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§1 Definitions and examples

In what follows, we will consider a commutative ring k (later on k will be a field); the
symbols Hom and ⊗ will mean Homk and ⊗k respectively.

By an algebra R over k (or simply an algebra) we understand a unitary, associative
k-algebra R, with identity 1 = 1R. The category of k-algebras will be denoted by Algk.
If R is an algebra, then Rop denotes the opposite algebra (i.e. the k-module R with
multiplication a.opb = ba).

For an algebra R, RM (respectively MR) will denote the category of left (respectively
right) R-modules. Recall that a k-module M is a left (respectively right) R-module, if and
only if, there exists an algebra map: R −→ End(M) (respectively Rop −→ End(M)).

Remarks on representation theory.
1. Let G be a group, H := kG its group algebra; V , W in HM. Then k, V ⊗W , and

V ∗ = Hom(V, k) can be made into left H-modules by setting:

g.1 = 1,

g.(v ⊗ w) = g.v ⊗ g.w,

(g.φ)(v) = φ(g−1.v),

for all g ∈ G, v ∈ V, w ∈ W,φ ∈ V ∗.
We note that the algebra maps which define the module structures in each case are

given by:

ε : kG −→ k,

kG
∆−→ kG⊗ kG −→ End(V )⊗ End(W ) −→ End(V ⊗W ),

kG
S−→ kGop transpose−−−−−−→ End(V ∗),

where ε(g) = 1, ∆(g) = g ⊗ g, S(g) = g−1, ∀g ∈ G.

2. Let us now consider a Lie algebra g, H = U(g) its universal enveloping algebra. Then
the Lie algebra maps:

g −→ k, x 7→ 0,

g −→ g× g, x 7→ (x, x),
g −→ gop, x 7→ −x,

together with the universal properties defining H, give rise to algebra maps:

ε : H −→ k,

∆ : H −→ H ⊗H w U(g× g),

S : H −→ Hop w U(gop).



LECTURES ON HOPF ALGEBRAS 3

Explicitly

ε(x) = 0,

∆(x) = 1⊗ x + x⊗ 1,

S(x) = −x,

x ∈ g.
If V and W are left H-modules, with corresponding actions H −→ End(V ) and H −→

End(W ), then the composition

H
∆−→ H ⊗H −→ End(V )⊗ End(W ) −→ End(V ⊗W )

provides V ⊗W a left H-module structure. This is uniquely determined by the condition

x.(v ⊗ w) = x.v ⊗ w + v ⊗ x.w,

x ∈ g, v ∈ V , w ∈ W .
In an analogous way, but now using the antipode, we may let H act over V ∗, via:

H
S−→ Hop transpose−−−−−−→ End(V ∗)

This dual action is determined by (x.φ)(v) = φ(−x.v), x ∈ g , v ∈ V , φ ∈ V ∗.
Finally, we shall consider k as H-module via ε : H −→ k, this is uniquely determined by

x.1 = 0, for all x ∈ g.

We want to consider algebras such that tensor products and duals of modules are again
modules, as in the examples above.

First we need the definition of coalgebra. Observe that an associative, unitary k-algebra
is a pair (A,m), where A is a k-module and m : A⊗ A −→ A is a k-linear map, called the
multiplication, such that:

1. The following diagram is commutative:

A⊗A⊗A
m⊗id−−−−→ A⊗A

id⊗m

y
ym

A⊗A −−−−→
m

A

2. There exists a k-linear map u : k −→ A such that the following diagrams commute:

k ⊗A
u⊗id−−−−→ A⊗A

id⊗u←−−−− A⊗ k
y

ym

y
A A A,

where the maps k⊗A −→ A and A⊗k −→ A are the canonical ones. Such a u is necessarily
unique. The first of these diagrams says that the algebra A is associative and the second
gives the existence of a unit u(1) = 1A in A.

By reversing arrows, we get the dual notion.
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Definition. A coalgebra over k is a pair (C, ∆), where C is a k-module and ∆ : C −→ C⊗C
is a k-linear map called the comultiplication, such that:

1. The following diagram commutes:

C ⊗ C ⊗ C
∆⊗id←−−−− C ⊗ C

id⊗∆

x
x∆

C ⊗ C ←−−−−
∆

C.

2. There exists a k-linear map ε : C −→ k, such that the following diagrams commute:

k ⊗ C
ε⊗id←−−−− C ⊗ C

id⊗ε−−−−→ C ⊗ k
x

x∆

x
C C C.

The map ε is called the counit and is uniquely determined by the pair (C, ∆).
The kernel of ε will be denoted by C+.
If (C, ∆C), (D, ∆D) are coalgebras, a k-linear map: f : C −→ D is said a coalgebra map,

if the following diagrams commute:

C
f−−−−→ D

∆C

y
y∆D

C ⊗ C −−−−→
f⊗f

D ⊗D,

C
f−−−−→ D

εC

y
yεD

k k.

Remark. More generally, one can define algebras and coalgebras in monoidal categories,
that is k-linear categories C provided with a ”tensor” functor ⊗ : C × C −→ C, plus an
associativity constraint (see below). The opposite category Cop of a category C has the
same objects but the arrows are reversed: HomCop(A, B) = HomC(B,A). In this way, a
coalgebra in C is the same as an algebra in Cop.

Examples. 1. If S is any set and C = kS is the free k-module with basis S, then C
becomes a coalgebra if we set: ∆(s) = s⊗ s, ε(s) = 1, s ∈ S.

2. The universal enveloping algebra of a Lie algebra g is a coalgebra with the coproduct
∆ and counit ε just considered.

Now we dualize the definition of a module over a k-algebra.
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Definition. Let C be a coalgebra over k. A right comodule over C is a pair (M, ∆M ),
where M is a k-module and ∆M : M −→ M⊗C is a k-linear map (the comodule structure),
such that the following diagrams commute:

M
∆M−−−−→ M ⊗ C

∆M

y
y∆M⊗id

M ⊗ C −−−−→
id⊗∆

M ⊗ C ⊗ C,

M
∆M−−−−→ M ⊗ C

y
yid⊗ε

M ⊗ k M ⊗ k.

A k-linear map φ : M −→ N between right C-comodules M , N , is said a comodule map
if the following diagram commutes:

M
φ−−−−→ N

∆M

y
y∆N

M ⊗ C −−−−→
φ⊗id

N ⊗ C

The left C-comodules are defined in a similar fashion. We will denote MC and CM,
respectively, the categories of right and left C-comodules. Consider a k-module A; it could
happen that A has both an algebra and coalgebra structure. In case these structures
”paste” well, we give A a special name:

Definition. We say that a triple (A, m,∆) is a bialgebra, if (A,m) is an algebra with unit
u, (A,∆) is a coalgebra with counit ε and ∆ : A −→ A ⊗ A, ε : A −→ k are algebra maps.
A k-linear map φ : A −→ B, where A and B are bialgebras is said a bialgebra map if it is
both an algebra and a coalgebra map.

Remarks.
1. In the definition A⊗A is considered with the natural algebra structure.
In general the tensor product of two algebras A and B has a natural algebra structure

determined by
(a⊗ b)(c⊗ d) = ac⊗ bd, ∀a, c ∈ A, b, d ∈ B.

Equivalently, the multiplication mA⊗B is the composition

A⊗B ⊗A⊗B
id⊗τ⊗id−−−−−→ A⊗A⊗B ⊗B

mA⊗mB−−−−−→ A⊗B.

Here τ denotes the ”twist” map: τ : a⊗ b 7→ b⊗ a.
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Now, if C and D are coalgebras, then the tensor product C ⊗ D can be made into a
coalgebra in a natural way, with the comultiplication

C ⊗D
∆C⊗∆D−−−−−→ C ⊗ C ⊗D ⊗D

id⊗τ⊗id−−−−−→ C ⊗D ⊗ C ⊗D.

The counit is given by

C ⊗D
εC⊗εD−−−−→ k ⊗ k w k.

One can then check that in the definition of bialgebra the condition of ∆ and ε being
algebra maps may be replaced by the (equivalent) condition of m and u being coalgebra
maps.

2. The kernel of the counit ε in a bialgebra A is a two sided ideal of codimension 1,
called the augmentation ideal.

Examples of bialgebras are kG, the group algebra of a group G, with the algebra and
coalgebra structures considered at the beginning (notice that we do not make use here
of the existence of inverses for elements of G), and the universal enveloping algebra of a
Lie algebra g, where ∆ and ε are as treated earlier. In particular, any symmetric algebra
has a bialgebra structure. The next definition will allow us to give a characterization of a
bialgebra in terms of its left modules when considered as an algebra.

Definition. A triple (C,⊗, I), where C is a category, ⊗ : C × C −→ C is a functor called
formal tensor product, and I is an object of C called unit object, is said a monoidal category
if for any objects U, V,W of C there exists natural isomorphisms between functors from
C × C × C to C (respectively C to C)

aU,V,W : (U ⊗ V )⊗W −→ U ⊗ (V ⊗W ),

rV : V ⊗ I −→ V, lV : I ⊗ V −→ V,

such that the following diagrams are commutative:

(U ⊗ V )⊗ (W ⊗X) (U ⊗ V )⊗ (W ⊗X)

aU⊗V,W,X

x
yaU,V,W⊗X

((U ⊗ V )⊗W )⊗X U ⊗ (V ⊗ (W ⊗X))

aU,V,W⊗id

y
xid⊗aV,W,X

(U ⊗ (V ⊗W ))⊗X −−−−−−→
aU,V⊗W,X

U ⊗ ((V ⊗W )⊗X),

(V ⊗ I)⊗W
aV,I,W−−−−→ V ⊗ (I ⊗W )

rV ⊗id

y
yid⊗lW

V ⊗W V ⊗W.
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A first example of a monoidal category is the category of left k-modules kM, with the
tensor product over k and unit object I = k. The associativity and unit constraints are
just the usual isomorphisms of k-modules:

aU,V,W ((u⊗ v)⊗ w) = u⊗ (v ⊗ w),

lV (1⊗ v) = v,

rV (v ⊗ 1) = v.

Remark. In any monoidal category one can define algebras and coalgebras, and their mod-
ules and comodules. However, to define bialgebras one needs in addition a commutativity
constraint, or braiding

cU,V : U ⊗ V −→ V ⊗ U.

This leads to the important notion of bialgebras in braided categories. In these notes, we
shall only consider the traditional braided category of k-modules, where the braiding is
the usual twist map.

Other examples of monoidal categories are the categories of left modules over the alge-
bras kG and U(g). In both cases this structure is inherited from that of kM. The next
proposition gives a characterization of the k-algebras with this property.

Proposition 1.1. Let (A,m) be a k-algebra and let ∆ : A −→ A⊗A, ε : A −→ k be given
algebra maps. We consider k ∈ AM via ε. Let ⊗ : AM× AM −→ AM be the functor
which associates to each pair of A-modules M,N their tensor product over k, M⊗N , with
the A-action:

A
∆−→ A⊗A −→ End(M)⊗ End(N) −→ End(M ⊗N).

