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Did people in the Middle-Ages think that connections were flat?
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1. INTRODUCTION

In this work we present a characterization of certain algebraic object, namely (anti-)Yetter Drinfeld
modules over a Hopf algebra H as modules involving a deep geometric property, such as having a flat
connection. We provide an identification of the two later concepts.

Following [KK], we define a new algebra of noncommutative differential forms over any Hopf algebra
H with an invertible antipode. The resulting differential calculus, denoted here by K*(H), is intimately
related to the class of anti-Yetter-Drinfeld modules over H. More precisely, we show that there is a
one to one correspondence between anti-Yetter-Drinfeld modules over H and H-modules that admit
a flat connection with respect to our differential calculus K*(H).

Furthermore, in the last part of the work this characterization is considered once again and it is
proven as a corollary of a more general theory, based on [B]. In this part, the relationship between
comodules of a coring and flat connections is reviewed. In particular we specialize to corings which are
built on a tensor product of algebra and a coalgebra. Such corings are in one-to-one correspondence
with entwining structures, and their comodules are entwined modules. These include Yetter-Drinfeld
and anti- Yetter-Drinfeld modules and their generalizations. In this way the interpretation of the latter
as modules with flat connections given before is obtained as a corollary of a more general theory.

The work answers to the following organization.

In Sections 2 and 3 we introduce, respectively, the basic algebraic and geometric concepts that will
be buildings block of our language during the exposition of the work.

In Section 4 we build the differential calculus K*(H), for a Hopf algebra H and prove our main
result identifying Anti Yetter Drinfeld modules over H and H modules with a flat connection with
respect to this new calculus. An analogous result for Yetter Drinfeld modules is also developed.

In Section 5 we extend our algebraic concepts to a more general setting and we finally develop, in
Section 6, a similar theory for these new objects to the one that raised in Section 4, including these
previous results as corollaries.
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2. ALGEBRA 1

To introduce the definition of Hopf algebras, we have to go gradually introducing a couple of previous
concepts. For more details concerning these structures, we refer the reader to the books:

(1) Hopf algebras. Sweedler [S69].
(2) Quantum groups. Kassel [Kas95].
(3) Hopf algebras and their action on rings. Montgomery [Mon93|

Definition 2.1. A counital, coassociative coalgebra over a field 71 is T-vector space together with two

maps, a multiplication A : H — H ® H and a counit € :— 1 such that the following identities hold:
(A ®id)A = (Id®A)A, (e ®1d)A = (id ®e)A = id gy,

where we identifyk @ H = Hk = H.

Definition 2.2. A bialgebra over a field k is an algebra B which is also a coalgebra and such that the
maps that provide it the structure of coalgebra are algebra maps.

Definition 2.3. A Hopf algebra H over a field k is a bialgebra together with a map S : H — H, the
“antipode” such that

m(S ®id)A = m(id ®A) = we,
where m : H® H — H and u :k — H denote the multiplication and the unit in the algebra H.

Throughout this work, when referring to Hopf algebras, we will make use of the so called Sweedler
notation [S69] for the coproduct. Therefore, if H is a Hopf algebra with comultiplication A and = € H,
we will, for example, write:

Ax) = Z(1) @ x(2),
and
(id®@A)A(z) = (A®id)A(z) = Z(1) @ T(2) @ X(3)-

We do not define here morphisms: coalgebra maps, Hopf algebra maps, which are linear maps that

respect the structures involved.

Definition 2.4. Let (C, A, €) be a coalgebra. A (right) comodule M over C' is a k-vector space together
with a map p: N — C ® N rendering the following diagrams commutative:
4

M M®s4C M M@yl
Ql \LM@AA = iM@AE
. o® 4id -
M ® 4 id M®sC®pC M®a4 A

The map p s said to be a coaction.

Analogously, one can define left comodules, bicomodules, etc. We leave to the imagination of the
reader the obvious definition and properties of comodule morphisms.

Definition 2.5. Let H be a k—Hopf algebra. A k—wvector space X is called a left-left anti-Yetter-
Drinfeld module (AYD module, for short) if
e X is a left H-module,
e X is a left H-comodule,
e the following compatibility condition between the H-module and comodule structure on X holds:
(1) (ha)(—1) ® (ha) o) = hayz(—1)S " (h(z)) ® hayz()
forany h e H and x € X.
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A Yetter Drinfeld module Y over a Hopf algebra H is defined in an analogous manner, replacing
the compatibility condition on the third item by

(2) (hy)(—1) ® (hy)0) = Pa)y—1)S(h3)) @ h2yy(o)
forany he Handy €Y.

