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SYNOPSIS
Let S be a solution of the Braid equation satisfing the Hecke condition. We review the construction of
the ”"quantum analog of GL{N)” associated to S. We show that it gives rise to a compact quantum group
when S is selfadjoint. We classify such matrices S among those found by Gurevich in (GUREVICH 1991).

We discuss when the associated "quantum cxterior algebra” is Frobenius.

SINOPSIS
Sea S una solucién de la ecuacién de Trenzas que verifica la condicién de Hecke. Se revisa la con-
struccién del ”anédlogo cudntico de GL{N)” asociado a S. Se muestra que da lugar a un grupo cudntico
compacto cuando S es autoadjunta. Se clasifican dichas matrices S entre las encontradas por Gurevich en
(GUREVICH 1991). Se discute cudndo el ”algebra exterior cudntica” asociada es Frobenius.

1. INTRODUCTION

The purpose of this article is to present new examples of compact quantum groups (CQG, for short).
These new examples arise from the celebrated FRT-construction (FADEEV, RESHETIKHIN & TAKHTAJAN
1990).

Given a vector space V of finite dimension n and an automorphism R of V ® V, we consider the algebra
A(R) generated by the entries of a generic n X n matrix T, with relations RTyT, = ToT1R, Ty = T ® id,
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To = id ®T'. Tt is well-known that A(R) bears a bialgebra structure (FADEEV, RESHETIKHIN & TAKHTAJAN
1990), and one would like to pass from A(R) to a Hopf algebra. There is a universal way indicated in (MANIN
1988), Ch. 7, but it seems to be difficult to handle. When R is the Drinfeld-Jimbo solution of the Quantum
Yang-Baxter equation, there is a second approach followed in (FADEEV, RESHETIKHIN & TAKHTAJAN 1990).
(See (TAKEUCHI 1990) for a related point of view; see also (HAYASHI 1992), (Dor 1993)). The extension of
this method to more general automorphisms R was developed by D. Gurevich (GUREVICH 1991) (see also
(TsyGAN 1993)).

The strategy of this second approach applies in presence of several restrictions. First, R should be a
solution of the Quantum Yang-Baxter equation (QYBE, for short). To state the next conditions, it is more
convenient to work with S = 7R, where 7 is the usual transposition. It is well-known that S is a solution
of the Braid equation if and only if R is a solution of the QYBE. The second restriction is that § should
be of Hecke type, that is, it should satisfy the equation (S — ¢)(S + 1) = 0, where we assume ¢ # 0,
g™ #£1if m > 2, or ¢ = 1. Hence the Hecke algebras act on the various tensor powers of V. Third, the
“quantum exterior algebra” A,(V) := T(V)/(Ker (S — ¢)) should be a “Frobenius algebra” in the sense of
(MANIN 1988), Ch. 8. In particular, there is a “quantum determinant”, a group-like element d € A(R). The
localization of A(R) at d and the quotient of A(R) by the relation d = 1 are Hopf algebras that we denote
H(R) and K(R); they can be considered as quantum analogues of GL(n) and SL(n). As is well-known, the
Hopf algebra K(R) degenerates if the determinant is not central.

Starting from this point, we look for conditions on S implying the existence of *-bialgebra structures in
H(R) and K(R). There is a natural condition: for a fixed inner product on V', S is a selfadjoint operator
with the respect to the extension of the inner product to V@ V. As a consequence, the Hopf algebras H(R)
and K(R) are Compact Quantum Groups. We obtain finally new examples of CQG from known solutions
of the QYBE. Concretely, solutions S as above such that A4(V') has rank two were classified by Gurevich in
(GUREVICH 1991). We completely determine the selfadjoint ones among them. See Theorem 5.0.2.

For the convenience of the reader, we review in this work the above sketched procedure to obtain the
Hopf algebras H(R) and K(R) from the solution R of the QYBE. In fact, we do not need the full set of
requircments meaning ” A4 (V) is a Frobenius algebra”, but only some of them. This led us to investigate the
relationship between the full definition of Frobenius and the condition we need. In this direction, we prove
that, if the homogeneous component A?(V') is not zero and ALY (V) = 0, then A,4(V) is a Frobenius algebra.
The reason is that Ay(V') is a braided Hopf algebra, and it admits an integral [ : Ay(V) — C whenever it
is finite dimensional.

The paper is organized as follows. In the second section, we recall the definition of a CQG and a criterion
to pass from the algebraic to the C*-algebraic framework. In the third, we construct the Hopf algebras
H(R) and K(R). In the fourth section we present our criterion. The fifth is devoted to explicit examples;
we analize the list of solutions of the QYBE from (GUREVICH 1991), characterize the selfadjoint ones and
find out new compact quantum groups.

The authors, specially the second one, thank D. Gurevich for many interesting conversations along the
years.

Conventions. We shall work over the field C of complex numbers. Tensor products and homorphisms
are over C unless explicitly stated. The n-fold tensor product of a vector space W is denoted W®" or T"W .
All the algebras we consider are associative with unit; all the coalgebras we consider are coassociative with
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counit. We denote by A, e and § respectively the comultiplication, counit and antipode of a Hopf algebra
(or bialgebra) H. We shall mainly consider right comodules, whose coactions we denote by § : V — V ® H.
We use Sweedler’s notation for the comultiplication and coaction: A(z) = Yz ®x(2), 6(v) = D v(0) ®v(1),
but we omit most of the time the summation sign. We denote by G(H) = {0 #g € H: A(g) = g® g}
the semigroup of group-like elements in a bialgebra H. We adopt the usual notation for the categories of
modules and comodules: 4 M, resp. M, is the category of left modules over an algebra A , respectively
right comodules over a coalgebra C. We denote by Vec the category of complex vector spaces.

2. COMPACT QUANTUM GROUPS

The theory of compact quantum groups was developed by Woronowicz in a series of papers (WORONOWICZ
1987), (WoroNowicz 1988), (WorRONOWICZ 1989). At some points we follow (GUICHARDET 1995).

We first recall the classical notion of coalgebras with involution:

Definition 2.0.1. A o-coalgebra is a pair (B,o), where B is a coalgebra and o : B — B is an anti-
comultiplicative conjugate-lincar involution.

If B is a o-coalgebra, the dual algebra B* is a x-algebra with respect to the involution given by
<04*,LU> = <04,LUO>, (1)
a € B*, x € B. We can then consider two different notions of bialgebras with involution.

Definition 2.0.2. A x-bialgebra is a pair (B, ), where B is a bialgebra and * : B — B is a conjugate-linear
involution which is anti-multiplicative and comultiplicative. That is,
(zy)" = yra”, . @)
Ale*) = Aa)® =3 (z1))" @ (22))"
Dually, a o-bialgebra is a pair (B, o), where B is a bialgebra and o : B — B is a conjugate-linear involution
which is multiplicative and anti-comultiplicative. This means
(xy)o = xoy()? o o (3)
Az®) = A%(2)*%° =3 (z(9))” ® (z(1)) -

The first definition is probably due to G. I. Kats. The second is attributed to Drinfeld in (MANIN 1988).

It follows from the definition that e(xz*) = e(x), or e(z°) = e(x), according to the case. If B is a Hopf
algebra, then it is a consequence of the definition that (Sx)? = id or (So)? =id.

The bialgebras A(R) from the FRT construction can be endowed with a o-structure, under certain con-
ditions. To pass to a x-structure we shall use the following Lemma.

Lemma 2.0.1. (MANIN 1988) In a Hopf algebra H, *-structures and o-structures are equivalent.

Proof. Explicitly, the equivalence is as follows: to * : H — H, it corresponds o : H — H given by
z° := (8(z))*, x € H; then z* := (S(x))°, z € H. As S is an antialgebra and anticoalgebra map, * satisfies
(2) if and only if o satisfies (3). O

Definition 2.0.3. Let B be a o-coalgebra. A o-comodule is a pair (V,(])), where V is a (right) comodule
and (|) is an hermitian form on V satisfying

e}

(wylv)way = (wlvey)vay®,
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for all v,w € V. If the hermitian form is an inner product (i.e. if it is positive definite), then we shall say

that V is a unitary comodule.

If V is a right comodule over a coalgebra B, then V is a left module over the dual algebra B*. We
fix an hermitian form on V. Then V is a o-comodule, if and only if the corresponding representation
p: B* = EndV is a xrepresentation. That is, (p(z)v|w) = (v|p(z*)w), for all x € B*, v,w € V. Indeed,

(@ v|lw) = (v)|lw)(e®, v)) = (V) lw) (e, viy))

= {a, (wlv(o))v(yy) = (e, (o) lv)w(r))
= (vl{a, wry)wio)) = (v]ow).
The space of matriz coefficients of a comodule V is
C(V)={la®id)é(v) : € V*, v eV} C B.

C(V) is a subcoalgebra of B. If {v1,...,v,} is a basis of V and é(v;) = >_, v; ® T};, then the Tj; span C(V).
If V is irreducible, they form a basis of C(V'). One has A(T;;) = >, Tir, ® T;j.

To recall the definition of compact quantum linear groups we need one more ingredient. A C*-norm in a
x-algcbra H is a norm such that

lzyll < llzlllgll, 11l =1, fzz*| = ll?,
for all z,y € H. We shall consider the norm in H ® H given by
€1l := sup [|x(§)Il, (4)

for all 7 in the set of x-representations of H ® H whose restrictions to 1 ® H and H ® 1 are continuous.
This is again a C*-norm, see e.g. (TAKESAKI 1979), Ch. TV, §4.

Definition 2.0.4. A compact linear quantum group is a x-Hopf algebra H provided with a C*-norm such
that

(a): The matrix coefficients of a finite dimensional unitary comodule V' generate H as algebra.

(b): The comultiplication A is continuous with respect to (4).

In this case, we shall say that * is a compact involution of H. (In this paper, we only consider CQG which
are linear. Accordingly, we also write CQG for compact linear quantum group.)

Remark 2.0.1. The completion of H with respect to the norm in (b) is a C*-algebra; this is the original
setting in (WorONOWICZ 1987). The canonical map from H into its completion is in fact injective; see
(GUICHARDET 1995), (DIJKHUIZEN & KOORNWINDER 1994).

Remark 2.0.2. Any finite dimensional right comodule over a CQG H admits an hermitian form which is
positive definite, i.e. an inner product (WORONOWICZ 1987), Th. 5.2. This implies that H is cosemisimple;
that is, any H-comodule is completely reducible. By the structure theory of cosemisimple Hopf algebras
(SWEEDLER 1969), H is the direct sum of its simple subcoalgebras:

H=® C). (5)

I/€ﬁ
Here H denotes the set of classes of irreducible H -comodules, and C(v) is the space of matrix coefficients
of any irreducible comodule in the class v; C(v) is a simple subcoalgebra.
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We denote by [ : H — C(e) = Cl1 the projection with respect to (5). Then [ is a left and right integral
in the sense of augmented algebras (SWEEDLER 1969). It is also called a Haar measure in the literature.