Then (AM,⊗, k) is a monoidal category, with canonical associativity and unit constraints,
if and only if (A,m,∆) is a bialgebra (with counit ε).

Proof.
Suppose (A,m,∆) is a bialgebra. The coassociativity of ∆ implies that ∀U, V, W ∈ AM

the canonical isomorphisms of k-modules

(U ⊗ V )⊗W w U ⊗ (V ⊗W ),

are isomorphisms of A-modules. Moreover, the commutativity of the diagrams

A⊗ k
id⊗ε←−−−− A⊗A

ε⊗id−−−−→ k ⊗A
y ∆

x
y

A A A,

imply, respectively, that the left and right unit constraints

V ⊗ k −−−−−→
v⊗1 7→v

V, and k ⊗ V −−−−−→
1⊗v 7→v

V,
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are isomorphisms of A-modules. So (AM,⊗, k) is a monoidal category.
Conversely, suppose that (AM,⊗, k) is a monoidal category. For the coassociativity of

∆ use the fact that

(A⊗A)⊗A −−−−−−−−−−−−−→
(x⊗y)⊗z 7→x⊗(y⊗z)

A⊗ (A⊗A),

is an isomorphism of A-modules.
Also, the canonical maps

k ⊗A −→ A, A⊗ k −→ A,

are A-isomorphisms, which implies that ε is the counit. ¤

Now we are in a position to define the objects which will concern us in the sequel.

Definition. We say that a bialgebra (H, m, ∆) is a Hopf algebra if there exists a k-linear
map S : H −→ H, called the antipode, such that the following diagrams are commutative:

H ⊗H
∆←−−−− H

∆−−−−→ H ⊗H

id⊗S
y uε

y
yS⊗id

H ⊗H −−−−→
m

H ←−−−−
m

H ⊗H

Examples. 1. If G is a group, the group algebra kG is a Hopf algebra, with antipode
given by S(g) = g−1, g ∈ G.

2. The universal enveloping algebra U(g) of the Lie algebra g is a Hopf algebra, with
antipode S(x) = −x, x ∈ g. In particular any symmetric algebra over k is a Hopf algebra.

3. Let V be a k-module, then the tensor algebra T (V ) over V is a Hopf algebra with
the usual algebra structure and where ∆(v) = 1⊗ v + v ⊗ 1, ε(v) = 0, S(v) = −v, v ∈ V .

If k is a field, this example is but a particular case of the previous one, we see this as
follows:

Tensor algebras and free Lie algebras.
Let k be a field. A Lie algebra g over k is said to be free on a set X if
a) X generates g as a Lie algebra.
b) Given a Lie algebra m over k, and a map φ : X −→ m, there exists a (unique) Lie

algebra morphism ψ : g −→ m that extends φ.

It is not difficult to see that given a set X, if such an algebra exists, it is unique (up
to isomorphism). As to its existence, consider the k-space V with basis X. Let T (V )
be the tensor algebra over V , and call g the Lie subalgebra of T (V ) (with the bracket
[a, b] = ab− ba) generated by V .

It is clear that X generates g. If φ : X −→ m is any map, we can extend it to a k-linear
map φ1 : V −→ m ⊆ U(m) (observe that here we are making use of the PBW theorem,
which use is legitimate under the assumption that k is a field). By the universal property of
T (V ), φ1 has a unique extension to an algebra map T (V ) −→ U(m). Call ψ the restriction
of this map to g, then ψ extends φ and is clearly a Lie algebra map.
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We assert that the universal enveloping algebra of a free Lie algebra g on X is isomorphic
to the tensor algebra over the k-vector space with basis X.

To see this, letA be an associative algebra over k and let ω : g −→ A be a Lie algebra map.
Then, by the universal property of T (V ), there exists a unique algebra map Ω : T (V ) −→ A
such that Ω(x) = ω(x),∀x ∈ X, but this is equivalent to saying (as X generates g) that
Ω(x) = ω(x),∀x ∈ g.

So T (V ) w U(g). Moreover, the Hopf algebra structures in T (V ) when considered as a
tensor algebra and as an enveloping algebra are the same.

4. The following example is due to Taft (1971):
Let k be a field, and N a natural number. Assume that there exists a primitive N -th

root of unity ξ in k. Consider the algebra H generated over k by two elements g and x
subject to the relations: gN = 1, xN = 0, xg = ξgx. We claim that there are algebra maps
∆ : H −→ H ⊗H, S : H −→ Hop, ε : H −→ k uniquely determined by

∆(g) = g ⊗ g, ∆(x) = 1⊗ x + x⊗ g

ε(x) = 0, ε(g) = 1

S(g) = g−1, S(x) = −xg−1

We work out the details for ∆ and let S, ε to the reader. Clearly ∆(g)N = 1 and ∆(x),
∆(g) ξ-commute, i.e., ∆(x)∆(g) = ξ∆(g)∆(x). For the remaining relation we need the
next lemma.

In the polynomial algebra Z[q], we consider the q-binomial coefficients

(
n

i

)

q

=
(n)!q

(n− i)!q(i)!q
, where (n)!q = (n)q . . . (2)q(1)q, and (n)q = 1+q+ · · ·+qn−1,

for n ∈ N, 0 ≤ i ≤ n.
One proves that

(
n
i

)
q
∈ Z[q] by induction on n, using the identity

(*) qk

(
n

k

)

q

+
(

n

k − 1

)

q

=
(

n + 1
k

)

q

,

for 1 ≤ k ≤ n.
Now, if A is an associative algebra over k and q ∈ k, then

(
n
i

)
q

denotes the specialization
of

(
n
i

)
q

at q.

Lemma (Quantum binomial formula). Let A be an associative algebra over k, q ∈ k.
If x, y ∈ A are two elements that q-commute, i.e. xy = qyx, then the following formula
holds for every n ∈ N:

(x + y)n =
n∑

i=0

(
n

i

)

q

yixn−i.
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Proof. By induction on n, again using the identity (*).

Now, if ξ is a primitive N -th root of unity, it follows from the definitions that
(
N
i

)
ξ

= 0
for 0 < i < N . Then, as 1⊗ x and x⊗ g ξ-commute, we have:

∆(x)N = (1⊗ x + x⊗ g)N =
N∑

i=0

(
N

i

)

ξ

(x⊗ g)i(1⊗ x)N−i =

(x⊗ g)N + (1⊗ x)N = xN ⊗ gN + 1⊗ xN = 0.

So ∆ is a well defined algebra map ∆ : H −→ H ⊗H.
Thus H is a Hopf algebra (of finite dimension N2, with basis gixj , 0 ≤ i, j ≤ N − 1).

Definition. Let H be a Hopf algebra and τ denote the twist map in H ⊗H. We say H
is cocommutative if τ ◦∆ = ∆.

For instance, the algebras introduced in examples 1 and 2 are cocommutative, while
the Taft algebras are not in general. If G is a finite group, then the group algebra kG
is a finite dimensional cocommutative Hopf algebra (it is commutative iff G is abelian).
When k is an algebraically closed field of characteristic 0, then it can be shown that these
are the only possible ones, that is: every finite dimensional Hopf algebra over k which is
cocommutative is isomorphic to a group algebra kG, for some finite group G. The next
example shows this is not true when the characteristic of k is positive.

The u-algebra of a restricted Lie algebra. Let k be a field of characteristic p > 0. A
Lie algebra L over k is called a restricted Lie algebra if there is a map L −→ L, denoted
a 7→ a[p], a ∈ L, such that

(αa)[p] = αpa[p],

ad(b[p]) = (ad b)p,

(a + b)[p] = a[p] + b[p] +
p−1∑

i=1

si(a, b)

for a, b ∈ L, α ∈ k, where ad denotes the adjoint representation of L on itself and isi(a, b)
is the coefficient of λi−1 in the expansion of ad(λa + b)p−1(a).

A k-linear map f : L −→ A between restricted Lie algebras L and A is a morphism of
restricted Lie algebras if it is a morphism of Lie algebras and f(a[p]) = f(a)[p], ∀a ∈ L.

For instance, if A is an associative k-algebra, we think of A as a Lie algebra by means
of the natural bracket: [a, b] = ab− ba, a, b ∈ A. Then the map a 7→ ap, a ∈ A, makes A
into a restricted Lie algebra.

Let now L be a restricted Lie algebra, U its universal enveloping algebra, and B the
ideal in U generated by all the elements ap−a[p], a ∈ L. Denote by U the quotient algebra
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U = U/B. Then, the natural map φ : L −→ U is a morphism of restricted Lie algebras.
The pair (φ,U) is universal for L in the following sense: if A is an associative algebra and
f : L −→ A is a morphism of restricted Lie algebras, then there exists a unique algebra
map F : U −→ A, such that f = F ◦ φ.
U is called the u-algebra of L. By the universal property of U , we have that the

(restricted) morphisms

L −→ k, a 7→ 0,

L −→ L× L, a 7→ (a, a),
L −→ Lop, a 7→ −a,

define algebra maps:

∆ : U −→ U ⊗ U ,

ε : U −→ k,

S : U −→ Uop,

uniquely determined by

∆(a) = 1⊗ a + a⊗ 1,

ε(a) = 0,

S(a) = −a,

a ∈ L, which make it into a cocommutative Hopf algebra.

The next theorem is analogous to the PBW theorem for Lie algebras:

Theorem 1.2. Let L be a restricted Lie algebra and let U its u-algebra.Then:
1. The map φ : L −→ U is an injective morphism of restricted Lie algebras.
2. If {ui}i∈I is an ordered basis for L, then the set of monomials:

uk1
i1

uk2
i2

. . . ukr
ir

: i1 ≤ i2 ≤ · · · ≤ ir, 0 ≤ kj ≤ p− 1.

is a basis for U .

Proof. See [2, Th.12, p. 191].

As a consequence, if L has finite dimension n, then U is also finite dimensional, with
dimU = pn.Then, U is a finite dimensional cocommutative Hopf algebra and it is not
isomorphic to any group algebra. To see this we first introduce some terminology:

Definition. Let H be a Hopf algebra. h ∈ H is said a group-like element if h 6= 0 and
∆(h) = h⊗ h, and it is said a primitive element if ∆(h) = 1⊗ h + h⊗ 1.

The sets of group-like and primitive elements of H are denoted respectively G(H) and
P (H).

If h ∈ G(H), then ε(h) = 1; similarly, if h ∈ P (H), then ε(h) = 0.
G(H) is a subgroup of the group of units of H, and P (H) is a Lie subalgebra of H with

the bracket [a, b] = ab− ba.

Observation. If k is a field, distinct group-like elements are linearly independent, so if G
is a group, then the set of group-like elements in kG is precisely G.
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Lemma 1.3. Let k be a field. If H is a Hopf algebra over k which is generated (as an
algebra) by primitive elements, then the set of group-like elements of H is trivial.

Proof. Let {xi}i∈I denote the family of nonzero primitive elements of H and for each
n ≥ 0, let An be the linear span in H of elements of the form xi1

k1 . . . xim
km , such that kj

are nonnegative integers with k1 + · · ·+ km = n.
Then the collection {An}n≥0 satisfies the next two properties:
1. An j An+1,

⋃
n≥0 An = H.

