ALGEBRA AND GEOMETRY: TO-AND-FRO, ONE MORE TIME

Contents

1. Introduction	7
2. Algebra I	8
3. Geometry	11
4. $a=b and b=c$	13
4.1. AYD	13
4.2. YD	15
5. Algebra II	16
6. a=c	18
References	20

Did people in the Middle-Ages think that connections were flat?

1. INTRODUCTION

In this work we present a characterization of certain algebraic object, namely (anti-)Yetter Drinfeld modules over a Hopf algebra H as modules involving a deep geometric property, such as having a flat connection. We provide an identification of the two later concepts.

Following [KK], we define a new algebra of noncommutative differential forms over any Hopf algebra H with an invertible antipode. The resulting differential calculus, denoted here by $\mathcal{K}^*(H)$, is intimately related to the class of anti-Yetter-Drinfeld modules over H. More precisely, we show that there is a one to one correspondence between anti-Yetter-Drinfeld modules over H and H-modules that admit a flat connection with respect to our differential calculus $\mathcal{K}^*(H)$.

Furthermore, in the last part of the work this characterization is considered once again and it is proven as a corollary of a more general theory, based on [B]. In this part, the relationship between comodules of a coring and flat connections is reviewed. In particular we specialize to corings which are built on a tensor product of algebra and a coalgebra. Such corings are in one-to-one correspondence with entwining structures, and their comodules are entwined modules. These include Yetter-Drinfeld and anti-Yetter-Drinfeld modules and their generalizations. In this way the interpretation of the latter as modules with flat connections given before is obtained as a corollary of a more general theory.

The work answers to the following organization.

In Sections 2 and 3 we introduce, respectively, the basic algebraic and geometric concepts that will be buildings block of our language during the exposition of the work.

In Section 4 we build the differential calculus $\mathcal{K}^*(H)$, for a Hopf algebra H and prove our main result identifying Anti Yetter Drinfeld modules over H and H modules with a flat connection with respect to this new calculus. An analogous result for Yetter Drinfeld modules is also developed.

In Section 5 we extend our algebraic concepts to a more general setting and we finally develop, in Section 6, a similar theory for these new objects to the one that raised in Section 4, including these previous results as corollaries.

2. Algebra I

To introduce the definition of Hopf algebras, we have to go gradually introducing a couple of previous concepts. For more details concerning these structures, we refer the reader to the books:

- (1) Hopf algebras. Sweedler [S69].
- (2) Quantum groups. Kassel [Kas95].
- (3) Hopf algebras and their action on rings. Montgomery [Mon93]

Definition 2.1. A counital, coassociative coalgebra over a field \neg is \neg -vector space together with two maps, a multiplication $\Delta : H \to H \otimes H$ and a counit $\epsilon : \rightarrow \neg$ such that the following identities hold:

$$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta, (\epsilon \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \epsilon)\Delta = \mathrm{id}_H$$

where we identify $\Bbbk \otimes H \cong H \otimes \Bbbk \cong H$.

Definition 2.2. A bialgebra over a field \Bbbk is an algebra B which is also a coalgebra and such that the maps that provide it the structure of coalgebra are algebra maps.

Definition 2.3. A Hopf algebra H over a field k is a bialgebra together with a map $S : H \to H$, the "antipode" such that

$$m(S \otimes \mathrm{id})\Delta = m(\mathrm{id} \otimes \Delta) = u\epsilon,$$

where $m: H \otimes H \to H$ and $u: \Bbbk \to H$ denote the multiplication and the unit in the algebra H.

Throughout this work, when referring to Hopf algebras, we will make use of the so called *Sweedler* notation [S69] for the coproduct. Therefore, if H is a Hopf algebra with comultiplication Δ and $x \in H$, we will, for example, write:

$$\Delta(x) = x_{(1)} \otimes x_{(2)},$$

and

$$(\mathrm{id} \otimes \Delta)\Delta(x) = (\Delta \otimes \mathrm{id})\Delta(x) = x_{(1)} \otimes x_{(2)} \otimes x_{(3)}$$

We do not define here morphisms: coalgebra maps, Hopf algebra maps, which are linear maps that respect the structures involved.

Definition 2.4. Let (C, Δ, ϵ) be a coalgebra. A (right) comodule M over C is a k-vector space together with a map $\rho : N \to C \otimes N$ rendering the following diagrams commutative:

The map ρ is said to be a coaction.

Analogously, one can define left comodules, bicomodules, etc. We leave to the imagination of the reader the obvious definition and properties of comodule morphisms.

Definition 2.5. Let H be a \Bbbk -Hopf algebra. A \Bbbk -vector space X is called a left-left anti-Yetter-Drinfeld module (AYD module, for short) if

- X is a left H-module,
- X is a left H-comodule,
- the following compatibility condition between the *H*-module and comodule structure on *X* holds:

$$(hx)_{(-1)} \otimes (hx)_{(0)} = h_{(1)}x_{(-1)}S^{-1}(h_{(3)}) \otimes h_{(2)}x_{(0)}$$

for any $h \in H$ and $x \in X$.

