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ABSTRACT

In this paper, we consider a slab represented by the interval 0 < y < `, at the initial temperature

v0(y) = M > 0 having a positive constant heat flux q0 on the left face and a contact perfect

condition, kvy(`, τ) + Mfcfvτ (`, τ) = 0, on the right face y = `. We consider the corresponding

heat conduction problem and we assume that the phase-change temperature is 00C. We obtain

time estimates for the occurrence of a phase-change by means of Laplace Transform and Method

of Lines.

Introduction an preliminaries

We consider a one-dimensional slab [0, `] with its face y = ` in perfect thermal contact with mass

Mf per unit area of a well-stirred fluid (or a perfect conductor) of specific heat cf . We consider

the following heat conduction problem:

Problem P

kvyy = ρcvτ , D = {(y, t) : 0 ≤ y ≤ `, τ > 0}, (1)

v(y, 0) = V0 > 0, 0 ≤ y ≤ `, (2)

kvy(0, τ) = q0 > 0, τ > 0, (3)

kvy(`, τ) + Mfcfvτ (`, τ) = 0, τ > 0, (4)

where k is the thermal conductivity, ρ the density, q0 the heat flux and c the

specific heat of the material, all of them positive constants.
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We propose the following changes of variables:

x =
y

`
, t =

kτ

ρc`2
, v(y, τ) = cu(x, t).

The problem P is transformed in the following problem P1:

Problem P1

uxx = ut, D = {(x, t) : 0 ≤ x ≤ 1, t > 0}, (5)

u(x, 0) = M > 0, 0 ≤ x ≤ 1, (6)

ux(0, t) = q > 0, t > 0, (7)

ux(1, t) = γut(1, t), t > 0, (8)

where:

M = cV0, q =
c`q0

k
, γ = −Mfcf

ρc
< 0.

This paper was motived by [3,4,8,9,10,13]. In the case of models of heat conduction in material

media it is natural to attempt to determine its temporary range of validity. Here an important limi-

tation of this range is imposed by the change of phase phenomena. Hence the need of modifying the

model to include this characteristic (free boundaries and mushy regions could now appear)[5,6,7,11].

A large bibliography on phase-change problems was given in [14].

Much of the contents of this paper will be concerned with the time estimates of the occurrence

of the phase-change process in a material with a perfect contact boundary condition. In section

2 we show the exact solution of Problem P1 and we obtain an approximation for its solution at

x = 0, with an estimate of the error. In section 3 we apply the Laplace Transform to the problem

considered, we obtain the exact solution of the transformed problem and we use the asymptotic

behavior to approximate the inverse of the solution of the transformed problem. We approximate

the solution of the original problem in order to obtain time estimates for occurrence of the change-

phase in the material. In section 4 we apply the method of lines to Problem P1 in which the partial

differential equation is replaced by a sequence of ordinary differential equations at discrete time

levels. We obtain a time estimate for phase-change process that depends on M, q and γ.

Problem P1 satisfies the following minimum principle (section 1.1) that we use in following

sections in order to consider only the behavior of u(x, t) for x = 0. Then, we will call a phase

change time, tch, a time such that u(0, tch) = 0.

Minimum Principle for the Problem P1

2



Lemma 1 The solution of the Problem P1 holds:

ux(x, t) ≥ 0 and u(0, t) ≤ u(x, t), 0 ≤ x ≤ 1, t > 0.

Proof

We set v = ux, the function v(x, t) satisfies the following heat conduction problem:

vxx = vt, D = {(x, t) : 0 ≤ x ≤ 1, t > 0}, (9)

v(x, 0) = 0, 0 ≤ x ≤ 1, (10)

v(0, t) = q > 0, t > 0, (11)

v(1, t) = γvx(1, t), t > 0. (12)

By using the maximum principle ([2],[12]) for 0 ≤ x ≤ 1 and t > 0 we have:

min v(x, t) = min{q, 0, v(1, t)},

we suppose that v(1, t) < 0 (we remark that q > 0), then it follows that:

min v(x, t) = v(1, t),

by using Hopf lemma [2] we deduce that:

vx(1, t) < 0,

which contradicts the condition (12). Therefore ux(x, t) ≥ 0, since γ < 0, from which we obtain

the thesis. 2

Exact solution of the Problem P1

In order to obtain an exact solution for the problem P1, we set v = ux, the function v(x, t)

satisfies the equations (9),(10), (11) and (12). The solution of this problem is given by [15]:

v(x, t)
q

=
−γ + 1− x

−γ + 1
−

∞∑

n=1

Ansin(βnx)e−β2
nt, (13)

where

An =
2(γ2β2

n + 1)
βn(γ2β2

n − γ + 1)
, (14)
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and βn are different positive roots of the following transcendental equation:

