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Let me begin by the list of finite-dimensional complex Hopf al-
gebras I know:

e Group algebras CI" (I" finite)
e Their duals C!

e Their twistings CI'/ and (C!);, I" finite, J € CI' ® CI" twist.



e g simple Lie algebra, ¢ root of 1 of order N small quantum
group ue(g) (a.k.a. Frobenius-Lusztig kernel)

e (A.-Schneider) Pointed Hopf algebras w(D, A\, ), I finite abelian
group, D Cartan datum, A linking parameter, u power root pa-
rameter

e [ heir duals...

e T heir twistings.

Explicitly known for A(V)#CI" (Etingof-Gelaki), I' non abelian.



e Bosonizations B (V' )#CI" of the braided vector spaces of diag-
onal type in Heckenberger's list.

e Bosonizations B(V)#CI" of the known braided vector spaces
of group type with finite-dimensional Nichols algebra (Milinski-
Schneider, Fomin-Kirillov, Grafa, ...).

e Ditto replacing CI" by a semisimple Hopf algebra (examples in
paper by Dascalescu-Masuoka-Menini-...).

e T heir liftings...
e [ heir subalgebras...
e [ heir duals...

e T heir twistings.



e Drinfeld doubles (and generalizations)
Extensions of the preceding:
e [ensor product of any two known Hopf algebras.

e (G.I. Kac) If X = F@ is an exact factorization (X finite), then

ct sl wCca - Ca

e Version with cocycles C¥ — C! 7, CG — CG (control by Kac
exact sequence)

e Group-theoretical Hopf algebras (Ocneanu-Ostrik)



e Non-abelian extensions, with weak actions and cocycles (very
few explicit finite-dimensional examples to my knowledge; infinite-
dimensional example by Majid-Soibelman, finite-dimensional ver-
sion in Majid's book).

e (E. Miller) Construction of all finite-dimensional Hopf algebra
quotients O(SLy) — A, € a root of 1. They fit into

1—O(SLy) > 0(SLy) ™ ue(g)*—1
4 C
1ot F g9

Here O(I") = C!.



Questions.

e Exhaust the preceding.

e Are there more examples?



Goal. G a simple algebraic group, g = Lie G, ¢ a root of 1 of
order ¢ (odd, prime to 3 if G is of type G»).

Classify all (finite-dimensional or not) Hopf algebra quotients
O(G) - A. They fit into

1 —0(G) ~0(G) ~ue(g)*—1
‘o, a0

10N+t —~A— " -H 1.




Let T :={Kaq,--., Ka,} = G(ue(g)).
If I C M, then Ty :={Kq, : 1 €1}.

Theorem. (E. Miiller). The Hopf subalgebras of uc(g) are pa-
rameterized by triples (X,14,1_), where

o[y CMN, I_C—N

eIf I=I U—I_, then T; <X <T.



A subgroup datum is a collection D = (I4,I_,N,I,0,5) where

e [ CTland I C —T1. Let

Vi ={acP: Suppa C I+},

[ﬂ::Zae\Uiga and [ = [+€Bf)@[_;

[ is an algebraic Lie subalgebra of g.

Let L be the connected Lie subgroup of G with Lie (L) = 1.
Let s=n—|[IL U—-I_|.

N is a subgroup of (Z/(¥))?.

I' is an algebraic group.

o:.1"— L is an injective homomorphism of algebraic groups.
§: N — I'is a group homomorphism.

If I' is finite, we call D a finite subgroup datum.
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Let D= (I4,I_,N,I0,8) and D' = (I',,I' ,N',I",o’,8") be sub-
group data. We say that D < D’ iff

o ]’

Hence I' C I, Ty C Ty and Tre € Type. As Tpe = Tre X Tpe_ge, the
restriction map T, — Tjec admits a canonical section n and
e n(N) C N'.

e There exists a morphism of algebraic groups 7 : I'" — I" such

that o = ¢o’.

o 'n= tr6.

D~ D iff D<D and D' < D.
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Theorem. There is a bijection between

(a) Hopf algebra quotients O(G) — A.

(b) Subgroup data up to equivalence.

N. A. & G. A. Garcia, http://arxiv.org/abs/0707.0070.
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Properties of Ap. N. A. & G. A. Garcia, ‘Extensions of finite quantum
groups by finite groups’, arXiv:math/0608647v6.

o dimAp < oo iff |I'] < 00 o Ap semisimple iff [I'] < oo, I =10
o If Ap is pointed, then I, N—I_ =0 and I' is a subgroup of the
group of upper triangular matrices of some size. In particular, if
I' is finite, then it is abelian.

o If dim Ap < oo and A} is pointed, then o(I") C 7.

e If Ap is co-Frobenius then I' is reductive.

e Some invariants of Ap under isomorphism; complete determi-

nation if H = ue(g)*.
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Sketch of the proof.

Let D= (I4,I_,N,I,0,6) be a subgroup datum. We first con-
struct a quotient Ap of O(G).

1 —0(G) ~0(G) ~ue(g)*—1

res Res lp
1-—O(L) L0 (L) ™ uc(D*—1
1HO(F)]4>A[,J —1

A

1—Oo)*+—Ap—"—H 1.
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First step.

Let uc(l) be the Hopf subalgebra of uc(g) corresponding to the
triple (T, I4,1-).