A Yetter Drinfeld module Y over a Hopf algebra H is defined in an analogous manner, replacing the compatibility condition on the third item by

(2)
$$(hy)_{(-1)} \otimes (hy)_{(0)} = h_{(1)}y_{(-1)}S(h_{(3)}) \otimes h_{(2)}y_{(0)}$$

for any $h \in H$ and $y \in Y$.

Definition 2.6. A morphism of AYD (resp. YD) modules $X \to Y$ is simply a k-linear map which is also a map of modules and comodules.

Remark 2.7 ([Mon93]). The resulting category of AYD modules and YD-modules over H is an abelian category.

To understand these compatibility conditions better we proceed as follows. Let X be a left H module. We define a left H-action on $H \otimes X$ by letting

(3)
$$h(g \otimes x) := h_{(1)}gS^{-1}(h_{(3)}) \otimes h_{(2)}x$$

for any $h \in H$ and $g \otimes x \in H \otimes X$.

Lemma 2.8 ([Mon93]). Let H be a Hopf algebra and X a left H-modules. Then $H \otimes X$ is a left H-module with the action

(4)
$$h(g \otimes x) := h_{(1)}gS^{-1}(h_{(3)}) \otimes h_{(2)}x.$$

for any $h \in H$ and $g \otimes x \in H \otimes X$. Moreover, an H-module/comodule X is an anti-Yetter-Drinfeld module iff its comodule structure map $\rho_X : X \to H \otimes X$ is a morphism of H-modules.

Remark 2.9. There is a similar characterization of YD modules. The left action (4) should simply be replaced by the left action

(5)
$$h(g \otimes x) := h_{(1)}gS(h_{(3)}) \otimes h_{(2)}x$$

Let us give a characterization of (A)YD modules in a concrete example. Let G be a not necessarily finite, discrete group and let H = k[G] be its groups algebra over k with its standard Hopf algebra structure, i.e. $\Delta(g) = g \otimes g$ and $S(g) = g^{-1}$ for all $g \in G$.

Definition 2.10. Let G be a group, and consider G acting on itself by conjugation. Then, a G-graded G-module is a G module M with a decomposition as $M = \bigoplus_{g \in G} M_g$ such that $h \cdot M_g \subseteq M_{hgh^{-1}}$, for all $h, g \in G$.

Proposition 2.11. The category of (Anti-)Yetter-Drinfeld modules over k[G] is isomorphic to the category of G-graded vector spaces. In particular, the categories of YD modules and AYD modules are equivalent in this case.

Proof. Let M be a k[G]-module/comodule. Denote its structure morphisms by $\mu : k[G] \otimes M \to M$ and $\rho : M \to k[G] \otimes M$. Since we assumed k is a field, M has a basis of the form $\{e^i\}_{i \in I}$ for some index set I. Since M is a k[G]-comodule one has

$$e_{(-1)}^i \otimes e_{(0)}^i = \sum_{j \in I} \sum_{g \in G} c_{j,g}^i (g \otimes e^j)$$

where only finitely many $c_{j,g}$ is non-zero. One can chose a basis $\{m^{\lambda}\}_{\lambda \in \Lambda}$ for M such that

$$m_{(-1)}^{\lambda}\otimes m_{(0)}^{\lambda}=\sum_{lpha}c_{\lambda,lpha}(g_{\lambda}\otimes m^{lpha})$$

and since all comodules are counital and k[G] has a counit $\varepsilon(g) = 1$ for any $g \in G$ we see that

$$m^{\lambda} = \sum_{\alpha} c_{\lambda,\alpha} m^{\alpha}$$

implying $c_{\lambda,\alpha}$ is uniformly zero except $c_{\lambda,\lambda}$ which is 1. In other words, one can split M as $\bigoplus_{g \in G} M_g$ such that $\rho(x) = g \otimes x$ for any $x \in M_q$. Now assume M is an (A)YD module. Then since

$$(hx)_{(-1)} \otimes (hx)_{(0)} = hgh^{-1} \otimes hx$$

for any $x \in M_g$ and $h \in G$ one can see that $L_h : M_g \to M_{hgh^{-1}}$ where L_h is the k-vector space endomorphism of M coming from the left action of h. This observation implies that the category of AYD modules over k[G] and the category of G-graded k[G]-modules are isomorphic. \Box

Definition 2.12. Let (C, Δ, ϵ) be a coalgebra and L a C-bicomodule with coactions ${}^{L}\varrho : L \to C \otimes L$ and $\varrho^{L} : L \to L \otimes C$. A k-linear map $\lambda : L \to C$ is called a coderivation, provided

$$\Delta \circ \lambda = (C \otimes \lambda) \circ {}^{L}\varrho + (\lambda \otimes C) \circ \varrho^{L}.$$

Note that in the previous definition $\epsilon \circ \lambda = 0$.

