On the Nichols algebra of a semisimple Yetter-Drinfeld module

Nicolás Andruskiewitsch

Universidad de Córdoba, Argentina. CIEM-CONICET.

Sixth Workshop on Lie Theory and Geometry

Cruz Chica, November 13, 2007.

Joint work with

István Heckenberger and Hans-Jürgen Schneider

Plan of the talk.

- I. Overview.
- II. Braided vector spaces and Nichols algebras.
- III. On the Nichols algebra of a semisimple Yetter-Drinfeld module.

I. Overview.

In the early 80's, Drinfeld and Jimbo introduced quantized enveloping algebras:

g simple Lie algebra,

Cartan matrix $(a_{ij})_{1 \leq i,j \leq \theta}$,

$$(d_1,\ldots,d_{\theta}), d_i \in \{1,2,3\}, d_i a_{ij} = d_j a_{ji}$$

q not a root of 1

$$\begin{split} U_{q}(\mathfrak{g}) &= \mathbb{C}\langle k_{1}^{\pm 1}, \dots, k_{\theta}^{\pm 1}, e_{1}, \dots, e_{\theta}, f_{1}, \dots, f_{\theta} \rangle \text{ with relations:} \\ k_{i}k_{j} &= k_{j}k_{i}, \quad k_{i}k_{i}^{-1} = k_{i}^{-1}k_{i} = 1, \\ k_{i}e_{j}k_{i}^{-1} &= q^{d_{i}a_{ij}}e_{j}, \\ k_{i}f_{j}k_{i}^{-1} &= q^{-d_{i}a_{ij}}f_{j}, \\ \sum_{l=0}^{1-a_{ij}} (-1)^{l} {1-a_{ij} \brack l}_{q_{i}} e_{i}^{1-a_{ij}-l}e_{j}e_{i}^{l} = 0 \qquad (i \neq j), \\ \sum_{l=0}^{1-a_{ij}} (-1)^{l} {1-a_{ij} \brack l}_{q_{i}} f_{i}^{1-a_{ij}-l}f_{j}f_{i}^{l} = 0 \qquad (i \neq j) \\ e_{i}f_{j} - q^{-d_{i}a_{ij}}f_{j}e_{i} = \delta_{ij}(1-k_{i}^{2}), i < j, i \nsim j \end{split}$$

This is a Hopf algebra with $\Delta(k_i) = k_i \otimes k_i$, $\Delta(e_i) = k_i \otimes e_i + e_i \otimes 1$, $\Delta(f_i) = 1 \otimes f_i + k_i^{-1} \otimes f_i$.

$$U_{q}(\mathfrak{g}) = \mathbb{C}\langle k_{1}^{\pm 1}, \dots, k_{\theta}^{\pm 1}, e_{1}, \dots, e_{\theta}, f_{1}, \dots, f_{\theta} \rangle \text{ with relations:}$$

$$k_{i}k_{j} = k_{j}k_{i}, \quad k_{i}k_{i}^{-1} = k_{i}^{-1}k_{i} = 1,$$

$$k_{i}e_{j}k_{i}^{-1} = q^{d_{i}a_{ij}}e_{j},$$

$$k_{i}f_{j}k_{i}^{-1} = q^{-d_{i}a_{ij}}f_{j},$$

$$\mathrm{ad}_{c}(e_{i})^{1-a_{ij}}(e_{j}) = 0, \quad i \neq j$$

$$\mathrm{ad}_{c}(f_{i})^{1-a_{ij}}(f_{j}) = 0, \quad i \neq j$$

$$e_{i}f_{j} - q^{-d_{i}a_{ij}}f_{j}e_{i} = \delta_{ij}(1 - k_{i}^{2}), i < j, i \nsim j.$$

Here $ad_c(e_i)(e_j) = e_i e_j - q^{d_i a_{ij}} e_j e_i$.

 $U_q^+(\mathfrak{g}) = \mathbb{C}\langle e_1, \dots, e_{\theta} \rangle$ with relations:

$$ad_c(e_i)^{1-a_{ij}}(e_j) = 0, \quad i \neq j$$

This is <u>not</u> a Hopf algebra but it is a braided Hopf algebra, or Hopf algebra in a braided tensor category

$$\Delta(e_i) = 1 \otimes e_i + e_i \otimes 1.$$

It turns out that this is braided Hopf algebra of a very special sort— a Nichols algebra.

