Quantum subgroups of a simple quantum group at a root of 1

Nicolás Andruskiewitsch* and Gastón García

Universidad de Córdoba, Argentina. CIEM-CONICET.

AMS sectional meeting

Chicago, October 5, 2007.

Let me begin by the list of finite-dimensional complex Hopf algebras I know:

- Group algebras $\mathbb{C}\Gamma$ (Γ finite)
- Their duals \mathbb{C}^{Γ}
- Their twistings $\mathbb{C}\Gamma^J$ and $(\mathbb{C}^\Gamma)_J$, Γ finite, $J \in \mathbb{C}\Gamma \otimes \mathbb{C}\Gamma$ twist.

- \mathfrak{g} simple Lie algebra, ϵ root of 1 of order N small quantum group $u_{\epsilon}(\mathfrak{g})$ (a.k.a. Frobenius-Lusztig kernel)
- (A.-Schneider) Pointed Hopf algebras $u(\mathcal{D}, \lambda, \mu)$, Γ finite abelian group, \mathcal{D} Cartan datum, λ linking parameter, μ power root parameter
- Their duals...
- Their twistings.

Explicitly known for $\Lambda(V) \# \mathbb{C}\Gamma$ (Etingof-Gelaki), Γ non abelian.

- Bosonizations $\mathfrak{B}(V)\#\mathbb{C}\Gamma$ of the braided vector spaces of diagonal type in Heckenberger's list.
- Bosonizations $\mathfrak{B}(V)\#\mathbb{C}\Gamma$ of the known braided vector spaces of group type with finite-dimensional Nichols algebra (Milinski-Schneider, Fomin-Kirillov, Graña, . . .).
- Ditto replacing $\mathbb{C}\Gamma$ by a semisimple Hopf algebra (examples in paper by Dascalescu-Masuoka-Menini-...).
- Their liftings...
- Their subalgebras...
- Their duals...
- Their twistings.

Drinfeld doubles (and generalizations)

Extensions of the preceding:

- Tensor product of any two known Hopf algebras.
- (G. I. Kac) If $\Sigma = FG$ is an exact factorization (Σ finite), then $\mathbb{C}^F \hookrightarrow \mathbb{C}^F \bowtie \mathbb{C}G \twoheadrightarrow \mathbb{C}G$
- Version with cocycles $\mathbb{C}^F \hookrightarrow \mathbb{C}^F \stackrel{\tau}{\bowtie}_{\sigma} \mathbb{C}G \twoheadrightarrow \mathbb{C}G$ (control by Kac exact sequence)
- Group-theoretical Hopf algebras (Ocneanu-Ostrik)

- Non-abelian extensions, with weak actions and cocycles (very few explicit finite-dimensional examples to my knowledge; infinite-dimensional example by Majid-Soibelman, finite-dimensional version in Majid's book).
- (E. Müller) Construction of all finite-dimensional Hopf algebra quotients $\mathcal{O}_{\epsilon}(SL_N) \twoheadrightarrow A$, ϵ a root of 1. They fit into

$$1 \longrightarrow \mathcal{O}(SL_N) \stackrel{\iota}{\longrightarrow} \mathcal{O}_{\epsilon}(SL_N) \stackrel{\pi}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{g})^* \longrightarrow 1$$
 $\downarrow^{t_{\sigma}} \qquad \downarrow^{q} \qquad \downarrow^{r}$
 $1 \longrightarrow \mathcal{O}(\Gamma) \stackrel{\widehat{\iota}}{\longrightarrow} A \stackrel{\widehat{\pi}}{\longrightarrow} H \longrightarrow 1.$

Here $\mathcal{O}(\Gamma) = \mathbb{C}^{\Gamma}$.

Questions.

- Exhaust the preceding.
- Are there more examples?

Goal. G a simple algebraic group, $\mathfrak{g} = \text{Lie } G$, ϵ a root of 1 of order ℓ (odd, prime to 3 if G is of type G_2).