In the following sections we will need the following general definition:

Definition 2.13. Let X_0, \ldots, X_n be a finite set of *H*-bimodules. We define an *H*-bimodule structure on the k-module $X_0 \otimes \cdots \otimes X_n$ by

$$h(x^0 \otimes \cdots \otimes x^n) = h_{(1)} x^0 S^{-1}(h_{(2n+1)}) \otimes \cdots \otimes h_{(n)} x^{n-1} S^{-1}(h_{(n+2)}) \otimes h_{(n+1)} x^n,$$

$$(x^0 \otimes \cdots \otimes x^n) h = x^0 \otimes \cdots \otimes x^{n-1} \otimes x^n h.$$

for any $h \in H$ and $(x^0 \otimes \cdots \otimes x^n) \in X_0 \otimes \cdots \otimes X_n$. Checking the bimodule conditions is straightforward. We denote this bimodule by $X_0 \oslash \cdots \oslash X_n$.

3. Geometry

Definition 3.1. A differential ring is a ring R equipped with a derivation

 $d: R \to R$,

i.e., an additive map satisfying the Leibniz rule:

$$d(ab) = ad(b) + bd(a), \ a, b \in R.$$

A differential ring which is also a domain, field, etc., will be called a differential domain, field, etc.

Definition 3.2. A differential module over a differential ring (R, d) is a R-module M equipped with an additive map

$$D: M \to M$$

satisfying

$$D(am) = aD(m) + d(a)m.$$

such a D will also be called a differential operator on M relative to d.

Example 3.3. Let (R,d) be a differential ring. Then (R,d) is a differential module over itself. A differential module isomorphic to a direct sum of copies of (R,d) is said to be trivial.

Definition 3.4. A differential ideal of a differential ring R is a differential submodule of R itself, i.e., an ideal stable under d.

Definition 3.5. Let A be an associative unital algebra over a commutative ring k. The universal differential envelope of A is a differential graded algebra $\Omega A = \bigoplus_{n=0}^{\infty} \Omega^n A$ over A (i.e. $A = \Omega^0 A$) defined as follows. The bimodule of one-forms is

(6)
$$\Omega^1 A := \ker \mu = \{ \sum_i a_i \otimes b_i \in A \otimes A \mid \sum_i a_i b_i = 0 \}.$$

 $\Omega^1 A$ has the obvious A-bimodule structure. The differential $d: A \to \Omega^1 A$ is defined as

(7) $d: a \mapsto 1 \otimes a - a \otimes 1 = (1 \otimes 1)a - a(1 \otimes 1).$

One defines higher differential forms by iteration

(8)
$$\Omega^{n+1}A := \Omega^1 A \otimes_A \Omega^n A$$

more precisely, ΩA is the tensor algebra of the A-bimodule $\Omega^1 A$, $\Omega A = T_A(\Omega^1 A)$. The differential d is extended to the whole of Ω by requiring the graded Leibniz rule (and that $d \circ d = 0$). This amounts to inserting the unit of the algebra A in all possible places in $\Omega^n A \subset A^{\otimes n+1}$ with alternating signs.

Definition 3.6. Let A be a k-algebra. A differential calculus over A is a differential graded k-algebra (Ω^*, d) endowed with a morphism of algebras $\rho : A \to \Omega^0$. The differential d is assumed to have degree one.

Since in our main examples we have $\Omega^0 = A$ and $\rho = id$, in the following we assume this is the case.

Definition 3.7. Assume M is a left A-module. A morphism of k-modules $\nabla : M \to \Omega^1 \otimes M$ is called a connection with respect to the differential calculus (Ω^*, d) if one has a Leibniz rule of the form

$$\nabla(am) = a\nabla(m) + d(a) \underset{A}{\otimes} m$$

for any $m \in M$ and $a \in A$.

Given any connection ∇ on M, there is a unique extension of ∇ to a map $\widehat{\nabla} : \Omega^* \bigotimes_A M \to \Omega^* \bigotimes_A M$ satisfying a graded Leibniz rule. It is given by

$$\widehat{\nabla}(\omega \otimes m) = d(\omega) \mathop{\otimes}_{A} m + (-1)^{|\omega|} \omega \nabla(m)$$

for any $m \in M$ and $\omega \in \Omega^*$.

We arrive to the following important definition:

Definition 3.8. A connection $\nabla: M \to \Omega^1 \underset{A}{\otimes} M$ is called flat if its curvature $R := \widehat{\nabla}^2 = 0$.

Our next goal is to find a noncommutative analogue of Proposition 2.11. To this end, we will replace the group algebra $\mathbb{k}[G]$ by a differential calculus $\mathcal{K}^*(H)$ naturally defined for any Hopf algebra H. The right analogue of G-graded vector spaces will be H-modules admitting flat connections with respect to the differential calculus $\mathcal{K}^*(H)$.