2. ∆(An) j
∑n

i=0 Ai ⊗An−i.

Now, if g ∈ G(H), because of property 1, there exists m such that g ∈ An, so we can
choose m to be minimal with this property. Suppose g /∈ k = A0, then there exists f ∈ H∗

such that f(A0) = 0 but f(g) = 1.
As g ∈ Am, we may write

∆(g) =
m∑

i=0

ai ⊗ am−i,

with aj ∈ Aj , and this implies that

g =< id⊗f, ∆(g) >=
m−1∑

i=0

aif(am−i) ∈ Am−1.

But this contradicts the minimality of m. Thus g ∈ k, and so g = 1 as asserted. ¤
Lemma (1.3), together with the previous observation, show that the u-algebra of a

restricted nontrivial Lie algebra cannot be isomorphic to a group algebra kG.

Sigma Notation.
We introduce the notation, due to Sweedler, that will be used from now on.
If C is a coalgebra, c ∈ C, then ∆(c), as an element of C ⊗ C has a representation of

the form
∆(c) =

∑

i

ci ⊗ ci,

where ci, c
i are elements of C. We indicate such an expression in the abbreviated form

∆(c) =
∑

c(1) ⊗ c(2).

Some authors use instead ∆(c) =
∑

c1 ⊗ c2. In what follows we shall omit the sumation
symbol, for the sake of brevity. So that,

∆(c) = c(1) ⊗ c(2).

If V is a right comodule for C with comodule structure map ∆V , then we write for
v ∈ V

∆V (v) =
∑

v(0) ⊗ v(1),

where v(0) represents elements of V , and v(1) is understood to be in C. Again, we shall
omit the sumation symbol.
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For instance, if C is a coalgebra, the coassociativity of ∆ reads, in sigma notation

(c(1))(1) ⊗ (c(1))(2) ⊗ c(2) = c(1) ⊗ (c(2))(1) ⊗ (c(2))(2),

∀c ∈ C, so we may indicate ∆2(c) := (∆⊗ id) ◦∆(c) = (id⊗∆) ◦∆(c) in the form

∆2(c) = c(1) ⊗ c(2) ⊗ c(3).

Defining inductively ∆1 = ∆, ∆n+1 : C −→ C⊗(n+2), ∆n+1 = (∆⊗ idn) ◦∆n−1, n ≥ 2, we
see there is no ambiguity in writting

∆n(c) = c(1) ⊗ · · · ⊗ c(n+1).

In this vein, the composition f ◦∆n can be expressed as

f ◦∆n(c) = f(c(1), ..., c(n)).

For instance, the conditions on ε take the form

ε(c(1))c(2) = c = c(1)ε(c(2)).

Also, if H is a Hopf algebra with antipode S, then we must have, ∀h ∈ H

S(h(1))h(2) = ε(h)1 = h(1)S(h(2)).

Convolution Product.

Definition. Let (C, ∆) be a coalgebra, (A,m) an algebra. For f, g ∈ Hom(C, A) we define
the convolution product of f and g to be the element of Hom(C,A), denoted f ∗ g, which
results from the composition

C
∆−→ C ⊗ C

f⊗g−−→ A⊗A
m−→ A.

In sigma notation we have, for c ∈ C, (f ∗ g)(c) = f(c(1))g(c(2)).
In the next example, following Wigner [20], it is shown that the convolution product

allows to give simpler proofs of some old results on free Lie algebras (cf. [2, V.4]).

Example. Let V be a k-module and consider the Hopf algebra structure in the tensor
algebra T (V ) indicated earlier. Let φ : T (V ) −→ T (V ) the k-linear map defined by:

φ(1) = 0,

φ(v) = v,

φ(v1v2 . . . vn) = [v1[v2[. . . vn] . . . ]] = ad(v1)(φ(v2 . . . vn)).

for v, v1, . . . , vn ∈ V , n ≥ 2. Call g the Lie subalgebra of T (V ) generated by V . Then:
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a) ∀x ∈ Tn(V ), φ ∗ id(x) = nx.

b) (Theorem of Dynkin, Specht and Wever). Suppose char k = 0. If x ∈ Tn(V ), the
following statements are equivalent:

(i) x ∈ g.
(ii) ∆(x) = 1⊗ x + x⊗ 1.
(iii) φ(x) = nx.
Then in particular, if k is a field of characteristic 0, and g is a free Lie algebra over k,

the Lie algebra of primitive elements in U(g) is precisely g. (We remark this still remains
true if g is not free).

Proof.
a) By induction on n. The statement is trivially true if n = 0, 1. Let n ≥ 2.
Assume x = vy, with y ∈ Tn−1(V ), v ∈ V . Write

∆(y) = 1⊗ y +
∑

i

yi ⊗ zi,

where yi ∈ T+(V ). In particular ∀v ∈ V ,

φ(vyi) = vφ(yi)− φ(yi)v.

We have
φ ∗ id(y) =

∑

i

φ(yi)zi,

and so, as ∆(v) = v ⊗ 1 + 1⊗ v,

φ ∗ id(x) = φ ∗ id(vy) = φ(v(1)y(1))v(2)y(2) = φ(y(1))vy(2) + φ(vy(1))y(2) =

φ(1)vy +
∑

i

φ(yi)vzi + φ(v)y +
∑

i

φ(vyi)zi =

vy + v(φ ∗ id)(y) = vy + (n− 1)vy = nx.

b) (i) ⇒ (ii). Follows from the observation that the set of primitive elements of a Hopf
algebra is a Lie subalgebra.

(ii) ⇒ (iii). By a) we can write φ ∗ id(x) = nx, but by (ii) this equals φ(1)x + φ(x)1 =
φ(x).

(iii) ⇒ (i). Because φ(x) = nx ∈ g and char k = 0.

Properties of the convolution product.

Proposition 1.4. Let C be a coalgebra with counit ε, and let A be an algebra with unit
u. Then (Hom(C, A), ∗) is an algebra with unit uε.

Proof. It is easy to see that ∗ defines an associative multiplication in Hom(C, A). We show
that uε is the unit. Let f ∈ Hom(C,A), then ∀c ∈ C,

(f ∗ uε)(c) = f(c(1))ε(c(2))1A = f(c(1)ε(c(2))) = f(c).

Similarly uε ∗ f = f . ¤
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If B is a bialgebra then by proposition (1.4), the convolution product makes Hom(B, B)
into an algebra. In the case of Hopf algebras there is a very close relation between this
algebra structure and the antipode.

Recall that if (A,mA), (B, mB) are algebras, a map f : A −→ B is an antialgebra map
if (f ◦mA) = mB

op ◦ (f ⊗ f) and f ◦ uA = uB . That is, f(xy) = f(y)f(x), ∀x, y ∈ A and
f(1) = 1.

If (C, ∆C), (D,∆D) are coalgebras we say that a map g : C −→ D is an anticoalgebra
map if ∆D ◦ g = (g ⊗ g) ◦∆C

cop and εD ◦ g = εC . In sigma notation, the first condition
reads

g(c)(1) ⊗ g(c)(2) = g(c(2))⊗ g(c(1)), ∀c ∈ C.

Theorem 1.5. Let H be a Hopf algebra. Then the antipode S is the inverse of the identity
map id : H −→ H with respect to the convolution product in Hom(H, H). In particular it
is unique. We have also:

a) S is an antialgebra map.
b) S is an anticoalgebra map.
c) The following statements are equivalent:
i) S2 = id.
ii) x(2)S(x(1)) = ε(x)1,∀x ∈ H.
iii) S(x(1))x(2) = ε(x)1, ∀x ∈ H.

In particular, if H is commutative or cocommutative then S2 = id.
d) Let H, K are Hopf algebras (with antipodes denoted respectively by SH and SK).

If φ : H −→ K is a bialgebra map, then φ is a Hopf algebra map, i.e. φSH = SKφ.

Proof. The first assertion follows immediately from the definition of the antipode.
To prove a), consider the algebra structure in Hom(H⊗H, H), given by the convolution

product. Call m : H ⊗H −→ H the multiplication in H. We claim that

S ◦m = m−1 = mop ◦ (S ⊗ S).

Here m−1 is the inverse of m with respect to the convolution product. To see this, let
x, y ∈ H, then

((S ◦m) ∗m)(x⊗ y) = S ◦m(x(1) ⊗ y(1))m(x(2) ⊗ y(2)) =

S(x(1)y(1))x(2)y(2) = ε(x)ε(y)1H = ε(x⊗ y)1H .

Also

((mop ◦ (S ⊗ S)) ∗m)(x⊗ y) = S(y(1))S(x(1))x(2)y(2) = ε(x)ε(y)1H = ε(x⊗ y)1H .

In a similar way m ∗ (S ◦m) = m ∗ (mop ◦ (S ⊗ S)) = uε.
By the uniqueness of the inverse, we obtain the desired identity.
We have also

S(1) = S ∗ id(1) = 1.
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For b) use the identity ∆ ◦ S = ∆−1 = (S ⊗ S) ◦∆cop in Hom(H,H ⊗H).
If x ∈ H, applying ε to the equality

ε(x)1 = S(x(1))x(2),

we get
ε(x) = ε(S(x(1)ε(x(2))) = ε ◦ S(x).

c) i) ⇒ ii). Suppose S2 = id. If x ∈ H, using the fact that S is an antialgebra map,
one gets

x(2)S(x(1)) = S2(x(2))S(x(1)) = S(x(1)S(x(2))) = S(ε(x)1) = ε(x)1.

ii) ⇒ i). Let x ∈ H, then

S2 ∗ S(x) = S2(x(1))S(x(2)) = S(x(2)S(x(1))) = S(ε(x)1) = ε(x)1.

This shows that S2 ∗ S = uε. Multiplying by id on the right, we obtain i).
Thus we saw that i) ⇔ ii). Similarly i) ⇔ iii), which finishes the prove of c).

d) To see this, use the identities

φSH = φ−1 = SKφ

which hold in Hom(H, K). ¤

Remark. Let H be a Hopf algebra. We saw that the antipode S is an antialgebra map, and
so it is an algebra map H −→ Hop. Let V be a left H-module. Then the dual k-module
V ∗ results a right H-module and we can make it into a left H-module, by composing

H
S−→ Hop −→ End(V ∗).

That is,
h.α(v) = α(S(h).v), ∀h ∈ H, α ∈ V ∗, v ∈ V.

We have, moreover, that the evaluation map V ∗ ⊗ V −→ V is in this way a map of left
H-modules (where V ∗ ⊗ V is considered as an H-module via ∆).

The following is a geometric approach to Hopf algebras. For more details see reference
[4].

Hopf algebras and affine schemes.
In what follows Ak will denote the category of commutative k-algebras. We indicate by

S, G, respectively, the categories of sets and groups.
For each R ∈ Ak, consider the functor Alg(R, ) : Ak −→ S, which associates to each

commutative k-algebra A the set Alg(R, A), of all algebra maps from R to A, and to
each morphism φ : A −→ B, the map Alg(R, φ) : Alg(R, A) −→ Alg(R,B), given by
Alg(R, φ)(f) = φ ◦ f .