βn cotβn − 1
γ

= 0, (15)

where the roots βn ∈ ((n− 1)π, nπ), for n ≥ 1 independent of γ.

From (13) we have that:

v(1, t) =
−qγ

−γ + 1
[1 +

∞∑

n=1

Bne−β2
nt], (16)

where

Bn =
2
γ ( 1

γ − 1) sec βn

[( 1
γ − 1) 1

γ + β2
n]

. (17)

We obtain the following expression for the solution of the Problem P1 using (13),(16),(8):

u(x, t) = M +
1
γ

∫ t

0
v(1, τ)dτ −

∫ 1

x
v(ξ, t)dξ, (18)

= M + I1 + I2 (19)

where

I1 = − q

−γ + 1
[t−

∞∑

n=1

Bn

β2
n

(e−β2
nt − 1)], (20)

I2 = q




γ − γx− (1− x)2

2
−γ + 1

+
∞∑

n=1

An

βn
e−β2

nt(− cosβn + cosβnx)


 . (21)

By Lemma 1 we need to approximate u(0, t) in order to estimate u(x, t) for all x ∈ [0, 1]. This

function is given by:

u(0, t) = M − qt

−γ + 1
+

q(γ − 1
2)

−γ + 1
+

q

−γ + 1

∞∑

n=1

Bn

β2
n

(e−β2
nt − 1) + q

∞∑

n=1

An

βn
e−β2

nt(1− cosβn). (22)

We remark that βn → +∞ when n → +∞, moreover An = O(1/βn) and Bn = O(1/βn).

Since we are interested in obtaining estimates for the time where u(0, t) = 0, we set the following

approximation for the temperature u(0, t) given by:

UJ,P (t) = M− qt

−γ + 1
+

q(γ − 1
2)

−γ + 1
+

q

−γ + 1

J∑

n=1

Bn

β2
n

(e−β2
nt−1)+q

P∑

n=1

An

βn
e−β2

nt(− cosβn +1). (23)
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We can express the temperature u(0, t) as:

u(0, t) = UJ,P (t) + EJ,P (t). (24)

In order to estimate the error EM,N (t) we note that the coefficients An, Bn can be bounded in

the following way:

∣∣∣∣
An

βn

∣∣∣∣ =

∣∣∣∣∣
2(γ2β2

n + 1)
β2

n(γ2β2
n − γ + 1)

∣∣∣∣∣ (25)

≤
∣∣∣∣∣

2(γ2β2
n + 1)

β2
n(γ2β2

n + 1)

∣∣∣∣∣ =
2
β2

n

. (26)

From the equation (15) we have that

| sec βn|
|βn| =

|γ|
| sinβn| (27)

and since | sinβn| → 1 when n → ∞ , then there exist i0 ∈ N such that | sinβn| ≤ 1
2 for all

i ≥ i0. Therefore we obtain that:

| secβn|
|βn| ≤ |γ|

d
, (28)

where

d = max
i≤i0

{1
2
, sinβi} ≤ 1.

Therefore, we have the following inequality:

∣∣∣∣
Bn

βn

∣∣∣∣ =

∣∣∣∣∣
2
γ ( 1

γ − 1) secβn

βn[( 1
γ − 1) 1

γ + β2
n]

∣∣∣∣∣ (29)

≤
∣∣∣∣∣

2
γ ( 1

γ − 1)|γ|
d[( 1

γ − 1) 1
γ + β2

n]

∣∣∣∣∣ (30)

≤ 2(1− γ)
|γ|dβ2

n

. (31)

These bounds for An and Bn allow us to prove the following lemma:

Lemma 2 We have the following estimation for the error Em(t):

|EJ,P (t)| ≤ q

π3d|γ|
1
J2

+
4q

π2

1
P

.
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Proof

First, we remark that (n− 1)π ≤ βn ≤ nπ. Then we use the following inequalities:

∞∑

J+1

1
β3

n

≤ 1
π3

∫ ∞

J

1
x3

dx =
1

2π3J2
,

∞∑

P+1

1
β2

n

≤ 1
π2

∫ ∞

P

1
x2

dx =
1

π2P

and

|e−β2
nt − 1| ≤ 1, |e−β2

nt| ≤ 1, | − cosβn + 1| ≤ 2.

