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Did people in the Middle-Ages think that connections were flat?
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1. Introduction

In this work we present a characterization of certain algebraic object, namely (anti-)Yetter Drinfeld
modules over a Hopf algebra H as modules involving a deep geometric property, such as having a flat
connection. We provide an identification of the two later concepts.

Following [KK], we define a new algebra of noncommutative differential forms over any Hopf algebra
H with an invertible antipode. The resulting differential calculus, denoted here by K∗(H), is intimately
related to the class of anti-Yetter-Drinfeld modules over H. More precisely, we show that there is a
one to one correspondence between anti-Yetter-Drinfeld modules over H and H–modules that admit
a flat connection with respect to our differential calculus K∗(H).

Furthermore, in the last part of the work this characterization is considered once again and it is
proven as a corollary of a more general theory, based on [B]. In this part, the relationship between
comodules of a coring and flat connections is reviewed. In particular we specialize to corings which are
built on a tensor product of algebra and a coalgebra. Such corings are in one-to-one correspondence
with entwining structures, and their comodules are entwined modules. These include Yetter-Drinfeld
and anti-Yetter-Drinfeld modules and their generalizations. In this way the interpretation of the latter
as modules with flat connections given before is obtained as a corollary of a more general theory.

The work answers to the following organization.
In Sections 2 and 3 we introduce, respectively, the basic algebraic and geometric concepts that will

be buildings block of our language during the exposition of the work.
In Section 4 we build the differential calculus K∗(H), for a Hopf algebra H and prove our main

result identifying Anti Yetter Drinfeld modules over H and H modules with a flat connection with
respect to this new calculus. An analogous result for Yetter Drinfeld modules is also developed.

In Section 5 we extend our algebraic concepts to a more general setting and we finally develop, in
Section 6, a similar theory for these new objects to the one that raised in Section 4, including these
previous results as corollaries.
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2. Algebra I

To introduce the definition of Hopf algebras, we have to go gradually introducing a couple of previous
concepts. For more details concerning these structures, we refer the reader to the books:

(1) Hopf algebras. Sweedler [S69].
(2) Quantum groups. Kassel [Kas95].
(3) Hopf algebras and their action on rings. Montgomery [Mon93]

Definition 2.1. A counital, coassociative coalgebra over a field k is k-vector space together with two
maps, a multiplication ∆ : H → H ⊗H and a counit ε :→ k such that the following identities hold:

(∆⊗ id)∆ = (id⊗∆)∆, (ε⊗ id)∆ = (id⊗ε)∆ = idH ,

where we identify k⊗H ∼= H ⊗ k ∼= H.

Definition 2.2. A bialgebra over a field k is an algebra B which is also a coalgebra and such that the
maps that provide it the structure of coalgebra are algebra maps.

Definition 2.3. A Hopf algebra H over a field k is a bialgebra together with a map S : H → H, the
“antipode” such that

m(S ⊗ id)∆ = m(id⊗∆) = uε,

where m : H ⊗H → H and u : k → H denote the multiplication and the unit in the algebra H.

Throughout this work, when referring to Hopf algebras, we will make use of the so called Sweedler
notation [S69] for the coproduct. Therefore, if H is a Hopf algebra with comultiplication ∆ and x ∈ H,
we will, for example, write:

∆(x) = x(1) ⊗ x(2),

and
(id⊗∆)∆(x) = (∆⊗ id)∆(x) = x(1) ⊗ x(2) ⊗ x(3).

We do not define here morphisms: coalgebra maps, Hopf algebra maps, which are linear maps that
respect the structures involved.

Definition 2.4. Let (C,∆, ε) be a coalgebra. A (right) comodule M over C is a k-vector space together
with a map ρ : N → C ⊗N rendering the following diagrams commutative:

M
% //

%

��

M ⊗A C

M⊗A∆
��

M ⊗A id
%⊗Aid // M ⊗A C ⊗A C

M
% //

' ((QQQQQQQQQQQQQQ M ⊗A C

M⊗Aε
��

M ⊗A A
The map ρ is said to be a coaction.

