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Abstract

In this paper we study a free boundary problem modeling the growth of tumors. The
model uses the conventional ideas of nutrient diffusion and consumption by the cells.
We consider the radially symmetric case of this free boundary problem. We apply a
spectral numerical method to the system of equations.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

A variety of PDE for tumor growth have been developed in the last decades.
Some models are based on reaction—diffusion equations [4,5]. Other models in-
clude hyperbolic equations, we refer to [1-3,6]. In [3] the authors have studied a
particular model with three cells populations: proliferating cells, quiescent cells
and dead cells. This model includes densities P, Q, and D of proliferating,
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quiescent and dead (necrotic) cell respectively, and concentration C of nutri-
ents (generally oxygen). These densities satisfy a system of nonlinear first order
hyperbolic equations in the tumor, with tumor surface as a free boundary. The
cells in different states are assumed to be mixed within the tumor, and to have
the same size. They assumed that the tumor is uniformly packed with cells, so
that

P+ QO+ D =const=N.

Due to proliferation of cells and to removal of necrotic cells, there is a contin-
uous movement of cells within the tumor and that the field velocity ¥ satisfies
the Darcy’s law. They treat the tumor tissue as a porous medium, that is

v =Va, o pressure.

In this model they assume that

¢ Ky(C) is increasing in C (rate of change from proliferating state to quiescent
state).
e Kp(C)is decreasing in C (rate of change from quiescent state to proliferating

state)
Kp(C) is decreasing in C (quiescent cells become necrotic at a rate Kp(C)).
K4(C) is decreasing in C (the death rate by apoptosis).
K3(C) is increasing in C (the proliferation rate).

K5(C) > K4(C).

K is a positive constant (the rate of removal of dead cells).

The concentration C satisfies the next diffusion equation

VC —2C=0en Q(t) (2> 0),
C = C, sobre 0Q(t),
where Q is the tumor region at time .
The densities P, Q and D satisfies the following system:
oP — _

o+ div(Py) = [Ks(C) — KolC) ~ Ru(C)JP + Kr(C),

%—? + div(Qv) = Ko(C)P — [K»(C) + Kp(C)]O,

If we add the last equations then we obtain an equation for the pressure o

NV?6 = K3(C)P — KgD.
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Now, we set

E:C/COa ﬁ:P/N7 q:Q/N7

we arrive at the following system of equations:
Vie—Je=0 in Q(t),
¢=1 on 0Q(s),
P
ot
og .. .
=+ div(qVe) = Ko(e)p — [Kr(@) — Kp(@)g  in Q).

+div(pVe) = [K5(2) — Ko@) — K4@)|p + Kp(©)7 in Q(),

V?6 = —Kz + [K3(C) + Kzlp + Krg in Q(1),

where

Ki(¢) =K,(Coc) fori=A,B,D,P,O.
The pressure ¢ on the surface of the tumor is equal to the surface tension,

that is

=7k onoQ() (y>0),
where « is the mean curvature. The motion of the free boundary is given by the
continuity equation

Oo
_)'ﬂ:Vna _—»:Vn 69t7
v-n or 4 on 0Q()

where 7 is the outward normal and V, is the velocity of the free boundary of
the free boundary in the outward normal direction. Given initial conditions

Q0), p(x,0), q(x,0),

we would like to determine the family of domains Q(7) and the functions p(x, 7),
q(x,1), c(x,?) and a(x, ) satisfying the last system.

2. The radial model and its properties

We note that tumors grown in vitro are typically of spherical shape, which
makes the study of radially symmetric solutions quite relevant. The radially
symmetric case of the the general model is given by the following equations
system:

10, ,0c _
ﬁa( 5)_% (0<r<R(), t>0),
oc

5 (0.0 =0 eR@),n=1 (¢>0),
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P 1 0L = [Ky(e) ~ Kole) ~ Ka(@)lp + Ko(e)7 — [(Kn(e + Ki)p
+Krg—Krlp (0<7r<R(), t>0),
% 1 0 = Ko(@)p — [Ke(e) + Kn(@))7 (K@) + Kn)p

+Keg—Kilg (0<r<R(), t>0),

— = (P) = [K5(¢) + Kg]p + Krg — K,

u(0,6) =0 (+>0),

dR(1)
9 u(R(t),1) (> 0),

with initial data

R(0), p(r,0), q(r,0).

To transform the above free boundary problem in a problem with fixed
boundary we first note that, for R(¢) given ¢(r, ) is given by

_ _R(1) sinh(v//r) as
) = (VARG C<R(t) R() )
where
P 10 = (Ky(e) ~ Kole) ~ Kale)lp + Kele)g ~ [(Kale) + Kep
+Krg—Krlp (0<r<1,t>0),
% 028 = Kolep — [Kole) + Kole)lg ~ [(Kole) + Kn)p

+Krqg—Krlg (0<7r<1, t>0),
o(r,t) =u(r,t) —ru(l,t) (0<r<1, t>0),

19

r2 or

u(0,6) =0 (¢ >0),

(Pu) = [Kp(c) + Kelp+Krg — Kz (0<r <1, t>0),

dR(1) _
T*R(t)u(lﬂt) (t > 0)3
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with initial data
R(0) =Ry, p(r,0) =py(r), q(r,0)=qy(r),

where

Ro>0, po(r) 20, qo(r) 20, py(r)+4o(r) <1, (0<r <),

In [3] the authors show that the last system has a unique solution for
0<r<1,0< >0, and it has the following properties:

1. p(r,t) = 0, g(r,t) = 0, p(r,t) + q(r, 1) < 1

2. Roe ¥ < R(f) < Roesks()r,

3. lim,_,R(#) = 0 if Kr=0

4, o< R(t)< Mforallt = 0if 0 < Kp < 0.

