relación Abundancia vs. temperatura. Se observa una tendencia "creciente" de la abun-85 5.13. Relación Abundancia vs. vseni. No observamos una clara relación para el Hg y el Mn. 87

178

5.14.	Relación Abundancia vs. vseni. No se observa tendencia para el Fe, mientras que el Ni y	
	Sc se observa una tendencia "creciente" y "decreciente" respectivamente	88
5.15.	Relación Abundancia vs. vseni. Se sospecha una tendencia "creciente" de la abundancia	
	hacia las estrellas rotadoras lentas para el O, mientras que un comportamiento opuesto	
	se observa para el Al. El Si no presenta alguna tendencia notable	89
5.16.	Relación Abundancia vs. vseni. Para el Ga no observamos tendencia, mientras que para	
	el Br sospechamos una posible tendencia "decreciente" de las abundancias hacias las	
	estrellas rotadoras lentas.	90
5.17.	Relación Abundancia vs. vseni. Observamos un comportamiento bimodal para el Sr y	
	una tendencia "decreciente" para el Nd.	91

ÍNDICE DE CUADROS

1.1.	Esquema de Clasificación para las estrellas CP	5
2.1.	Estrellas de HgMn seleccionadas.	18
4.1.	Parámetros fundamentales T_{ef} y log g .	32
4.2.	Datos bibliográficos para la muestra de estrellas	33
4.3.	Abundancia de He para las estrellas de la muestra	36
4.4.	Abundancias químicas determinadas para HD 149121	37
4.5.	Abundancias químicas determinadas para HD 35548	39
4.6.	Abundancias químicas determinadas para HD 175640.	41
4.7.	Abundancias químicas determinadas para HD 49024	43
4.8.	Abundancias químicas determinadas para HD 129174	44
4.9.	Abundancias químicas determinadas para HD 186122.	47
4.10.	Abundancias químicas determinadas para HD 78316	48
4.11.	Abundancias químicas determinadas para HD 158704.	50
4.12.	Abundancias químicas determinadas para HD 190229.	52
4.13.	Abundancias químicas determinadas para HD 53244	53
4.14.	Parámetros de las estrellas.	59
5.1.	Abundancias Químicas.	64
5.1.	Continuación Abundancias Químicas	65
5.2.	Abundancias Químicas	66
5.2.	Continuación Abundancias Químicas	67
A.1.	Abundancias Químicas línea por línea para HD 149121	93
A.1.	Continuación HD 149121	94
A.1.	Continuación HD 149121	95
A.1.	Continuación HD 149121	96
A.1.	Continuación HD 149121	97
A.1.	Continuación HD 149121	98

A.1.	Continuación HD 149121	99
A.1.	Continuación HD 149121	100
A.1.	Continuación HD 149121	101
A.1.	Continuación HD 149121	102
A.2.	Abundancias Químicas línea por línea para HD 35548.	103
A.2.	Continuación HD 35548	104
A.2.	Continuación HD 35548	105
A.2.	Continuación HD 35548	106
A.2.	Continuación HD 35548	107
A.2.	Continuación HD 35548	108
A.2.	Continuación HD 35548	109
A.2.	Continuación HD 35548	10
A.2.	Continuación HD 35548	11
A.3.	Abundancias Químicas línea por línea para HD 175640	11
A.3.	Continuación HD 175640	12
A.3.	Continuación HD 175640	13
A.3.	Continuación HD 175640	14
A.3.	Continuación HD 175640	115
A.3.	Continuación HD 175640	116
A.3.	Continuación HD 175640	117
A.3.	Continuación HD 175640	18
A.3.	Continuación HD 175640	119
A.3.	Continuación HD 175640	120
A.3.	Continuación HD 175640	121
A.4.	Abundancias Químicas línea por línea para HD 49024.	122
A.4.	Continuación HD 49024	123
A.4.	Continuación HD 49024	124
A.4.	Continuación HD 49024	125
A.4.	Continuación HD 49024	126
A.4.	Continuación HD 49024	127
A.4.	Continuación HD 49024	128
A.5.	Abundancias Químicas línea por línea para HD 129174	129
A.5.	Continuación HD 129174	130
A.5.	Continuación HD 129174	131
A.5.	Continuación HD 129174	132