Analogously, one can define left comodules, bicomodules, etc. We leave to the imagination of the
reader the obvious definition and properties of comodule morphisms.

Definition 2.5. Let H be a k−Hopf algebra. A k−vector space X is called a left-left anti-Yetter-
Drinfeld module (AYD module, for short) if

• X is a left H-module,
• X is a left H-comodule,
• the following compatibility condition between the H–module and comodule structure on X holds:

(hx)(−1) ⊗ (hx)(0) = h(1)x(−1)S
−1(h(3))⊗ h(2)x(0)(1)

for any h ∈ H and x ∈ X.
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A Yetter Drinfeld module Y over a Hopf algebra H is defined in an analogous manner, replacing
the compatibility condition on the third item by

(hy)(−1) ⊗ (hy)(0) = h(1)y(−1)S(h(3))⊗ h(2)y(0)(2)

for any h ∈ H and y ∈ Y .

Definition 2.6. A morphism of AYD (resp, YD) modules X → Y is simply a k-linear map which is
also a map of modules and comodules.

Remark 2.7 ([Mon93]). The resulting category of AYD modules and YD-modules over H is an abelian
category.

To understand these compatibility conditions better we proceed as follows. Let X be a left H
module. We define a left H–action on H ⊗X by letting

h(g ⊗ x) := h(1)gS
−1(h(3))⊗ h(2)x(3)

for any h ∈ H and g ⊗ x ∈ H ⊗X.

Lemma 2.8 ([Mon93]). Let H be a Hopf algebra and X a left H-modules. Then H ⊗ X is a left
H-module with the action

h(g ⊗ x) := h(1)gS
−1(h(3))⊗ h(2)x.(4)

for any h ∈ H and g ⊗ x ∈ H ⊗X. Moreover, an H–module/comodule X is an anti-Yetter-Drinfeld
module iff its comodule structure map ρX : X → H ⊗X is a morphism of H–modules.

Remark 2.9. There is a similar characterization of YD modules. The left action (4) should simply be
replaced by the left action

h(g ⊗ x) := h(1)gS(h(3))⊗ h(2)x(5)

Let us give a characterization of (A)YD modules in a concrete example. Let G be a not necessarily
finite, discrete group and let H = k[G] be its groups algebra over k with its standard Hopf algebra
structure, i.e. ∆(g) = g ⊗ g and S(g) = g−1 for all g ∈ G.

Definition 2.10. Let G be a group, and consider G acting on itself by conjugation. Then, a G-graded
G-module is a G module M with a decomposition as M = ⊕g∈GMg such that h ·Mg ⊆Mhgh−1, for all
h, g ∈ G.

Proposition 2.11. The category of (Anti-)Yetter-Drinfeld modules over k[G] is isomorphic to the
category of G-graded vector spaces. In particular, the categories of YD modules and AYD modules are
equivalent in this case.

Proof. Let M be a k[G]–module/comodule. Denote its structure morphisms by µ : k[G] ⊗M → M
and ρ : M → k[G] ⊗M . Since we assumed k is a field, M has a basis of the form {ei}i∈I for some
index set I. Since M is a k[G]–comodule one has

ei(−1) ⊗ ei(0) =
∑
j∈I

∑
g∈G

cij,g(g ⊗ ej)

where only finitely many cj,g is non-zero. One can chose a basis {mλ}λ∈Λ for M such that

mλ
(−1) ⊗mλ

(0) =
∑
α

cλ,α(gλ ⊗mα)

and since all comodules are counital and k[G] has a counit ε(g) = 1 for any g ∈ G we see that

mλ =
∑
α

cλ,αm
α
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implying cλ,α is uniformly zero except cλ,λ which is 1. In other words, one can split M as
⊕

g∈GMg

such that ρ(x) = g ⊗ x for any x ∈Mg. Now assume M is an (A)YD module. Then since