Classify all (finite-dimensional or not) Hopf algebra quotients $\mathcal{O}_{\epsilon}(G) \twoheadrightarrow A$. They fit into

$$1 \longrightarrow \mathcal{O}(G) \stackrel{\iota}{\longrightarrow} \mathcal{O}_{\epsilon}(G) \stackrel{\pi}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{g})^* \longrightarrow 1$$
 $\downarrow^{t_{\sigma}} \qquad \downarrow^{q} \qquad \downarrow^{r}$
 $1 \longrightarrow \mathcal{O}(\Gamma) \stackrel{\widehat{\iota}}{\longrightarrow} A \stackrel{\widehat{\pi}}{\longrightarrow} H \longrightarrow 1.$

Let
$$\mathbb{T} := \{K_{\alpha_1}, \dots, K_{\alpha_n}\} = G(\mathbf{u}_{\epsilon}(\mathfrak{g})).$$

If
$$I \subset \Pi$$
, then $\mathbb{T}_I := \{K_{\alpha_i} : i \in I\}$.

Theorem. (E. Müller). The Hopf subalgebras of $\mathbf{u}_{\epsilon}(\mathfrak{g})$ are parameterized by triples (Σ, I_+, I_-) , where

$$\bullet I_+ \subseteq \Pi$$
, $I_- \subseteq -\Pi$

• If
$$I = I_+ \cup -I_-$$
, then $\mathbb{T}_I < \Sigma < \mathbb{T}$.

A subgroup datum is a collection $\mathcal{D} = (I_+, I_-, N, \Gamma, \sigma, \delta)$ where

- $I_{+} \subseteq \Pi$ and $I_{-} \subseteq -\Pi$. Let $\Psi_{\pm} = \{\alpha \in \Phi : \operatorname{Supp} \alpha \subseteq I_{\pm}\}$, $\mathfrak{l}_{\pm} = \sum_{\alpha \in \Psi_{\pm}} \mathfrak{g}_{\alpha}$ and $\mathfrak{l} = \mathfrak{l}_{+} \oplus \mathfrak{h} \oplus \mathfrak{l}_{-}$; \mathfrak{l} is an algebraic Lie subalgebra of \mathfrak{g} . Let L be the connected Lie subgroup of G with Lie $(L) = \mathfrak{l}$. Let $s = n |I_{+} \cup -I_{-}|$.
- N is a subgroup of $(\mathbb{Z}/(\ell))^s$.
- ullet Γ is an algebraic group.
- $\sigma: \Gamma \to L$ is an injective homomorphism of algebraic groups.
- $\delta: N \to \widehat{\Gamma}$ is a group homomorphism.

If Γ is finite, we call \mathcal{D} a finite subgroup datum.

Let $\mathcal{D}=(I_+,I_-,N,\varGamma,\sigma,\delta)$ and $\mathcal{D}'=(I'_+,I'_-,N',\varGamma',\sigma',\delta')$ be subgroup data. We say that $\mathcal{D}\leq\mathcal{D}'$ iff

• $I'_+ \subseteq I_+$ and $I'_- \subseteq I_-$.

Hence $I' \subseteq I$, $\mathbb{T}_{I'} \subseteq \mathbb{T}_I$ and $\mathbb{T}_{I^c} \subseteq \mathbb{T}_{I'^c}$. As $\mathbb{T}_{I'^c} = \mathbb{T}_{I^c} \times \mathbb{T}_{I'^c-I^c}$, the restriction map $\widehat{\mathbb{T}_{I'^c}} \twoheadrightarrow \widehat{\mathbb{T}_{I^c}}$ admits a canonical section η and $\eta(N) \subseteq N'$.

- There exists a morphism of algebraic groups $\tau:\Gamma'\to\Gamma$ such that $\sigma\tau=\sigma'.$
- $\delta' \eta = {}^t \tau \delta$.

 $\mathcal{D} \simeq \mathcal{D}'$ iff $\mathcal{D} < \mathcal{D}'$ and $\mathcal{D}' < \mathcal{D}$.

Theorem. There is a bijection between

(a) Hopf algebra quotients $\mathcal{O}_{\epsilon}(G) \to A$.

(b) Subgroup data up to equivalence.

N. A. & G. A. García, http://arxiv.org/abs/0707.0070.

Properties of $A_{\mathcal{D}}$. N. A. & G. A. García, 'Extensions of finite quantum groups by finite groups', arXiv:math/0608647v6.