We consider the sesquilinear form (| ), defined by (v|w), = ([, w*v); it is hermitian, invariant for the right
coaction given by the comultiplication and satisfies (uv|w); = (v|u*w)y. It can be shown that (H,«) is a
compact quantum group if and only if the hermitian form (| ), is positive definite. See (ANDRUSKIEWITSCH
1994).

Theorem 2.0.1. Let H be a x-Hopf algebra generated (as algebra) by the matriz coefficients of a unitary
finite dimensional comodule. Then H, provided with the sup of C*-seminorms, is a CQG.

Proof. This is (DUUKHUIZEN & KOORNWINDER 1994), Th. 4.4. See also (WoORONOWICZ 1987), (AN-
DRUSKIEWITSCH 1992), (GUICHARDET 1995), p. 37. O

Remark 2.0.3. A Hopf algebra H carries usually many diferent *-involutions. Two compact involutions of a
cosemisimple Hopf algebra are necessarily conjugated by a Hopf algebra automorphism (ANDRUSKIEWITSCH
1994), Th. 2.6. The problem of existence of compact involutions on cosemisimple Hopf algebras remains
open. We have however the following restriction:

If a cosemisimple Hopf algebra H has a compact involution, then S? has real eigenvalues.

In fact, %+ = *S~2 and hence, as S§? is a Hopf algebra automorphism,

o = (st (oo
_ </ (SQw)*v> = (%),

It follows that the Hopf algebra C,;[G] (quantum version of the algebra of rational functions on the complex
simple algebraic group G, ¢f. (LuszTic 1990)), which is cosemisimple if ¢ is not a root of 1, has no compact
form if g is not a real number.

Indeed, let M be a finite dimensional module, v € M, o € M* . Assume that v, resp. « is a weight vector
of weight ), resp. p1. In the universal enveloping algebra U,(g), S? is conjugation by the group-like element
p corresponding to the half-sum of the positive roots, see (DRINFELD 1990). Hence

S (pM) = gloA-mght |

Here d)g/{v denotes the matrix coefficient corresponding to v, a.

3. THE HOPF ALGEBRAS H(R) AND K(R)

We state the results of this section over C but they are valid over any field.

3.1. The bialgebra A(R). In this Subsection, we give a coordinate-free presentation of the
FRT-construction following (Do1 1993).
Let W and U be vector spaces. We denote by 7: W @ U — U ® W the usual transposition.
We shall identify (W*)®" with a subspace of (W®")* by the duality

(@1 ® @ ap,vp @ --- @ 1) = (An,Vp) ... (@1, 01). (6)

Let C be a coalgebra and A = C* its dual algebra; this means that the multiplication of A is the restriction
of the comultiplication of C, via (6). Let T"C = C®", T"A = A®" be the n-fold tensor product coalgebra,
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resp. algebra. We identify T™ A with a subspace of (T"C)* via (6); T™ A is a subalgebra of the dual algebra
of T"(C.

The tensor algebra T(C) = @,>oT"C is a bialgebra where the coalgebra structure is the direct sum of
the subcoalgebras T"C.

We consider T"C as T" A-bimodule by transposition of the left and right regular actions. In terms of the
coalgebra structure, these actions are given by

Rn =nay(ne), R), 1R = (nq, R)nea),

neT"C, ReT"A.
We fix an element R € T2A and set
Jr={nR —7(Rn): n € T°C}
= span {{o(1) ® B, R) az) ® Bray—
By ® ey {2y ® Bray, R) + @, f € C}.
The two-sided ideal (Jg) generated by Jg is a bi-ideal; hence the quotient algebra,
A(R) :=T(C)/{Jr)

is a quotient bialgebra. It is a graded algebra, but not a graded coalgebra. We shall identify C' with the
image of the coalgebra homomorphism C — T(C) — A(R).

Let now V be a right C-comodule. The coaction § : V — V ® C' extends to a unique coaction § : T(V) —
T(V) ® T(C); hence T(V) is a T(C)-comodule algebra. The coaction is graded in the following sense:
S(T"V) CT"V @ T"C, for all n. By corestriction, T(V) is a graded A(R)-comodule algebra.

For any pair V', W, of right C-comodules there is a linear transformation Syw : VW — W ®V induced
by R:

Sv,w (v @ w) = wgy @ vy (R, v(1y @ w(y)-
We shall denote Sy for Sy1y. Sometimes we shall simply write S instead of Sy .

The following theorem, a generalization of (LARSON & TOWBER 1991) Th. 3.1, characterizes A(R). A
related characterization is given in (Dor 1993). Compare also with (MAJID 1995), pp. 438 and 476.

Theorem 3.1.1. The bialgebra A(R) is universal among the bialgebras B satisfying the following properties:

(a): There exist a coalgebra map C — B.
(b): Given two C-comodules M and N, Sy n is a B-comodule map when M and N are regarded as
B-comodules via the map considered in (a).

If a bialgebra B satisfies (a) and (b), then there exists a bialgebra map ¢ : A(R) — B which verifies the
following: for any C-comodule M, if g and d4(gy are the structure maps given as in (b), then

(53 == (ld ®¢) O(SA(R)'

Proof. We first show that A(R) satisfies the desired properties. For (a) consider the injective coalgebra
map defined by C — T(C) — A(R). As for (b), let M, N be two C-comodules. We compute the maps
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(S®id)6,08S  MIN > NMQC®C:
(S®id)é(m®n) = ng) ® Mgy ®
{may ® nay, Rymg) @ ng),
dS(m@n) = n(g) @ M) @ n(1) @
m(1)<m(2) & n(2), R).

This implies that property (b) holds for A(R).

Let B be a bialgebra satisfying (a) and (b), and ¢ : C — B the corresponding map. We extend ¢ to a
morhism of (bi)algebras, still denoted as ¢, from T(C) to B. As C is a right comodule over itself by the
comultiplication, we get that Scc is a morphism in M2, i.e.

(1) ® may ® (M) @ ne), R) ¢ (mez)) ¢ (n(z)) =
ny @ may @ ¢ (1)) ¢ (M) (me) @ ne), R) -

Applying e to the first two factors, we conclude that ¢ factorizes trough A(R) by a morphism still named
¢. Let now M € M, and call 5 and § A(R) the structure maps obtained when we regard M € MPB and
M e MA®) regpectively. Then

((id ® ¢) 0 da(R)) (m) = (id ® @) (M) @ m1y) =
m() ® ¢ (my)) = dp(m

—

]

In this paper, we are concerned with the following important particular case of the construction above.
Let A =End (V) and C = (End (V))*, where V is a finite dimensional vector space. The natural action of
A on V gives rise to a right comodule structure on V. Explicitly, § : V = V ® C is given by

(id @ T)é(v) =T(v), veV, Tc A.

We present A(R) in terms of coordinates. We fix a basis {v1,--- ,vp} of V', and let {e;;} be the basis of A
given by e;;(vk) = &,v;. Let {€¥} C C the basis dual to {e;;}. Then §(v;) = 2. ®ell. Let t;; € A(R) be
the image of ¥ under the canonical projection. Then

(5(2)2) = Zvj ® tji- (7)

Now, if R(v;®v;) = >4, Rff v ®vy, then A(R) can be presented as the algebra generated by t;;, 1 < 4,5 <mn,
with relations:

S B ki = > Rl Lo b, Vi, b, L (8)
mn

mn.

This means that A(R) coincides with the bialgebra defined in (FADEEV, RESHETIKHIN & TAKHTAJAN 1990).

Moreover,

Sy =8=r7R.
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A version of the following Proposition is proved in (FADEEV, RESHETIKHIN & TAKHTAJAN 1990).

Proposition 3.1.1. Let C be a coalgebra, A its dual algebra, R € A® A, V a finite dimensional C-
comodule. Let q be an eigenvalue of Sy. Let I, = ker(Sy —q) € T?V. Let Ng(V) = @nz0 A} (V) be
the quotient of T(V) by the homogeneous two-sided ideal (I). Then Ng(V') is an A(R)-comodule algebra.
Moreover, 6(A}(V)) C Ag(V) ®@ A(R)".

Proof. The map Sy : T?V — T?V is a A(R)-comodule map; hence I, is a A(R)-subcomodule. As
the coaction is an algebra map, the two-sided ideal (I,;) is a A(R)-subcomodule of T'(V'). The Proposition
follows from this. |

The homogeneous components A(V) = T"V/I? can be described as follows: IZ = I, and
n—1 A
I =TV N (L) =Y I,
=1

I =T""VeIL,eT" "V,

fore=1,--- ,n—1,n=2,3,---. We identify V' with /\}](V) and write A for the product in Ay(V'). We shall
denote Agq4(V) instead of Ay(V'), when emphasis on S is needed.

Let A = @,>0AP be a graded algebra. We consider the following conditions on A, for p € N, 0 < j < p:
Fy(p): dim AP = 1.
F;(p): dimA? =1 and the multiplication

AP=I x A 5 AP is non-degenerate.

A graded algebra A is Frobenius of rank p if, for a fixed p, F;(p) holds for any j, 0 < j < p and A =0,
for j > p. We shall not need, for the construction of the antipode, all the conditions F;(p); see Theorem
3.3.2, and the discussion in Subsection 3.7. The following Proposition appears in (MANIN 1988).

Proposition 3.1.2. Let V be a finite dimensional vector space, C = (EndV)*, R: VRV - VQV a linear
map, S = TR, q an eigenvalue of S.

(a): If Ng(V') verifies Fy(p), then there exists d € A(R)P, d # 0, such that Ad=d ®d.

(b): If Ay(V) verifies Fi(p), then there exists A;; € A(R)P™, 4,5 =1,--- ,m such that

ZAiktkj = (52Jd (9)
k=1

(€): If Ay(V) werifies Fp_1(p), then there exists A;; € A(RP™, i,5=1,--- ,m such that

ZtkiAkj = (Szjd (10)
k=1

Proof.  (a). This follows from Proposition 3.1.1: if 0 # p € ALV, then §(p) = p®d, d € A(R)P; d does
not depend on the choice of 4.

(b). We fix 0 # p € AhV and consider the basis {91, -+ ,nm} of Ag_l(V) determined by n; A v; = d;;;
we define A;; € A(R)P~! by d(n;) = > inj ® Ay, i=1,--- ,m. As § is an algebra map, (9) follows.