(hx)(−1) ⊗ (hx)(0) = hgh−1 ⊗ hx

for any x ∈ Mg and h ∈ G one can see that Lh : Mg → Mhgh−1 where Lh is the k–vector space
endomorphism of M coming from the left action of h. This observation implies that the category of
AYD modules over k[G] and the category of G−graded k[G]−modules are isomorphic. �

Definition 2.12. Let (C,∆, ε) be a coalgebra and L a C-bicomodule with coactions L% : L → C ⊗ L
and %L : L→ L⊗ C. A k-linear map λ : L→ C is called a coderivation, provided

∆ ◦ λ = (C ⊗ λ) ◦ L%+ (λ⊗ C) ◦ %L.

Note that in the previous definition ε ◦ λ = 0.
In the following sections we will need the following general definition:

Definition 2.13. Let X0, . . . , Xn be a finite set of H–bimodules. We define an H–bimodule structure
on the k–module X0 ⊗ · · · ⊗Xn by

h(x0 ⊗ · · · ⊗ xn) =h(1)x
0S−1(h(2n+1))⊗ · · · ⊗ h(n)x

n−1S−1(h(n+2))⊗ h(n+1)x
n,

(x0 ⊗ · · · ⊗ xn)h =x0 ⊗ · · · ⊗ xn−1 ⊗ xnh.

for any h ∈ H and (x0⊗· · ·⊗xn) ∈ X0⊗· · ·⊗Xn. Checking the bimodule conditions is straightforward.
We denote this bimodule by X0 � · · · �Xn.
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3. Geometry

Definition 3.1. A differential ring is a ring R equipped with a derivation

d : R→ R,

i.e., an additive map satisfying the Leibniz rule:

d(ab) = ad(b) + bd(a), a, b ∈ R.

A differential ring which is also a domain, field, etc., will be called a differential domain, field, etc.

Definition 3.2. A differential module over a differential ring (R, d) is a R−module M equipped with
an additive map

D : M →M

satisfying
D(am) = aD(m) + d(a)m.

such a D will also be called a differential operator on M relative to d.

Example 3.3. Let (R, d) be a differential ring. Then (R, d) is a differential module over itself. A
differential module isomorphic to a direct sum of copies of (R, d) is said to be trivial.

Definition 3.4. A differential ideal of a differential ring R is a differential submodule of R itself, i.e.,
an ideal stable under d.

Definition 3.5. Let A be an associative unital algebra over a commutative ring k. The universal
differential envelope of A is a differential graded algebra ΩA = ⊕∞n=0Ω

nA over A (i.e. A = Ω0A)
defined as follows. The bimodule of one-forms is

(6) Ω1A := kerµ = {
∑
i

ai ⊗ bi ∈ A⊗A |
∑
i

aibi = 0}.

Ω1A has the obvious A-bimodule structure. The differential d : A→ Ω1A is defined as

(7) d : a 7→ 1⊗ a− a⊗ 1 = (1⊗ 1)a− a(1⊗ 1).

One defines higher differential forms by iteration

(8) Ωn+1A := Ω1A⊗A ΩnA,

more precisely, ΩA is the tensor algebra of the A-bimodule Ω1A, ΩA = TA(Ω1A). The differential d
is extended to the whole of Ω by requiring the graded Leibniz rule (and that d ◦ d = 0). This amounts
to inserting the unit of the algebra A in all possible places in ΩnA ⊂ A⊗n+1 with alternating signs.

Definition 3.6. Let A be a k–algebra. A differential calculus over A is a differential graded k–algebra
(Ω∗, d) endowed with a morphism of algebras ρ : A→ Ω0. The differential d is assumed to have degree
one.

Since in our main examples we have Ω0 = A and ρ = id, in the following we assume this is the case.