4.1. **AYD.**

Definition 4.1. For each $n \ge 0$, let $\mathcal{K}^n(H) = H^{\otimes n+1}$. We define a differential $d : \mathcal{K}^n(H) \to \mathcal{K}^{n+1}(H)$ by

$$d(h^0 \otimes \dots \otimes h^n) = -(1 \otimes h^0 \otimes \dots \otimes h^n) + \sum_{j=0}^{n-1} (-1)^j (h^0 \dots \otimes h^j_{(1)} \otimes h^j_{(2)} \otimes \dots \otimes h^n) + (-1)^n (h^0 \otimes \dots \otimes h^{n-1} \otimes h^n_{(1)} S^{-1}(h^n_{(3)}) \otimes h^n_{(2)}).$$

We also define an associative graded product structure by

$$(x^{0} \otimes \cdots \otimes x^{n})(y^{0} \otimes \cdots \otimes y^{m})$$

= $x^{0} \otimes \cdots \otimes x^{n-1} \otimes x^{n}_{(1)}y^{0}S^{-1}(h_{(2m+1)}) \otimes \cdots \otimes x^{n}_{(m)}y^{m-1}S^{-1}(x^{n}_{(m+2)}) \otimes x^{n}_{(m+1)}y^{m}$

for any $(x^0 \otimes \cdots \otimes x^n)$ in $\mathcal{K}^n(H)$ and $(y^0 \otimes \cdots \otimes y^m)$ in $\mathcal{K}^m(H)$.

Proposition 4.2 ([KK]). $\mathcal{K}^*(H)$ is a differential graded k-algebra.

Proof. For any $x \in \mathcal{K}^0(H)$ one has

$$d(x) = -(1 \otimes x) + (x_{(1)}S^{-1}(x_{(3)}) \otimes x_{(2)}) = [x, (1 \otimes 1)],$$

and for $(y \otimes 1)$ in $\mathcal{K}^1(H)$ and $x \in \mathcal{K}^0(H)$ we see

$$\begin{aligned} d(x(y \otimes 1)) = & d(x_{(1)}yS^{-1}(x_{(3)}) \otimes x_{(2)}) \\ = & - (1 \otimes x_{(1)}yS^{-1}(x_{(3)}) \otimes x_{(2)}) + (x_{(1)}y_{(1)}S^{-1}(x_{(5)}) \otimes x_{(2)}y_{(2)}S^{-1}(x_{(4)}) \otimes x_{(3)}) \\ & - (x_{(1)}yS^{-1}(x_{(5)}) \otimes x_{(2)}S^{-1}(x_{(4)}) \otimes x_{(3)}) \\ = & d(x)(y \otimes 1) + xd(y \otimes 1) \end{aligned}$$

We also see for $(x \otimes y)$ in $\mathcal{K}^1(H)$ the we have

$$\begin{aligned} d((x \otimes 1)y) &= d(x \otimes y) = -(1 \otimes x \otimes y) + (x_{(1)} \otimes x_{(2)} \otimes y) - (x \otimes y_{(1)}S^{-1}(y_{(3)}) \otimes y_{(2)}) \\ &= -(1 \otimes x \otimes 1)y + (x_{(1)} \otimes x_{(2)} \otimes 1)y - (x \otimes 1 \otimes 1)y + (x \otimes 1)(1 \otimes y) \\ &- (x \otimes 1)(y_{(1)}S^{-1}(y_{(3)}) \otimes y_{(2)}) \\ &= d(x \otimes 1)y - (x \otimes 1)d(y). \end{aligned}$$

Note that with the product structure on $\mathcal{K}^*(H)$ one has

$$(x^0 \otimes \cdots \otimes x^n) = (x^0 \otimes 1) \cdots (x^{n-2} \otimes 1)(x^{n-1} \otimes 1)x^n$$

for any $x^0 \otimes \cdots \otimes x^n$ in $\mathcal{K}^n(H)$. Now, one can inductively show that

$$d(\Psi\Phi) = d(\Psi)\Phi + (-1)^{|\Psi|}\Psi d(\Phi)$$

for any Ψ and Φ in $\mathcal{K}^*(H)$. Since the algebra is generated by degree zero and degree one terms, all that remains is to show that for all $x \in H$ we have $d^2(x) = 0$ and $d^2(x \otimes 1) = 0$. For the first assertion we see that

$$\begin{aligned} d^{2}(x) &= -d(1 \otimes x) + d(x_{(1)}S^{-1}(x_{(3)}) \otimes x_{(2)}) \\ &= (1 \otimes 1 \otimes x) - (1 \otimes 1 \otimes x) + (1 \otimes x_{(1)}S^{-1}(x_{(3)}) \otimes x_{(2)}) - (1 \otimes x_{(1)}S^{-1}(x_{(3)}) \otimes x_{(2)}) \\ &+ (x_{(1)(1)}S^{-1}(x_{(3)(2)}) \otimes x_{(1)(2)}S^{-1}(x_{(3)(1)}) \otimes x_{(2)}) - (x_{(1)}S^{-1}(x_{(3)}) \otimes x_{(2)(1)}S^{-1}(x_{(2)(3)}) \otimes x_{(2)(2)}) \\ &= 0 \end{aligned}$$