(c). Analogous to the preceding, considering this time V' x /\Z*lv A AV O

By abuse of notation, we shall say that S satisfies F;(p) if Aq(V') does.
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Definition 3.1.1. Let V be a finite dimensional vector space, S € End (V®V), ¢ € C, ¢ # 0,—1. We shall
say that S satisfies the Hecke condition with label g if

(S—g)(S+1)=0.

We have then Ker (S — ¢) =Im (S + 1),
Ker (S +1) =Im (S — ¢g). We denote SymgV = A1V =T(V)/(Im (S — q)), AsV for A,V and Ig for I,.

If C is a coalgebra, A its dual algebra, S € A® A, V a finite dimensional C-comodule and S = Sy, then
we denote Sym ¢V = SymgV, AgV = AgV and Ig = Ig; Proposition 3.1.2 applies to both of Sym ¢V and
AsV.

If S is the usual transposition, then Sym ¢V and AgV arc respectively the usual symmetric and cxterior
algcbra on V.

Let S € End (T%V) be given by S(v; ® v;) = >y, ggvk ® vy; this means we consider the real form ), Ru;
of V, and the corresponding involutions of V', T?V, End T?V . The following result will be needed in Section
4.

Lemma 3.1.1. If S € End (T?V) satisfies the
Hecke condition with label q, then

(a): S € End (T?V) satisfies the Hecke condition with label §; and
(b): S wverifies Fj(p) if and only if S verifies Fj(p). O

3.2. The Hecke algebra. We recall in this Subsection some facts about the Hecke algebra (see for instance
(HARPE, KERVAIRE & WEBER 1986)).

Let ¢ € C, ¢ # 0, n € N, n > 2. The Hecke algebra Hy(n) is the C-algebra presented by gencrators
o1, ,0p_1 With relations

(a): (o; —q)(o; +1)=0,4=1,--- ,n—1

(b): 0405 = 0504, |Z —jl Z 2.

(C): Oi0i+10; = 0341040441, 1= 1, e, — 2.

We shall assume that ¢ #0, ¢" # 1 if n > 2 or ¢ = 1. Then the Hecke algebra H,(n) is semisimple. It
has two one-dimensional representations:

(a): the trivial, which sends any o; to ¢, and

(b): the sign, which sends any o; to —1.
For ¢ = 1, H,(n) is the group algebra of the symmetric group S,; this motivates the preceding notation for
the characters. In fact, it is well known that H,(n) is isomorphic to the group algebra of the symmetric
group S, provided that the above restrictions on ¢ hold.

Let B(n) be the set of all monomials of the form

(O—Z'la-l'lfl . O'hl) . (O—Zpa-lpfl “ e O—hp)

where 1 < hy <y, ,1 <hp, <iy,and 1 <4 <ig <--+ <, <n—1 It is known that B(n) is a basis of
H,(n). The set B(n) is identified with S,, via

(O'Z-l ...a‘hl)...(o'ip...a'hp) <_>
(til "'thl)“'(tip“‘th,,)y

where ¢; is the transposition (7,7 + 1).
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We recall the definition of the quantum factorial number

['n]q! :['n]q[n - 1]q T [2]q[1]q:
[nly=1+qg+---+¢"', n>1
We observe that

n(n—1)
[nlg! =47 [n]g-1}, > d=n)!,
teB(n)
where [t| = hy + -+ + hy if
t: (O—ilailfl...o—hl)“‘(O-Z'pa-ipfl...o—hp)-

Since ¢™ # 1, if m > 2 or ¢ =1, it is [n],! # 0. We consider the following elements of the Hecke algebra:

We are interested in these elements because of the following reason. If W is a representation of H,(n),
then the action of M_ on W (resp., M,) is the H,(n)-invariant projection onto its isotypical component of
sign (resp., trivial) type.

Let # : Hy(n) — Hy(n) be the unique algebra anti-isomorphism such that 07# =04, 1=1,---,n—1. Let

V, W be Hy(n)-modules. One says that a bilincar map ((, )) : V x W — C is Hy(n)-invariant if
(o -vw) = (v w)).
foralve V,we W, z e Hyn).

For instance, if V' is a Hy(n)-module, then we regard V* = Hom (V, C) as Hy(n)-module by:

(2 b0} i= (p,a* ), (11)
forallv e V, ¢ € V*, z € Hy(n). In this way, the canonical duality between Voand V* is Hy(n)-invariant.
Conversely, if V, W are H,(n)-modules and

({(,N:VxW—=C
is a bilinear Hy(n)-invariant map, then T : V. — W* (T(v),w) := ((v,w)), v € V,w € W, is a map of
Hy(n)-modules.
There is a unique algebra isomorphism (of order 2) ¥ : Hy(n) — Hy(n) such that
U(o;) =0op_i, 1 <i<n—1.
Clearly,
W(M_) = (M_J# = M.,
V(M) = (M)* = M.
Let us consider H,(n) as a subalgebra of H,(n + 1) by identifying the generator o; of Hy(n) with the

generator o; of Hy(n + 1). Let
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where i = 04,41 04,41 ift= Ojy * 0 0y-

Proposition 3.2.1. (GUREVICH 1991) We have
1.

Mo, M = —[n+1], [n];l MM
q" [n]; ' M.

2. If M™ =0, then

M™ (M™), M" = ¢" " [n];>M".

3.3. Duality between A%(V) and A7((V*). Let C be a coalgebra, A its dual algebra, R € A® A, V a
C-comodule.

Definition 3.3.1. We say that S = Sy is a solution of the Braid equation if
512523512 — 523512523‘ (12)

Here we adopt the usual notation: for 1 < i < j < n, S¥ € EndT"V acts as S on the factors 4,5 , and
as the identity on the others.

We denote by R = Ry the endomorphism of V' ® V given by the action of R. Then Ry = 78y. It is
well-known that (12) is equivalent to the Quantum Yang-Baxter equation:

RI2R13R23 _ RBRI3RI2. (13)
Note that (13) makes sense if R € A ® A where A is any algebra.
We assume from now on that Sy verifies both the Hecke condition with label ¢ and the Braid equation;

we also suppose that ¢ # 1, if m > 2 or ¢ = 1. Hence the Hecke algebra H,(n) acts linearly on T"V via
o; — SH"T = 5" € End (T™V). Note that Ig* =Im(S*+ 1) foralli=1,--- ,n — 1.

Proposition 3.3.1. The action of Hy(n) and the coaction of A(R) in T"V commute, i.e.
(- w)) @ (2 - w)a) = (2 we)) @ wa,
for all z € Hy(n) and w e T"V.

Proof. This follows because Sy is a morphism of A(R)-comodules. |
It can be shown that one of these actions is the commutant of the other (it cf.) [(Har 1997), Thm. 2.1].

Proposition 3.3.2. (GUREVICH 1991) NGV is a Hy(n)-module quotient of T"V , isomorphic to
(T™V)_.

Proof. From
SHST +1) = (8" + 1)(87 +1) — (87 +1), Vi, j,
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we deduce o; - I§ C IZ; hence ALV is a Hy(n)-module quotient of T"V. As M_o; = —M_ for all i =
1,--- ,n—1, we have
M_(o;+1)=0, Vi

=M_o(S°4+1)=0, Vi

:>M_|In,i — O, Vi
S

:>M_|[2 =0

=(T"V)-n1Ig={0};
that is, the restriction of the canonical projection ma|pnyy_ : (T"V)- — AGV is injective. On the other
hand, Im (S*+1) = Ig" C IZ, hence H,(n) acts on ALV by the sign representation. Thus ma(M_-w) = ma(w)
for any w € T"V, and ma|(nyy_ : (T"V) - — NGV is surjective. O

Remark 3.3.1. Compare with (ANDRUSKIEWITSCII & GRANA 1999).

Observe that I¢ = ker(M_), because mpoM_ = 7. Combining Propositions 3.3.1 and 3.3.2, we conclude:

Proposition 3.3.3. The action of Hy(n) and the coaction of A(R) on ALV commute. O

We assume now that C = (End V)*, dimV < oco. Let C° = (End (V*))*. Let {) : End (V*) — End (V)°P
denote the algebra isomorphism given by the transposition.

Definition 3.3.2. We denote by 8 : ' — C° the anti-coalgebra isomorphism induced by the transposition
). That is,

<0(O&),LE> = <O‘7tx>'
We still denote by 6 the induced algebra isomorphism from T'(C') onto T(C*); 6 is in fact a bialgebra
isomorphism from T'(C)°P onto T(C®).
Letnow R: V@V = V@V and S = TR. We set IR = 7(!R) = 7'R7 € End (V*) ® End (V*). Then
TR="15.
It is not difficult to prove:

Lemma 3.3.1. (a): S satisfies the Braid equation (resp., the Hecke condition with label q), if and only

if 1S does.
(b): If J5 := {EC - T(CE) : ¢ € THC®)}, then 0(JR) = J;. Hence 0 induces a bialgebra isomorphism,
again denoted by 0, from A(R)*P onto A(R) :=T(C®)/{Jz). O

For a fixed basis {v;} of V, we denote: {w;}, its dual basis in V*; {f;;} the basis of End (V*) given by
fij(ag) = dk04, and {f“} the basis of C° = (End (V*))* dual of the basis {f;;}. We further denote by u;;
the class of f¥ in A(R). Hence

H(tij) = Uyjs-

We recall that S satisfies the Braid equation and the Hecke condition with label g.

The Hecke algebra H,(n) acts on T"(V*) by o; + (!S)". The duality ( , ) : T"V x T"(V*) — C is
H,(n)-invariant in the following “twisted” sense:

(@ ¢,0) = (¢, (¥(2)¥ -v).
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We denote, according to our previous conventions,
Ly = Im ('S+1) Cc T*(V*),
Ns(VF) = T(V*)/{Ls) = &2 Ng (V7).

Theorem 3.3.1. The bilinear form (, ) : NGV x N(V*) = C given by (w + 1§, + Ity) == (w, M_ - ),
we TV, a € T™(V*), is non degenerate, and Hgy(n)-invariant.

Proof. The canonical duality (, ) : T"V xT™(V*) — C induccs a non-degencrate Hgy(n)-invariant bilincar
form (, ): T"V/I% x (I2)t = C by (w + 1%, a) == (w,a), w € T"V, a € (IZ)*. As I? =ker MT"V
(Ig)J_ _ (ker MZWV)L — Tm Mz“n(\/*) —
= @) = AV,
So we have a non-degenerate Hg(n)-invariant bilinear form (, ) : AZV x AL (V*) — C. But the isomorphism
(T™(V*))- ~ AN (V) is given by M_ -« <+ a+ (Itg)"; hence (, ) : AGV x Al (V*) — C is explicitly defined
by (w+ Ig,a+ (Itg)") == (w,M_ - o), w e T"V, . € T"(V*). O

The hypothesis of part (b) of the Theorem below will be discussed in more detail in Subsection 3.7.