A.5.	Continuación HD 129174	133
A.5.	Continuación HD 129174	134
A.5.	Continuación HD 129174	135
A.5.	Continuación HD 129174	136
A.6.	Abundancias Químicas línea por línea para HD 186122	136
A.6.	Continuación HD 186122	137
A.6.	Continuación HD 186122	138
A.6.	Continuación HD 186122	139
A.6.	Continuación HD 186122	140
A.6.	Continuación HD 186122	141
A.6.	Continuación HD 186122	142
A.6.	Continuación HD 186122	143
A.6.	Continuación HD 186122	144
A.7.	Abundancias Químicas línea por línea para HD 78316	144
A.7.	Continuación HD 78316	145
A.7.	Continuación HD 78316	146
A.7.	Continuación HD 78316	147
A.7.	Continuación HD 78316	148
A.7.	Continuación HD 78316	149
A.7.	Continuación HD 78316	150
A.7.	Continuación HD 78316	151
A.7.	Continuación HD 78316	152
A.8.	Abundancias Químicas línea por línea para HD 158704	153
A.8.	Continuación HD 158704	154
A.8.	Continuación HD 158704	155
A.8.	Continuación HD 158704	156
A.8.	Continuación HD 158704	157
A.8.	Continuación HD 158704	158
A.8.	Continuación HD 158704	159
A.8.	Continuación HD 158704	160
A.8.	Continuación HD 158704	161
A.8.	Continuación HD 158704	162
A.9.	Abundancias Químicas línea por línea para HD 190229	162
A.9.	Continuación HD 190229	163
A.9.	Continuación HD 190229	164

A.9.	Continuación	HD	190229	•	•		•	•		•	•	•	•	•		•	•	•	•	 •		•	 •			•	•	•	 165
A.9.	Continuación	HD	190229	•	•						•	•	•	•		•	•	•	•	 •		•					•		 166
A.9.	Continuación	HD	190229	•	•						•	•	•	•		•	•	•	•	 •		•					•		 167
A.9.	Continuación	HD	190229	•	•						•	•	•	•		•	•	•	•	 •		•					•		 168
A.9.	Continuación	HD	190229	•	•					• •	•	•	•	•		•	•	•	•	 •	•	•	 •	•	•	•	•		 169
A.9.	Continuación	HD	190229	•	•					•	•	•	•	•		•	•	•	•	 •		•	 •	•	•	•	•		 170
A.10	. Abundancias	Quín	nicas lír	nea	ı p	or	lín	nea	pa	ara	a H	łD) 5	32	.44		•	•	•	 •		•	 •	•	•	•	•		 170
A.10	.Continuación	HD	53244	•	•					•	•	•	•	•		•	•	•	•	 •		•	 •	•	•	•	•		 171
A.10	.Continuación	HD	53244	•	•					• •	•	•	•	•		•	•	•	•	 •	•	•	 •	•	•	•	•		 172
A.10	.Continuación	HD	53244	•	•					• •	•	•	•	•		•	•	•	•	 •	•	•	 •	•	•	•	•		 173
A.10	.Continuación	HD	53244	•	•					•	•	•	•	•		•	•	•	•	 •		•				•	•		 174
A.10	.Continuación	HD	53244	•	•						•		•	•		•	•	•	•	 •		•					•		 175
A.10	.Continuación	HD	53244																										 176

BIBLIOGRAFÍA

- Abt, H. A., Chaffee, F. H., & Suffolk, G. 1972, Ap. J., 175, 779
- Abt, H. A., Levato, H., & Grosso, M. 2002, Ap. J., 573, 359
- Adelman, S. J. 1993, in Astronomical Society of the Pacific Conference Series, Vol. 44, IAU Colloq. 138:
 Peculiar versus Normal Phenomena in A-type and Related Stars, ed. M. M. Dworetsky, F. Castelli, &
 R. Faraggiana, 27
- Adelman, S. J., Adelman, A. S., & Pintado, O. I. 2003, Astron. Astroph., 397, 267
- Adelman, S. J., Caliskan, H., Gulliver, A. F., & Teker, A. 2006, Astron. Astroph., 447, 685
- Adelman, S. J., Cowley, C. R., Leckrone, D. S., Roby, S. W., & Wahlgren, G. M. 1993a, Ap. J. , 419, 276
- Adelman, S. J. & Rayle, K. E. 2000, Astron. Astroph., 355, 308
- Adelman, S. J., Robinson, R. D., & Wahlgren, G. M. 1993b, PASP, 105, 327
- Adelman, S. J. & Yüce, K. 2010, Astronomische Nachrichten, 331, 785
- Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. T. G. Barnes, III & F. N. Bash, 25
- Babcock, H. W. 1947, Physical Review, 72, 83
- Babcock, H. W. 1958, Ap. J., 128, 228
- Beardsley, W. R. 1969, Publications of the Allegheny Observatory of the University of Pittsburgh, 8, 91
- Berry, H. G., Bromander, J., Curtis, L. J., & Buchta, R. 1971, Phys. Scr., 3, 125
- Bernacca, P. L. 1968, in Società Astronomica Italiana Meeting XI, Vol. 11, 171-+
- Bidelman, W. P. 1962a, Ap. J., 135, 651