- G. Lusztig, Introduction to quantum groups, Birkhäuser, 1993.
- M. Rosso, C.R.A.S. (Paris) 320 (1995). Invent. Math. 133 (1998).
- P. Schauenburg, Comm. in Algebra 24 (1996), pp. 2811-2823.

INPUT: braided vector space (W, c)

OUTPUT: Nichols

algebra $\mathfrak{B}(W)$

(W,c) braided vector space: $c \in GL(W \otimes W)$

$$(c \otimes \mathsf{id})(\mathsf{id} \otimes c)(c \otimes \mathsf{id}) = (\mathsf{id} \otimes c)(c \otimes \mathsf{id})(\mathsf{id} \otimes c)$$

Example:

$$W = \mathbb{C}v_1 \oplus \cdots \oplus \mathbb{C}v_{\theta}, \ c(v_i \otimes v_j) = q^{d_i a_{ij}} v_j \otimes v_i \rightsquigarrow \mathfrak{B}(W) = U_q^+(\mathfrak{g})$$

Motivation. A.-Schneider, 1998: essential tool in the classification of pointed Hopf algebras over \mathbb{C} .

H pointed Hopf algebra with group

$$\Gamma = \{ x \in H - 0 : \Delta(x) = x \otimes x \}.$$

(Pointed $\equiv \mathbb{C}\Gamma$ is the largest cosemisimple subcoalgebra of H)

 \rightsquigarrow (W,c) braided vector space of special type (a Yetter-Drinfeld module over Γ)

 \rightsquigarrow Nichols algebra $\mathfrak{B}(W)$

Problems. Given a Yetter-Drinfeld module V over Γ

- When dim $\mathfrak{B}(W) < \infty$? Or, when GK-dim $\mathfrak{B}(W) < \infty$?
- If so, give a formula for dim $\mathfrak{B}(W)$, or GK-dim $\mathfrak{B}(W)$.
- Also, give presentation by generators and relations of $\mathfrak{B}(W)$.

Example. Assume Γ is an abelian group

A Yetter-Drinfeld module W over $\Gamma \equiv \Gamma$ -graded Γ -module W

Assume W is semisimple as a Γ -module (always the case if Γ is finite). Then W is of diagonal type:

$$W = \mathbb{C}v_1 \oplus \cdots \oplus \mathbb{C}v_{\theta}, \qquad c(v_i \otimes v_j) = q_{ij}v_j \otimes v_i$$

Braided vector space of diagonal type.

$$\exists$$
 basis $v_1,\ldots,v_{ heta}$, $(q_{ij})_{1\leq i,j\leq heta}$ in $\mathbb{C}^{ imes}$:
$$c(v_i\otimes v_j)=q_{ij}v_j\otimes v_i, \quad \forall i,j$$

Theorem. $1 \neq q_{ii}$ roots of 1. $\Rightarrow \dim \mathfrak{B}(W) < \infty$ classified.

I. Heckenberger, Classification of arithmetic root systems, http://arxiv.org/abs/math.QA/0605795. Braided vector space of Cartan type. This is diagonal type plus

 $\exists (a_{ij})_{1 \leq i,j \leq \theta}$ generalized Cartan matrix

$$q_{ij}q_{ji} = q_{ii}^{a_{ij}}.$$

Theorem. (W,c) Cartan type, $1 \neq q_{ii}$ root of 1. $\dim \mathfrak{B}(W) < \infty \iff (a_{ij})$ of finite type.

There are formulas for dim and presentations by gens and rels. (including the quantum Serre relations)

N. A. & H.-J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math. **154** (2000), 1-45.

I. Heckenberger, *The Weyl groupoid of a Nichols algebra of diagonal type*, Invent. Math. **164**, 175–188 (2006).

Braided vector space of diagonal type such that q_{ii} are NOT roots of 1.

Theorem. GK-dim $\mathfrak{B}(W) < \infty \iff (W,c)$ Cartan type and (a_{ij}) of finite type.

M. Rosso, Invent. Math. 133 (1998) assuming $q_{ii} > 0$.

N. A. and I. Angiono, arxiv:math/0703924 using techniques of Heckenberger.

There are formulas for GK-dim and presentations by gens and rels. (essentially the quantum Serre relations!)