Theorem 3.3.2. Let V be a finite dimensional vector space, C = (EndV)*, R: V@V -V QV a linear
map, S = 7R.

(a): Assume that S verifies Fy(p). Then 'S also verifies Fy(p); and if d € A(R), d' € A(ﬁ) are those
elements given by Proposition 3.1.2, then 0(d) = d'.
(b): If S verifies Fi(p) and 'S verifies F,_1(p), then there exist A;;, Bi; € A(RYP~ i, j=1,--- ,m such

that
m m

Proof. Step 1. The following equality holds:
() eid)id @) =((, ) @O0 &id),
as maps from T"(V) @ T"(V*) to T(C®).

This follows by induction on n, the case n = 1 being clear. Assume it holds for m < n, and let v € TV,
w €T ™V, a € T™(V*), g € T ™(V*). We have to prove

(v@w,(a® ,3)(0)>(04 ® ,3)(1) =
(v ®w)(),a®B)0 ((v Q@ w)y) -

As6:T(V)=>T(V)RT(C),§: T(V*) - T(V*YT(C®) and 0 : T(C) — T(C?) are algebra morphisms,
(v@w,(a®B)p)(a® :8)(1) =
(v ® w, a0y ® Boy)ay @ By
(v, @)1y @ (w, Bo >ﬁ
= (v ;)0 ( )) ® (w(g), B)0(w(1))
Wm®wwa®@ (v ® wiy)
(v ®w) gy, a @ B)0 ((v®w)(1)).
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Step 2. The following equality holds:

() @id)(d @) = (, ) @)@ ®id),
as maps A"(V) ® A"(V*) — A(R).

To avoid confusions, we shall denote in this Step (( , )) for the duality between AGV and AL (V*), (, ) for
the canonical duality between 7™V and T™(V*) and 8 for the isomorphism from A(R) onto A(R) induced
by 0 : T(C) — T(C?).

Let veT"V, a € T"(V*), 0 =v+ 15 € NGV, @ = a+ I, € Ni,(V*). We have to prove

(@, @) = (@), @0 (T0)) -
By Step 1, and using that the action of H,(n) and the coaction of A(R) in T"V commute, we have

M_-v a(o>>a<1) = (M_ v, o))y
0N = ({0, @0)))aq)-

Step 3. Proof of (a).

'S verifies Fy(p) because of the duality between ALV and AL (V*). Let then 0 # p € ALV, 0 # 4/ €
Ng(V*), d € A(R)? and d' € A(R R)? such that

p)=ped, )=y ed.
We have
((,)®id)(id ® ) (ue ') =
((,)@id)(peu ©d) = (uu)d

((,)@0)7 23(5®1d)( ®p') =

((, )@0) (b &d) = (u,u)0(d).
By Step 2, and because (, ) : ARV x AL (V*) — C is non-degenerate, 0(d) = d'.

Step 4. Proof of (b).
By Proposition 3.1.2, there exist A;; € A(R)P™!, C;; € A(R)*~1i,5 =1,--- ,m such that

Z Ajptr; = 045d, Z ukiCrj = 5ijd/-
k=1 k=1

Applying 67! to the second equality, and denoting B;; = 071(C;;), we get >p* | tix.Bx; = 6i;d, as desired. O

3.4. The Koszul complex. We show that the “quantum Koszul complex” studied by Gurevich, Wambst
and Hai — see (GUREVICH 1991), (WAMBST 1993), (HA1 1997) — fits into the general scheme of Koszul rings.
Our main reference in this Subsection is (BEILINSON, GINZBURG & SOERGEL 1996). The results of this
subsection are not needed in the rest of the paper.



COMPACT QUANTUM GROUPS ARISING FROM THE FRT-CONSTRUCTION

Let A =T(V)/(R) be a quadratic algebra, i.e. a graded algebra generated by the space V' of elements of
degree 1, with relations “in degree 2”. This means that the ideal of relations is generated by R C V@ V.
We assume that V has finite dimension. The quadratic dual of A is

AL =T (V) /(RY),

where R- C V*®V* is the subspace of linear functionals vanishing on R. The Koszul complex --- — K2 —
K' — K% = A can be explicitly given by

K' = hom(A4}, A) = A® (4})*,

and the differential by

(df)(b) = Zf(bf)j)vj,

for f € hom(AL,,, A), b € A.. Here (v;) is a basis of V and (¥;) is its dual basis. If f = 7 ® w, with x € 4,
w € (Aéﬂ)*, then

df = wv; ® R(5))(w);
J
where R denotes the transpose of the right multiplication.

Let S be a solution of the Braid equation which satisfies the Hecke condition. Let A = Sym ¢V =
T(V)/(Im (S — ¢)). Then the quadratic dual of Sym ¢V is Atg(V*). Indeed, R = Ker (S + 1) in our case,
and R = Ker (*S — q). Therefore (Sym ¢V)' = T(V*)/Ker (S — q) = A:g(V*). Now, by Theorem 3.3.1, we

have

(4} = (Afg(V*)" = AG(V).

1
Hence we can identify the Koszul complex of A with Sym ¢V @ AgV. Let f =z Qw € Sym¢V ® A?lV,
with w = wy; A -+ Awip1. Then R(9;)(w) = (9, wi)wz A -+ A wit1, because of the identification (6). We
further identify Sym ¢V with the subspace (T™V)., thanks to Proposition 3.3.2 applied to —¢~'S. With all
these conventions, we have

df = ZMe(x®vj)®<®j,w1>w2/\~~~/\wi+1
J
= Mg($®W1)®w2A"'Awi+1.

This is exactly the first complex in (GUREVICH 1991), §3. In the same vein, we can show that the Koszul

complex of Ag(V) is the second complex from loc. cit. and that Sym ¢V and AgV are Koszul, see (GUREVICH
1991), (WAMBST 1993).

3.5. The Hopf algebra H(R). We first recall a well-known definition from (HAYASHI 1992), (LARSON &
TOWBER 1991), (MAJID 1990).

Definition 3.5.1. A co-quasitriangular bialgebra
(CQT) is a pair (B, p), where B is a bialgebra and p is an invertible element of the algebra (B ® B)* that
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satisfies:

(P, 21y @ Ya))T2)Y2) =

Y1) {0 T2) @ Y2)) (14)
(pyoy @ 2) =

(P2 @ z1)) (P y @ 2(2)) (15)
(p,x @yz) =

(P, 21y ® 2){p, T(2) ®Y), (16)

for any z,y,z € B.
Let (B, p), (B',p') be CQT-bialgebras and ¢ : B — B’ a bialgebra map; we say that ¢ is a morphism of
CQT-bialgebras if
(0,2 @y) = (', ¢(z) ® P(y)), w,y€ B.
We recall that MP is a braided category, with braiding Cyy xv : M @ N — N ® M given by
Cu,n(m ®@n) = ng) @ my (P, ma) @ na)y)- (17)

We refer to (MAJID 1995) for information about braided categories. In the present case, since the asso-
ciativity is trivial, the relevant hexagon identities are reduced to the equalities

Cugn,p = (Cyp ®id v)(id i ® Cn,p) (18)
from MNP on PR M®N, and
Cu,ngp = (id v ® Cy,p)(Cu,ny ®id p), (19)

from M@ N® Pon N®P® M, for any M, N,P ¢ MP. Now (15) implies (18) and (16) implies (19); in
turn, (14) mcans that C is natural, i.e. that Cps v is a morphism for any M, N.

Similarly, the category of left comodules M is also braided, with braiding Dyn: MON = NM

given by
Dyn(m®n) = (p,n(-1) ® m(_1))n() ® m(). (20)

In this case, (15) implies (19), (18) follows from (16), and the naturality of D from (14).

If M is a finite dimensional right B-comodule, then M* has a natural structure of left B-comodule. If
also N is a finite dimensional object of MP, then the braiding between M* and N* is given by the transpose
of the braiding in M5

Dy~ e =Y Cu.n) (21)
Proof of (21). We shall not work here with the identification (6) but the usual one. Let o € N*, g € M*,
n € N and m € M, then
<tCM,N(oz ®pB),me n) =(a® B,Cu,n(m @ n))

= (@ ® B,n() @ m)) {pm1) @ nqy))

= (p: (Bym()) m) @ (e me)) (1))

= (p:B1) (Broym) ® a1y (o), )

= (p: A1) ® (1)) {Blo) ® @0), m ® )

= (Dy+m+(a® ), m@n),
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as desired 1.

Theorem 3.5.1. (HAYASHI 1992) Let (B,p) be a CQT bialgebra. Let G C G(B) be a subsemigroup.
Then G is a (left and right) Ore set. We denote by Bg the localization of B at G. Bg admits a CQT-
bialgebra structure such that the natural map B — Bg is a CQT-bialgebra homomorphism. FExplicitly, the
comultiplication is determined by A(g™') =g ' ® g71, for g € G, and pg € (Bg ® Bg)* is given by
(pa hg P @kt 1) = (p,hay ® kay) (p 1, by © 1)
(0 gk (pget). O
IfG={¢": n=0,1,-.} for some g € G(B), then we shall denote B, := Bg, py = pa;-
If B is Hopf algebra then, by the universal property of the quotients, it is isomorphic to Bg(p) ((HAYASHI

1992), Prop. 3.3). Therefore, the question is to find the most economical G, if any, such that Bg is a Hopf
algebra. We shall also need the following remark.

Lemma 3.5.1. Let (B,p) be a CQT bialgebra, G C G(B) a subsemigroup, Bg the localization of B at G.
Let ¢ : B — H be a morphism of bialgebras, where H is a Hopf algebra. Then ¢ factorizes through Bg.
Hence, if Bg is a Hopf algebra, the morphism B — Bg is universal among the morphisms from B into a
Hopf algebra.

Proof. We need the coquasitriangularity of B only to allow localization at G. If g € G(B) then ¢(g) = 1;
hence ¢(g) # 0, since €(¢(g)) = €(g) = 1. Therefore ¢(g) is invertible in H, with o(g)~' = S¢(g). The
Lemma follows. 1

We can apply the preceding Theorem to the bialgebra A(R) because of a well-known result ((HAYASHI
1992), (LARSON & TOWBER 1991), (MAJID 1990)). We state a generalization of this result given in (DoI
1993).