Definition 2.6. A morphism of AYD (resp, YD) modules X —'Y is simply a k-linear map which is
also a map of modules and comodules.

Remark 2.7 ([Mon93]). The resulting category of AYD modules and YD-modules over H is an abelian
category.

To understand these compatibility conditions better we proceed as follows. Let X be a left H
module. We define a left H-action on H ® X by letting

(3) h(g ® x) := h1)9S~ (b)) ® hy®
forany he Hand g®x € H® X.

Lemma 2.8 ([Mon93|). Let H be a Hopf algebra and X a left H-modules. Then H @ X is a left
H-module with the action

(4) Mg © ) := h1ygS™" (b)) @ hyz.

forany h € H and g® x € H® X. Moreover, an H-module/comodule X is an anti- Yetter-Drinfeld
module iff its comodule structure map px : X — H @ X is a morphism of H-modules.

Remark 2.9. There is a similar characterization of YD modules. The left action (4) should simply be
replaced by the left action

(5) h(g ® x) := h(1)gS(h3)) ® h)z

Let us give a characterization of (A)YD modules in a concrete example. Let G be a not necessarily
finite, discrete group and let H = k[G] be its groups algebra over k with its standard Hopf algebra
structure, i.e. A(g) =g®gand S(g) =g ! forall g € G.

Definition 2.10. Let G be a group, and consider G acting on itself by conjugation. Then, a G-graded
G-module is a G module M with a decomposition as M = ®gecMy such that h- My C Mp,g,—1, for all
h,g €G.

Proposition 2.11. The category of (Anti-)Yetter-Drinfeld modules over k[G] is isomorphic to the
category of G-graded vector spaces. In particular, the categories of YD modules and AYD modules are
equivalent in this case.

Proof. Let M be a k[G]-module/comodule. Denote its structure morphisms by u : k[G] @ M — M
and p: M — k[G] ® M. Since we assumed k is a field, M has a basis of the form {e'};c; for some
index set I. Since M is a k[G]-comodule one has

oy @en =D D Gelyg®e

j€I geG

where only finitely many c¢; 4 is non-zero. One can chose a basis {m* xen for M such that

m( 1) ®m(0 ZcxagA@)m

and since all comodules are counital and k[G] has a counit e(g) = 1 for any g € G we see that

mt = E cxam®
«
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implying ¢y o is uniformly zero except ¢y y which is 1. In other words, one can split M as €@ 9eG M,
such that p(z) = g ® « for any x € My. Now assume M is an (A)YD module. Then since

(h.l‘)(_l) 02y (hl‘)(o) = hgh_l ® hz

for any * € My and h € G one can see that Ly, : My — Mjg,—1 where Ly is the k—vector space
endomorphism of M coming from the left action of A. This observation implies that the category of
AYD modules over k[G] and the category of G—graded k[G]—modules are isomorphic. O

Definition 2.12. Let (C,A,€) be a coalgebra and L a C-bicomodule with coactions Lo:L - C®L
and oV : L - L ® C. A k-linear map \ : L — C is called a coderivation, provided

Aod=(C@Nolop+(A®C)ol.

Note that in the previous definition e o A = 0.
In the following sections we will need the following general definition:

Definition 2.13. Let Xy, ..., X, be a finite set of H-bimodules. We define an H—-bimodule structure
on the k—module Xg® - - - ® X,, by

ha @ @a") =hayz’ S (hapsn) @ -+ @ haya" 'S hia2) © Bpina”,
2 - @2Vh=2"® - -@z" ! ®z"h.

foranyh € H and (z°®---®@2") € Xo®---®X,. Checking the bimodule conditions is straightforward.
We denote this bimodule by Xo @ --- @ Xj,.
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3. GEOMETRY
Definition 3.1. A differential ring is a ring R equipped with a derivation
d: R— R,
i.e., an additive map satisfying the Leibniz rule:
d(ab) = ad(b) + bd(a), a,b € R.
A differential ring which is also a domain, field, etc., will be called a differential domain, field, etc.