Assume next that Γ is a finite group (not necessarily abelian)

A Yetter-Drinfeld module W over Γ is then semisimple:

$$W = V_1 \oplus \cdots \oplus V_{\theta},$$

where each V_i is "irreducible" and

$$c(V_i \otimes V_j) = V_j \otimes V_i.$$

Suggestion. Split the research on the Nichols algebra $\mathfrak{B}(W)$ into two parts:

- To study $\mathfrak{B}(V)$ for all V irreducible;
- consider the V_i 's as "fat points" of a generalized Dynkin diagram and, assuming the knowledge of the Nichols algebras $\mathfrak{B}(V_i)$, to describe the Nichols algebra $\mathfrak{B}(W)$ as a "gluing" of the various Nichols subalgebras $\mathfrak{B}(V_i)$ along the generalized Dynkin diagram.

$\mathfrak{B}(V)$ for V irreducible:

- A few known examples where dim $\mathfrak{B}(V) < \infty$, computed "by hand" or with help of computers.
- A criterium to discard some V such that dim $\mathfrak{B}(V) = \infty$.
- ullet very difficult to deal with the remaining V.

In this talk I will report progress concerning the second part.

II. Braided vector spaces and Nichols algebras.

$$(W,c)$$
 braided vector space: $c \in GL(W \otimes W)$, $(c \otimes id)(id \otimes c)(c \otimes id) = (id \otimes c)(c \otimes id)(id \otimes c)$

Definition. (Artin, 1948). The braid group in n trends is the quotient \mathbb{B}_n of the free group in $T_1, T_2, \ldots, T_{n-1}$ by the defining relations

(B1)
$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$
, for all i .

(B2)
$$T_i T_j = T_j T_i$$
, if $|i - j| \ge 2$.

By definition there is a surjective map of groups $\pi: \mathbb{B}_n \to \mathbb{S}_n$.

Remark. (W,c) braided vector space.

Define $c_i \in \operatorname{Aut}(W^{\otimes n})$ by

$$c_i = \mathrm{id}_{W^{\otimes (i-1)}} \otimes c \otimes \mathrm{id}_{W^{\otimes (n-i-1)}}.$$

Then c_1, \ldots, c_{n-1} satisfy the relations (B1), (B2).

Thus we have a representation $\rho_n : \mathbb{B}_n \to \operatorname{Aut}(W^{\otimes n})$.

Examples. • The usual flip $\tau: W \otimes W \to W \otimes W$, $\tau(x \otimes y) = y \otimes x$ satisfies the braid equation.

- Let $W = W_0 \oplus W_1$ be a super vector space. If $x \in W_i$, |x| = i. The super flip $s : W \otimes W \to W \otimes W$, $s(x \otimes y) = (-1)^{|x||y|} y \otimes x$ satisfies the braid equation.
- Let Γ be a group, $\mathcal{C} \subseteq \Gamma$ a conjugacy class, $W = \bigoplus_{g \in \mathcal{C}} \mathbb{C}g$. Then $c: W \otimes W \to W \otimes W$, $c(g \otimes h) = ghg^{-1} \otimes g$ satisfies the braid equation.

Yetter-Drinfeld module W over a finite group Γ .

Irreducibles: C a conjugacy class in Γ ; fix $s \in C$; let (ρ, V) irred. repr. of Γ^s .

$$M(\mathcal{C}, \rho) = \operatorname{Ind}_{\Gamma^s}^{\Gamma} = \mathbb{C}\mathcal{C} \otimes V.$$

Any finite-dimensional Yetter-Drinfeld module W over Γ is a direct sum of different $M(\mathcal{C}_i, \rho_i)$'s (Dijkgraaf, Pasquier, Roche).

Definition. (Nichols, 1978; Woronowicz, 1988). If (W,c) is a braided vector space, then the Nichols algebra is

$$\mathfrak{B}(W) = \bigoplus_{n \in \mathbb{N}_0} \mathfrak{B}^n(W),$$

where

$$\mathfrak{B}^n(W) = T^n(W) / \ker \sum_{\sigma \in \mathbb{S}_n} \rho_n(S(\sigma)).$$

Here:

 ρ_n is the representation of \mathbb{B}_n induced by c S is the Matsumoto section (of sets), $S: \mathbb{S}_n \to \mathbb{B}_n$ preserving the length.