Definition 3.7. Assume M is a left A–module. A morphism of k–modules ∇ : M → Ω1⊗
A
M is called

a connection with respect to the differential calculus (Ω∗, d) if one has a Leibniz rule of the form

∇(am) = a∇(m) + d(a)⊗
A
m

for any m ∈M and a ∈ A.
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Given any connection ∇ on M , there is a unique extension of ∇ to a map ∇̂ : Ω∗ ⊗
A
M → Ω∗ ⊗

A
M

satisfying a graded Leibniz rule. It is given by

∇̂(ω ⊗m) = d(ω)⊗
A
m+ (−1)|ω|ω∇(m)

for any m ∈M and ω ∈ Ω∗.
We arrive to the following important definition:

Definition 3.8. A connection ∇ : M → Ω1 ⊗
A
M is called flat if its curvature R := ∇̂2 = 0.
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4. a=b and b=c

Our next goal is to find a noncommutative analogue of Proposition 2.11. To this end, we will replace
the group algebra k[G] by a differential calculus K∗(H) naturally defined for any Hopf algebra H. The
right analogue of G-graded vector spaces will be H–modules admitting flat connections with respect
to the differential calculus K∗(H).

4.1. AYD.

Definition 4.1. For each n ≥ 0, let Kn(H) = H�n+1. We define a differential d : Kn(H) → Kn+1(H)
by

d(h0 ⊗ · · · ⊗ hn) =− (1⊗ h0 ⊗ · · · ⊗ hn) +
n−1∑
j=0

(−1)j(h0 · · · ⊗ hj(1) ⊗ hj(2) ⊗ · · · ⊗ hn)

+ (−1)n(h0 ⊗ · · · ⊗ hn−1 ⊗ hn(1)S
−1(hn(3))⊗ hn(2)).

We also define an associative graded product structure by

(x0 ⊗ · · · ⊗ xn)(y0 ⊗ · · · ⊗ ym)

=x0 ⊗ · · · ⊗ xn−1 ⊗ xn(1)y
0S−1(h(2m+1))⊗ · · · ⊗ xn(m)y

m−1S−1(xn(m+2))⊗ xn(m+1)y
m

for any (x0 ⊗ · · · ⊗ xn) in Kn(H) and (y0 ⊗ · · · ⊗ ym) in Km(H).

Proposition 4.2 ([KK]). K∗(H) is a differential graded k–algebra.

Proof. For any x ∈ K0(H) one has

d(x) = −(1⊗ x) + (x(1)S
−1(x(3))⊗ x(2)) = [x, (1⊗ 1)],

and for (y ⊗ 1) in K1(H) and x ∈ K0(H) we see

d(x(y ⊗ 1)) =d(x(1)yS
−1(x(3))⊗ x(2))

=− (1⊗ x(1)yS
−1(x(3))⊗ x(2)) + (x(1)y(1)S

−1(x(5))⊗ x(2)y(2)S
−1(x(4))⊗ x(3))

− (x(1)yS
−1(x(5))⊗ x(2)S

−1(x(4))⊗ x(3))

=d(x)(y ⊗ 1) + xd(y ⊗ 1)

We also see for (x⊗ y) in K1(H) the we have

d((x⊗ 1)y) = d(x⊗ y) = −(1⊗ x⊗ y) + (x(1) ⊗ x(2) ⊗ y)− (x⊗ y(1)S
−1(y(3))⊗ y(2))

=− (1⊗ x⊗ 1)y + (x(1) ⊗ x(2) ⊗ 1)y − (x⊗ 1⊗ 1)y + (x⊗ 1)(1⊗ y)

− (x⊗ 1)(y(1)S
−1(y(3))⊗ y(2))

=d(x⊗ 1)y − (x⊗ 1)d(y).