Theorem 3.5.2. (Dor1 1993) Let C be a coalgebra, A = C* its dual algebra and R € A® A be a solution of
the Quantum Yang-Bazter equation (13). Then there exists a unique p € (A(R)Q A(R))* such that (A(R), p)
is a CQT-bialgebra and

(p,a®@b) =(R,a®b), Va,beC. O (22)

Combining this Theorem with Theorem 3.1.1, we obtain the following Corollary. For C = (End V)*
compare with (LYUBASHENKO 1986), (SCHAUENBURG 1992), (MAJID 1995), pp. 438 and 476.

Corollary 3.5.1. The CQT-bialgebra (A(R), p) is universal among the CQT-bialgebras (B, () satisfying the
following properties:

(a): There exist a coalgebra map ¢ : C — B salisfying

(R,z@y) = (C, d(x) @ dy)), Va,yeC.
(b): Given two C-comodules M and N, Sy n coincides with the braiding in MPB.

If a CQT-bialgebra (B, () satisfies (a) and (b), then we can extend the map of (a) to a CQT-bialgebra map
¢ : A(R) — B which verifies the following: for any M € M, if 6p and da(r) are the structure maps given
by (b), then

op = (id ® ¢) 0 d4(R)-
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Proof. We already know that A(R) satisfies (a) from Theorem 3.1.1, and it satisfies (b) because of
Theorem 3.5.2. Now let (B, () be a CQT-bialgebra fulfilling the above properties. We know from Theorem
3.1.1 the existence of a bialgebra map ¢ : A(R) — B. We have to show that

(p,a ®b) = (C, p(a) ® $(b))

Now let p € (A(R)QRA(R))* defined by {p, a®b) = ({, (a)@¢(b)). By property (b) for B (p,a®b) = (R, a®b)
if a,b € C. By Theorem 3.5.2 is p = p. O

We are ready now to localize; to have an antipode in the localization we shall use the following general
statement.

Theorem 3.5.3. (Do1 1993) Let C be a coalgebra, A = C* its dual algebra and R € A® A be a solution
of the Quantum Yang-Bazter equation. Let g be a group-like element in A(R). If there exist linear maps
¢, : C — A(R) such that

Bleqy)ey = e(e)g = cayplc))
for all ¢ € C, then A(R), is a Hopf algebra. |

We can finally build up the quantum analog of GL(N).

Theorem 3.5.4. Let V be a finite dimensional vector space, C = (EndV)*, R: V@V -V ®V,S=7R.
Assume that S verifies the Braid equation, the Hecke condition, Fy(p), and that 'S verifies F,_1(p). Let d

be the group-like element given by Proposition 3.1.2 (the "quantum determinant”). Then H(R) := A(R)4 is
a CQT-Hopf algebra.

Proof. By Theorem 3.3.2, there exist A;;, B;; € A(R)P~'4,5=1,--- ,m such that

m m
Z Aiktkj == ZtikBkj = (Szjd in A(R)
The maps ¢,9 : C — A(R) given by ¢(ti;) = Aij, ¥(li;) = By; fulfill the hypothesis of Theorem 3.5.3. The
Theorem follows. 1

Remark 3.5.1. The preceding Theorem was first proved in (FADEEV, RESHETIKHIN & TAKHTAJAN 1990)
for the Drinfeld-Jimbo solution of the QYBE of type A,; see also (TAKEUCHI 1990). For general solutions of
Hecke type, the Theorem appears in (GUREVICH 1991). However, it is proved there only that the proposed
antipode satisfies one of the axioms; the other is left to the reader. We were unable to recover the proof
and were forced to introduce the hypothesis "S5 verifies F},_1(p)”. In Subsection 3.7, we discuss the relation
between this hypothesis and Frobenius algebras. We observe, by the way, that one of the axioms of the
antipode does not imply the other: see the paper (GREEN, NICHOLS & TAFT 1980). Another proof of
Gurevich’s Theorem is offered in (TSYGAN 1993); unhappily, it was again not clear to us.

Corollary 3.5.2. H(R) is generated as algebra by the matriz coefficients of a finite dimensional comodule.

Proof. We know that H(R) is generated as algebra by the t;;’s and d~'. We can then take the comodule
Ve (/\ZV)*. Indeed, d~! generates the space of matrix coefficients of (ALV)*. |
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An invertible solution of the QYBE generates a braided rigid category inside the category of vector spaces.
See (LYUBASHENKO 1986), (SCHAUENBURG 1992). In our case, we have the following alternative description.

Corollary 3.5.3. In the hypothesis of Theorem 3.5.4. The CQT-Hopf algebra (H(R), p) is universal among
the CQT-Hopf algebras (H,() satisfying the following properties:
(a): There exist a coalgebra map ¢ : C — H satisfying

(R.z®y) = ((,d(x) @ #ly)), z,yeC.
(b): Given two C-comodules M and N, Sy coincides with the braiding in MH .
If a CQT-Hopf algebra (H,() satisfies (a) and (b), then we can extend the map of (a) to a CQT-bialgebra
map ¢ : H(R) — H which verifies the following: for any M € MC, if g and dm(r) are the structure maps
given by (b), then
dg = (id ® ¢) 0 dp(ry-

Proof. This follows easily from Theorem 3.5.4, Lemma 3.5.1 and Corollary 3.5.1. Il

3.6. The Hopf algebra K(R). We preserve the notation above. As d € G(A(R)),
e(d — 1) =e(d) — (1) =0,
Ald—1)=d®d-1®1
=dod-1)+(d-1)®1.

Hence K(R) := A(R)/{(d — 1) inherits the bialgebra structure of A(R). Furthermore, we consider Ag(V') as
K (R)-comodule algebra by “corestriction”. The proof of the following theorem is completely analogous to
that of Theorem 3.5.4; we will omit it.

Theorem 3.6.1. Assume that S verifies the Braid equation, the Hecke condition, Fy(p), and that 'S verifies
F,_1(p). Then K(R) is a CQT-Hopf algebra. O

It is well-known, and evident, that a generator ¢;; vanishes in the quotient K(R) whenever it does not
commute with d.

3.7. The Frobenius conditions. Let V be a finite dimensional vector space, C = (EndV)*, R: VQV —
V ® V a linear map, S = 7R. We assume that S is a solution of the Braid equation which satisfies
the Hecke condition with label g. In this scction, we study Frobenius conditions on the graded algebras
SymV =TV)/(Im (S —q)) =T(V)/{Ker (S + 1)) and AgV =T(V)/Im (S + 1)) =T(V)/(Ker (S — ¢q)).
We shall prove that under very weak conditions these graded algebras are Frobenius. In particular, this
alleviates the hypothesis in Theorems 3.5.4, 3.6.1. The idea of our argument appears essentially already in
(N1cHOLS 1978).

We first point out the relation between the notions of "Frobenius algebra” in the sense of, respectively,
(MANIN 1988) and, say, (CURTIS & REINER 1988). For this, let us adopt following the provisional notation:

A graded algebra A is graded Frobenius of rank p if, for a fixed p, dim A? = 1 and the multiplication
AP=3 x AJ 5 AP is non-degenerate for any 7, 0 < j < p and AJ = 0, for j > p.

On the other hand, an algebra A is Frobenius if there exists an isomorphism of left A-modules T : A — A*,
where A, resp. A*, is considered as left module by left multiplication, resp. by the transpose of the right
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multiplication. See (CURTIS & REINER 1988), Chapter IX. In particular, A is finite dimensional. It follows
from the bijectivity of T" that the bilinear form

(a,0) := (T (b),a) = (T (1), ab) (23)

is non-degenerate; and by construction, it is associative: (ac,b) = (a,cb) for all a,b,c € A. Conversely, given
a non-degenerate associative bilinear form (, ) in a finite dimensional algebra A, the map T defined by (23)
is an isomorphism of left A-modules. This equivalence implies, in particular, that A is Frobenius if and only
if A% is Frobenius; that is, if and only if there exists an isomorphism of right A-modules T': A4 — (A*) 4.

Lemma 3.7.1. Let A = @jngj be a graded finite dimensional algebra such that A = C. Then A is
Frobenius if and only if is graded Frobenius.

Proof. We shall grade A* by A* = @,>¢ (A*)j, where (A*)j is isomorphic by restriction to (Aj)* and is
orthogonal to A* for i # j. Let us assume first that A is graded Frobenius; note that A° = C is part of the
requirements. Let u € AP — 0, A € (A*)? such that (A\,u) =1 and let T : A — A* be the linear map given
by (T'(a),b) = (), ba). Then we see without trouble that 7" is an isomorphism of A-modules.

Conversely, let T': A — A* be an isomorphism of A-modules. Since A is finite dimensional, there exists
p € N such that A7 # 0 and AP*J = 0 for all § > 0. Let T(1) = >.;T'(1);, where T'(1); € (A*)?. We shall
sce that [a,b] = (T'(1),, ab) is non-degenerate.

First we claim that T(1), # 0 and that the restriction [, | : A? x A% — C is non-degenerate.
Indeed, let 0 # a € AP. If b € ®;>1 A7, then ab = 0. Hence there exists b € A® such that 0 #
(T(1),ab) = (T(1)y,ab). That is, [,] induces a monomorphism A? — (A°)" and this is an isomorphism

because dim A° = 1.
The (left) radical of the bilinear form [, |

radA={a€ A: (T(1)p,ab) =0 Vbe A}

is a graded subspace of A. Assume that rad A # 0 and let 0 # a € rad A homogeneous of degree t with ¢
maximal. We claim that

(T(1),ab) =0 Vbe A®, Vs>0. (24)

Indeed, if s > p—t, ab=0;if 0 < s <p—t and ab # 0 then (T'(1),, abz) # 0 for some z by the maximality
of ¢, but this is not possible. Let then b € A such that (T'(1),ab) = 1; it follows from the preceding analysis
that b € AY. Let d € AP such that (T(1),,d) = 1. We claim now that

(T(1),(ab—d)xy =0, Vze A®, VO<s<p.