We have a commutative diagram of exact sequences of Hopf
algebras

1 —0(G) *+0(G) ™uc(g)"—1
ires L iRes7T LP
1-—O(L) % 0(L) L ue()*—1
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Second step. Let A and K be Hopf algebras, B a central
Hopf subalgebra of A such that A is left or right faithfully flat
over B and p : B — K a surjective Hopf algebra map. Then
H = A/ABT is a Hopf algebra and A fits into the exact sequence
1-B5 AL H— 1. If weset J =kerp C B, then (J) = AT
is @ Hopf ideal of A and A/(J) is the pushout:

B—*—A
P, \q
K——A/(J).

K can be identified with a central Hopf subalgebra of A/(J) and
A/(J) fits into the exact sequence

1—-—B—*—~A—T—-H—1

L

1 K JA/T) —~H 1.
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We have a surjective Hopf algebra map to : O(L) — O(I).
By pushout, we construct a Hopf algebra A, which is part of

an exact sequence of Hopf algebras and fits into the following
commutative diagram

1—0(G) ~0(G) ™ue(g)*—1

res Res lp
1 HO(L) iOG(L) 7rHLU—e([)*H 1

1-—O(I) LA Tou()*—1.
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Third step. Let H* C uc(g) be determined by (X,I4,1_). Since
uc(l) is determined by the triple (T,I4,1_) with T O X, we have
that H* C ue(l) C ue(g). Let r i ue(g)* — H and v : ue(D* — H
be the surjective Hopf algebra maps induced by the inclusions.
Then

U—e(g)*ﬂ»ue([)*

N

H.
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Now T; C X CT="T; x Tye.

If we set 2 =2 NTye, then 2 ~T; x C2.
TFAE:

e a subgroup > such that T; C 2 CT

e a subgroup 2 C Tye,
e a subgroup N C Tye.
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For all 1 < i < n such that o; ¢ I, or o; ¢ I we define D; €
G(ue(D*) = Alg(ue(l),C) on the generators of uc(l) by
DZ(E]) =0 Vgj: ;€ I+, Dz(Fk) =0 VEk: op€l_,
D’L(KOét>:1 \V/t#’l,, 1 <t<mn, DZ(KO&L>:€Z7
where ¢; is a primitive /-th root of 1. We define for all z =
(21,...,25) € Tre D* := D --- D} € G(ue(D)*).

(a) D? is central in uc(D)*, for all z € Te.
(b) H~u(l)*/(D*— 1]z € N).

(c) There exists a subgroup Z := {0%| z € T[\c} of G(A;,) isomor-
phic to {D?| z € T;c} consisting of central elements.
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Finally, Ap is given by the quotient A;;/Js where Js is the two-

sided ideal generated by the set {0% —

6(z)|z € N} and the follow-

ing diagram of exact sequences of Hopf algebras is commutative

1 —0(G) ~0(G) ™ue(g)*—1

res

1HO(L)

to

1 -0 2 -A

1 —-Oo(I) &

—~

L Oc(L) -

Res P
uc(D*—1
v

—1

Y
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Fourth step. Let U be any Hopf algebra and consider the cate-
gory QUOT (U), whose objects are surjective Hopf algebra maps
q: U — A. If q: U — A and ¢ : U — A’ are such maps, then
an arrow ¢-%¢' in QUOT(U) is a Hopf algebra map a: A — A’
such that ag = ¢’. A quotient of U is just an isomorphism class
of objects in QUOT (U); let [¢q] denote the class of the map gq.
There is a partial order in the set of quotients of U, given by
[q] < [¢] iff there exists an arrow q¢-%¢4' in QUOT(U). Notice
that [¢] < [¢] and [¢'] < [q] implies [¢] = [¢'].

Lemma. Let D and D' be subgroup data. Then

(a) [Ap] < [Ap] ifFD <D
(b) [Ap] = [Ap] iff D~ D'
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Fifth step. Let ¢: O.(G) — A be a surjective Hopf algebra map.
We show that it is isomorphic to ¢p : O(G) — Ap for some
subgroup datum 7D.

The Hopf subalgebra K = ¢(O(G)) is central in A and whence A
is an H-extension of K, where H := A/AKT.

T here exists an algebraic group /' and an injective map of alge-
braic groups ¢ : I' — G such that K ~ O(I").
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Since ¢(O(G)O(G)T) = AKT, we have O(G)O(G)T C ker 7q,
where © : A — H is the canonical projection. Since uc(g)* ~
Oc(G)/[0(G)O(G)T], there exists a surjective map r : uc(g)* —
H, H* is determined by a triple (3, /4,1 ). In particular, we have
the following commutative diagram

1 —0(G) ~0(G) ™ue(g)*—1
o

1—Oo(N)-t—aA—T g 1.
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Lema. o(I') € L, Ais a quotient of A, given by pushout.

1 —0(G) ~0(G) ~ue(g)*—1

res Res lp
1HO(L) OE(L) uc()*—1
u | 2
1—0O() 2L —~A, 1
o
1—O0)*+—A—T—H 1.

Finally, there exists a group homomorphism 6 : N — I" such that
Js = (0 = 6(z)| z € N) is a Hopf ideal of A, and A ~ Ap =

Al g/ s
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