- Bidelman, W. P. 1962b, A. J., 67, 111
- Bohlender, D. A., Landstreet, J. D., Brown, D. N., & Thompson, I. B. 1987, Ap. J., 323, 325
- Bond, H. E. & Levato, H. 1976, PASP, 88, 905
- Borra, E. F. & Landstreet, J. D. 1978, Ap. J., 222, 226
- Borra, E. F., Landstreet, J. D., & Thompson, I. 1983, Ap. J. Suppl., 53, 151
- Briquet, M., Korhonen, H., González, J. F., Hubrig, S., & Hackman, T. 2010, Astron. Astroph., 511, A71
- Cannon, A. J. & Pickering, E. C. 1901, Annals of Harvard College Observatory, 28, 129
- Castelli, F., Gratton, R. G., & Kurucz, R. L. 1997, Astron. Astroph., 318, 841
- Castelli, F. & Hubrig, S. 2004, Astron. Astroph., 425, 263
- Castelli, F. & Kurucz, R. L. 2004, ArXiv Astrophysics e-prints
- Cenarro, A. J., Peletier, R. F., Sánchez-Blázquez, P., et al. 2007, M.N.R.A.S , 374, 664
- Cousins, A. W. J, 1965 M.N.R.A.S , 24, 160
- Conti, P. S. 1965, Ap. J. Suppl., 11, 47
- Conti, P. S. 1970, PASP, 82, 781
- Cowley, A. 1972, A. J., 77, 750
- Cowley, A., Cowley, C., Jaschek, M., & Jaschek, C. 1969, A. J., 74, 375
- Cowley, C. R. & Aikman, G. C. L. 1975, PASP , 87, 513
- da Silva, L., Girardi, L., Pasquini, L., et al. 2006, Astron. Astroph., 458, 609
- Dixon, M. E. 1970, M.N.R.A.S , 151, 87
- Dolk, L., Wahlgren, G. M., & Hubrig, S. 2003, Astron. Astroph., 402, 299
- Dworetsky, M. M. 1973, Ap. J. Let., 184, L75+
- Dworetsky, M. M. 1993, in Astronomical Society of the Pacific Conference Series, Vol. 44, IAU Colloq. 138: Peculiar versus Normal Phenomena in A-type and Related Stars, ed. M. M. Dworetsky, F. Castelli, & R. Faraggiana, 1

- Dworetsky, M. M. & Vaughan, Jr., A. H. 1973, Ap. J., 181, 811
- Engleman, Jr., R. 1989, Ap. J., 340, 1140
- Evans, D. S. 1967, in IAU Symposium, Vol. 30, Determination of Radial Velocities and their Applications, ed. A. H. Batten & J. F. Heard, 57–+
- Folsom, C. P., Kochukhov, O., Wade, G. A., Silvester, J., & Bagnulo, S. 2010, M.N.R.A.S , 407, 2383
- Fowler, W. A., Burbidge, E. M., Burbidge, G. R., & Hoyle, F. 1965, Ap. J., 142, 423
- Fuhr, J. R., & Wiese, W. L. 2006, J. Phys. Chem. Ref. Data 35, 1669
- Fuhr, J. R. and Martin, G. A. and Wiese, W. L. 1988, Phys. Chem. Ref. Data, Vol. 17
- Gahm, G. F. and Ahlin, P. & Lindroos, K. P. 1983, Astron. Astroph. Suppl., 51, 143
- Garrison, R. F. 1973, in IAU Symposium, Vol. 50, Spectral Classification and Multicolour Photometry, ed. C. Fehrenbach & B. E. Westerlund, 13
- Garrison, R. F. & Gray, R. O. 1994, A. J., 107, 1556
- Gerbaldi, M., Floquet, M., & Hauck, B. 1985, Astron. Astroph., 146, 341
- Gillon, M. & Magain, P. 2006, Astron. Astroph., 448, 341
- Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, Astron. Astroph. Suppl., 141, 371
- Gonzalez, J.-F., Artru, M.-C., & Michaud, G. 1995, Astron. Astroph., 302, 788
- González, J. F. & Levato, H. 2006, Astron. Astroph., 448, 283
- Gray, R. O. 1997, in The Third Conference on Faint Blue Stars, ed. A. G. D. Philip, J. Liebert, R. Saffer, & D. S. Hayes, 237
- Guthrie, B. N. G. 1967, Publications of the Royal Observatory of Edinburgh, 6, 145
- Gutierrez-Moreno, A. e. 1966, Publications of the Department of Astronomy University of Chile, 1, 1
- Hartoog, M. R. & Cowley, A. P. 1979, Ap. J., 228, 229
- Hauck, B. & Mermilliod, M. 1998, Astron. Astroph. Suppl., 129, 431
- Havnes, O. & Conti, P. S. 1971, Astron. Astroph., 14, 1