for any $x \in H$. For the second assertion we see

$$\begin{aligned} d^{2}(x \otimes 1) &= -d(1 \otimes x \otimes 1) + d(x_{(1)} \otimes x_{(2)} \otimes 1) - d(x \otimes 1 \otimes 1) \\ &= -(1 \otimes 1 \otimes x \otimes 1) + (1 \otimes 1 \otimes x \otimes 1) - (1 \otimes x_{(1)} \otimes x_{(2)} \otimes 1) + (1 \otimes x \otimes 1 \otimes 1) \\ &- (1 \otimes x_{(1)} \otimes x_{(2)} \otimes 1) + (x_{(1)} \otimes x_{(2)} \otimes x_{(3)} \otimes 1) - (x_{(1)} \otimes x_{(2)} \otimes x_{(3)} \otimes 1) + (x_{(1)} \otimes x_{(2)} \otimes 1 \otimes 1) \\ &+ (1 \otimes x \otimes 1 \otimes 1) - (x_{(1)} \otimes x_{(2)} \otimes 1 \otimes 1) + (x \otimes 1 \otimes 1 \otimes 1) - (x \otimes 1 \otimes 1 \otimes 1) \\ &= 0 \end{aligned}$$

for any $(x \otimes 1)$ in $\mathcal{K}^*(H)$. The result follows.

Note that the calculus $\mathcal{K}^*(H)$ is determined by

- (1) the *H*-bimodule $\mathcal{K}^1(H) = H \otimes H$
- (2) the differential $d_0: H \to H \otimes H$ and $d_1: H \otimes H \to H \otimes H \otimes H$ and
- (3) the Leibniz rule $d(\Psi\Phi) = d(\Psi)\Phi + (-1)^{|\Psi|}\Psi d(\Phi)$.

Theorem 4.3 ([KK]). The category of AYD modules over H is isomorphic to the category of H-modules admitting a flat connection with respect to the differential calculus $\mathcal{K}^*(H)$.

Proof. Assume M is a H-module which admits a morphism of k-modules of the form $\nabla : M \to \mathcal{K}^1(H) \underset{H}{\otimes} M \cong H \otimes M$. Define $\rho_M(m) = \nabla(m) + (1 \otimes m)$ and denote $\rho_M(m)$ by $(m_{(-1)} \otimes m_{(0)})$ for any $m \in M$. First we see that

$$\nabla(hm) = (hm)_{(-1)} \otimes (hm)_{(0)} - (1 \otimes hm)$$

and also

$$\begin{aligned} d(h) &\underset{H}{\otimes} m + h\nabla(m) = -(1 \otimes hm) + (h_{(1)}S^{-1}(h_{(3)}) \otimes h_{(2)}m) \\ &+ (h_{(1)}m_{(-1)}S^{-1}(h_{(3)}) \otimes h_{(2)}m_{(0)}) - (h_{(1)}S^{-1}(h_{(3)}) \otimes h_{(2)}m) \\ &= (h_{(1)}m_{(-1)}S^{-1}(h_{(3)}) \otimes h_{(2)}m_{(0)}) - (1 \otimes hm) \end{aligned}$$

for any $h \in H$ and $m \in M$. This means ∇ is a connection iff the *H*-module *M* together with $\rho_X : M \to H \otimes M$ satisfy the AYD condition. The flatness condition will hold iff for any $m \in M$ one has

$$\begin{aligned} \widehat{\nabla}^2(m) = & d(m_{(-1)} \otimes 1) \underset{H}{\otimes} m_{(0)} - (m_{(-1)} \otimes 1) \nabla(m_{(0)}) - d(1 \otimes 1)m + (1 \otimes 1) \nabla(m) \\ = & (m_{(-1)(1)} \otimes m_{(-1)(2)} \otimes m_{(0)}) - (m_{(-1)} \otimes m_{(0)(-1)} \otimes m_{(0)(0)}) = 0, \end{aligned}$$

meaning ∇ is flat iff $\rho_M : M \to H \otimes M$ defines a coassociative coaction of H on M.

4.2. **YD.** Instead of the AYD condition, one can consider the YD condition and form a differential calculus $\hat{\mathcal{K}}^*(H)$ using the YD condition.

Definition 4.4. As before, assume H is a Hopf algebra, but this time we do not require the antipode to be invertible. We define a new differential calculus $\widehat{\mathcal{K}}^*(H)$ over H as follows: let $\widehat{\mathcal{K}}^n(H) = H^{\otimes n+1}$ and define the differentials as

$$d(x^0 \otimes \cdots \otimes x^n) = -(1 \otimes x^0 \otimes \cdots \otimes x^n) + \sum_{j=0}^{n-1} (-1)^j (x^0 \otimes \cdots \otimes x^j_{(1)} \otimes x^j_{(2)} \otimes \cdots x^n)$$
$$+ (-1)^n (x^0 \otimes \cdots \otimes x^{n-1} \otimes x^n_{(1)} S(x^n_{(3)}) \otimes x^n_{(2)})$$