Note that with the product structure on K∗(H) one has

(x0 ⊗ · · · ⊗ xn) = (x0 ⊗ 1) · · · (xn−2 ⊗ 1)(xn−1 ⊗ 1)xn

for any x0 ⊗ · · · ⊗ xn in Kn(H). Now, one can inductively show that

d(ΨΦ) =d(Ψ)Φ + (−1)|Ψ|Ψd(Φ)
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for any Ψ and Φ in K∗(H). Since the algebra is generated by degree zero and degree one terms, all
that remains is to show that for all x ∈ H we have d2(x) = 0 and d2(x⊗1) = 0. For the first assertion
we see that

d2(x) = −d(1⊗ x) + d(x(1)S
−1(x(3))⊗ x(2))

=(1⊗ 1⊗ x)− (1⊗ 1⊗ x) + (1⊗ x(1)S
−1(x(3))⊗ x(2))− (1⊗ x(1)S

−1(x(3))⊗ x(2))

+ (x(1)(1)S
−1(x(3)(2))⊗ x(1)(2)S

−1(x(3)(1))⊗ x(2))− (x(1)S
−1(x(3))⊗ x(2)(1)S

−1(x(2)(3))⊗ x(2)(2))
=0

for any x ∈ H. For the second assertion we see

d2(x⊗ 1) = −d(1⊗ x⊗ 1) + d(x(1) ⊗ x(2) ⊗ 1)− d(x⊗ 1⊗ 1)

=− (1⊗ 1⊗ x⊗ 1) + (1⊗ 1⊗ x⊗ 1)− (1⊗ x(1) ⊗ x(2) ⊗ 1) + (1⊗ x⊗ 1⊗ 1)

− (1⊗ x(1) ⊗ x(2) ⊗ 1) + (x(1) ⊗ x(2) ⊗ x(3) ⊗ 1)− (x(1) ⊗ x(2) ⊗ x(3) ⊗ 1) + (x(1) ⊗ x(2) ⊗ 1⊗ 1)

+ (1⊗ x⊗ 1⊗ 1)− (x(1) ⊗ x(2) ⊗ 1⊗ 1) + (x⊗ 1⊗ 1⊗ 1)− (x⊗ 1⊗ 1⊗ 1)
=0

for any (x⊗ 1) in K∗(H). The result follows. �

Note that the calculus K∗(H) is determined by

(1) the H–bimodule K1(H) = H ⊗H
(2) the differential d0 : H → H ⊗H and d1 : H ⊗H → H ⊗H ⊗H and
(3) the Leibniz rule d(ΨΦ) = d(Ψ)Φ + (−1)|Ψ|Ψd(Φ).

Theorem 4.3 ([KK]). The category of AYD modules over H is isomorphic to the category of H–
modules admitting a flat connection with respect to the differential calculus K∗(H).

Proof. Assume M is a H–module which admits a morphism of k–modules of the form ∇ : M →
K1(H) ⊗

H
M ∼= H ⊗M . Define ρM (m) = ∇(m) + (1 ⊗m) and denote ρM (m) by (m(−1) ⊗m(0)) for

any m ∈M . First we see that

∇(hm) =(hm)(−1) ⊗ (hm)(0) − (1⊗ hm)

and also

d(h)⊗
H
m+ h∇(m) =− (1⊗ hm) + (h(1)S

−1(h(3))⊗ h(2)m)

+ (h(1)m(−1)S
−1(h(3))⊗ h(2)m(0))− (h(1)S

−1(h(3))⊗ h(2)m)

=(h(1)m(−1)S
−1(h(3))⊗ h(2)m(0))− (1⊗ hm)

for any h ∈ H and m ∈ M . This means ∇ is a connection iff the H–module M together with
ρX : M → H ⊗M satisfy the AYD condition. The flatness condition will hold iff for any m ∈M one
has

∇̂2(m) =d(m(−1) ⊗ 1)⊗
H
m(0) − (m(−1) ⊗ 1)∇(m(0))− d(1⊗ 1)m+ (1⊗ 1)∇(m)

=(m(−1)(1) ⊗m(−1)(2) ⊗m(0))− (m(−1) ⊗m(0)(−1) ⊗m(0)(0)) = 0,

meaning ∇ is flat iff ρM : M → H ⊗M defines a coassociative coaction of H on M . �
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4.2. YD. Instead of the AYD condition, one can consider the YD condition and form a differential
calculus K̂∗(H) using the YD condition.