- Houk, N. 1982, Michigan Catalogue of Two-dimensional Spectral Types for the HD stars. Volume 3. Declinations -40° to -26°., ed. Houk, N.
- Houk, N. & Smith-Moore, M. 1988, Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars. Volume 4, Declinations -26° to -12°., ed. Warren, W. H., Jr.
- Hube, D. P. 1970, MmRAS, 72, 233
- Hubrig, S. & Castelli, F. 2001, Astron. Astroph., 375, 963
- Hubrig, S., Castelli, F., & Mathys, G. 1999a, Astron. Astroph., 341, 190
- Hubrig, S., Castelli, F., & Wahlgren, G. M. 1999b, Astron. Astroph., 346, 139
- Hubrig, S., González, J. F., Savanov, I., et al. 2006, M.N.R.A.S , 371, 1953
- Iglesias, L. & Velasco, R. 1964, The spectrum of the Mn+ ion, ed. Iglesias, L. & Velasco, R.
- Jaschek, M. & Jaschek, C. 1958, Zeitschrift für Astrophysik, 45, 35
- Jaschek, M. & Jaschek, C. 1967, in Magnetic and Related Stars, ed. R. C. Cameron, 381-+
- Jaschek, M., Jaschek, C., & Arnal, M. 1969, PASP, 81, 650
- Johansson, S. 1978, PhyS, 18, 217
- Johnson, H. L., Mitchell, R. I., Iriarte, B., & Wisniewski, W. Z. 1966, Communications of the Lunar and Planetary Laboratory, 4, 99
- Jørgensen, B. R. & Lindegren, L. 2005, Astron. Astroph., 436, 127
- Kurucz, R. L. 1970, SAO Special Report, 309
- Kurucz, R. L. 1992, RMxAA, 23, 45
- Kurucz, R. L. & Bell, B. 1995, Atomic Line Data, CD-ROM 23 (Cambridge: SAO)
- Kurucz, R. L., & Peytremann, E. 1975, SAO Special Report, 362
- Lanz, T. & Artru, M. C. 1985, Phys Scr. 32, 115
- Lanz, T. & Hubeny, I. 1993, in Astronomical Society of the Pacific Conference Series, Vol. 44, IAU Colloq. 138: Peculiar versus Normal Phenomena in A-type and Related Stars, ed. M. M. Dworetsky, F. Castelli, & R. Faraggiana, 517–+

- Leckrone, D. S., Proffitt, C. R., Wahlgren, G. M., Johansson, S. G., & Brage, T. 1999, A. J., 117, 1454
- Levato, H. & Malaroda, S. 1979, PASP, 91, 789
- Lopez-Garcia, Z. & Adelman, S. J. 1994, Astron. Astroph. Suppl., 107, 353
- Martin, G. A., Fuhr, J. R., & Wiese, W. 1988, J. Phys. Chem. Ref. Data 17, 3
- Makaganiuk, V., Kochukhov, O., Piskunov, N., et al. 2011, in IAU Symposium, Vol. 272, IAU Symposium, ed. C. Neiner, G. Wade, G. Meynet, & G. Peters, 202–203
- Mathys, G. & Hubrig, S. 1995, Astron. Astroph., 293, 810
- Maury, A. C. & Pickering, E. C. 1897, Annals of Harvard College Observatory, 28, 1
- Maza, N. L., Levato, H., & López-García, Z. 2010, RMxAA, 46, 339
- Mermilliod, J.C. 1986, Catalogue of Eggen's UBV data., 0 (1986), 0
- Michaud, G. 1970, Ap. J., 160, 641
- Moon, T. T. & Dworetsky, M. M. 1985, M.N.R.A.S , 217, 305
- Moore, C. E. 1945, A multiplet table of astrophysical interest.
- Morgan, W. W. 1931, Ap. J., 73, 104
- Morgan, W. W. 1933, Ap. J., 77, 330
- Morgan, W. W., Abt, H. A., & Tapscott, J. W. 1978, Revised MK Spectral Atlas for stars earlier than the sun, ed. Morgan, W. W., Abt, H. A., & Tapscott, J. W.
- Morgan, W. W., Keenan, P. C., & Kellman, E. 1943, An atlas of stellar spectra, with an outline of spectral classification, ed. Morgan, W. W., Keenan, P. C., & Kellman, E.
- Napiwotzki, R., Schoenberner, D., & Wenske, V. 1993, Astron. Astroph., 268, 653
- Norris, J. 1971, Ap. J. Suppl., 23, 193
- Osawa, K. 1965, Annals of the Tokyo Astronomical Observatory, 9, 121
- Preston, G. W. 1970, in IAU Colloq. 4: Stellar Rotation, ed. A. Slettebak, 254
- Preston, G. W. 1971, PASP, 83, 571
- Preston, G. W. 1974, Ann. Rev. Astr. Ap., 12, 257