We denote this functor by Sp R and call it the spectrum of R.
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For instance, if R = k[T1, . . . , Tn], the polynomial algebra in n variables over k, then
Sp R w Afn, where Afn is the functor affine n-space :

Afn(A) = An, Afn(φ) = φn : An −→ Bn,

for A, B ∈ Ak, φ : A −→ B.

Definitions.
We say a functor X : Ak −→ S is an affine scheme over k if it is representable, i.e., if

there exists a natural isomorphism X w Sp R for some R ∈ Ak.
A group scheme is a functor G : Ak −→ G which, when composed with the forgetful

functor G −→ S, is an affine scheme over k.

In dealing with Hopf algebras, we have the next

Proposition 1.6. If H is a Hopf algebra, and A a commutative algebra, then Alg(H, A)
is a subgroup of the group of units of Hom(H,A).

Proof. It is clear that the unit uε is an algebra map H −→ A.
Let f, g ∈ Alg(H, A). Then for x, y ∈ H,

(f ∗ g)(xy) = f(x(1)y(1))g(x(2)y(2)) =

f(x(1))g(x(2))f(y(1))g(y(2)) = (f ∗ g)(x)(f ∗ g)(y).

So f ∗ g ∈ Alg(H, A).
If S is the antipode in H, we claim that for f ∈ Alg(H, A), f−1 = f ◦ S. Note that

because S is an antialgebra map and A is commutative, f ◦S ∈ Alg(H, A). Now, if x ∈ H,
we have

(f ∗ f ◦ S)(x) = f(x(1))f(S(x(2))) = f(x(1)S(x(2))) = f(ε(x)1H) = ε(x)1A.

Similarly, f ◦ S ∗ f = uε. So the assertion is proved. ¤

Corollary 1.7. If H is a commutative Hopf algebra, then its spectrum Sp H is an affine
group scheme. ¤

We have moreover, that if R,S are commutative algebras, and φ : R −→ S is an algebra
map, then φ induces functorially a natural transformation

φ∗ : Sp S −→ SpR,

in the form φ∗(ξ) = ξ ◦ φ.
This observation, together with corollary (1.7), give us a (contravariant) functor from

the category of commutative Hopf algebras into the category of affine group schemes.
In fact this functor is an antiequivalence of categories. We go now to this point.



18 HANS-JÜRGEN SCHNEIDER

If X : Ak −→ S is any functor, the set of all natural transformations X −→ Af1 can be
given a k-algebra structure by setting

(f + g)A(x) = fA(x) + gA(x),

for A ∈ Ak, and x ∈ X(A), defining in analogous way fg and λf , for λ ∈ k.
We denote this algebra by k[X].

Observation. The universal property of the tensor product implies that a direct product
X × Y of affine schemes is again an affine scheme with k[X × Y ] = k[X]⊗ k[Y ].

If X, Y : Ak −→ S are functors and f : X −→ Y is a natural transformation, then f
induces functorially a k-algebra map f∗ : k[X] −→ k[Y ], by f∗(τ) = τ ◦ f , τ ∈ k[Y ].

Recall that if C is a category, and F : C −→ S is a functor, then Yoneda ’s lemma asserts
that for any object A ∈ C, the collection of all natural transformations τ : F −→ HomC(A, )
is in one to one correspondence with F (A). This correspondence sends τ 7→ τA(idA).

Now, as a consequence of Yoneda ’s lemma, we have that if R, S ∈ Ak the collection of
all natural transformations SpR −→ Sp S is in one to one correspondence with Alg(S, R).
More exactly, this bijection is defined by associating to each τ : Sp R −→ Sp S, the map
τR(idR) ∈ Alg(S,R).

If R ∈ Ak, the algebra isomorphism

Alg(k[T ], R) −→ R, f 7→ f(T ),

gives an isomorphism of k-algebras

k[Sp R] −→ R.

Let G be an affine group scheme. Then the group structures on G(A), A ∈ Ak, define
natural transformations

m : G×G −→ G,

1 : Sp k −→ G,

i : G −→ Gop,

which give rise to algebra maps

∆ : k[G] −→ k[G]⊗ k[G],

ε : k[G] −→ k,

S : k[G] −→ k[G]op
.

Translation of the group axioms on G, say that k[G] is a Hopf algebra where ∆, ε and S
are the comultiplication, the counit and the antipode, respectively.
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By the above, the functor G 7→ k[G], from the category of affine group schemes into
the category of commutative Hopf algebras is a quasi inverse of H 7→ Sp H, and thus the
latter is an antiequivalence of categories.

Examples.

1) Let G = GL(n, ) be the functor that associates to each commutative k-algebra A,
the group GL(n,A) of all n × n matrices with entries in A and determinant 1. Then G
is an affine group scheme and the Hopf algebra that represents it is k[Xij : 1 ≤ i, j ≤
n;Y ]/(Y det(Xij) − 1), which is isomorphic to the localization of k[Xij : 1 ≤ i, j ≤ n] in
the powers of det(Xij). The Hopf algebra structure is given by

∆(Xij) =
n∑

k=0

Xik ⊗Xkj , ∆(Y ) = Y ⊗ Y,

ε(Xij) = δij , ε(Y ) = 1,

S(Xij) = (−1)i+j
Y det(Aij),

where Aij denotes the submatrix of (Xij) obtained eliminating the j-th row and the i-th
column, i.e., S(Xij) is the i, j-entry of (Xij)

−1.

2) Consider the affine group scheme U( ) : Ak −→ G, that takes A to its group of units
U(A). That is, U( ) = GL(1, ).

In this case the representing Hopf algebra is H = k[T, T−1], the algebra of Laurent
polynomials in T over k, with

∆(T ) = T ⊗ T, ε(T ) = 1,

S(T ) = T−1.

H is isomorphic to the group algebra over the additive group of integers, kZ.

3) The circular group
Let C : Ak −→ G be the functor such that

C(A) = {(a, b) ∈ A×A : a2 + b2 = 1}.
for each commutative k-algebra A. C(A) has a group structure provided by

(a, b)(c, d) = (ac− bd, ad + bc).

In fact, C is an affine group scheme, called the circular group, whose representing algebra
is the so called trigonometric algebra: H = k[s, c]/(s2+c2−1), with Hopf algebra structure
determined by

∆(c) = c⊗ c− s⊗ s, ∆(s) = c⊗ s + s⊗ c,

ε(c) = 1, ε(s) = 0,

S(c) = c, S(s) = −s.
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Remark. Assume that 2 is invertible in k. Then C is isomorphic to U if k contains a square
root of −1, i.

In fact i induces an isomorphism of Hopf algebras between the representing algebras,
k[T, T−1] −→ H, in the form T 7→ c + is. At the group level, the isomorphism C(A) → A∗

is given by
(a, b) 7→ a + ib;

the inverse is

x 7→ (
x + x−1

2
,
x− x−1

2i
).

The dual algebra of a Hopf algebra.

Let C be a coalgebra. Then we know that the dual k-module C∗ = Hom(C, k) is an
algebra with the convolution product. We will denote this product by fg (instead of f ∗g),
for f, g ∈ C∗. Then we have, ∀c ∈ C

(1)
< fg, c >=< f, c(1) >< g, c(2) >,

1C∗ = ε.

Observe that the map C∗ ⊗ C∗ −→ C∗ which define this algebra structure is obtained by
restricting to C∗⊗C∗ ⊆ (C ⊗ C)∗ the transpose of ∆ : C −→ C ⊗C, and the unit k −→ C∗

is the transpose of the counit ε : C −→ k.

Let A be a finite dimensional k-algebra. We shall identify A∗ ⊗ A∗ with (A⊗A)∗ via
the natural isomorphism. So the transposes of the multiplication m : A⊗A −→ A and the
unit u : k −→ A define maps

∆ : A∗ −→ A∗ ⊗A∗, and ε : A∗ −→ k.

It is easy to see that (A∗, ∆) is a coalgebra with counit ε.
Explicitly, for f ∈ A∗ and x, y ∈ A

(2) < ∆(f), x⊗ y >=< f, xy >, and ε(f) =< f, 1 > .

In other words, ∆(f) = f(1) ⊗ f(2) means 〈f, xy〉 = 〈f(1), x〉〈f(2), y〉.

If (A,m, ∆) is a finite dimensional bialgebra, with unit u and counit ε, then ∆ and ε are
algebra maps. This implies that their transposes ∆∗ and ε∗ are coalgebra maps (with the
coalgebra structure in A∗ provided by the transposes m∗ and u∗ of m and u, respectively).
So (A∗,∆∗,m∗) is also a bialgebra.

Proposition 1.8. Let H be a finite dimensional Hopf algebra with antipode S and let
H∗ be the dual bialgebra. Then H∗ is a Hopf algebra with antipode S∗. We have also
that if k is a field, the evaluation map H −→ H∗∗ is an isomorphism of Hopf algebras.

Proof. Left to the reader. ¤
We will denote also by ∆, ε and S for the comultiplication, the counit and the antipode

in H∗.
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Remarks.
1) Let H be a finite dimensional Hopf algebra. It is clear from the definitions that H is

commutative iff H∗ is cocommutative and viceversa.

2) The grouplike elements in H∗ are the algebra maps H −→ k. The primitive elements
are the derivations of H, i.e., the linear maps D : H −→ k such that D(ab) = ε(a)D(b) +
D(a)ε(b), a, b ∈ H.

3) In case A is not a finite dimensional algebra, then the inclusion A∗ ⊗A∗ ⊆ (A⊗A)∗

is proper, so we can no more consider the coalgebra structure in A∗ as above. In this case
we take the finite dual of A, which is defined as

Ao = {f ∈ A∗ : ∃I ⊆ A, ideal of finite codimension, with f(I) = 0}.
It can be shown that if H is a Hopf algebra then Ho is also a Hopf algebra dual to H, in
the sense that it satisfies equations (1) and (2).

Examples.

1) Let G be a group, and consider the Hopf algebra kG. Then the dual Hopf algebra kG∗

may be identified with the algebra of functions over G, kG, where the algebra structure is
pointwise multiplication. If k is a field and G is a finite group, then there is an isomorphism
of Hopf algebras kG w kG∗, given by the evaluation map g 7→ Eg, where Eg(h) = h(g),
g ∈ G,h ∈ kG.

2) Let A = Mn(k) be the algebra of all n× n matrices with entries in k. Identifying A
with A∗ via the trace (i.e., < X, Y >= Tr(XY ), X, Y ∈ A), we get a coalgebra structure
in A. The comultiplication, ∆, is given by

∆(Eij) =
n∑

k=1

Ekj ⊗ Eik,

where Eij denotes the matrix having all entries equal to zero, except for a 1 in the entry
ij. The counit is ε = Tr : A −→ k.

Observe that A is not a bialgebra with this comultiplication.

3) Let H be the Taft algebra over the field k. Then H is isomorphic to H∗. This can
be seen as follows.

Let G ∈ H∗ the algebra map defined by

G(g) = ξ−1, G(x) = 0,

and let X be the k-linear map X : H −→ k, such that

X(gix) = 1, 0 ≤ i ≤ N − 1,

X(gixj) = 0, 0 ≤ i, j ≤ N − 1, j 6= 1.