- $\dim A_{\mathcal{D}} < \infty$ iff $|\Gamma| < \infty$ $A_{\mathcal{D}}$ semisimple iff $|\Gamma| < \infty$, $I = \emptyset$
- If $A_{\mathcal{D}}$ is pointed, then $I_+ \cap -I_- = \emptyset$ and Γ is a subgroup of the group of upper triangular matrices of some size. In particular, if Γ is finite, then it is abelian.
- If dim $A_{\mathcal{D}} < \infty$ and $A_{\mathcal{D}}^*$ is pointed, then $\sigma(\Gamma) \subseteq \mathcal{T}$.
- If $A_{\mathcal{D}}$ is co-Frobenius then Γ is reductive.
- Some invariants of $A_{\mathcal{D}}$ under isomorphism; complete determination if $H = \mathbf{u}_{\epsilon}(\mathfrak{g})^*$.

Sketch of the proof.

Let $\mathcal{D} = (I_+, I_-, N, \Gamma, \sigma, \delta)$ be a subgroup datum. We first construct a quotient $A_{\mathcal{D}}$ of $\mathcal{O}_{\epsilon}(G)$.

$$1 \longrightarrow \mathcal{O}(G) \stackrel{\iota}{\longrightarrow} \mathcal{O}_{\epsilon}(G) \stackrel{\pi}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$
 $res \downarrow \qquad \downarrow Res \qquad \downarrow p$
 $1 \longrightarrow \mathcal{O}(L) \stackrel{\iota_{L}}{\longrightarrow} \mathcal{O}_{\epsilon}(L) \stackrel{\pi_{L}}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} \longrightarrow 1$
 $t_{\sigma \downarrow} \qquad \downarrow \nu \qquad \parallel$
 $1 \longrightarrow \mathcal{O}(\Gamma) \stackrel{j}{\longrightarrow} A_{\mathfrak{l},\sigma} \stackrel{\overline{\pi}}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} \longrightarrow 1$
 $\downarrow t \qquad \downarrow v$
 $1 \longrightarrow \mathcal{O}(\Gamma) \stackrel{\widehat{\iota}}{\longrightarrow} A_{\mathcal{D}} \stackrel{\widehat{\pi}}{\longrightarrow} H \longrightarrow 1$.

First step.

Let $\mathbf{u}_{\epsilon}(\mathfrak{l})$ be the Hopf subalgebra of $\mathbf{u}_{\epsilon}(\mathfrak{g})$ corresponding to the triple (\mathbb{T}, I_+, I_-) .

We have a commutative diagram of exact sequences of Hopf algebras

$$1 \longrightarrow \mathcal{O}(G) \stackrel{\iota}{\longrightarrow} \mathcal{O}_{\epsilon}(G) \stackrel{\pi}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{g})^* \longrightarrow 1$$
 $\downarrow \text{res} \qquad \downarrow \text{Res} \qquad \downarrow p$
 $1 \longrightarrow \mathcal{O}(L) \stackrel{\iota_L}{\longrightarrow} \mathcal{O}_{\epsilon}(L) \stackrel{\pi_L}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{l})^* \longrightarrow 1$

Second step. Let A and K be Hopf algebras, B a central Hopf subalgebra of A such that A is left or right faithfully flat over B and $p:B\to K$ a surjective Hopf algebra map. Then $H=A/AB^+$ is a Hopf algebra and A fits into the exact sequence $1\to B\stackrel{\iota}{\to} A\stackrel{\pi}{\to} H\to 1$. If we set $\mathcal{J}=\ker p\subseteq B$, then $(\mathcal{J})=A\mathcal{J}$ is a Hopf ideal of A and $A/(\mathcal{J})$ is the pushout:

K can be identified with a central Hopf subalgebra of $A/(\mathcal{J})$ and $A/(\mathcal{J})$ fits into the exact sequence

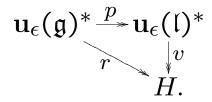
$$1 \longrightarrow B \xrightarrow{\iota} A \xrightarrow{\pi} H \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$1 \longrightarrow K \xrightarrow{j} A/(\mathcal{J}) \longrightarrow H \longrightarrow 1.$$

We have a surjective Hopf algebra map ${}^t\sigma:\mathcal{O}(L)\to\mathcal{O}(\Gamma).$ By pushout, we construct a Hopf algebra $A_{\mathfrak{l},\sigma}$ which is part of an exact sequence of Hopf algebras and fits into the following commutative diagram