Now from the equation (24) we have that |EM,N (t)| satisfies

|EJ,P (t)| ≤ 2q

d|γ|
∞∑

J+1

1
β3

n

+ 4q
∞∑

P+1

1
β2

n

≤ q

π3d|γ|
1
J2

+
4q

π2

1
P

2

Numerical Example

Below we present a table with the time tch such that UM,N (tch) = 0 and EJ,P differents values

of J, P ∈ N.

For the TABLE 1 we consider M = 1, q = 1, γ = −2 and for tha TABLE 2 we set the following

values M = 0.1, q = 1, γ = −2.

J P tch EJ,P

20 5 0.7905 0.0209

20 10 0.7894 0.0204

20 20 0.7895 0.0203

25 5 0.7905 0.0168

30 5 0.7905 0.0141

30 10 0.7894 0.0136

30 20 0.7895 0.0135

100 20 0.7895 0.004

J P tch EJ,P

20 5 0.007635 0.0209

20 10 0.007562 0.0204

20 20 0.007575 0.0203

25 5 0.007635 0.0168

30 5 0.007635 0.0141

30 10 0.007562 0.0136

30 20 0.007575 0.0135

100 20 0.007575 0.004

In the following sections we will show some alternatives in order to obtain the phase change

time estimates.
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Estimates through the Laplace Transform

In this section we apply the Laplace Transform to the problem considered, we obtain the exact

solution of the transformed problem and we use the asymptotic behavior to approximate the inverse

of the solution of the transformed problem. We approximate the solution of the original problem in

order to obtain time estimates of the occurrence of the change-phase in the material. The Laplace

Transform is defined by:

U(s, t) = L(u(x, t)) =
∫ ∞

0
u(x, t)e−stdt,

where s is a positive parameter.

We apply the Laplace Transform to Problem I, and taking into account the following properties

L(ux(x, t)) =
dU(s, x)

dx
, L(uxx(x, t)) =

d2U(s, x)
dx2

.

L(ut(x, t)) = −M + sU(s, x), L(q) =
q

s
.

the following problem is obtained:

Problem P2

Uxx(s, x)− sU(s, x) = −M, (32)

Ux(s, 0) =
q

s
, (33)

γsU(s, 1)− Ux(s, 1) = γM. (34)

The solution of Problem P2 is given by:

U(s, x) = A(s) exp (−√sx) + B(s) exp (
√

sx) +
M

s
, (35)

where

A(s) =
−(γs−√s) exp (

√
s)q

2s(γs
3
2 cosh (

√
s)− s sinh (

√
s))

, (36)

B(s) =
(γs +

√
s) exp (−√s)q

2s(γs
3
2 cosh (

√
s)− s sinh (

√
s))

. (37)

After straightforward computations we obtain the following expression for U(s, x):
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U(s, x) =

[
−γs sinh (

√
s(1− x)) +

√
s cosh (

√
s(1− x))

γs
5
2 cosh (

√
s)− s2 sinh (

√
s)

]
q +

M

s
. (38)

Remark 1 If we consider q = 0, in (38) then U(s, x) =
M

s
. In this case u(x, t) = M for 0 ≤ x ≤ 1

and t > 0, which can be observed directly from Problem P1.

We will need a useful property from Davies, [1], in order to estimate the time of change of

phase.

Lemma 3 Suppose that the Laplace transform F (s) = L(f(t)) has an asymptotic expansion:

F (s) ≈
∞∑

ν=1

aνs
−λν as s → +∞, with λ1 ≤ λ2 ≤ λ3 ≤ ...

then we have

f(t) ≈
∞∑

ν=1

aνt
λν−1

(λν − 1)!
as t → 0.

Theorem 1 An estimate of the phase change time, for the Problem P1, is given by the following

approximation:

tch ≈
(√

πM

2q

)2

.