Definition 3.2. A differential module over a differential ring (R, d) is a R—module M equipped with
an additive map

D:M—-M
satisfying
D(am) = aD(m) + d(a)m.

such a D will also be called a differential operator on M relative to d.

Example 3.3. Let (R,d) be a differential ring. Then (R,d) is a differential module over itself. A
differential module isomorphic to a direct sum of copies of (R,d) is said to be trivial.

Definition 3.4. A differential ideal of a differential ring R is a differential submodule of R itself, i.e.,
an ideal stable under d.

Definition 3.5. Let A be an associative unital algebra over a commutative ring k. The universal
differential envelope of A is a differential graded algebra QA = &% Q" A over A (i.e. A = QVA)
defined as follows. The bimodule of one-forms is

(6) QV'Ai=kerp={) a; @b € AQA| Y abi =0}.

QYA has the obvious A-bimodule structure. The differential d : A — Q' A is defined as
(7) d:a—1®a-—a®l=(1®1)a—a(l®1).

One defines higher differential forms by iteration

(8) QA =040, O"A,

more precisely, QA is the tensor algebra of the A-bimodule Q' A, QA = Tao(Q'A). The differential d
is extended to the whole of Q by requiring the graded Leibniz rule (and that dod =0). This amounts
to inserting the unit of the algebra A in all possible places in Q" A C A®™ 1 with alternating signs.

Definition 3.6. Let A be a k—algebra. A differential calculus over A is a differential graded k—algebra
(Q*,d) endowed with a morphism of algebras p: A — Q. The differential d is assumed to have degree
one.

Since in our main examples we have Q¥ = A and p = id, in the following we assume this is the case.

Definition 3.7. Assume M is a left A-module. A morphism of k-modules V : M — Q* (%M is called
a connection with respect to the differential calculus (%, d) if one has a Leibniz rule of the form

V(am) = aV(m) + d(a) (% m

for anym € M and a € A.
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Given any connection V on M, there is a unique extension of V to a map V:UeoM— QoM
A A
satisfying a graded Leibniz rule. It is given by
V(w®m) = dw) @m + (=1)lwv (m)

for any m € M and w € Q*.
We arrive to the following important definition:

Definition 3.8. A connection V : M — Q' @ M s called flat if its curvature R := V2 =0.
A
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4. A=B AND B=C

Our next goal is to find a noncommutative analogue of Proposition 2.11. To this end, we will replace
the group algebra k[G] by a differential calculus K*(H) naturally defined for any Hopf algebra H. The
right analogue of G-graded vector spaces will be H-modules admitting flat connections with respect
to the differential calculus K*(H).

4.1. AYD.

Definition 4.1. For eachn > 0, let K"(H) = H?""1. We define a differential d : K"(H) — K"T1(H)
by

d(h0®---®h”):—(1®h0®---®h”)+7§(—1)j(h0---®h{”®h{2)®---®h”)
=
+(=D)"(R° @ --- @ k" @ hiyy ST (hly) @ hiy)-
We also define an associative graded product structure by
(@22 @ - @y™)
=@ 02" ' ® m?l)yOS_l(h(zmH)) Q- ® :E?m)ym_lS_l(x?mH)) ® Tni1)y"
for any (2°®---®@2™) in K"(H) and (4° @ --- @ y™) in K™(H).
Proposition 4.2 ([KK]). K*(H) is a differential graded k-algebra.
Proof. For any x € K°(H) one has
d(z) = —(1 @) + (z(1)S~ (2(3) @ 2(9)) = [, (1@ 1)),
and for (y ® 1) in K'(H) and = € K°(H) we see
d(z(y ® 1)) =d(zqyyS ™ (x3) © 22))
= - (1®zmyS  (z@) ® 2@) + (@0yyn)S™  (25) @ 2@ y2)S ™ (2@4) ® 2(3))
— (2)yS H(25) @ 29)S () ® 2(3))
=d(z)(y®1)+zd(ly®1)

We also see for (z ® y) in ' (H) the we have

d(z@1)y) =dz®y)=—(1020Y) + (r1) ®xe ®Yy) — (€@ yn1)S™ (ys) ®Y@)
=— 1@z l)y+(z)@ze@)y— (2010 )y+ (z@1)(1®y)

— (2@ ) (y1)S " (ye) © ye)
=d(z® 1)y — (z ® 1)d(y).