Third step. Let $H^* \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g})$ be determined by (Σ, I_+, I_-) . Since $\mathbf{u}_{\epsilon}(\mathfrak{l})$ is determined by the triple (\mathbb{T}, I_+, I_-) with $\mathbb{T} \supseteq \Sigma$, we have that $H^* \subseteq \mathbf{u}_{\epsilon}(\mathfrak{l}) \subseteq \mathbf{u}_{\epsilon}(\mathfrak{g})$. Let $r : \mathbf{u}_{\epsilon}(\mathfrak{g})^* \to H$ and $v : \mathbf{u}_{\epsilon}(\mathfrak{l})^* \to H$ be the surjective Hopf algebra maps induced by the inclusions. Then



Now $\mathbb{T}_I \subseteq \Sigma \subseteq \mathbb{T} = \mathbb{T}_I \times \mathbb{T}_{I^c}$.

If we set $\Omega = \Sigma \cap \mathbb{T}_{I^c}$, then $\Sigma \simeq \mathbb{T}_I \times \Omega$.

TFAE:

- ullet a subgroup Σ such that $\mathbb{T}_I \subseteq \Sigma \subseteq \mathbb{T}$
- ullet a subgroup $\Omega\subseteq \mathbb{T}_{I^c}$,
- ullet a subgroup $N\subseteq\widehat{\mathbb{T}_{I^c}}.$

For all $1 \leq i \leq n$ such that $\alpha_i \notin I_+$ or $\alpha_i \notin I_-$ we define $D_i \in G(\mathbf{u}_{\epsilon}(\mathfrak{l})^*) = \mathsf{Alg}(\mathbf{u}_{\epsilon}(\mathfrak{l}), \mathbb{C})$ on the generators of $\mathbf{u}_{\epsilon}(\mathfrak{l})$ by

$$D_i(E_j) = 0 \quad \forall j : \alpha_j \in I_+, \qquad D_i(F_k) = 0 \quad \forall k : \alpha_k \in I_-,$$

 $D_i(K_{\alpha_t}) = 1 \quad \forall t \neq i, \ 1 \leq t \leq n, \ D_i(K_{\alpha_i}) = \epsilon_i,$

where ϵ_i is a primitive ℓ -th root of 1. We define for all $z=(z_1,\ldots,z_s)\in\widehat{\mathbb{T}_{I^c}}$ $D^z:=D_{i_1}^{z_1}\cdots D_{i_s}^{z_s}\in G(\mathbf{u}_{\epsilon}(\mathfrak{l})^*).$

- (a) D^z is central in $\mathbf{u}_{\epsilon}(\mathfrak{l})^*$, for all $z \in \widehat{\mathbb{T}_{I^c}}$.
- (b) $H \simeq \mathbf{u}_{\epsilon}(\mathfrak{l})^*/(D^z 1|z \in N)$.
- (c) There exists a subgroup $\mathbf{Z}:=\{\partial^z|\ z\in\widehat{\mathbb{T}_{I^c}}\}$ of $G(A_{\mathfrak{l},\sigma})$ isomorphic to $\{D^z|\ z\in\widehat{\mathbb{T}_{I^c}}\}$ consisting of central elements.

Finally, $A_{\mathcal{D}}$ is given by the quotient $A_{\mathfrak{l},\sigma}/J_{\delta}$ where J_{δ} is the two-sided ideal generated by the set $\{\partial^z - \delta(z)|z \in N\}$ and the following diagram of exact sequences of Hopf algebras is commutative

$$1 \longrightarrow \mathcal{O}(G) \stackrel{\iota}{\longrightarrow} \mathcal{O}_{\epsilon}(G) \stackrel{\pi}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \longrightarrow 1$$
 $res \downarrow \qquad \downarrow Res \qquad \downarrow p$
 $1 \longrightarrow \mathcal{O}(L) \stackrel{\iota_{L}}{\longrightarrow} \mathcal{O}_{\epsilon}(L) \stackrel{\pi_{L}}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} \longrightarrow 1$
 $t_{\sigma \downarrow} \qquad \downarrow \nu \qquad \parallel$
 $1 \longrightarrow \mathcal{O}(\Gamma) \stackrel{j}{\longrightarrow} A_{\mathfrak{l},\sigma} \stackrel{\overline{\pi}}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{l})^{*} \longrightarrow 1$
 $\downarrow t \qquad \downarrow v$
 $1 \longrightarrow \mathcal{O}(\Gamma) \stackrel{\widehat{\iota}}{\longrightarrow} A_{\mathcal{D}} \stackrel{\widehat{\pi}}{\longrightarrow} H \longrightarrow 1.$