for any $x^0 \otimes \cdots \otimes x^n$ in $\widehat{\mathcal{K}}^n(H)$. The multiplication is defined as

$$(x^0 \otimes \cdots \otimes x^n)(y^0 \otimes \cdots \otimes y^m)$$

= $x^0 \otimes \cdots \otimes x^{n-1} \otimes x^n_{(1)} y^0 S(x_{(2m+1)}) \otimes \cdots \otimes x^n_{(m)} y^{m-1} S(x^n_{(m+1)}) \otimes x^n_{(m+1)} y^m$

for any $x^0 \otimes \cdots \otimes x^n$ and $y^0 \otimes \cdots \otimes y^m$ in $\widehat{\mathcal{K}}^*(H)$.

The proofs of the following facts are similar to the corresponding statements for the differential calculus $\mathcal{K}^*(H)$ and AYD modules.

Proposition 4.5 ([KK]). $\widehat{\mathcal{K}}^*(H)$ is a differential graded k-algebra.

Theorem 4.6 ([KK]). The category of YD modules over H is isomorphic to the category of H-modules admitting a flat connection with respect to the differential calculus $\widehat{\mathcal{K}}^*(H)$.

5. Algebra II

Let A be an associative unital algebra over a commutative ring \Bbbk .

Definition 5.1. An A-bimodule C is called an A-coring iff there are A-bimodule maps $\Delta_{\mathcal{C}} : \mathcal{C} \to \mathcal{C} \otimes_A \mathcal{C}$, $\epsilon_{\mathcal{C}} : \mathcal{C} \to A$ rendering the following diagrams commutative:

(9)
$$\begin{array}{c} \mathcal{C} & \xrightarrow{\Delta_{\mathcal{C}}} & \mathcal{C} \otimes_{A} \mathcal{C} \\ & & \downarrow \\ & & \downarrow \\ \mathcal{C} \otimes_{A} \mathcal{C} & & \downarrow \\ \mathcal{C} \otimes_{A} \mathcal{C} \xrightarrow{\Delta_{\mathcal{C}} \otimes_{A} \mathcal{C}} & \mathcal{C} \otimes_{A} \mathcal{C} \otimes_{A} \mathcal{C}, \end{array}$$

(10)
$$C \xrightarrow{\Delta_{\mathcal{C}}} C \otimes_{A} C \qquad C \xrightarrow{\Delta_{\mathcal{C}}} C \otimes_{A} C \qquad C \xrightarrow{\simeq} A \otimes_{A} C \qquad C \xrightarrow{\simeq} C \otimes_{A} C \xrightarrow{\simeq} C \otimes_{A} A = C$$

As for coalgebras, $\Delta_{\mathcal{C}}$ is called a *coproduct* and $\epsilon_{\mathcal{C}}$ is called a *counit*. The coring $\mathcal{C} = A \otimes A$ is known as the *Sweedler* or *canonical* coring associated to the ring extension $k \to A$. Note in passing that Aitself is an A-coring. Thus the notion of a coring includes that of a ring. In the case of a general A-coring \mathcal{C} we can distinguish elements which have above properties and thus arrive at the following

Definition 5.2. An element g of an A-coring C is called a group-like element provided that

$$\Delta_{\mathcal{C}}(g) = g \otimes_A g, \qquad \epsilon_{\mathcal{C}}(g) = 1.$$

We will study corepresentation of corings. Specifically,

Definition 5.3. A right A-module M together with a right A-linear map $\rho^M : M \to M \otimes_A \mathcal{C}$ rendering the following diagrams

commutative is called a right C-comodule.

As for coalgebras, the map ρ^M is called a *coaction*. When needed one refers to map ρ^M which obeys the square but not the triangle condition in Definition 5.3 as to a *non-counital coaction*.

16

Definition 5.4. Let (A, μ, ι) be an algebra and $(C, \Delta_C, \epsilon_C)$ a coalgebra. A map $\psi : C \otimes A \to A \otimes C$ is said to be an entwining map provided the commutativity of the following bow-tie diagram

In this case, C and A are said to be entwined by ψ , and the triple (A, C, ψ) is called an entwining structure.

Proposition 5.5 ([B]). Let A and C as in the Definition above. Let $\psi : C \otimes A \to A \otimes C$ be entwining map. Then, there is a A-coring structure on $C = A \otimes C$.