Note that with the product structure on *(H) one has
P -@:")=>"01)---@"?21) (="t ®1)"
for any 2° ® --- ® 2™ in K*(H). Now, one can inductively show that

d(U®) =d(W)® + (—1)¥1wd(d)
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for any U and ® in K*(H). Since the algebra is generated by degree zero and degree one terms, all
that remains is to show that for all x € H we have d*(z) = 0 and d?(z ® 1) = 0. For the first assertion
we see that
d*(z) = —d(1 @ z) + d(z1)S (z(3)) @ 7(2))
—(1oles)-(19ler)+(1eznS (z@) @re) — (1 Q@ x1)S™ (13) ® x(@3)
+ oS @EEe) @roe ST @En) @ Te) - @09 (@E) @ 2en)S T Fee) © 7))
=0

for any x € H. For the second assertion we see

Plzel)=-dloesel)+drmn @z 1) —dzelel)
(Ielerel)+(101erel)-(1Qrq)Qrryel)+(1erel1xl)

1@z @) ©1) +(20) @22 @T(3) ®1) = (2(1) ®L(9) ©2(3) @ 1) + () @ Ty ®1@ 1)
+(1ere111) - (z)®z2)e1el)+(Ze1le]l)-(re181x1)

=0

for any (z ® 1) in K*(H). The result follows. O

Note that the calculus £*(H) is determined by

(1) the H-bimodule K'(H) = H ® H
(2) the differential dg: H - H® H and d; : H® H — H® H ® H and
(3) the Leibniz rule d(¥®) = d(¥)® + (—1)¥IWd(®).

Theorem 4.3 ([KK]). The category of AYD modules over H is isomorphic to the category of H—
modules admitting a flat connection with respect to the differential calculus K*(H).

Proof. Assume M is a H-module which admits a morphism of k—modules of the form V : M —
K'(H)® M = H ® M. Define ppr(m) = V(m) + (1 ®m) and denote pas(m) by (m_1) ® my)) for
H

any m € M. First we see that
V(hm) =(hm) 1) ® (hm) o) — (1 ® hm)
and also
d(h) @m +hV(m) =— (1® hm) + (h1)S™ (h3)) @ hezym)
+ (hym-1 S~ (hez) @ heym) = (b S~ (hez)) @ heym)
=(haym(-1)S~ " (b)) ® h@ym()) — (1 ® hm)

for any h € H and m € M. This means V is a connection iff the H-module M together with
px : M — H ® M satisfy the AYD condition. The flatness condition will hold iff for any m € M one
has

V2 (m) =d(m(_1) ®1) @ m() = (m(-1) @ YV (m() = d(1& Hm + (1@ 1)V(m)
=(m1)(1) ® m(—1)(2) ® m(0)) — (M(=1) ® M(0)(—1) ® M(0)(0)) = 0,

meaning V is flat iff pps : M — H ® M defines a coassociative coaction of H on M. O
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4.2. YD. Instead of the AYD condition, one can consider the YD condition and form a differential
calculus K*(H) using the YD condition.

Definition 4.4. As before, assume H is a Hopf algebra, but this time we do not require the antipode

to be invertible. We define a new differential calculus IE*(H) over H as follows: let IE"(H) = gentl
and define the differentials as

n—1
d(g;0®---®a:”):—(1®x°®~-®x")+Z%(—1)J(x0®---®z{1)®:c{2)®~-x”)
]7

+ ()" @ @2 @alyS(afy) © 2ly)
for any 2°® --- @ 2™ in E”(H) The multiplication is defined as
(°®-- @My e - oy™)
=2’ @ @ 2" @l S (@emi1) @ - © 2y S (@ 11) © Ty
forany 2°®@ - @ 2" and y° @ --- @ y™ in ’/C\*(H)

The proofs of the following facts are similar to the corresponding statements for the differential
calculus £*(H) and AYD modules.

Proposition 4.5 ([KK|). K*(H) is a differential graded k-algebra.

Theorem 4.6 ([KK]). The category of YD modules over H is isomorphic to the category of H—modules
admitting a flat connection with respect to the differential calculus K*(H).
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5. ALGEBRA II

Let A be an associative unital algebra over a commutative ring k.