Then the map g 7→ G, x 7→ X, gives an isomorphism of Hopf algebras H −→ H∗.
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§2 Hopf modules and integrals

This section covers the main results of Larson and Sweedler’s fundamental paper [8].

Definition. Let H be a Hopf algebra over k. A k-module V is called a (right)Hopf module
for H, if it satisfies the three conditions:

1) V is a right H-module.
2) V is a right H-comodule.
3) Compatibility condition: ∆V (v.x) = v(0).x(1) ⊗ v(1)x(2), ∀ x ∈ H, v ∈ V .
If V , W are Hopf modules, a k-linear map f : V −→ W is said a Hopf module map, if it

is both a module and a comodule map.

Remark. If ∆V : V −→ V ⊗H is the comodule structure map on V , then condition 3) says
that ∆V is a morphism of H-right modules, with the right H-action on V ⊗H given by
∆: (v ⊗ g).h = v.h(1) ⊗ gh(2).

We denote by MH
H the category of right H-Hopf modules.

If V is a right Hopf module, the invariant and covariant submodules of V are defined,
respectively, to be

V H = {v ∈ V : v.h = ε(h)v, ∀h ∈ H},
and

V co H = {v ∈ V : ∆V (v) = v ⊗ 1}.

Given a k-module W , the tensor product W ⊗H can be made into a H-Hopf module
by setting

(w ⊗ h).g = w ⊗ hg,

∆W⊗H(w ⊗ h) = w ⊗ h(1) ⊗ h(2).

∀w ∈ W,h, g ∈ H. Such Hopf modules will be called trivial .
The following theorem asserts that all Hopf modules are trivial.

Theorem 2.1. Fundamental Theorem of Hopf modules (Larson - Sweedler,
1969). Let V be a right H-Hopf module. Then the multiplication map

ρ : V co H ⊗H −−−−−−→
v⊗h7→v.h

V,

is an isomorphism of Hopf modules (where V co H⊗H has the trivial Hopf module structure).

Proof.
We first show that φ : V −→ V co H , given by φ(v) = v(0).S(v(1)) is a well defined linear

map.
For this, let v ∈ V and calculate

∆V (φ(v)) = ∆V (v(0).S(v(1))) = v(0).S(v(3))⊗ v(1).S(v(2)) =

v(0).S(v(2))⊗ ε(v(1))1 = v(0).S(v(1))⊗ 1 = φ(v)⊗ 1.
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So φ(v) ∈ V co H as we wanted.
Now we claim that (φ⊗ id)∆V : V −→ V co H ⊗H is the inverse of ρ.
Let v ∈ V , then

ρ ◦ (φ⊗ id)∆V (v) = φ(v(0)).v(1) = v(0).S(v(1))v(2) = v(0)ε(v(1)) = v.

If v ∈ V co H , h ∈ H, we have

(φ⊗id)∆V ◦ρ(v⊗h) = φ((v.h)(0))⊗(v.h)(1) = φ(v.h(1))⊗h(2) = v.h(1)S(h(2))⊗h(3) = v⊗h.

This finishes the proof, since both maps are morphisms of right H-Hopf modules. ¤

Definition. Let H be a Hopf algebra. The k-linear spaces of left and right integrals in H
are defined, respectively, as follows:

Il(H) = {h ∈ H : xh = ε(x)h,∀x ∈ H},
and

Ir(H) = {h ∈ H : hx = ε(x)h,∀x ∈ H}.

H is called unimodular if Il(H) = Ir(H).

Observation. With this definition, for instance the space of (left) integrals in H is the (left)
ideal of invariants with respect to the action of H on itself by left multiplication. It is clear
that it is also a right ideal.

Examples.
1) Let H be finite dimensional. Then φ ∈ H∗ is a left integral, if and only if,

h(1) < φ, h(2) >=< φ, h > 1H ,

∀h ∈ H.

2) Let G be a finite group, and let kG its group algebra. Then kG is unimodular, with
Il = Ir = k(

∑
g∈G g).

(The definition of left integral in kG = kG∗, which is the space of all distributions on
G, coincides with that of left invariant measure, i.e., those linear functionals α on kG such
that < α, φ >=< α,Lgφ >, ∀φ ∈ kG, g ∈ G. Here Lg denotes the left translation by g in
kG: < Lgφ, h >= φ(gh)).

3) Let H be the Taft algebra of dimension N2 over the field k. Then the spaces of left
and right integrals are respectively

Il(H) = k(
N−1∑

j=0

gjxN−1),

and

Ir(H) = k(
N−1∑

j=0

ξjgjxN−1).
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Let H be a Hopf algebra, and let V be a right H-comodule with comodule structure
map ∆V . Then V is a left H∗-module via

H∗ ⊗ V
id⊗∆V−−−−−→ H∗ ⊗ V ⊗H

id⊗τ−−−→ H∗ ⊗H ⊗ V
<,>⊗id−−−−−→ k ⊗ V −→ V,

where <,>: H∗ ⊗H −→ k is the evaluation map: h∗ ⊗ h 7→< h∗, h >.
Explicitly,

(*) h∗.v =< h∗, v(1) > v(0),

v ∈ V , h∗ ∈ H∗.

A left H∗-module V with the property that there exists a right H-comodule structure
on V such that (*) holds is called rational.

For finite dimensional H, it is possible to show that all left H∗-modules are rational.

Let dim H be finite. The above allows us to consider H∗ as a right H-comodule as we
indicate now.

H∗ is a left H∗-module via left multiplication. So it is a rational H∗-module. We can
then consider the right coaction ρ : H∗ −→ H∗ ⊗H, such that
(1) ρ(f) = f(0) ⊗ f(1) ⇔ < p, h(1) >< f, h(2) >=< p, f(1) >< f(0), h >,

∀p ∈ H∗, h ∈ H.

On the other hand, we have that H∗ is a left (respectively right) H-module via the
transpose of right (respectively left) multiplication in H. This action is denoted by h ⇀ h∗

(respectively h∗ ↼ h), for h ∈ H, h∗ ∈ H∗.
By means of the antipode, we get left and right actions of H on H∗:

h ⇁ h∗ = h∗ ↼ S(h), and h∗ ↽ h = S(h) ⇀ h∗.

These actions are determined by
< h∗ ↽ h, g >=< h∗, gS(h) >, < h ⇁ h∗, g >=< h∗,S(h)g >,

for h∗ ∈ H∗, g, h ∈ H.
In particular, H∗ is a right H-module via h∗ ↽ h. If H is finite dimensional, recalling

the right coaction ρ of H on H∗ given by (1), we find that H∗ is both a right module and
comodule for H. Moreover, we have:

Lemma 2.2 (Larson - Sweedler, 1969). Let H be a finite dimensional Hopf algebra.
Then H∗ is a right Hopf module, with action ↽ and coaction ρ.

Proof.
We must show that ∀f ∈ H∗, and ∀h ∈ H, ρ(f ↽ h) = f(0) ↽ h(1) ⊗ f(1)h(2). That is,

we must see that ∀p ∈ H∗, and ∀x ∈ H,
< p, x(1) >< f ↽ h, x(2) >=< f(0) ↽ h(1), x >< p, f(1)h(2) > .

Now,
< f(0) ↽ h(1), x >< p, f(1)h(2) >=< f(0), xS(h(1)) >< h(2) ⇀ p, f(1) >=

< h(3) ⇀ p, x(1)S(h(2)) >< f, x(2)S(h(1)) >=< p, x(1) < ε, h(2) >>< f, x(2)S(h(1)) >=

< p, x(1) >< f, x(2)S(h) >=< p, x(1) >< f ↽ h, x(2) > . ¤
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In what follows k will be a field. The next theorem, due to Larson and Sweedler (1969),
is a consequence of theorem (2.1) and lemma (2.2).

Theorem 2.3 (Larson - Sweedler, 1969). Let H be a finite dimensional Hopf algebra
over k. Then

1) dim Il(H) = dim Ir(H) = 1.
2) The antipode S is bijective, and S(Il) = Ir.
3) For 0 6= λ ∈ Il(H∗), the map H −→ H∗, given by h 7→ h ⇀ λ, is a left linear

isomorphism.

Proof. 1) Consider the Hopf module structure on H∗ given by lemma (2.2). By theorem
(2.1), (H∗)co H ⊗H w H∗. And, as H is finite dimensional, we get dim (H∗)co H = 1.

It remains to observe that (H∗)co H = Il(H∗), which is clear from the definitions. Then
replacing H∗ by H (again using the finite dimensionality of H), we get dim Il(H) = 1.
The remaining equality will follow from 2).

2) By theorem (2.1), the map

Il(H∗)⊗H −−−−−−−→
λ⊗h7→λ↽h

H∗,

is an isomorphism.
Suppose now that 0 6= λ ∈ Il(H∗), and let h ∈ H such that S(h) = 0. Then

0 = S(h) ⇀ λ = λ ↽ h.

Thus λ⊗ h = 0, and so h = 0.
This shows that S is injective. Now, as H is finite dimensional, it is bijective.
Finally, using this it is an easy calculation to show that S(Il) = Ir.

3) Again using theorem (2.1), plus the fact that dim Il(H∗) = 1, we get that for any
0 6= λ ∈ Il(H∗),

H∗ = λ ↽ H = S(H) ⇀ λ.

Now, as S is bijective, it follows that H∗ = H ⇀ λ, which proves 3). ¤

From now on we will write hf := h ⇀ f and fh := f ↼ h, for h ∈ H, f ∈ H∗.

In what follows we consider a class of algebras that contains the finite dimensional Hopf
algebras.

Frobenius algebras.
Let k denote a field. If A is a k-algebra, the left (respectively right) regular representation

of A is the module structure in A given by left (respectively right) multiplication. It is
denoted by AA (respectively AA).

Recall that if M is a right A-module, then the dual space M∗ is a left A-module by

< a.φ,m >=< φ,m.a >,

a ∈ A, φ ∈ M∗, m ∈ M .
In particular, this holds if we take M to be the right regular module for A, AA.



26 HANS-JÜRGEN SCHNEIDER

Let A be a finite dimensional algebra (say dimA = n), φ ∈ A∗, and ri, li ∈ A, 1 ≤ i ≤ n.
Then φ is called a Frobenius homomorphism, with dual bases (ri, li) if one of the following
(equivalent) conditions holds:

a) ∀x ∈ A, x =
∑

i ri < φ, lix >.
b) ∀x ∈ A, x =

∑
i < φ, xri > li.

Proposition 2.4. Let A be a finite dimensional algebra, and let f ∈ A∗. Then the
following statements are equivalent:

1) The map AA −→ AA
∗, given by x 7→ xf is an isomorphism of left A-modules.

2) There exist ri, li ∈ A, 1 ≤ i ≤ n (n = dim A), such that f is a Frobenius homomor-
phism with dual bases (ri, li).

3) The map AA −→ AA∗, given by x 7→ fx is an isomorphism of right A-modules.