Indeed, for s = 0 this follows from the choice of d and for s > 0 from (24). This implies that ab — d = 0,
and hence t = p, a possibility that we already excluded. Therefore rad A = 0 and [, | is non-degenerate. [
Now we want to show that finite dimensional braided Hopf algebras, i.e. Hopf algebras in some braided
category, are Frobenius. (See (MAJID 1995), or the article (ANDRUSKIEWITSCH & GRANA 1999) in this
volume for generalities on braided Hopf algebras). This question was already discussed in several works
((LYUBASHENKO 1995), (TAKEUCHI 1999),
(?)) and the argument offered is a variation of the usual one for Hopf algebras: a fundamental theorem
for Hopf modules in braided categories is established, and this implies that the space of left integrals in a
finite dimensional braided Hopf algebra has dimension one. The braided category we are interested in is
MAE) | ¢f. Theorem 3.5.2; this category is not rigid. We could not then directly invoke strictu senso the



COMPACT QUANTUM GROUPS ARISING FROM THE FRT-CONSTRUCTION

above mentioned works, so we include a complete proof which is, nevertheless, standard. We thank H.-J.
Schneider for clarifying discussions on this point.

Let (B, p) be a CQT-bialgebra; M? is a braided category with braiding Cpsy : M ® N - N ® M given
by (17).

Let R be a braided Hopf algebra in MP; in particular R is an algebra and a coalgebra. To avoid
misunderstandings, we denote the comultiplication of R and the coaction of a right R-comodule M through
the following variation of Sweedler’s notation:

Ag(r) =rWD g r®), 5(m) =m® @m.

The compatibility between the product and the coproduct is expressed by the following formula:

(1) @ _ ), ) (2)
(zy)' @ (zy) T (y )(0)®(:r )(O)y

<p, (x(2))(1) ® (y(l))(1)> ’ (25)

The antipode Sg is antimultiplicative and anticomultiplicative in a braided sense; it is also a morphism
in MP. This means, respectively, that the following conditions hold for any z,y € R:

Sr(7)0) ® Sr(z)0) =

Sr(z(0)) ® T(1), (26)
Sr(zy) =
Sk (y0)) Sr (2)) (P, zq) @ Y1) » (27)

Sr(z)) @ Sp(z)?) =

<p’ (x(l))u) ® (x@))<1>> (25)
s (=), ) osa (=), ):

We denote by (MB)R (resp. (MB)R) the category of R-comodules (resp. modules) in the category MP.

That is, the objects are those B-comodules carrying a coaction (resp. an action) of R that is a morphism of

B-comodules. For instance the same R with the right regular coaction (resp. action) is an object of (MB )R

(resp. (MP) ).
The tensor product of a right R-module M and N in (MB ) r 1s again a right R-module via

(m®@mn)-r=

m - (r(l))(o) ® n(g) - r2) <,0,n(1) ® (r(l))(1)>

Similarly, the tensor product of a right R-comodule M and N in (MR )R is again a right R-comodule via

dmon) = m¥e ("(0))(0) @ (m(l))(o) )

<p’ (m(l))u) “ (n(O))<1>> '
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Let us consider the category M = (MB )2 of right Hopf modules over R (warning we do not ask that
M € ME is in MP1). These are modules and comodules over R such that the coaction is R-linear: if
M € Mg, then

s(m-r) = mO. (7«(1))(0) ® (m(l))(o) r(2
(29)
(o (m) ) ® () ).
It can be shown that the condition (29) is equivalent to the R-colinearity of the action.
For M € MF, the space of coinvariants is M°F = {m € M : §(m) =m®1}. If V is a vector space over
k, then V ® R has a natural structure of Hopf module whose action and coaction are defined on R. Clearly,

VoR“f=vel.

Lemma 3.7.2. "Fundamental Theorem of

Hopf modules” Let (B, p) be a CQT-bialgebra, R a braided Hopf algebra in MP and M € M}}%. Then the
map ¢ : MR ® R — M given by the restriction of the action is a natural isomorphism of Hopf modules,
with inverse

d: M= MEQR,  ¢(m)=m® . Sp(mM)ygm®?.

Proof. The point to check is the well-definition of the map ¢; that ¢ and ¢ are mutually inverse is not
difficult and will be left to the reader. So let m € M; it is enough to show that (§ ® id )¢(m) € M ® 1 ® R.
We compute:

(o1& (Sr (m) )
=m0 (SR (m(l)))(o) ®1em®?.
Here, the first equality is by definition; the second, by the Hopf module axiom (29) and the coassociativity
of the coaction; the third, by (28) and because Sg is a morphism; the fourth, by (15), the axiom of the
antipode and because the multiplication of R is a morphism; the last, by the axiom of the counit, since
{p,1 ® m) = e(m) by the invertibility of p. O

Lemma 3.7.3. Let (B,p) be a CQT-bialgebra, R a finite dimensional braided Hopf algebra in MP. Let
R* be considered as a right R module by trasposition of the left reqular action: {« - z,y) = (o, zy), o € R¥,
z,y € R. If R* admits a coaction such that

(a,8)) Sp(z®)) = (30)
(04(0)736(0)> (a(l))(o) <P7 (04(1))(1) ® x(1)> ’

then it is a Hopf module. In particular, R is a Frobenius algebra.



COMPACT QUANTUM GROUPS ARISING FROM THE FRT-CONSTRUCTION

Proof. We have to show that R* verifies (29), for this it is enough to show that

((a- x)(o)vy(0)> (e x)(l))(o) </” (CZ x)(l))u) ® y(1)> = <0‘(0) ‘ (x(l))(o) ,y(0)> ((O‘(l))(o) x@))(o) <p’ ((O‘(l))(o)'
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for all @ € R*, z,y € R.

Starting from the right hand side of (31) we get

L ~ <

3

Py o~
= S
w = X
P — S~
- [SZEEEN ,
T =
= = Y 2
% TN N \/U(u\ = < N TN
= — N ~ =
& = K %
~— N (7\ N’ xa N P NG
- & - & < -
T T T T T T Y T ~— T S~
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By Lemma 3.7.2, R* ~ R as right modules and R is Frobenius. Il

Lemma 3.7.4. Let (B, p) be a CQT-bialgebra, R = @jZORj a graded braided Hopf algebra in MP. Let us
assume that R® = C, that R is generated in degree 1, that dim R' is finite, that there exists an integer p
such that RP # 0, RPY! =0 and a coaction satisfiying relation (30). Then R is a Frobenius algebra of rank
.

Proof. Because R is generated in degree 1, RPT! = 0 implies RPT® = 0 for any positive s. Hence R is
finite dimensional. By Lemma 3.7.3, R is Frobenius. By Lemma 3.7.1 R is a Frobenius algebra of rank
p. d

Now we pass to the objects of our interest. We shall concentrate on Sym gV, since AgV = Sym gV
for S = —q~'S. By Proposition 3.1.1, Sym ¢V is an A(R)-comodule algebra. By the following Lemma, a
particular case of (MAJID 1995), Thm. 10.2.1, Sym gV is indeed a braided Hopf algebra in M4,

Lemma 3.7.5. There is a unique braided Hopf algebra structure on Sym ¢V whose comultiplication is de-
termined by

Av)=v®1+1Qw, veV. (32)

Proof. Tt is not difficult to see that A extends to a morphism of algebras, where the product on Sym ¢V &
Sym gV is given by (v ® m)(n ® 2) = (p,m) ® n))ung) ® m(gz. The existence of the antipode follows
from a Lemma of Takeuchi see (MONTGOMERY 1993), Lemma 5.2.10  since the coradical of Sym ¢V is
C. O

Remark 3.7.1. It is not true that any Sym ¢V bears a coalgebra coaction on its dual satisfiying (30); take
for instance S = Id. In the affirmative case we say that S is admissible. In (GUREVICH 1991) the notion of
a closed Symmetry is introduced. We conjecture that S closed implies S admissible.
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Proposition 3.7.1. If S is admissible, SymgHV =0 and Sym%V # 0, then Sym ¢V is a Frobenius algebra
of rank p.

Proof. This follows at once from Lemmas 3.7.4 and 3.7.5. Il
As explained above, the analogous result holds for the ”quantum exterior algebra”. Explicitly, and
combining with Theorem 3.3.1, we have

Corollary 3.7.1. If S is admissible, /\ZHV = 0 and NGV # 0, then AsV and Ag(V*) are Frobenius
algebras of rank p. Ol

We do not know the full characterization of the ”quantum exterior algebras” satisfying the ”weak” Frobe-
nius conditions as in the hypothesis of Theorem 3.3.2 (b). In this direction, we can offer the following

result.

Lemma 3.7.6. Let R = ®'7>0Rj be a graded algebra generated in degree one such that R # 0 for all j. If
F,_1(p) holds, then dim RPth =1 for all h > 0. More precisely, there exists v € R' such that RPTh = CoPth,
for all h > 0.

Proof. Let i € RP — 0. As R is generated in degree one, RP*! = yR' = R'u. So, there exists v € R!
such that vy # 0. By condition F, 1(p), there exists u € RP~! such that u = vu. Hence, for any w € R',
we have

HW = VuW = cvu, for some ¢ € C,

since uw € RP. This shows that RPT! = Cup.

We claim now that RPT" = Cv"pu, h > 0. This implies in turn that v* # 0 for all h. In particular,
vP € RP — 0; so we can take ¢ = vP and concludc the Lemma.

We prove the claim by recurrence on h; the case h = 1 was already treated. If RPT?» = Cv" 1, then by the
case h =1 we have for any w € R!

v pw = "y for some ¢ € C.

As RPth+1 — Rpth Rl the claim follows. d

Remark 3.7.2. The condition Fj;(p) for a graded algebra R is equivalent to the condition F,_;(p) for RP.
Thus, we could replace the hypothesis of the Lemma by Fi(p) and the conclusion will still be true.

4. COMPACT QUANTUM GROUPS H(R) AND K(R)

4.1. H(R) is a +-Hopf algebra. Let C be a o-coalgebra, A its dual x-algebra with respect to the involution
(1). We extend * to T™A in the usual way: (T1 @ --- @ Ty,)* =T} ® --- @ T,¥. On the other hand, T(C) is a
o-bialgebra where o : T(C) — T(C) is the natural extension of o : C — C. Let R € A® A.

Proposition 4.1.1. We assume that
R =71(R"). (33)
Then the preceding involution induces a o-bialgebra structure on A(R).
Proof. Let ( = 7(nR) — Rn € Jp. Then
¢ = 7(R'n°) —n°R"
= 7(R)T(n°) — 7(r(n°)T(R")) € Jr(rr)-
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Hence (Jg)° = Jg. d
We assume now V is a finite dimensional vector space provided with a fixed hermitian form. Then
A = End (V) is a x-algebra via (T*(u)|v) = (u|T'(v)), T € A, u,v € V; and C = A* is a o-coalgebra by (1).

Let S = 7R. Then R satisfies (33) if and only if S is selfadjoint. Indeed, as 7(R) = 7R7, we have
R=7(R*)=7R*r iffi TR = R*7, but this is S = S*.