Definition 4.4. As before, assume H is a Hopf algebra, but this time we do not require the antipode
to be invertible. We define a new differential calculus K̂∗(H) over H as follows: let K̂n(H) = H⊗n+1

and define the differentials as

d(x0 ⊗ · · · ⊗ xn) =− (1⊗ x0 ⊗ · · · ⊗ xn) +
n−1∑
j=0

(−1)j(x0 ⊗ · · · ⊗ xj(1) ⊗ xj(2) ⊗ · · ·x
n)

+ (−1)n(x0 ⊗ · · · ⊗ xn−1 ⊗ xn(1)S(xn(3))⊗ xn(2))

for any x0 ⊗ · · · ⊗ xn in K̂n(H). The multiplication is defined as

(x0 ⊗ · · · ⊗ xn)(y0 ⊗ · · · ⊗ ym)

=x0 ⊗ · · · ⊗ xn−1 ⊗ xn(1)y
0S(x(2m+1))⊗ · · · ⊗ xn(m)y

m−1S(xn(m+1))⊗ xn(m+1)y
m

for any x0 ⊗ · · · ⊗ xn and y0 ⊗ · · · ⊗ ym in K̂∗(H).

The proofs of the following facts are similar to the corresponding statements for the differential
calculus K∗(H) and AYD modules.

Proposition 4.5 ([KK]). K̂∗(H) is a differential graded k–algebra.

Theorem 4.6 ([KK]). The category of YD modules over H is isomorphic to the category of H–modules
admitting a flat connection with respect to the differential calculus K̂∗(H).
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5. Algebra II

Let A be an associative unital algebra over a commutative ring k.

Definition 5.1. An A-bimodule C is called an A-coring iff there are A-bimodule maps ∆C : C → C⊗AC,
εC : C → A rendering the following diagrams commutative:

(9) C
∆C //

∆C
��

C ⊗A C

C⊗A∆C
��

C ⊗A C
∆C⊗AC // C ⊗A C ⊗A C ,

(10) C
∆C //

'

((QQQQQQQQQQQQQQ C ⊗A C

εC⊗AC
��

A⊗A C ,

C
'

))SSSSSSSSSSSSSSSS

∆C
��

C ⊗A C
C⊗AεC // C ⊗A A .

As for coalgebras, ∆C is called a coproduct and εC is called a counit. The coring C = A⊗A is known
as the Sweedler or canonical coring associated to the ring extension k → A. Note in passing that A
itself is an A-coring. Thus the notion of a coring includes that of a ring. In the case of a general
A-coring C we can distinguish elements which have above properties and thus arrive at the following

Definition 5.2. An element g of an A-coring C is called a group-like element provided that

∆C(g) = g ⊗A g, εC(g) = 1.

We will study corepresentation of corings. Specifically,

Definition 5.3. A right A-module M together with a right A-linear map %M : M →M⊗AC rendering
the following diagrams

M
%M

//

%M

��

M ⊗A C

M⊗A∆C
��

M ⊗A C
%M⊗AC // M ⊗A C ⊗A C

M
%M

//

' ((QQQQQQQQQQQQQQ M ⊗A C

M⊗AεC
��

M ⊗A A

commutative is called a right C-comodule.

As for coalgebras, the map %M is called a coaction. When needed one refers to map %M which obeys
the square but not the triangle condition in Definition 5.3 as to a non-counital coaction.
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Definition 5.4. Let (A,µ, ι) be an algebra and (C,∆C , εC) a coalgebra. A map ψ : C ⊗ A → A ⊗ C
is said to be an entwining map provided the commutativity of the following bow-tie diagram

(11) C ⊗A⊗A

ψ⊗A

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
} C⊗µ

&&NNNNNNNNNN C ⊗ C ⊗A

C⊗ψ

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

C ⊗A

∆C⊗A
88ppppppppppp

εC⊗A

&&NNNNNNNNNNNN

ψ

��

A⊗ C ⊗A

A⊗ψ

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

C

C⊗ι
88pppppppppppp

ι⊗C &&NNNNNNNNNNNN A C ⊗A⊗ C

ψ⊗C

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

A⊗ C

A⊗εC

88pppppppppppp

A⊗∆C &&NNNNNNNNNNN

A⊗A⊗ C

µ⊗C

88pppppppppp
A⊗ C ⊗ C .