Proof. C has an obvious left A-multiplication and counit:

(12) $a(a' \otimes c) := aa' \otimes c, \, \epsilon_{\mathcal{C}} := A \otimes \epsilon.$

In view of the identification $\mathcal{C} \otimes_A \mathcal{C} = (A \otimes C) \otimes_A (A \otimes C) \simeq A \otimes C \otimes C$, the map $\Delta_{\mathcal{C}} := A \otimes \Delta$, is an obvious candidate for a coproduct for \mathcal{C} . To make $A \otimes C$ into an A-coring with this already specified structures we need to introduce a suitable right A-multiplication. Since $A \otimes C$ must be an A-bimodule, any such a right A-multiplication is determined by a map $\theta : C \otimes A \to A \otimes C$,

(13)
$$\psi(c \otimes a) := (1 \otimes c)a.$$

The map θ must satisfy (four) conditions corresponding to unitality and associativity of the right *A*-multiplication and to the facts that both $\Delta_{\mathcal{C}}$ and $\epsilon_{\mathcal{C}}$ are right *A*-linear maps. It is straightforward to check that this conditions are equivalent to the commutativity of a bow-tie diagram, and therefore, taking $\theta = \psi$ we get the coring structure desired.

Right comodules of the A-coring $\mathcal{C} = A \otimes C$ associated to an entwining structure are known as entwined modules (or (A, C, ψ) -entwined modules). It is easy to check that these modules are simply k-modules M which are both right A-modules with multiplication $\varrho_M : M \otimes A \to M$ and right C-comodules with comultiplication $\varrho^M : M \to M \otimes C$ rendering commutative the following diagram

(14)
$$\begin{array}{c} M \otimes A \xrightarrow{\varrho^M \otimes A} M \otimes C \otimes A \xrightarrow{M \otimes \psi} M \otimes A \otimes C \\ \downarrow^{\varrho_M} \downarrow & \downarrow^{\varrho_M \otimes C} \\ M \xrightarrow{\varrho^M} M \otimes C . \end{array}$$

6. A=C

The following remarkable result of Roiter [Roi] states that any differential graded algebra of certain kind comes from a coring with a group-like element.

Theorem 6.1 ([Roi]). • Any A-coring C with a group-like element g gives rise to a differential graded algebra ΩA defined as follows: $\Omega^1 A = \ker \epsilon_C$, $\Omega^{n+1} A = \Omega^1 A \otimes_A \Omega^n A$ and the multiplication is given by the tensor product (i.e., ΩA is the tensor algebra $\Omega A = T_A(\ker \epsilon_C)$). The differential is defined by d(a) = ga - ag, for all $a \in A$, and, for all $c^1 \otimes_A \cdots \otimes_A c^n \in (\ker \epsilon_C)^{\otimes_A n}$,

$$d(c^{1} \otimes_{A} \cdots \otimes_{A} c^{n}) = g \otimes_{A} c^{1} \otimes_{A} \cdots \otimes_{A} c^{n} + (-1)^{n+1} c^{1} \otimes_{A} \cdots \otimes_{A} c^{n} \otimes_{A} g$$
$$+ \sum_{i=1}^{n} (-1)^{i} c^{1} \otimes_{A} \cdots \otimes_{A} c^{i-1} \otimes_{A} \Delta_{\mathcal{C}}(c^{i}) \otimes_{A} c^{i+1} \otimes_{A} \cdots \otimes_{A} c^{n}$$

- A differential graded algebra ΩA over A such that $\Omega A = T_A(\Omega^1 A)$ (that is $\Omega^{n+1}A = \Omega^1 A \otimes_A \Omega^n A$; a differential graded algebra with this property is said to be semi-free), defines a coring with a grouplike element.
- The operations described in items (1) and (2) are mutual inverses.

Proof. (1) and (3) are proven by straightforward calculations, so we only indicate how to construct a coring from a differential graded algebra (i.e. sketch the proof of (2)). Starting with ΩA , define

$$\mathcal{C} = Ag \oplus \Omega^1 A,$$

where g is an indeterminate. In other words we define C to be a direct sum of A and $\Omega^1 A$ as a left A-module. We now need to specify a compatible right A-module structure. This is defined by

$$(ag + \omega)a' := aa'g + ada' + \omega a'.$$

The coproduct is specified by

$$\Delta_{\mathcal{C}}(ag) = ag \otimes_A g, \qquad \Delta_{\mathcal{C}}(\omega) = g \otimes_A \omega + \omega \otimes_A g - d(\omega),$$

and the counit

$$\epsilon_{\mathcal{C}}(ag + \omega) := a,$$

for all $a \in A$ and $\omega \in \Omega^1 A$. Note that this structure is chosen in such a way that g becomes the required group-like element.

The following theorem is proven via straightforward calculation and it will provide us with an identification which will allow us to generalize the results in the previous sections.

Theorem 6.2 ([B]). Assume that C is an A-coring with a group-like element g, and write ΩA for the associated differential graded algebra.

• If (M, ρ^M) is a right C-comodule, then the map

$$\nabla: M \to M \otimes_A \Omega^1 A, \qquad m \mapsto \varrho^M(m) - m \otimes_A g,$$

is a flat connection.

• If M is a right A-module with a flat connection $\nabla : M \to M \otimes_A \Omega^1 A$, then M is a right C-comodule with the coaction

$$\varrho^M: M \to M \otimes_A \mathcal{C}, \qquad m \mapsto \nabla(m) + m \otimes_A g.$$

• The operations described in items (1) and (2) are mutual inverses.