- Pyper, D. M. 1969, Ap. J. Suppl., 18, 347
- Renson, P., Gerbaldi, M., & Catalano, F. A. 1991, Astron. Astroph. Suppl., 89, 429
- Renson, P. & Manfroid, J. 2009, Astron. Astroph., 498, 961
- Rogers, N. Y. 1995, Communications in Asteroseismology 78, 1
- Roman, N. G., Morgan, W. W., & Eggen, O. J. 1948, Ap. J., 107, 107
- Royer, F., Grenier, S., Baylac, M.-O., Gómez, A. E., & Zorec, J. 2002, Astron. Astroph., 393, 897
- Royer, F., Zorec, J., & Gómez, A. E. 2007, Astron. Astroph., 463, 671
- Ryabchikova, T. 1998, Contributions of the Astronomical Observatory Skalnate Pleso, 27, 319
- Saffe, C., Gómez, M., Pintado, O., & González, E. 2008, Astron. Astroph., 490, 297
- Saffe, C., Núñez, N., & Levato, H. 2011, RMxAA, 47, 219
- Sargent, A. W. L. W. & Jugaku, J. 1961, Ap. J., 134, 777
- Schöller, M., Correia, S., Hubrig, S. and Ageorges, N., 2010, Astron. Astroph., 522, A85
- Schulz-Gulde, E. 1969, J. Quant. Spectrosc. Radiat. Transfer 9, 13
- Schneider, H. 1981, Astron. Astroph. Suppl., 44, 137
- Sharpless, S. 1952, Ap. J., 116, 251
- Shenstone, A. G. 1961, Royal Society of London Proceedings Series A, 261, 153
- Smith, K. C. 1993, Astron. Astroph., 276, 393
- Smith, K. C. 1994, Astron. Astroph., 291, 521
- Smith, K. C. 1996a, Ap&SS, 237, 77
- Smith, K. C. 1996b, Astron. Astroph., 305, 902
- Smith, K. C. 1997, Astron. Astroph., 319, 928
- Smith, K. C. & Dworetsky, M. M. 1993, Astron. Astroph., 274, 335
- Takada-Hidai, M. 1991, in IAU Symposium, Vol. 145, Evolution of Stars: the Photospheric Abundance Connection, ed. G. Michaud & A. V. Tutukov, 137

Tassoul, J.-L. & Tassoul, M. 1982, Ap. J. Suppl., 49, 317

- Titus, J. & Morgan, W. W. 1940, Ap. J., 92, 256
- Wade, G. A., Drouin, D., Bagnulo, S., et al. 2006, in Astronomical Society of the Pacific Conference Series, Vol. 358, Astronomical Society of the Pacific Conference Series, ed. R. Casini & B. W. Lites, 369–+
- Wade, G. A., Landstreet, J. D., Elkin, V. G., & Romanyuk, I. I. 1997, M.N.R.A.S , 292, 748
- Wahlgren, G. M., Adelman, S. J., & Robinson, R. D. 1994, Ap. J., 434, 349
- Whitford, A. E. 1962, in IAU Symposium, Vol. 15, Problems of Extra-Galactic Research, ed. G. C. McVittie, 27–+
- Wielen, R., Schwan, H., Dettbarn, C., et al. 2000, Veroeffentlichungen des Astronomischen Rechen-Instituts Heidelberg, 37, 1
- Wiese, W. L., Smith, M. W., Smith, B. M. 1966, Atomic Transition Probabilities, Vol. I (NSRDS-NBS 4; Washington: US GPO)
- Wiese, W. L., Fuhr, J. R., & Deters, T. M. 1996, J. Phys. Chem. Ref. Data, Monograph, 7
- Wilson, R. E. 1953, Carnegie Institute Washington D.C. Publication, 0