Definition 5.1. An A-bimodule C is called an A-coring iff there are A-bimodule maps Ac : C — CRC,
ec : C — A rendering the following diagrams commutative:

9) c Ae CoaC

Aci ic@AAc
Ac®4C

CRAC———C®aC®aC,

(10) c 2 .cesc c
\ i€c®AC Acl \
CRaec
A®yC, C®aC C®aA.

As for coalgebras, A¢ is called a coproduct and e¢ is called a counit. The coring C = A® A is known
as the Sweedler or canonical coring associated to the ring extension k& — A. Note in passing that A
itself is an A-coring. Thus the notion of a coring includes that of a ring. In the case of a general
A-coring C we can distinguish elements which have above properties and thus arrive at the following

Definition 5.2. An element g of an A-coring C is called a group-like element provided that

Ac(g) =g®ag,  elg) =1
We will study corepresentation of corings. Specifically,

Definition 5.3. A right A-module M together with a right A-linear map o™ : M — M ®4C rendering
the following diagrams

gl\l ,Q]\/I
M M®yC M M®uC
QMi lM‘@AAC \ lM@AEC
M C -
Meo,C—28C Me,couc Moy A

commutative is called a right C-comodule.

As for coalgebras, the map oM is called a coaction. When needed one refers to map o™ which obeys
the square but not the triangle condition in Definition 5.3 as to a non-counital coaction.
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Definition 5.4. Let (A, p,t) be an algebra and (C,Ac,ec) a coalgebra. A map p : C @ A — A®C
is said to be an entwining map provided the commutativity of the following bow-tie diagram

(11) CRAR®RA CeC®A
Con W
A C
PR Co A g
C®u %
ARCR®A C ¥ A CRARC
®C %
ARy A®C YC
nRC m
ARA®C AC®C

In this case, C and A are said to be entwined by 1, and the triple (A,C,1) is called an entwining
structure.

Proposition 5.5 ([B]). Let A and C as in the Definition above. Let ¢ : C® A — A® C be entwining
map. Then, there is a A-coring structure on C = A® C.

Proof. C has an obvious left A-multiplication and counit;:

(12) a(d ®c):=ad @c, e = AR e

In view of the identification C®4C = (A®C)®4 (A®C) ~ A® C® C, the map A¢c := A® A,
is an obvious candidate for a coproduct for C. To make A ® C into an A-coring with this already

specified structures we need to introduce a suitable right A-multiplication. Since A ® C' must be an
A-bimodule, any such a right A-multiplication is determined by amap 6 : C® A — A® C,

(13) Y(c®a):=(1® ca.
The map 6 must satisfy (four) conditions corresponding to unitality and associativity of the right
A-multiplication and to the facts that both A¢ and e are right A-linear maps. It is straightforward

to check that this conditions are equivalent to the commutativity of a bow-tie diagram, and therefore,
taking @ = v we get the coring structure desired. O

Right comodules of the A-coring C = A ® C associated to an entwining structure are known as
entwined modules (or (A, C,1)-entwined modules). It is easy to check that these modules are simply
k-modules M which are both right A-modules with multiplication gpy : M ® A — M and right
C-comodules with comultiplication o™ : M — M ® C rendering commutative the following diagram

M A M
(14) MeoA—"2 - MeceA 2 MeAeC

oM i J{ o ®C
M

M M&C.
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6. A=C

The following remarkable result of Roiter [Roi] states that any differential graded algebra of certain
kind comes from a coring with a group-like element.

Theorem 6.1 ([Roi]). e Any A-coring C with a group-like element g gives rise to a differential
graded algebra QA defined as follows: Q' A =kerec, Q" A = QA @4 QA and the multipli-
cation is given by the tensor product (i.e., QA is the tensor algebra QA = Ty(kerec)). The
differential is defined by d(a) = ga—ag, for alla € A, and, for allc'®4---@4c" € (ker e¢)®4m,

d(cl®A...®Ac") — 9®A01®A"'®Acn+(—1)n+1cl®A---®Acn®Ag
n

+Z(_1)icl ®A"'®Aci_1 ®AAc(Ci) ®Aci+1 R4 @4
=1

o A differential graded algebra QA over A such that QA = T4(Q'A) (that is Q" T1A = Q1A ®4
Q" A; a differential graded algebra with this property is said to be semi-free), defines a coring
with a grouplike element.

o The operations described in items (1) and (2) are mutual inverses.