Proof

We only need to consider the behavior of (38) for large s and x = 0, since (Lemma 1 ), so that

U(s, 0) ≈ M

s
− q

s
3
2

, s → +∞. (39)

Therefore by Lemma 3, we can obtain the asymptotic behavior for u(0, t) for small t:

u(0, t) ≈ M − 2√
π

qt
1
2 , t → 0. (40)

We need u(0, tch) = 0 for some tch > 0 in order to have a change phase in the material for

t > tch, that is:

tch ≈
(√

πM

2q

)2

. (41)

2
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Remark 2 The estimate given by theorem 1 is valid for t ≈ 0 which is equivalent to q À M . We

can see that the approximation does not depend on the constant γ. The time of phase-change for

M = 1, q = 1, γ = −2 given by Theorem 1 is tch = 0.7853 (see TABLE 1) and for M = 0.1, q = 1,

γ = −2 is tch = 0.007853 (see TABLE 2).

Remark 3 Roughly speaking, we expect that the solution of P1 converges when γ → −∞ to the

solution of following problem:

uxx = ut, D = {(x, t) : 0 ≤ x ≤ 1, t > 0}, (42)

u(x, 0) = M > 0, 0 ≤ x ≤ 1, (43)

ux(0, t) = q > 0, t > 0, (44)

u(1, t) = C, t > 0, (45)

where C is a constant to be determined. This problem was studied in [3] where the same expression

(41) for the time of change of phase was obtained.

Remark 4 If we consider the case where the domain is seminfinite (i.e. 0 < x < +∞), then the

exact solution for the Problem P1 is given by:

u(x, t) = M − 2q
√

t ierfc(
x

2
√

t
) (46)

where erf(x) = 2√
π

∫ x
0 exp (−t2)dt, and

erfc(x) = 1− erf(x), ierfc(x) =
exp (−x2)√

π
− xerfc(x).

The phase change time (i.e. u(0, t) = 0) is given by [3]:

t = (
√

πM

2q
)2. (47)

In this case, we consider the following problem P2∞ (the Laplace Transform):

Uxx(s, x)− sU(s, x) = −M, (48)

Ux(s, 0) =
q

s
. (49)

Now, the exact solution for problem P2∞ in x = 0 is given by:

U(0, s) = − q

s3/2
+

M

s
.
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Therefore, we obtain that:

u(0, t) = − 2q√
π

√
t + M,

and the phase change time is equal to (47).

In order to obtain an expression for the phase change time which depends on γ, we will use the

method of lines in the next section.

Estimates through the Method of Lines

In this section we apply the method of lines to Problem P1 in which the partial differential equation

is replaced by a sequence of ordinary differential equations at discrete time levels. For this purpose,

we shall define a partition {0 = t0 < t1 < ... < tN = T} of the interval [0, T ], with equal

subintervals ∆t = ti − ti−1 and i = 1, .., N . The simplest, and most commonly used, method of

lines approximation for Problem P1 requires the substitution

ut(x, tn) ≈ u(x, tn)− u(x, tn−1)
∆t

,

which reduces the partial differential equation (1) to a second order differential equation

∆t u
′′
n(x)− un(x) = −un−1(x), (50)

for n = 1, .., N and ∆t =
T

N
, where un = u(x, tn) and u

′′
n =

d2un(x)
d2x

. The boundary conditions

are transformed in the following equations:

u0(x) = M, (51)

u
′
n(0) = q (52)

−∆t u
′
n(1) + γun(1) = γun−1(1). (53)

The method of lines approximation for the heat conduction problem P1 is given now by (50),(51),

(52) and (53) which is called Problem P3(n).