Proof.
1) ⇒ 2). Let (li) be a k-basis for A, and let (fi) its dual basis.
By 1), there exist ri ∈ A, such that fi = rif . Then, ∀x ∈ A,

x =
∑

i

< fi, x > li =
∑

i

< rif, x > li =
∑

i

< f, xri > li.

2) ⇒ 1). Suppose fx = 0 for some x ∈ A. Then < fx, y >=< f, xy >= 0, ∀y ∈ A.
Hence

x =
∑

i

< f, xri > li = 0.

So the map x 7→ fx is injective, and as A is finite dimensional it is bijective.
Similarly one shows that 2) ⇔ 3), but here using the condition a) in the definition of

dual bases for Frobenius homomorphisms. ¤

Definition. Let A be a finite dimensional k-algebra. If A satisfies any of the equivalent
conditions 1) – 3) of the proposition above, then A is called a Frobenius algebra.

Remark. By theorem (2.3), we know that if H is a finite dimensional Hopf algebra, then
H is a Frobenius algebra.

We have moreover, that if 0 6= λ is any left integral in H∗, then the maps HH −→ HH
∗,

h 7→ hλ, and HH −→ HH∗, h 7→ λh are isomorphisms of left (respectively right) H-modules.
We may then choose Λ ∈ H such that λΛ = ε. Such Λ is necessarily a right integral in

H as the following argument shows.

If I is a right integral in H, then λI =< λ, I > ε. And by the injectivity of h 7→ λh,
< λ, I > 6= 0 if I 6= 0.

So we can choose I to be such that < λ, I >= 1, and then λI = ε.
Again using the injectivity of h 7→ λh, we find that Λ = I is a right integral in H.
We saw also that the condition λΛ = ε is equivalent to < λ, Λ >= 1.
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§3 Finite Hopf algebras

In what follows, k will denote a field. Let H be a Hopf algebra.

The following are conjectures made by Kaplansky (1975) (see appendix):
1. If R is a Hopf subalgebra of H, then H is a free R-module.
2. If dim H is finite and H is semisimple, then the square of the antipode is the identity.
3. If dim H = p, p a prime, then H is commutative and cocommutative.

Of these, (1) is known to be false in general [12], though it is true if H is finite dimen-
sional. As to (2) and (3), they are known over fields of characteristic 0.

The main results we treat in this section and the next are partial answers to these
questions.

A finite dimensional Hopf algebra H over k will be called finite. By the order of H we
will mean its dimension.

The results in §2 allowed us to assert that H is a Frobenius algebra. Now we treat the
connection between this structure and the Hopf algebra structure in H following [13].

Theorem 3.1. Let 0 6= λ ∈ H∗ be a left integral, and let Λ ∈ H be such that λΛ = ε.
Then λ is a Frobenius homomorphism with dual bases (S(Λ(1)), Λ(2)).

Proof. Let x ∈ H. Then

S(Λ(1))〈λ,Λ(2)x〉 = S(Λ(1))Λ(2)x(1)〈λ, Λ(3)x(2)〉 = x(1)〈λ, Λx(2)〉 = x〈λ, Λ〉 = x. ¤

In an enterily similar fashion, one can see that if γ ∈ H∗ is a nonzero right integral, then
there exists a left integral Γ ∈ H such that Γγ = ε. We also have that γ is a Frobenius
homomorphism in H with dual bases (Γ(1),S(Γ(2))).

From now on we fix a nonzero left (respectively right) integral λ ∈ H∗ (respectively γ),
and call Λ (respectively Γ) the right (respectively left) integral in H such that < λ, Λ >= 1
(respectively < γ, Γ >= 1), without further comment.

Remark. If A is a Frobenius algebra, and f ∈ A∗ is a Frobenius homomorphism with dual
bases (ri, li), then in A⊗A we have the identity

∑

i

xri ⊗ li =
∑

i

ri ⊗ lix.

∀x ∈ A.
Indeed, these have the same image in End(A) under the map

A⊗A −−−−−−−→
a⊗b7→a⊗fb

A⊗A∗ w End(A).

Here, as usual, the linear isomorphism A⊗A∗ −→ End(A) is given by (a⊗φ)(x) =< φ, x > a.
This remark motivates the following
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Definition.
A k algebra A is called separable if there exist ri, li ∈ A, 1 ≤ i ≤ n = dim A, such that:
1)

∑
i rili = 1.

2) ∀x ∈ A,
∑

i xri ⊗ li =
∑

i ri ⊗ lix in A⊗A.

We say a Hopf algebra H is semisimple if it is semisimple as an algebra, i.e., if every
finite dimensional left H-module is completely reducible.

Remark. For a finite dimensional k-algebra A, the condition of being semisimple is equiv-
alent to rad(A) = 0. Where rad(A) denotes the radical of A, which by definition is the
sum of all nilpotent left ideals in A. (See [1, §25, p. 163]).

We also have the identity rad(A) = J , where J denotes the Jacobson radical of A, i.e.,
J :=intersection of all maximal left ideals of A. In particular, as J is a nilpotent ideal of
A (A being finite dimensional), every element of J is nilpotent. We will use these facts
later on.

Example.
Consider a finite group G, kG its group algebra. Recall the well known Maschke the-

orem, which asserts that kG is semisimple iff the characteristic of k does not divide the
order |G| of G.

Now, |G| = ∑
g∈G < ε, g > =< ε,

∑
g∈G g >.

As
∑

g∈G g spans the (one dimensional) space of left integrals in kG, Maschke theorem
is equivalent to the statement ” kG is semisimple iff < ε, Il(kG) > 6= 0”.

The next theorem generalizes this result.

Theorem 3.2. Maschke Theorem for Hopf algebras.
Let H be a finite dimensional Hopf algebra. Then the following statements are equiva-

lent.
1) H is semisimple.
2) H is separable.
3) < ε, Il(H) > 6= 0.

Proof.
Observe that as S(Il(H)) = Ir(H) and εS = ε, then < ε, Il(H) >= 0 ⇔< ε, Ir(H) >=

0.
3) ⇒ 2).
Take (ri, pi) = (S(Λ(1)), Λ(2)).
We have that ∑

i

ripi = S(Λ(1))Λ(2) =< ε, Λ > 1,

by 3), t =< ε, Λ > 6= 0.
Then changing pi by li = t−1pi, and using theorem (3.1), we find that (ri, li) makes H

into a separable algebra.
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2) ⇒ 1).
Let Y be a finite dimensional H-module, and let X be a submodule of Y .
Let π : Y −→ X be any k-linear projection, and define π̂ : Y −→ Y in the form π̂(y) =∑
i ri.π(li.y).
We claim that π̂ is an H-linear projection.
As X is an H-submodule, π̂(Y ) ⊆ X.
By 2),

∑
i hri ⊗ li =

∑
i ri ⊗ lih in H ⊗H, ∀h ∈ H. This implies that

∑

i

hri.π(li.y) =
∑

i

riπ(lih.y), ∀h ∈ H, y ∈ Y.

Hence,
π̂(h.y) =

∑

i

ri.π(lih.y) =
∑

i

hri.π(li.y) = h.π̂(y),

∀h ∈ H, y ∈ Y . So π̂ is H-linear.
Finally,

π̂(x) =
∑

i

riπ(li.x) =
∑

i

rili.x = (
∑

i

rili).x = 1.x = x,

∀x ∈ X. So the claim is proved.

1) ⇒ 3).
As H is semisimple, we have that any short exact sequence of left H-modules

0 −→ U
µ−→ V

π−→ W −→ 0,

splits. That is, there exists an H-linear map ν : W −→ V , such that πν = idW .
Applying this to the short exact sequence

0 −→ ker ε −→ H
ε−→ k −→ 0,

we get in particular that < ε, ν(1) >= 1.
Now, if h ∈ H, as ν is H-linear

hν(1) = ν(< ε, h >) =< ε, h > ν(1).

This shows that ν(1) is a left integral in H. So < ε, Il(H) > 6= 0. Then < ε, Ir(H) >6= 0,
and as Λ is a nonzero right integral, being dim Ir(H) = 1, we must have < ε, Λ > 6= 0. ¤

Observation. Replacing H by H∗ in theorem (3.2) we get that H∗ is semisimple iff <
λ, 1 > 6= 0, for some left integral λ ∈ H∗.

Recall that for a finite dimensional vector space V over k, we have a canonical isomor-
phism V ∗ ⊗ V −→ End(V ), given by

(φ⊗ v)(w) =< φ, w > v, v, w ∈ V, φ ∈ V ∗.

Via this identification, if Tr : End(V ) −→ k denotes the trace map, i.e., Tr(F ) := trace of
F , we find that Tr(φ⊗ v) =< φ, v >, for v ∈ V , φ ∈ V ∗.
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Lemma 3.3. Let H be a finite Hopf algebra, and let F be an endomorphism of H. Then
the trace of F is given by

Tr(F ) =< λ,F (Λ(2))S(Λ(1)) > .

Proof.
Let F ∈ End(H). We know that for all x ∈ H,

F (x) =< λ, F (x)S(Λ(1)) > Λ(2).

So via the identification H∗ ⊗H w End(H), F corresponds to

< λ, F ( )S(Λ(1)) > ⊗Λ(2),

then
Tr(F ) =< λ,F (Λ(2))S(Λ(1)) > .

¤

In a finite Hopf algebra the trace of the square of the antipode plays a very important
role, as we will see soon.

For an element h ∈ H, call Lh ∈ End(H) the endomorphism of H given by Lh(x) = hx,
x ∈ H.

This defines a k-linear map TrH : H −→ k, in the form: TrH(h) = Tr(Lh), h ∈ H.
This map will be of central importance later on. As a consequence of lemma (3.3), we

have the next proposition.

Proposition 3.4. Let H be a finite Hopf algebra, then:
1) Tr(S2) =< ε, Λ >< λ, 1 >.
2) If S2 = id, then TrH =< ε, Λ > λ.

Proof.
1) Taking F = S2 in the lemma above, we get

Tr(S2) =< λ,S2(Λ(2))S(Λ(1)) >=< λ,S(Λ(1)S(Λ(2))) >=< ε, Λ >< λ, 1 > .

2) As S2 = id, we have that h(2)S(h(1)) =< ε, h > 1, ∀h ∈ H.
Now take F = Lh, h ∈ H, then

TrH(h) = Tr(Lh) =< λ, hΛ(2)S(Λ(1)) >=< ε, Λ >< λ, h > .

¤

Corollary 3.5.
a) H and H∗ are semisimple, if and only if Tr(S2) 6= 0.
b) If S2 = id and char k does not divide the order of H, then H and H∗ are semisimple.

Proof. It is immediate. ¤
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Indeed, if the characteristic of k is zero, then the converse of 2) holds.

Remark. 1 Combining Theorem 1.5 c) and Corollary (3.5), we conclude that a cocommuta-
tive finite Hopf algebra H is semisimple and cosemisimple, in characteristic 0. Therefore,
if k is algebraically closed, H is a group algebra. We recover in this way part of the
Fundamental theorem for cocommutative Hopf algebras in characteristic 0.