In this case, C and A are said to be entwined by ψ, and the triple (A,C, ψ) is called an entwining
structure.

Proposition 5.5 ([B]). Let A and C as in the Definition above. Let ψ : C⊗A→ A⊗C be entwining
map. Then, there is a A-coring structure on C = A⊗ C.

Proof. C has an obvious left A-multiplication and counit:

(12) a(a′ ⊗ c) := aa′ ⊗ c, εC := A⊗ ε.

In view of the identification C ⊗A C = (A ⊗ C) ⊗A (A ⊗ C) ' A ⊗ C ⊗ C, the map ∆C := A ⊗ ∆,
is an obvious candidate for a coproduct for C. To make A ⊗ C into an A-coring with this already
specified structures we need to introduce a suitable right A-multiplication. Since A ⊗ C must be an
A-bimodule, any such a right A-multiplication is determined by a map θ : C ⊗A→ A⊗ C,

(13) ψ(c⊗ a) := (1⊗ c)a.

The map θ must satisfy (four) conditions corresponding to unitality and associativity of the right
A-multiplication and to the facts that both ∆C and εC are right A-linear maps. It is straightforward
to check that this conditions are equivalent to the commutativity of a bow-tie diagram, and therefore,
taking θ = ψ we get the coring structure desired. �

Right comodules of the A-coring C = A ⊗ C associated to an entwining structure are known as
entwined modules (or (A,C, ψ)-entwined modules). It is easy to check that these modules are simply
k-modules M which are both right A-modules with multiplication %M : M ⊗ A → M and right
C-comodules with comultiplication %M : M →M ⊗ C rendering commutative the following diagram

(14) M ⊗A
%M⊗A //

%M

��

M ⊗ C ⊗A
M⊗ψ // M ⊗A⊗ C

%M⊗C
��

M
%M

// M ⊗ C .
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6. a=c

The following remarkable result of Roiter [Roi] states that any differential graded algebra of certain
kind comes from a coring with a group-like element.

Theorem 6.1 ([Roi]). • Any A-coring C with a group-like element g gives rise to a differential
graded algebra ΩA defined as follows: Ω1A = ker εC, Ωn+1A = Ω1A⊗A ΩnA and the multipli-
cation is given by the tensor product (i.e., ΩA is the tensor algebra ΩA = TA(ker εC)). The
differential is defined by d(a) = ga−ag, for all a ∈ A, and, for all c1⊗A · · ·⊗Acn ∈ (ker εC)⊗An,

d(c1 ⊗A · · · ⊗A cn) = g ⊗A c1 ⊗A · · · ⊗A cn + (−1)n+1c1 ⊗A · · · ⊗A cn ⊗A g

+
n∑
i=1

(−1)ic1 ⊗A · · · ⊗A ci−1 ⊗A ∆C(ci)⊗A ci+1 ⊗A · · · ⊗A cn.

• A differential graded algebra ΩA over A such that ΩA = TA(Ω1A) (that is Ωn+1A = Ω1A⊗A
ΩnA; a differential graded algebra with this property is said to be semi-free), defines a coring
with a grouplike element.

• The operations described in items (1) and (2) are mutual inverses.

Proof. (1) and (3) are proven by straightforward calculations, so we only indicate how to construct a
coring from a differential graded algebra (i.e. sketch the proof of (2)). Starting with ΩA, define

C = Ag ⊕ Ω1A,

where g is an indeterminate. In other words we define C to be a direct sum of A and Ω1A as a left
A-module. We now need to specify a compatible right A-module structure. This is defined by

(ag + ω)a′ := aa′g + ada′ + ωa′.