Yetter-Drinfeld modules and anti-Yetter-Drinfeld modules are objects known as *Hopf-type modules*. They are characterized by having action and a coaction of a Hopf algebra or, more generally, with an action of an algebra and a coaction of a coalgebra which are compatible one with the other through an action/coaction of a Hopf algebra.

Essentially, compatibility conditions for all known Hopf-type modules can be recast in the form of an entwining structure and are of the form of equation (14).

If we restrict ourselves to the example of anti-Yetter-Drinfeld modules and apply the general theory of this section to this particular case, we recover our fundamental Theorem 4.3 on Section 4. We provide the details below.

Take A = C = H, where H is a Hopf algebra with a bijective antipode S. Then one can define an entwining map $\psi : H \otimes H \to H \otimes H$ by

(15)
$$\psi(c \otimes a) = a_{(2)} \otimes S^{-1}(a_{(1)})ca_{(3)}$$

for all $a, c \in H$. The fact that ψ is an entwining map follows explicitly because the antipode is an anti-algebra and anti-coalgebra map.

Consequently, there is an *H*-coring $\mathcal{C} = H \otimes H$ with the right *H*-multiplication

(16)
$$(b \otimes c)a = ba_{(2)} \otimes S^{-1}(a_{(1)})ca_{(3)}.$$

The compatibility (14) for right *H*-module and *H*-comodule *M* comes out as, for all $a \in H$,

(17)
$$\varrho^M(ma) = m_{(0)}a_{(2)} \otimes S^{-1}(a_{(1)})m_{(1)}a_{(3)},$$

where $\varrho^M(m) = m_{(0)} \otimes m_{(1)}$ is the C-coaction on M, i.e. we have that

Lemma 6.3. Entwined modules for (15) coincide with (right-right) anti-Yetter-Drinfeld modules.

Since C = H is a Hopf algebra, 1_H is a group-like element in H, and hence $1_H \otimes 1_H$ is a group-like element in the *H*-coring C. By the Roiter theorem there is the associated differential graded algebra and by Theorem 6.2 anti-Yetter-Drinfeld modules are modules with a flat connection with respect to this differential graded structure. Explicitly,

$$\Omega^{1}H = \{\sum_{i} a_{i} \otimes c_{i} \in H \otimes H \mid \sum_{i} a_{i} \epsilon(c_{i}) = 0\}$$

Thus, in particular $\Omega^1 H = H \otimes H^+$, where $H^+ := \ker \epsilon$, provided H is a flat k-module. The right H-action on $\Omega^1 H$ is given by the formula (16). The differential comes out as

$$d(a) = (1 \otimes 1)a - a(1 \otimes 1) = a_{(2)} \otimes S^{-1}(a_{(1)})a_{(3)} - a \otimes 1.$$

Remark 6.4. Anti-Yetter-Drinfeld modules are an example of (α, β) -equivariant *C*-comodules. In this case *A* is a bialgebra, *C* is an *A*-bimodule coalgebra, $\alpha : A \to A$ is a bialgebra map and $\beta : A \to A$ is an anti-bialgebra map (i.e. β is both an anti-algebra and anti-coalgebra map). All these data give rise to an entwining map $\psi : C \otimes A \to A \otimes C$ defined by

$$\psi(c \otimes a) = a_{(2)} \otimes \beta(a_{(1)}) c \alpha(a_{(3)}).$$

We do not work out explicitly the form of the corresponding coring $C = A \otimes C$ and of the compatibility condition (14), which are rather straightforward. If, in addition, C has a group-like element e, then $1 \otimes e$ is a group-like element in C and we can derive the associated differential graded algebra.

References

- [B] Tomasz Brsesinski. Flat connections and (co)modules. arXiv:math/0608170v2 [math.QA], 2007.
- [Hum72] James E. Humphreys. Introduction to Lie Algebras and Representation Theory. Springer-Verlag, New York, 1972.
- [Kas95] Christian Kassel. Quantum groups, volume 155 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
- [Ked] Kiran S. Kedlaya p-adic differential equations. Formalism of differential algebra, MIT, fall 2007.
- [KK] Atabey Kaygun and Masoud Khalkhali. Hopf modules and noncommutative differential geometry. Letters in Math. Phys., 76:77–91, 2006.
- [L08] Eduard Looijenga. Conformal blocks Notes for the MRI MasterClass 2007-2008, Utrecht University, The Netherlands.
- [Mac71] Mac Lane, Saunders. Categories For the Working Mathematician. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg-Berlin, 1971. ISBN 0-387-90036-5.
- [Mon93] Susan Montgomery. Hopf algebras and their actions on rings, volume 82 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.
- [Roi] A.V. Roiter. Matrix problems and representations of BOCS's, Lecture Notes in Mathematics 831: 288–324. Springer-Verlag, Berlin and New York, 1980.
- [S69] M. Sweedler. Hopf algebras. Benjamin, New York, 1969.

MASTER CLASS 2007-2008, UNIVERSITY OF UTRECHT *E-mail address:* agustingarcia80gmail.com