In what follows, we develop a formula for S4, that is valid over an arbitrary field k, and
that will imply this last assertion.

It will also prove the finiteness of the order of the antipode for finite Hopf algebras.

The order of the antipode. Radford’s formula for S4.

If 0 6= t ∈ H is a right integral and h ∈ H, then it is clear that ht is again a right integral.
Thus, as the space of right integrals is one dimensional, we may find an α = α(h) ∈ k such
that ht = α(h)t.

This defines an element α ∈ H∗. We have, moreover, that α ∈ Alg(H, k) = G(H∗).
For, if x, y ∈ H, then

< α, xy > t = xyt =< α, y >< α, x > t,

and as t 6= 0, it must be < α, xy >=< α, x >< α, y >.
In analogous way, given a right integral 0 6= I ∈ H∗, we may find an element a ∈ H

such that h(1) < I, h(2) >=< I, h > a, ∀h ∈ H.
Changing the roles of H and H∗ in the preceding discussion, it results that a ∈ G(H)

is a grouplike element in H.
It is clear that α and a are independent of the choice of the nonzero right integrals t

and I. So they are determined exclusively by H.

Definition. Let a ∈ G(H) and α ∈ Alg(H, k) as above. Then a, α are called the modular
elements of H.

Observe that as a and α are grouplike elements, then they are units (of H and H∗

respectively), and S(a) = a−1, S(α) = α−1.

Remarks.
1) It follows from the definitions that H∗ is unimodular iff a = 1, and H is unimodular

iff α = ε.

2) If H is semisimple, then H is unimodular.
To see this, let 0 6= t be a right integral in H. So that < ε, t >6= 0, by the semisimplicity

of H.
If h ∈ H, then apply ε to the defining equation

ht =< α, h > t.

Then α = ε, and thus H is unimodular.

1This application was added by S. Natale.
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Let γ ∈ Ir(H∗) be the Frobenius homomorphism of H considered earlier. Then γ
determines an isomorphism H −→ H∗, h 7→ hγ.

Now, for fixed x ∈ H, we can consider the element of H∗ defined by y 7→< γ, xy >,
y ∈ H.

There exists then ρ = ρ(x) ∈ H such that ∀y ∈ H

< γ, xy >=< ρ(x)γ, y >=< γ, yρ(x) > .

In other words, γx = ρ(x)γ. The map ρ : H −→ H defined this way is an automorphism of
H.

Definition. ρ is called the Nakayama automorphism of H with respect to the Frobenius
homomorphism γ.

The following two propositions will help us to give a conceptual proof of Radford’s
formula for S4, which is simpler than the original proof in [10].

Denote by S the (composition) inverse of the antipode of H.

Proposition 3.6. Let γ ∈ H∗ be a nonzero right integral, and let Γ ∈ H be a left integral
such that < γ, Γ >= 1. If t = S(Γ), and α ∈ Alg(H, k) is the modular function of H, we
have:

1) (S(t(2)), t(1)) are dual bases for γ.

2) ∀h ∈ H, ρ(h) =< α, h(1) > S2
(h(2)).

Proof.
1) Follows from the fact that (Γ(1),S(Γ(2))) are dual bases for γ. (Or applying theorem

(3.1) to the Hopf algebra Hcop, which is obtained from H by taking the opposite comul-
tiplication ∆op = τ ◦ ∆.) In particular, 〈γ, t〉 = 1, by applying ε to the equation a) in
2.4.

2) Let h ∈ H, then by 1)

ρ(h) = S(t(2)) < γ, t(1)ρ(h) >= S(t(2)) < γ, ht(1) >,

the last equality following from the definition of ρ. Applying S2, and recalling that γ is a
right integral in H∗, we get

S2 ◦ ρ(h) =< γ, ht(1) > S(t(2)) =< γ, h(1)t(1) > h(2)t(2)S(t(3)) =
< γ, h(1)t > h(2) =< γ, < αh(1) > t > h(2) =< α, h(1) > h(2).

Then
ρ(h) =< α, h(1) > S2

(h(2)),

as claimed. ¤
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Proposition 3.7. If a ∈ G(H) is the modular element of H and t is as in (3.6), we have:
1) (S(t(1))a, t(2)) are dual bases for γ.

2) ∀h ∈ H, ρ(h) = a−1(S2(h(1)) < α, h(2) >)a.

Proof.
1) Using the definition of a, we have that ∀h ∈ H,
S(t(1))a < γ, t(2)h >= S(t(1))t(2)h(1) < γ, t(3)h(2) >=

h(1) < γ, th(2) >= h(1) < ε, h(2) >= h.

2) By 1), ∀h ∈ H, we may write
ρ(h) = S(t(1))a < γ, t(2)ρ(h) > .

Then
aS2

(ρ(h))a−1 = a < γ, ht(2) > S(t(1)) =

h(1)t(2) < γ, h(2)t(3) > S(t(1)) = h(1) < γ, h(2)t >= h(1) < α, h(2) > .

Hence, conjugating by a−1 and applying S2, we get the result. ¤

Consider the left and right H∗-module structures on H given by:

h∗ ⇀ h = h(1) < h∗, h(2) >,

h ↼ h∗ =< h∗, h(1) > h(2),

∀h ∈ H,h∗ ∈ H∗. We then have:

Theorem 3.8 (Radford, 1976). Let a ∈ G(H), α ∈ Alg(H, k) be the modular elements
of H. Then the following formula holds , ∀h ∈ H:

S4(h) = a(α−1 ⇀ h ↼ α)a−1 = α−1 ⇀ (aha−1) ↼ α.

Proof. We show first that
a(α−1 ⇀ h ↼ α)a−1 = α−1 ⇀ (aha−1) ↼ α,

∀h ∈ H. For this, we compute
a(α−1 ⇀ h ↼ α)a−1 =< α, h(1) > ah(2)a

−1 < α−1, h(3) > .

On the other hand, as a is a grouplike element of H,
α−1 ⇀ (aha−1) ↼ α =< α, ah(1)a

−1 > ah(2)a
−1 < α−1, ah(3)a

−1 >=

< α, h(1) > ah(2)a
−1 < α−1, h(3) >,

the last equality because α ∈ Alg(H, k).
Now, by propositions (3.6) and (3.7), we have, ∀h ∈ H,

< α, h(1) > S2
(h(2)) = ρ(h) = a−1(S2(h(1)) < α, h(2) >)a.

Applying S2 and conjugating by a, we get
a < α, h(1) > h(2)a

−1 = S4(h(1)) < α, h(2) > .

Multiplying with < α−1, h(3) >, we find

a(α−1 ⇀ h ↼ α)a−1 = a(< α, h(1) > h(2) < α−1, h(3) >)a−1 = S4(h),
which finishes the proof. ¤
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Theorem (3.8) has important consequences:

Corollary 3.9. The order of the antipode is finite.

Proof. Since H is finite, and distinct powers of a grouplike element are linearly independent
(being themselves grouplikes), every grouplike element in H and also in H∗ has finite order.
Then, by Radford’s formula, S4 and then S have finite order. ¤

Corollary 3.10 (Larson, 1971).
a) If H is unimodular, then S4 coincides with the inner automorphism of H induced by

a grouplike element. In particular the order of the antipode is at most 4 dim H.
b) If H and H∗ are unimodular, then S4 = id. ¤

We want to show now an important trace formula involving the antipode. For this, we
need the following lemmas.

Lemma 3.11. Let A be a Frobenius algebra with Frobenius homomorphism φ and dual
bases (ri, li).

Let α ∈ k, e ∈ A, such that e2 = αe. If f ∈ End(eA) is a k-linear endomorphism of eA,
then:

i) α Tr(f) =< φ,
∑

i f(eli)ri >.
ii) α Tr(f) =< φ,

∑
i lif(eri) >.

Proof.
∀x ∈ A, we have that ex =

∑
i < φ, exri > li, then αex =

∑
i < φ, exri > eli. Thus,

αf(ex) =
∑

i < φ, exri > f(eli).
Hence under the canonical isomorphism (eA)∗ ⊗ eA −→ End(eA),

∑

i

< φ, ri > ⊗f(eli) 7−→ αf.

This proves i).
ii) is shown similarly. ¤

Definition. Let V be a finite dimensional left H-module, and let ρ : H −→ End(V ) be the
algebra map affording the module structure on V . Then the element XV of H∗, defined
by < XV , h >= Tr(ρ(h)) is called the character of V .

Basic Properties. If V and W are finite dimensional H-modules then we have the following
relations, whose verifications are left to the reader:

1) < XV , 1 >= dim V .
2) V w W ⇒ XV = XW .
3) XV⊕W = XV + XW .
4) XV⊗W = XV XW .
5) XV ∗ = XV ◦ S.
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Later we will develop a more detailed study of the characters of the modules of a Hopf
algebra. In the moment, we have the following lemma.

Lemma 3.12.
1) XH

2 = (dim H)XH .
2) S2(XH) = XH in H∗.

Proof.
1) Let V be any finite dimensional H-module. Denote by Vε the trivial H-module

structure in the underlying vector space V , i.e., the module structure given by h.v =<
ε, h > v, ∀v ∈ V , h ∈ H.

Then the map H ⊗ Vε −→ H ⊗ V , such that h ⊗ v 7→ h(1) ⊗ h(2)v, defines an H-linear
isomorphism.

This implies that XHXVε = XHXV .
But XVε = (dim V )ε. So we proved that XH(dimV ) = XHXV .
Specializing V in H, we get 1).

2) Let h ∈ H, then

< S2(XH), h >=< XH ,S2(h) >= Tr(LS2(h)).

Now, as S2 is an algebra automorphism of H, we have that ∀h ∈ H,

Tr(LS2(h)) = Tr(Lh) =< XH , h >,

and this proves 2). ¤

We are now in a position to give a short proof of the following important trace formula
by Larson and Radford.

Theorem 3.13. Let γ ∈ H∗ be a nonzero right integral, and let Γ ∈ H be a left integral
such that < γ, Γ >= 1. Then

TrH∗(S2) =< ε, Γ >< γ, 1 >= (dim H) Tr(S2|XHH∗).

Proof.
Let Γ̃ ∈ H∗∗, be defined by < Γ̃, h∗ >=< h∗, Γ >, ∀h∗ ∈ H∗. Using the fact that γ is

a Frobenius homomorphism in H with dual bases (Γ(1),S(Γ(2)), it is easy to see that Γ̃ is
a Frobenius homomorphism in H∗ with dual bases (S(γ(1)), γ(2)). Applying lemma (3.11)
to S2 ∈ End(H∗), taking α = 1, e = 1, we get

Tr(S2) =< Γ̃,S2(γ(2))S(γ(1)) >=< Γ̃, < γ, 1 > ε >=< γ, 1 >< ε, Γ > .

Observe that this equality also follows from proposition (3.4) applied to (Hop)cop.
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Now, by lemma (3.12), S2|XHH∗ is an endomorphism of XHH∗ to which lemma 3.11
applies (with α = dim H, e = XH), giving that

(*) (dim H)Tr(S2|XHH∗) =< Γ̃,S2(XHγ(2))S(γ(1)) >=

< Γ̃,S2(XH)S2(γ(2))S(γ(1)) >=< Γ̃,XHS2(γ(2))S(γ(1)) >=< γ, 1 >< XH , Γ > .