3. The numerical method

Spectral methods are based in simple ideas of interpolation [7], we use these
ideas for the numerical method. We give a description of our numerical scheme
for the problem with fixed boundary. Let r; = 3 for 0 <i< N + 1 be a parti-
tion of the interval [0, 1] into subintervals I; = [r, 4], of length 7 = 5. First,

+1
we consider the following matrix:

N+1
1 +

a.
D= LT[ —r)=—% (1))
T4 aj(ri—ry)
and
N+1 1
Dj; = Z(rj —r)
=1
where
N+l

a; =0 =r)

k=1

We use the following notation

P = (P(1); = (p(r,1);,

0 =(9,(1), = (q(r,1));,

U= (U(t); = (u(r;,1));,

Vi) =Vit) = Uy(t) = Uni (),
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where (-); is a vector with j components. We approximate

. op
D'P =~ (ar(rjat))ja

0
D"Q ~ (az (rj,t)) ‘.
J

Now, we consider the following approximations

op op dp )
5(%%) + v(ry, t)g(rjvt) [d + diag(V;)D P]

J

where []; denote the j-component of the vector (-),.

g g _[do, . ]
E(’/j’t) + U(I’_,‘,l‘)a(l”j,t) ~ [E'i_dlag(l/j)D Q:|j7

—za—(rzu)(r 1) ~ [dlag<1>D’r2U]j

We remark that K(c) = K(r,R) fori= A4,B,P,Q,D.
We define the following matrices:

M\ (R) = diag(Ks(r;,R) — Ko(ry, R) — Ka(r}, R)),

M;(R) = diag(Kp(r;,R)),

M;(R) = diag(K3(r;, R) + Kp),

M,y(R) = diag(Ko(r;, R)),

Ms(R) = diag(Kp(rj,R) + Kp(rj,R)),
and the following vectors:

P(t) = (P}(1)),,

0 (1) = (0)(1)),,

P.Q(1) = (Pi(1)Q;(1)),

U(1) = (U,(1)),,

1=(1),

We have the following approximations

P
i— + diag(V,)D'P = M\P + M,Q — M3sP* — KxPQ + KzP,
d . .
d—? + diag(V,)D"Q = MyP — M5Q — M3PQ — KxQ* — KO,
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1\
dlag(—2>D'r2U = MsP + KzQ — Kgl,
Tk

. 1 1.

U = d1ag <}"2> (Dr) ldlag(}’i)(M3P + KRQ — KRI)
J

From the last equation, we can obtain the vector U as function of the P, Q and

R. Then we can express diag(})) as function of P, O, and R we obtain the

following system of ordinary differential equations

P
E—jl(RaPaQL
d
T?:?Z(RvpvQ)v
dr

DR

dl j3(R7PvQ)v

with initial conditions

P(O) = (P(rjvo))j |
0(0) = (Q(rjao))j = (‘10(”/‘))/7
R(0) = Ro.

=)
—
a3
~
~
~

If we define W = [P Q R]' then we can use the following notation

dw
rra "),

W(0) = W,

This system can be resolved by means the standard numerical methods for
the ordinary differential equations.

4. Numerical examples

From [6], in this section we set the following values for the parameters of the
problem:

. R(0) =3,

A =10.05,

- K4(c) =0,

. Kp(c) =0.05¢,

. Ko(c) = =0.05(c + 1),
. Kp(c)=—c+1,

. Kp(c) =c.
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The parameters Kz and the functions po(r) and ¢o(r) will be different in the
examples. We set 10 points for the discretization of the interval [0, 1]. A Runge—
Kutta method is used by integrate the ordinary differential equations.

Example 1. In this example, we consider several values for parameter Kz, we
remark that
limR(¢) = o0 if Kz =0,
t—00
we set po(r) = 0.3 and ¢o(r) = 0.6.
From Fig. 1 we can see that the solution is increasing with respect to Kx.

Example 2. Now py(r) = sin(nx/2(N — 1)) where N = 10 the number of points
in [0, 1] for the discretization.
In Figs. 2 and 3 we show the behavior of the densities for different times.

Example 3. In the last example, the parameters are the same in Example 1,
with Kz = 1. We remember that
Roe % < R(1) < Ry (),

Fig. 4 shows that the analytic bounds are preserved by the numerical
solution.

R()

L s n s L L
1 2 3 4 5 6 7 8 9 10

Fig. 1. R(¢) for several values of Kp.
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P(r,t)

Fig. 2. P(r,t) for different times.

Fig. 3. Q(r,?) for different times.



354 A. Barrea, C. Turner | Appl. Math. Comput. 167 (2005) 345-354
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O R(0)exp(-0.33Kgt)
— solution
O R(0)exp(0.33Kg(1)t)
4} © i

2 ! ! ! ! ! ! ! ! !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Fig. 4. R(¢), lower and upper bounds.
5. Conclusion

In this paper we have investigated the numerical solution of a model of tumor
growth. An special approach of transforming a PDE system into a ODE system
has been adopted, this approach is based in simple ideas of interpolation. The
analytic properties of the solution are preserved for the numerical method.
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