The coproduct is specified by

∆C(ag) = ag ⊗A g, ∆C(ω) = g ⊗A ω + ω ⊗A g − d(ω),

and the counit
εC(ag + ω) := a,

for all a ∈ A and ω ∈ Ω1A. Note that this structure is chosen in such a way that g becomes the
required group-like element. �

The following theorem is proven via straightforward calculation and it will provide us with an
identification which will allow us to generalize the results in the previous sections.

Theorem 6.2 ([B]). Assume that C is an A-coring with a group-like element g, and write ΩA for the
associated differential graded algebra.

• If (M,%M ) is a right C-comodule, then the map

∇ : M →M ⊗A Ω1A, m 7→ %M (m)−m⊗A g,

is a flat connection.
• If M is a right A-module with a flat connection ∇ : M → M ⊗A Ω1A, then M is a right
C-comodule with the coaction

%M : M →M ⊗A C, m 7→ ∇(m) +m⊗A g.

• The operations described in items (1) and (2) are mutual inverses.
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Yetter-Drinfeld modules and anti-Yetter-Drinfeld modules are objects known as Hopf-type modules.
They are characterized by having action and a coaction of a Hopf algebra or, more generally, with an
action of an algebra and a coaction of a coalgebra which are compatible one with the other through
an action/coaction of a Hopf algebra.

Essentially, compatibility conditions for all known Hopf-type modules can be recast in the form of
an entwining structure and are of the form of equation (14).

If we restrict ourselves to the example of anti-Yetter-Drinfeld modules and apply the general theory
of this section to this particular case, we recover our fundamental Theorem 4.3 on Section 4. We
provide the details below.

Take A = C = H, where H is a Hopf algebra with a bijective antipode S. Then one can define an
entwining map ψ : H ⊗H → H ⊗H by

(15) ψ(c⊗ a) = a(2) ⊗ S−1(a(1))ca(3),

for all a, c ∈ H. The fact that ψ is an entwining map follows explicitly because the antipode is an
anti-algebra and anti-coalgebra map.

Consequently, there is an H-coring C = H ⊗H with the right H-multiplication

(16) (b⊗ c)a = ba(2) ⊗ S−1(a(1))ca(3).

The compatibility (14) for right H-module and H-comodule M comes out as, for all a ∈ H,

(17) %M (ma) = m(0)a(2) ⊗ S−1(a(1))m(1)a(3),

where %M (m) = m(0) ⊗m(1) is the C-coaction on M , i.e. we have that

Lemma 6.3. Entwined modules for (15) coincide with (right-right) anti-Yetter-Drinfeld modules.

Since C = H is a Hopf algebra, 1H is a group-like element in H, and hence 1H ⊗ 1H is a group-like
element in the H-coring C. By the Roiter theorem there is the associated differential graded algebra
and by Theorem 6.2 anti-Yetter-Drinfeld modules are modules with a flat connection with respect to
this differential graded structure. Explicitly,

Ω1H = {
∑
i

ai ⊗ ci ∈ H ⊗H |
∑
i

aiε(ci) = 0}.

Thus, in particular Ω1H = H ⊗ H+, where H+ := ker ε, provided H is a flat k-module. The right
H-action on Ω1H is given by the formula (16). The differential comes out as

d(a) = (1⊗ 1)a− a(1⊗ 1) = a(2) ⊗ S−1(a(1))a(3) − a⊗ 1.

Remark 6.4. Anti-Yetter-Drinfeld modules are an example of (α, β)-equivariant C-comodules. In this
case A is a bialgebra, C is an A-bimodule coalgebra, α : A → A is a bialgebra map and β : A → A
is an anti-bialgebra map (i.e. β is both an anti-algebra and anti-coalgebra map). All these data give
rise to an entwining map ψ : C ⊗A→ A⊗ C defined by

ψ(c⊗ a) = a(2) ⊗ β(a(1))cα(a(3)).

We do not work out explicitly the form of the corresponding coring C = A⊗C and of the compatibility
condition (14), which are rather straightforward. If, in addition, C has a group-like element e, then
1⊗ e is a group-like element in C and we can derive the associated differential graded algebra.
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