We assume in what follows that S is selfadjoint and verifies the Braid equation and the Hecke condition
(S—q)(S+1)=0withg#0,¢™ #1ifm > 2, or ¢ =1. Note that ¢ € R. Let I =Tm (S +1) = ker(S —q),
As(V) =T(V)/{I) as before, and let wp : T(V) — Ag(V) be the canonical projection.

The hermitian form on V' induces an hermitian form on T'(V) by:

1. (lw)=0ifv e T"V, w € T™V and n # m.
2. (1@ Quplw @+ @wp) = (vifwi) - (vn|wn), vi,wi €V, 1=1,--+ ,n.

Proposition 4.1.2. T(V) is a o-comodule algebra over T(C).

Proof. We have to prove

(v |w) vy = (vlw)) (wi)”s v,w € T(V). (34)
We can assume that v,w € T™V and proceed by induction on n. The case n = 1 is straightforward. For the
general case, we assume further that v =11 ® -+ - Qup, w = w1 ® - - - @ w,,. Hence

(v lw) vay =
= (& ®@vn)p)lw1 ® -+ @ wy)
(V1 @+ ®un))
= (Vi) ® @ vpp)|lw1 @+ @ wy)
Vi) & @ Un(r)
(V1@ lwr) -+ (vn(o)lwn) Vi) ® -+ @ vag)
= (nlwr) vig) ® -+ @ (vn(o)|wn) vnry
(1w () (wi1)” @ ® (valwn(o)) (wn(p))”
(V1 @ @vplwie) ® - @ wn(g))
(w10))” ® @ (wnq))°
= (L1® - Qup|wi(e) @ ®Wn(p))
(w1 @ ®wn(y))”
= (e @ul o @u))

((wl R QR wn)(l))c

= (vlwe) (ww) -
Here we used that 0 and o are multiplicative. O
From this point, we assume that the hermitian form is an inner product, i.e. it is positive definite.

Proposition 4.1.3. The inner product
(]):T"V xT"V - C
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is Hy(n)-invariant. Moreover, (T"V)_ = (1my*.

Proof. The first statement is clear: if 1 <4 <n — 1 then

Let now v € (T"V)_ and u € T"V. Then

v[(o; + 1) - u)
(o; +1)* - v|u)
(0i +1) - vlu)

(v|(5i+1) (u)) (
(

= (o; - v+ v|u)
(

—v +ovlu) =0.
Thus (T"V)_ C (Im (S + 1))L = (Im)L, i=1,--+,n—1;since I" = 7' " we have
(T"V)_ c (I")*.

The claim follows because (T™V)_ and (I")" have the same dimension (see Proposition 3.3.2). O

Observe that the orthogonal projection from T™V onto (I™)' is given by the action of M_ € H,(n).
Indeed, if v € T"V, then M_ -v € (T"V)_ = (I")" and v — M_ - v € I" since wp(v — M_ - v) =
wa(v) — M_ - wa(v) = 0 (recall that H,(n) acts on A%V by the sign).

Therefore, we can provide Ag(V') with an inner product such that the different homogeneous components
are orthogonal to each other; and given on A%(V) by identification with (T"V)_ = (I"). That is, (v +
I'w+ 1"y = (M_-v|]M_-w), v,we€T"V.

Proposition 4.1.4.  (a): Ag(V) is a o-comodule algebra over A(R).
(b): If in addition S verifies Fy(p) and d € A(R) is given by Proposition 3.1.2, then d° = d.

Proof. (a). We have to prove

((u+ <I>) v+ <1 >) (ut <I>)g = (35)

(wh < 1> |04 < 13))) (0 <1 >))".

u,v € T(V). We can assume that u,v € T"V; then
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((u +1") gy v —i—I") (u+1") ) =
u(g) + I'v+ In) (U(l) + Jn)
M- )| M- -v) (ugy + J")
M_ - U,(O)|M_ : U) U(1) + J"

S

— - ul(M_ - v) )

M_ - u|(M_ - v)()

(
(
(
(
=
(
(
(
(
(

We uscd that the action of Hy(n) and the coaction of A(R) in T"V commute.

(b). By Proposition 3.1.2,

(l)d = (uo)le) pay = (Blre) (Ba))” = (ulp)d.

Since ( | ) is an inner product on ALV, (u|u) > 0 and thus d = d°. d

Proposition 4.1.5. Assume that S is selfadjoint and verifies the Braid equation, the Hecke condition, Fi(p)
and F,_1(p). Then H(R) = A(R)q is a x-Hopf algebra. Furthermore, As(V') is a o-comodule algebra over
H(R).

Proof. By Lemma 3.1.1, and because S = 'S, IS verifies Fj(p) whenever S verifies F;(p). We can apply
Theorem 3.5.4 to conclude that H(R) is a Hopf algebra. Furthermore, the last Proposition shows that H(R)
inherits the o-bialgebra structure from A(R); explicitly

h\° ke
) av

The first assertion follows now from Lemma 2.0.1 and the second, from the first and Proposition 4.1.4. [
We can now state our main result.

Theorem 4.1.1. Let V be a finite dimensional vector space provided with an inner product and let S :
VeV = VeV be alinear automorphism. Assume that S is selfadjoint and verifies the Braid equation,
the Hecke condition, F\(p) and Fy,_1(p). Then H(R) = A(R)q is a Compact Lincar Quantum Group. O

Proof. This follows from Theorems 2.0.1, 3.5.4, Corollary 3.5.2 and Proposition 4.1.5. Il
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4.2. K(R) is a +-Hopf algebra. We keep the notation of the preceding Subsection. The following Theorem
can be proved with arguments analogous to those given above.

Theorem 4.2.1. Let V be a finite dimensional vector space provided with an inner product and let S :
VeV = VeV be alinear automorphism. Assume that S is selfadjoint and verifies the Braid equation,
the Hecke condition, Fy(p) and F,_1(p). Then

1. K(R) = A(R)/(d — 1) is a =-Hopf algebra.
2. Ns(V) is a o-comodule algebra over K(R).
3. K(R) is a Compact Linear Quantum Group. O

5. EXAMPLES

We apply now the resulis of the preceding Section to show some new examples of CQG. Let V = ™ with
the standard inner product (denoted by -) and let {e{, - ,e,} be the canonical basis of V. We identify
as usual End (V ® V) with M,,,2,,,,2(C) via S(e; ® €j) = >y, Sikjlek ® e for § = (S,?l) € M,,25m2(C); then
S* = 1S. Because of Theorems 4.1.1 and 4.2.1, we have to find hermitian matrices S € M,,2 2 (C) which
verify the Braid cquation, the Hecke condition, Fi(p) and Fj,_;(p). We shall look for such matrices among
those described in (GUREVICH 1991).

We first recall some general remarks from (GUREVICH 1991). Let S be a solution of the Braid equation
that verifies Fy(p). Then there exists v;,...;, such that

{Z Viy iy €p @0+ @ eip} is a basis of (T?V)_. (36)
Let wu;,..;, be defined by
MP (e, ® - ®e,) =
ity (3 iy €y @ e, ) (37)
from (36) and (37) we obtain
Z Uiy ooriyy Viy ooy = L. (38)
Also, if g := " 04,5, €i; A--- A, then {u} is a basis of ARV It follows from (37) that
ey N Ney, = Uiy, fhe (39)
Since §(u) = p ® d, we have
d= Z Uiy evsipy Vg Lirjy *** Lipjpe (40)
From now on, we shall assume that the rank of S is p = 2; we fix u = (u4,4,) and v = (vi,4,)-
Proposition 5.0.1. Let S be a solution of the Braid equation satisfying the Hecke condition with label

qeC, where q#Q and g" #1 if n > 2 or g = 1.
(a) Assume that S satisfies F1(2). Then the matrices u and v given by (36) and (37) satisfy

i = q ik 81 — (14 q) vij up, (41)
[gid — (1 +q)* (uv'u'v)], vrnujp =
[gid — (1 +¢)* (v uv)],, vir uij, (42)

Z Ui vij = L. (43)
i



BOLETIN DE LA ACADEMIA NACIONAL DE CIENCIAS, CORDOBA (ARGENTINA)

Conversely, let u,v € My, xm(C) such that (42) and (43) hold. Then S defined by (41) is a solution of the
Braid equation satisfying the Hecke condition with label q¢ and F1(2).
(b) Assume that S salisfies F1(2) and let u, v be as above. Then ANEV =0 if n > 2 if and only if

uviulv = q(1+¢)?id. (44)
(b) Let u,v € My (C) and set
z=(14¢q)v. (45)
If u,v verify (43) and (44), then z and v and satisfy
g7l = vz, (46)
trz = 144 (47)

Conversely, if z,v € Mpyxm(C) are invertible and fulfill (46) and (47), then u = ﬁqt(vfl z) and v satisfy
(43) and (44).

(d) If z,v € My, (C) are invertible and fulfill (46) and (47), then tr z = 1+ q and its Jordan form has,
together with any cell corresponding to an eigenvalue o, an analogous cell with eigenvalue g™ (with the
same multiplicity).

Conversely, if z is invertible, trz = 1 + g and its Jordan form has such blocks, then there exists an
invertible matriz v such that z and v verify (46) and (47).

Parts b, ¢ and d of this Proposition are contained in (GUREVICH 1991).

Proof. 'The proofs of ¢ and d are straightforward and we leave them to the reader. We prove b; the proof
of a is similar. Assume that S satisfies F(2) and ATV = 0if n > 2. Let v = (v;;) and u = (u;;) be matrices
fulfilling (36) and (37). The relation (43) is nothing but (38). The relation (41) follows from (37) and

M2 = 11+q(q - 8). (48)
By Proposition 3.2.1 (2),

M2 (M?), M? = q (1 +q)>M?; (49)

writing this in coordinates we obtain (44). Notice that (44) implies, clearly, (42).

Conversely, let u and v verify (43) and (44) and let S be defined by (41). Then S is a solution of the
Braid equation satisfying the Hecke condition with label g € C, F1(2) and ATV =0if n > 2.

Indeced, working in coordinates, we sce that the Braid cquation is cquivalent to

(C] ((q + 1)Zuabvab - Q> id —

ab
(1+q)? (uvtutv))il Urn, Uk =

(q ((Q+ 1)) thap vab — q) id —

ab
(1+q)? (tutvuv))knvlruij, i, 7, k, 1, n.