III. On the Nichols algebra of a semisimple Yetter-Drinfeld module. (AHS).

 Γ finite group,

$$V_j = M(\mathcal{C}_j, \rho_j), \ 1 \leq j \leq \theta,$$

$$W = \bigoplus_{1 \le j \le \theta} V_j.$$

There is an "adjoint" action of $\mathfrak{B}(W)$ on itself.

Fix i, $1 \le i \le \theta$.

 $L_j := \operatorname{ad}_c \mathfrak{B}(V_i)$ -submod. gen. by V_j , $j \neq i$; L_j is a graded subspace of $\mathfrak{B}(W)$.

Theorem 1. If $\dim L_j < \infty$, then $L_j^{m_{ij}}$ is also an irreducible Yetter-Drinfeld module over Γ . Here $m_{ij} = \text{top degree of } L_j$.

 $a_{ij} = 1 - m_{ij}$, $i \neq j$; $L_i^{-1} = V_i^*$ and $a_{ii} = 2$. (a_{ij}) is a generalized Cartan matrix.

Note again the quantum Serre relation: $ad_c V_i^{1-a_{ij}}(V_j) = 0$

 $\mathfrak{B}(W)\supset\mathcal{K}:=$ subalgebra generated by $L_{j},\ i\neq j.$

$$W_i' = \bigoplus_{1 \le j \le \theta} L_j^{1 - a_{ij}}.$$

Here $L_j^{1-a_{ij}}$ are irreducible by Theorem 1.

Theorem 2. $\mathcal{K}\#\mathfrak{B}({}^*V_i)\simeq\mathfrak{B}(W_i')$, dim $\mathfrak{B}(W)=\dim\mathfrak{B}(W_i')$.

Definition. W is standard if $W \simeq W_i'$ for all i

Theorem 3. W is standard, dim $\mathfrak{B}(W) < \infty$

 \implies (a_{ij}) is of finite type.

Application.

Let $\mathcal{A}(\mathbb{S}_3, \mathcal{O}_2^3, \lambda)$ be the algebra presented by generators e_t , $t \in T := \{(12), (23)\}$, and a_{σ} , $\sigma \in \mathcal{O}_2^3$; with relations

$$e_t e_s e_t = e_s e_t e_s, \quad e_t^2 = 1, \quad s \neq t \in T; \tag{1}$$

$$e_t a_{\sigma} = -a_{t\sigma t} e_t \qquad t \in T, \, \sigma \in \mathcal{O}_2^3;$$
 (2)

$$a_{\sigma}^2 = 0, \qquad \sigma \in \mathcal{O}_2^3; \tag{3}$$

$$a_{(12)}a_{(23)} + a_{(23)}a_{(13)} + a_{(13)}a_{(12)} = \lambda(1 - e_{(12)}e_{(23)});$$
 (4)

$$a_{(12)}a_{(13)} + a_{(13)}a_{(23)} + a_{(23)}a_{(12)} = \lambda(1 - e_{(23)}e_{(12)}).$$
 (5)

Set $e_{(13)} = e_{(12)}e_{(23)}e_{(12)}$. Then $\mathcal{A}(\mathbb{S}_3, \mathcal{O}_2^3, \lambda)$ is a Hopf algebra of dimension 72 with comultiplication determined by

$$\Delta(a_{\sigma}) = a_{\sigma} \otimes 1 + e_{\sigma} \otimes a_{\sigma}, \quad \Delta(e_t) = e_t \otimes e_t, \quad \sigma \in \mathcal{O}_2^3, t \in T.$$
 (6)

Theorem. (AHS, using previous work with Milinski, Graña, Zhang). Let H be a finite dimensional pointed Hopf algebra with $G(H) \simeq \mathbb{S}_3$. Then either

- $\bullet H \simeq \mathbb{CS}_3$, or
- $\bullet H \simeq \mathfrak{B}(\mathcal{O}_2^3, \operatorname{sgn}) \# \mathbb{CS}_3$, or
- $\bullet H \simeq \mathcal{A}(\mathbb{S}_3, \mathcal{O}_2^3, 1).$

This is the second non-abelian group having the classification finished.

The first is \mathbb{A}_5 — that admits no finite-dimensional pointed Hopf algebra out of the group algebra (A.—Fantino, Rev. Un. Math. Arg., http://arxiv.org/abs/math.QA/0702559).