The solution of Problem P3(n) has the representation:

un(x) = An,k exp (−1
k
x) + Bn,k exp (

1
k
x) + gn,k(x), (54)
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where

An,k =
q(−k + γ) exp (

1
k
)− 1

k
(γun−1(1) + k2g

′
n(1)− gn(1))

2(sinh (
1
k
)− γ

k
cosh (

1
k
))

, (55)

Bn,k =
−1

k
(γun−1(1) + k2g

′
n(1)− gn(1))− q(k + γ) exp (−1

k
)

2(sinh (
1
k
)− γ

k
cosh (

1
k
))

, (56)

k =
√

∆t, (57)

and gn,k(x) is a particular solution of Problem P3(n). We remark that A and B depend on n

and k. The particular solution gn,k(x) is given by:

gn,k(x) =
1
k

∫ x

0
sinh (

1
k
(s− x))un−1(s)ds. (58)

Henceforth, in order to simplify the notation we omit the indices k. We consider one iteration (i.e.

n = 1), in this case the solution of problem P3(1) is given by:

u1(x) = A1 exp (−1
k
x) + B1 exp (

1
k
x) +

M

k

∫ x

0
sinh (

1
k
(s− x))ds, (59)

where

g1(x) =
M

k

∫ x

0
sinh (

1
k
(s− x))ds

= M(1− cosh (
x

k
)). (60)

and its derivative g
′
1(x) is given by :

g
′
1(x) = −M

k
sinh (

x

k
). (61)

We use this last expressions at x = 1 and that gn(0) = 0, (58), in order to obtain an expression

for u1(0) (By using Lemma 1 we are only interested in the behavior at x = 0) . After some algebraic

manipulation, we obtain:

u1(0) = Gγ(k)M + Fγ(k)q, (62)
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where

Fγ(k) =
γ sinh (

1
k
)− k cosh (

1
k
)

sinh (
1
k
)− γ

k
cosh (

1
k
)

, (63)

Gγ(k) =
sinh (

1
k
)− k cosh (

1
k
) +

1− γ

k

sinh (
1
k
)− γ

k
cosh (

1
k
)

. (64)

We look for k satisfying the equation u1(0) = 0, which is equivalent to:

Hγ(k) = −M

q
, (65)

where

Hγ(k) =
γ sinh (

1
k
)− k cosh (

1
k
)

sinh (
1
k
)− k cosh (

1
k
) +

1− γ

k

. (66)

It is easy to verify that Hγ(k) satisfies the following properties:

Lemma 4 The function Hγ(k) holds the following properties:

1. lim Hγ(k) = 0 when k → 0+ for all γ < 0.

2. Hγ(k) ≤ 0 for k ≈ 0 for all γ < 0.

Proof

We have the equivalent expression

Hγ(k) =
γk sinh (

1
k
)− k2 cosh (

1
k
)

k sinh (
1
k
)− cosh (

1
k
) + 1− γ

=
(−k2 + γk)e1/k − (k2 + γk)e−1/k

(k − 1)e1/k − (k − 1)e−1/k + 2(1− γ)
.

Hence, the behavior of Hγ(k) for k ≈ 0 is given by

Hγ(k) ≈ γk

1− γ
as k ≈ 0, (67)
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From (67), then (1) and (2) hold.2

We will use the expression (67) which holds for k ≈ 0 in order to solve the equation (65).

Theorem 2 An estimate of the time of change of phase for the Problem P1, is given by the

following approximation :

tch ≈ M2(1− γ)2

q2γ2
.

Proof

The time given by the method of lines is given by (65) where

Hγ ≈ γk

1− γ
k ≈ 0,

therefore

tch =
M2(1− γ)2

γ2q2
,

we remark that t = k2.2

Concluding Remarks

In the last two sections we have obtained two different estimates for the time of phase-change

process. The first one was computed by means of Laplace transform. This approximation depends

on M, q but it does not depend on γ. In fact this is the difference with the approximation derived

by the Methods of lines. We remark that the estimates are the same order. From theorem 1 we

have that tch holds:

−M

q
= −

√
4tch
π

, (68)

where we note that t = k2. Now we define the following function:

R(k) = − 2k√
π

. (69)

We may immediately verify the following lemma which implies that the times given by theorem

1 and 2 are comparable.

Lemma 5 We have that

lim
k→0+

Hγ(k)
R(k)

= − −γ
√

π

2(1− γ)
.
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Nomenclature

k: thermal conductivity, [Wm/m2K].

ρ: density, [Kg/m3].

q0: heat flux on the fixed face x = 0, [Ws/m2].

c: specific heat, [J/KgK].

cf : specific heat of tthe fluid, [J/KgK].

Mf : mass of the fluid, [Kg].

τ : time variable, [s].

v: temperature of material, [K].

y: spatial variable, [m].

t: dimensionless time.

x: dimensionless spatial variable.
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