Hence (44) and (43) imply that S verifies the Braid equation. The Hecke condition follows immediatly from
(43). It p =>4 vkl e A ey, then e; A ej = u;; . Hence S verifies F(2).
From (44) we deduce (49); via (48) and since (ME)2 = M?, we conclude that

gM? —M?2S2M? =q(1 +q) M2, (50)
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Now A%V =0 if n > 2 because of (50) and Proposition 3.2.1 (1). O

Let S be a solution of the Braid equation satisfying the Hecke condition with label ¢ € C and F3(2). We
observe that §* = S if and only if ¢ is real and

Vij Ukl = Uyg Vki, 7;7,7.7 k,l (51)

Indeed, if S* = S then ¢ is real because it is an eigenvalue of S. Now (51) follows from (41).

We shall denote by z; the rows of an arbitrary matrix z.

The preceding Proposition reduced the search of solution S of rank 2 to some invertible matrices z. We
show now that to find matrices S which verify the Braid equation, the Hecke condition, F}(2), ALV =0 if
n > 2 and §* = 5, it is enough to have the following data:

1. w, y unitary matrices,
2. a1, - ,a;, positive scalars,
3. 0 € S, such that ¢2 = id,

which verify

GiOyG)y = Gjag(), Viyj (52)
(aa(j) - a’i) Y; - w_] = 07 VZ?] (53)

The solution S we are looking for is explicitly given by
Sy = q0ik 051 — (14 q) 7 vij U, (54)
where ¢, r and v are related to the above data by

-1
r=0af) Fﬁq =a1084(1) 7,

Vij = D1, Whi Ok Yks-

Theorem 5.0.2. Let S be an hermitian mailriz
which verifies the Braid equation, the Hecke condition with label q, F1(2) and NGV =0 ifn > 2. Let z be a

matriz corresponding to S via Proposition 5.0.1. Then

1. The label g is positive and z is an hermitian matriz. Hence z = %Diag(al, <Oy ) w, where w is a
unitary matriz, and aq, - , oy are posilive scalars. Moreover, there exists o permutation o € S,y such
that 02 =id and

Qp(iy = qozi_l, 1=1,---,m. (55)

2. If v verifies (36), let x = wv, a; = |||, yi = a; ‘i and y the matriz of rows y1,- -+ ,ym. Theny is a
unitary matriz and (52), (53) hold.
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Conversely, let y and w be two unitary matrices, ay,- - - , am positive scalars and o € Sy, such that 0® = id.
We suppose that (52) and (53) hold. Let q, a1, -+, and the m X m maitriz z be given by

\/a _ a1 Gg(1) <_ Q; Qg (3) VZ) 7 (56)

l+q Yeap \ Xap]
aiZalQ = (14¢a?, i=1,---,m, (57)
L
z = w 'Diagoq, - ,am)w. (58)

Then z verifies the hypothesis of Proposition 5.0.1 d and also (51) holds. Hence the corresponding matriz
S is an hermitian matriz which verifies the Braid equation, the Hecke condition with label q, F1(2) and
NV =0ifn > 2.

Proof. Let u, v be a pair of matrices corresponding to S via Proposition 5.0.1 b. From (51), we have

(U tu)ij = sz‘k Uik = Zuzk Vijk = (u flU)ij
k k

Then vtu = u' = t(v ), and from (45) we have z = %; hence there exists an unitary matrix w such that
wzg:Dia’g(ab'” 704m)7 (59)
where a1, -+, a;, € R are the eigenvalues of z.

By Proposition 5.0.1 d, there exists o € S,,, such that 02 = id and o verifies (55); we can assume o? = id
because the map o — ga~! from
{aq,- -+, } onto itself is an involutive bijective map.
It follows from (51) that v;; u;; = U wy;, 4,7; then v;;u;; € R Observe that (51) together with v # 0
implies u;; = 0 whenever v;; = 0. Then there exists r;; € R such that

Uij = TijUij, & (60)
if v;; = 0 we take r;; = 0. Now from (51) and (60) we have

(rij — rx1) Vij vg = 0.

Then there exists r € R* such that v = r7. Let £ = wv, then from (43) and since w is unitary, we have

r:(znvinZ) =<Z||xi||2> ERY. (61)

From (45) we have z = (1 4+ ¢) 7 v, and then

Diag(aq, -+ ,a,) = (1 —l—q)rxg,

or equivalently

Ty = Oifi#j, (62)
r+Qllzll® = o i=1,---,m. (63)

The relations (63) imply sign(«;)=sign(1 + ¢q), Vi and from (47) we have

1+q=Zo¢i zz:qoz;(li) zqz%_l.
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Hence we have ¢ > 0, and then o; > 0, Vi. Let be a; = ||z]|, i = o] 'z; and y the matrix of rows
Y1, ,Ym- The equation (62) implies that y is a unitary matrix. The equations (55) and (63) force

a; Qy(;

(4 U(;): \/672':17”.7,’%. (64)

Do 14+4¢
Thus (52) follows. By (55), (59) and (63) we have

qtz_1 vl e
& (xtw) quag(al_l,--- ,oz;Ll) =

Diag(ai, -+ ,am) (z'w)

& (ag(j) — ozi) (a: tw)ij =0, Vi,7
& (L4 q) (llzoll? — llzill?) z; -5 = 0, Vi, j
= (ag(j) - ai) Y - Wy = 0, Vi, j.
Hence (53) holds. This finishes the proof of the first part.
Let us prove now the converse implication. The solutions of the equation (56) are real and positive and we

can choose for ¢ any of them (see Remark 5.0.1 (iii) below). Let x be the matrix of rows a;y;, i =1,--- ,m.
It is clear that the matrices z and x are invertible. From (57) we get

2
Q; Oy (7 (Z a%) = (1+9)*a} a(27(i);
1

via (56) we have (55). The equation (47) follows immediately from (57). From (53) we obtain

—1
(1+4q) (Z alQ) (a’g(j) - a?) a;yi - wj =0,

!
and from (57) we conclude

(o) — i) (= tw)ij = 0.
Now (55) implies

(:ctw) quag(ozl_l,--- ,ozfnl) =
Diag(ay, -+ ,am) (zw)

which immediately gives (46). Hence z verifies the hypothesis of Proposition 5.0.1 d.

Let v =w"'z and r = (3}, a?)_l. Since w is unitary,
(1+q)vi(rv)=w™" (1 +q)rz'T) w. (65)
On the other hand, y also is unitary and by (57), we have
(1+ q)rz'%T = Diag(ay, -+ , ). (66)
Putting together (65), (66), (58) and (45) we see that u = r7 and therefore (51) holds. d
Remark 5.0.1. (i). To apply Theorem 5.0.2, it is useful to recall that a permutation o verifies 0? = id if
and only if ¢ is a product of disjoint transpositions.

(#i). In the situation described in the first part of Theorem 5.0.2, suppose that z is in Jordan form. Then
we can take w = id, v = z and (53) is equivalent to

(a0(y — ai)vij =0, i,j =1,--- ,m. (67)
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Hence v;; = vj; = 0 whenever a,(;) # a;j. Observe that the a;’s may not be different and then o(i) # j does
not necessarily imply v;; = v;; = 0.

(iit). If we combine (54) with (8), we see that the corresponding algebra A(R) is generated by t;;, 1 <
1,5 < m with defining relations

Vij Z'Upn tk:ptln = Ugt Zthi tnj7 Ty Js k,l. (68)
pn pn

By (40) the "quantum” determinant is given by

d=r ZWUH tik tjl- (69)
ijkl

Therefore, the Hopf algebras H(R) and K(R) do not depend on which solution ¢ of (56) is chosen.

Now we consider the data described above in two extreme cases: when the a;’s are all different and when
they are all equal.

Case when the a;’s are oll different.

From (53) we have that y; is orthogonal with Wy, if i # o(j). As y and w are unitary matrices we get

v = b Wy (i) with |8;] =1, i =1,--- ,m.

In this case, the data to obtain our desired solutions S is the following:

1. a unitary matrix w;

2. B1, -, PBm, complex numbers in the unitary circle;
3. a1, , Gy, different real and positive numbers;

4. a permutation ¢ € S,, such that o2 = id;

they have to verify only (52).
Explicitly,

— -1
Vij = D1, Ok Bk ki Wo(k) 4> r=(>,a6")" ",
Sy = a0k 01 — (L+ q) 7 vij O

with q defined by (56). If we take w = id then v;; = a; B; 6;y(;)-

Case when the a;’s are all equal.
In this case (52) and (53) are trivially verified; (56), (57) and (41) become

0 = ¢+©2-mg+1,
o = 1Py
= T T !
- (70)
SIZQJZ — qékz 5[] — % Vijg Vkls VZ,],k’,l

Observe that .S and ¢ do not depend on the common value of the a;’s. In this case we need only two unitary
matrices y and w with no relations. S and ¢ are then determined by (70). We have ¢ = 1 if m = 2 and two
distinct real and positive values of ¢ if m > 2.
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Let us discuss in detail the case m = 2. We preserve the notation above.
We suppose w = id 4. e. that z is in Jordan form.

Assume first that a; = ao. We already know that ¢ = 1. Then S has the form

b2 —ab —a —ad
—ba |a]> -bc -bd
—c@ —cb |a]? —cd

—da —db —d¢ |b?

(i Z)eU(2).

Assume next that a; # ao € RT and let 81,82 € C, |81| = |f2| = 1. In this case ¢ verifies

Va _ _map
l+q a?+ad

S = , with

and then ¢ is equal to (az/a1)? or (a1/a2)?. If ¢ = (a1/a2)® we take y = a1 /az and v = B1/B2. Then

20 0 0

_ 0 0 —vy 0

=1 0 3y 421 0 )
0 0 0 42

If g = (ag/a1)2 we take y = ag/ay and v = f2/B1. Then the corresponding matrix is 7.5 7. In both cases
is ¢q =9y? withy e R, y £ 1, y € C, |y = 1, and d = t11t22 + (yy) ' tiater in the first case and
d = t11 too + yyt12 t21 in the sccond.

Centrality of the quanium determinant

Let S be a solution of the Braid equation verifying the Hecke condition and such that AgV is Frobenius
of rank p.
Let us define

M;;, = Zull...lpflivjll“'lp‘l (72)
Nij = > thigyeeq,, 1o (73)
Proposition 5.0.2. (GUREVICH 1991). M N = ¢*~! [p]-%id.
Corollary 5.0.1. d € Z(A(R)) if and only if M are N are scalar matrices.

It is not difficult to determine when the determinant is central if the rank is 2. Indeed, we have N = uv
and M = {vu). If S is also hermitian, then u = 7@, r € RT and d € Z(A(R)) if and only if v is a scalar
matrix. If for instance the a;’s are all different, it is enough to take the ;’s such that

Bi _ B
Boti)  Pots)’
If, in particular, m = 2 then v = £1 in (71).
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