Proof. (1) and (3) are proven by straightforward calculations, so we only indicate how to construct a
coring from a differential graded algebra (i.e. sketch the proof of (2)). Starting with QA, define

C=AgdO'A,

where ¢ is an indeterminate. In other words we define C to be a direct sum of A and Q'A as a left
A-module. We now need to specify a compatible right A-module structure. This is defined by

(ag +w)d' = ad'g + ada’ + wa'.
The coproduct is specified by
Aclag) =ag®ag,  Ac(w)=g@aw+w®ag—dw),
and the counit
eclag + w) = a,

for all @ € A and w € Q'A. Note that this structure is chosen in such a way that g becomes the
required group-like element. ]

The following theorem is proven via straightforward calculation and it will provide us with an
identification which will allow us to generalize the results in the previous sections.

Theorem 6.2 ([B]). Assume that C is an A-coring with a group-like element g, and write QA for the
associated differential graded algebra.

o If (M, oM) is a right C-comodule, then the map
V:M— Mes0MA, mr—>gM(m)—m®Ag7

s a flat connection.
o If M is a right A-module with a flat connection V : M — M ®4 QYA, then M is a right
C-comodule with the coaction

oM M- Moy, m— V(m)+m®ag.

e The operations described in items (1) and (2) are mutual inverses.
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Yetter-Drinfeld modules and anti- Yetter-Drinfeld modules are objects known as Hopf-type modules.
They are characterized by having action and a coaction of a Hopf algebra or, more generally, with an
action of an algebra and a coaction of a coalgebra which are compatible one with the other through
an action/coaction of a Hopf algebra.

Essentially, compatibility conditions for all known Hopf-type modules can be recast in the form of
an entwining structure and are of the form of equation (14).

If we restrict ourselves to the example of anti-Yetter-Drinfeld modules and apply the general theory
of this section to this particular case, we recover our fundamental Theorem 4.3 on Section 4. We
provide the details below.

Take A = C = H, where H is a Hopf algebra with a bijective antipode S. Then one can define an
entwining map ¢ : H @ H — H ® H by

(15) Y(e®a) = a2) @ S_l(a(l))ca(g),
for all a,c € H. The fact that ¢ is an entwining map follows explicitly because the antipode is an

anti-algebra and anti-coalgebra map.
Consequently, there is an H-coring C = H ® H with the right H-multiplication

(16) (b® c)a = bagy ® S~ (a(1))cas).

The compatibility (14) for right H-module and H-comodule M comes out as, for all a € H,

(17) oM (ma) = mgyay ® S~ aq))mayag),

where oM (m) = m(g) @ myqy is the C-coaction on M, i.e. we have that

Lemma 6.3. Entwined modules for (15) coincide with (right-right) anti- Yetter-Drinfeld modules.

Since C' = H is a Hopf algebra, 1 is a group-like element in H, and hence 1y ® 15 is a group-like
element in the H-coring C. By the Roiter theorem there is the associated differential graded algebra
and by Theorem 6.2 anti-Yetter-Drinfeld modules are modules with a flat connection with respect to
this differential graded structure. Explicitly,

Ol — {Zaz’®0z‘ cH®H | Zaif(ci) = 0}.

Thus, in particular Q'H = H ® H', where H' := kere, provided H is a flat k-module. The right
H-action on Q' H is given by the formula (16). The differential comes out as

dla)=(1®1a—a(l®1) =ap @S (aq))az —a® 1.

Remark 6.4. Anti-Yetter-Drinfeld modules are an example of («, 3)-equivariant C'-comodules. In this
case A is a bialgebra, C' is an A-bimodule coalgebra, o : A — A is a bialgebra map and §: A — A
is an anti-bialgebra map (i.e. # is both an anti-algebra and anti-coalgebra map). All these data give
rise to an entwining map ¥ : C ® A — A ® C defined by

Y(c® a) = agp) @ Blag))calam).
We do not work out explicitly the form of the corresponding coring C = A® C' and of the compatibility
condition (14), which are rather straightforward. If, in addition, C' has a group-like element e, then
1 ® e is a group-like element in C and we can derive the associated differential graded algebra.
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