Fourth step. Let U be any Hopf algebra and consider the category $\mathcal{Q}\mathcal{U}\mathcal{O}\mathcal{T}(U)$, whose objects are surjective Hopf algebra maps $q:U\to A$. If $q:U\to A$ and $q':U\to A'$ are such maps, then an arrow $q\overset{\alpha}{\to}q'$ in $\mathcal{Q}\mathcal{U}\mathcal{O}\mathcal{T}(U)$ is a Hopf algebra map $\alpha:A\to A'$ such that $\alpha q=q'$. A quotient of U is just an isomorphism class of objects in $\mathcal{Q}\mathcal{U}\mathcal{O}\mathcal{T}(U)$; let [q] denote the class of the map q. There is a partial order in the set of quotients of U, given by $[q]\leq [q']$ iff there exists an arrow $q\overset{\alpha}{\to}q'$ in $\mathcal{Q}\mathcal{U}\mathcal{O}\mathcal{T}(U)$. Notice that $[q]\leq [q']$ and $[q']\leq [q]$ implies [q]=[q'].

Lemma. Let \mathcal{D} and \mathcal{D}' be subgroup data. Then

- (a) $[A_{\mathcal{D}}] \leq [A_{\mathcal{D}'}]$ iff $\mathcal{D} \leq \mathcal{D}'$.
- (b) $[A_{\mathcal{D}}] = [A_{\mathcal{D}'}]$ iff $\mathcal{D} \simeq \mathcal{D}'$.

Fifth step. Let $q: \mathcal{O}_{\epsilon}(G) \to A$ be a surjective Hopf algebra map. We show that it is isomorphic to $q_{\mathcal{D}}: \mathcal{O}_{\epsilon}(G) \to A_{\mathcal{D}}$ for some subgroup datum \mathcal{D} .

The Hopf subalgebra $K = q(\mathcal{O}(G))$ is central in A and whence A is an H-extension of K, where $H := A/AK^+$.

There exists an algebraic group Γ and an injective map of algebraic groups $\sigma: \Gamma \to G$ such that $K \simeq \mathcal{O}(\Gamma)$.

Since $q(\mathcal{O}_{\epsilon}(G)\mathcal{O}(G)^{+}) = AK^{+}$, we have $\mathcal{O}_{\epsilon}(G)\mathcal{O}(G)^{+} \subseteq \ker \widehat{\pi}q$, where $\widehat{\pi}: A \to H$ is the canonical projection. Since $\mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \simeq \mathcal{O}_{\epsilon}(G)/[\mathcal{O}_{\epsilon}(G)\mathcal{O}(G)^{+}]$, there exists a surjective map $r: \mathbf{u}_{\epsilon}(\mathfrak{g})^{*} \to H$; H^{*} is determined by a triple (Σ, I_{+}, I_{-}) . In particular, we have the following commutative diagram

$$1 \longrightarrow \mathcal{O}(G) \stackrel{\iota}{\longrightarrow} \mathcal{O}_{\epsilon}(G) \stackrel{\pi}{\longrightarrow} \mathbf{u}_{\epsilon}(\mathfrak{g})^* \longrightarrow 1$$
 $\downarrow^{t_{\sigma}} \qquad \downarrow^{q} \qquad \downarrow^{r}$
 $1 \longrightarrow \mathcal{O}(\Gamma) \stackrel{\widehat{\iota}}{\longrightarrow} A \stackrel{\widehat{\pi}}{\longrightarrow} H \longrightarrow 1.$

Lema. $\sigma(\Gamma) \subseteq L$, A is a quotient of $A_{l,\sigma}$ given by pushout.

Finally, there exists a group homomorphism $\delta: N \to \widehat{\Gamma}$ such that $J_{\delta} = (\partial^z - \delta(z)|\ z \in N)$ is a Hopf ideal of $A_{\mathfrak{l},\sigma}$ and $A \simeq A_{\mathcal{D}} = A_{\mathfrak{l},\sigma}/J_{\delta}$.