Again by lemma 3.11, now taking f to be the left multiplication by Γ in H (α = 1, e = 1),
we have

< XH ,Γ >=< γ,S(Γ(2))ΓΓ(1) >=< γ, < ε, Γ(2) > ΓΓ(1) >=< ε, Γ >< γ, Γ >=< ε, Γ > .

(The second equality because Γ is a left integral in H). Then, by (∗),
(dim H) Tr(S2|XHH∗) =< ε, Γ >< γ, 1 >,

which finishes the proof of the theorem. ¤
Another consequence of the trace formula is the following theorem, due to Larson and

Radford (1988), on semisimple Hopf algebras over fields of characteristic zero.

Theorem 3.14 (Larson - Radford, 1988). Let k be a field of characteristic zero, and
let H be a finite Hopf algebra over k, then the following statements are equivalent:

1) H is semisimple.
2) H∗ is semisimple.
3) S2 = id.

Proof.
We have proved in (3.5) that 3) implies 1) and 2). For a proof of the part 2) ⇒ 1), see

[7, Th. (3.3), p. 276].
We show now that 1) and 2) together imply 3).
Suppose that H and H∗ are both semisimple. Then they are unimodular, and so

S4 = (S2)2 = id by (3.10). Hence, the eigenvalues of S2 and S2|XHH∗ are all 1 or −1. Call
them, respectively, µj , ηi, 1 ≤ j ≤ n = dim H, 1 ≤ i ≤ m = dimXHH∗.

Then

TrH∗(S2) =
n∑

j=1

µj , and TrH∗(S2|XHH∗) =
m∑

i=1

ηi.

So, by theorem (3.13),
n∑

j=1

µj = n

m∑

i=1

ηi,

implying that

n|
m∑

i=1

ηi | ≤
n∑

j=1

|µj | = n.

As H and H∗ are semisimple,
∑m

i=1 ηi 6= 0 by (3.5). So,
∑m

i=1 ηi = ±1, or
∑n

j=1 µj = ±n.
But, as there is at least one µj which equals 1 (since S2(1H∗) = 1H∗ ), then all µj must

equal 1, thus S2 = id. ¤
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Example. Let H be the Taft algebra of dimension N2, N ≥ 2.
Keeping the notations introduced in §1, we have S(g) = g−1, S(x) = −xg−1. Then

S2(g) = g, S2(x) = gxg−1.

So that S2 is the inner automorphism of H induced by g. Then, as the order of g in the
group of units of H is N , the order of S2 is also N . In particular, S2N = id.

Now, suppose Sr = id. Since the only powers of S that are algebra maps are the even
powers (S being an antialgebra map), it must be r = 2q, q ∈ N. Then N divides q, so 2N
divides r, and this proves that the order of S is 2N .
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The Nichols-Zoeller Theorem.
We consider now (in the context of finite Hopf algebras) another Kaplansky’s conjecture,

namely, whether a Hopf algebra H is free over any Hopf subalgebra. If H is a finite Hopf
algebra, then the Nichols-Zoeller theorem gives a positive answer to this question.

If H is a Hopf algebra, then a subalgebra R of H is called a Hopf subalgebra, if ∆(R) ⊆
R⊗R and S(R) ⊆ R.

Remark. A finite dimensional subbialgebra R of a Hopf algebra H (i.e., a subalgebra R
such that ∆(R) ⊆ R⊗R) is a Hopf subalgebra.

Indeed, we have to show that idR ∈ End(R) is invertible. But idR is invertible in
Hom(H,R) (which contains End(R) via the inclusion R → H), since H has an antipode.
Therefore convolution with idR is injective in End(R), and hence bijective since End(R)
is finite dimensional. Thus idR ∈ End(R) is invertible.

Theorem 3.15. (Nichols-Zoeller, 1989). Let H be a finite Hopf algebra, and let
R ⊆ H be a Hopf subalgebra. Then H is a free R-module.

Corollary 3.16. ”Lagrange’s Theorem for Hopf algebras”. If R ⊆ H are finite
Hopf algebras, then the order of R divides the order of H. ¤

In order to prove the theorem, we need a series of lemmas.

Definition. A finite dimensional k-algebra R is called a quasi-Frobenius algebra, if the
R-modules RR and RR are injective.

Recall that for an algebra R, a left R-module M is called faithful, if its annihilator
Ann(M) := {r ∈ R : rM = 0} equals 0.

Lemma 3.17. Let R be a finite dimensional quasi-Frobenius algebra, and let M be a
finitely generated left R-module. Then M is faithful if and only if there exist a free left
R-module F 6= 0, and a non faithful left R-module N , such that

Mr w F ⊕N,

for some integer r ≥ 1.

Proof. Follows from [1, Th. (59.3), p. 404]. ¤

Let now H be a Hopf algebra, and let R ⊆ H be a subalgebra such that ∆(R) ⊆ H⊗R.
If M is a left R-module, and we consider H as a trivial R-module (i.e., r.h =< ε, r > h,

∀r ∈ R, h ∈ H), then H ⊗ .M is a left R-module via

R
∆−→ H ⊗R −→ End(H)⊗ End(M) −→ End(H ⊗M),

that is,

(1) r.(h⊗m) =< ε, r(1) > h⊗ r(2).m = h⊗ r.m,
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for r ∈ R, h ∈ H and m ∈ M . In fact, H ⊗ .M w Mdim H as left R-modules.
Also, if .H denotes the left R-module structure on H given by left multiplication, then

.H ⊗ .M is a left R-module via

(2) r.(h⊗m) = r(1)h⊗ r(2).m.

Remark. Observe that the R-actions considered on H are both restrictions to R of the
analogous H-actions. Thus the fact that ∆(R) ⊆ H ⊗ R allowed us to give H ⊗ .M and
.H ⊗ .M a left R-module structure, as in (1) and (2).

With this in mind, we have:

Lemma 3.18. Let R ⊆ H be a subalgebra such that ∆(R) ⊆ H ⊗ R. Suppose that the
antipode, S, of H is bijective. Then, ∀n ∈ N,

1) H ⊗ .R
n w .H ⊗ .R

n, as left R-modules.
2) H ⊗ .H

n w .H ⊗ .H
n, as left H-modules.

Proof.
1) It is enough to show it in the case n = 1. For this, define φ : H ⊗ .R −→ .H ⊗ .R, by

φ(h⊗ r) = r(1)h⊗ r(2).
φ is well defined since ∆(R) ⊆ H ⊗R, and it is clear that it is R-linear.
Moreover, the map ψ : .H⊗ .R −→ H⊗ .R, given by ψ(h⊗r) = S(r(1))h⊗r(2), is inverse

to φ (where S denotes the composition inverse of the antipode S).
So φ is an R-isomorphism, and this proves 1).
2) follows from 1) by taking R = H. ¤

Denote, for any subalgebra R of H, R+ := R
⋂

ker(ε). It is immediate that R+H is an
R-submodule of .H. In particular, the quotient space H/R+H is a left R-module, we have
also that for r ∈ R, r = ε(r)1, where r denotes the class of r in H/R+H.

Lemma 3.19. Let R ⊆ H be a subalgebra of H as in Lemma 3.18, then

H⊗RH w .H ⊗ (H/R+H),

as left H-modules.

Proof.
Define φ : H⊗RH −→ .H ⊗ (H/R+H), by φ(x⊗ y) = xy(1) ⊗ y(2).
To see that φ is well defined, let r ∈ R, then

φ(x⊗ ry) = xr(1)y(1) ⊗ r(2)y(2) = xr(1)y(1)⊗ < ε, r(2) > y(2) = xry(1) ⊗ y(2) = φ(xr ⊗ y).

Clearly φ is H-linear. Moreover, the map ψ : .H⊗(H/R+H) −→ H⊗RH given by ψ(x⊗y) =
xS(y(1)) ⊗ y(2), is inverse of φ (ψ is well-defined because ∆(R) ⊆ H ⊗ R). So φ is an
isomorphism of H-modules, as claimed. ¤
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An augmented algebra is a pair (R, ε), where R is a finite dimensional k-algebra and
ε : R −→ k is an algebra map. In particular, if H is a Hopf algebra with counit ε, (R, ε) is
an augmented algebra for every subalgebra R of H.

Observe that if (R, ε) is augmented, then we may consider k ∈ RM via ε.

Lemma 3.20. Let R be a finite dimensional augmented k-algebra, and let M be a finitely
generated left R-module such that Mn is free over R for some n ≥ 1. Then M is free over
R.

Proof.
By hypotheses, Mn w Rm, for some m ∈ N. Then

(M⊗Rk)n w (R⊗Rk)m w km.

Comparing dimensions, we get that m = nd, where d = dim(M⊗Rk). Hence,

Mn w Rm w (Rd)
n
.

Now, by the Krull-Schmidt theorem (see [1, Th. (14.5), p. 83]), M w Rd is free over
R. ¤

We finally have:

Proof of the Nichols-Zoeller’Theorem.
If R is a finite dimensional Frobenius algebra, then R is a quasi-Frobenius algebra (see

for instance [1, Th. (61.3), p. 414]).
Also, if R is a Hopf subalgebra of H, as R itself is a finite Hopf algebra, it follows from

theorem (2.3) that R is a Frobenius algebra. Then we may apply the preceding lemmas.
Consider the left R-module .H. As .H is a faithful R-module, by lemma (3.17), .H

r w
F ⊕N , for some r ≥ 1, where F w Rm is a free left R-module, and N is a non faithful left
R-module.

Observe that, calling t := dimH,

F t ⊕N t w .H
rt w H ⊗ .H

r w
by lemma 3.18

.H ⊗ .H
r w

(.H ⊗ .F )⊕ (.H ⊗ .N) w
by lemma 3.18

F t ⊕ (.H ⊗ .N).

Then, by the Krull-Schmidt theorem, it follows that N t w .H ⊗ .N . Now, we have a
surjection of R-modules

N t w .H ⊗ .N
id⊗can−−−−→ .H ⊗ .(N/R+N).

But, as R acts trivially on (N/R+N) and .H is a faithful R-module, .H ⊗ (N/R+N) is
faithful. So, as N is not faithful, N/R+N = 0. Hence, we find that

(*) (H/R+H)r w (R/R+R)m ⊕ (N/R+N) w (R/R+R)m w km.
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We have also that

H⊗RHr w (H⊗RF )⊕ (H⊗RN) w Hm ⊕ (H⊗RN),

and on the other hand,

H⊗RHr w (H⊗RH)r w
by lemma (3.19)

(H ⊗ H/R+H)r w

H ⊗ (H/R+H)r w
by(∗)

H ⊗ km w Hm.

So H⊗RN = 0.
But the inclusion RR ⊆ HR is R-direct, since RR is injective. Thus,

N w R⊗RN ↪→ H⊗RN = 0.

Then N = 0, implying that Hr w F is free over R, and by lemma (3.20), that H is free
over R. ¤

Remark. It is possible to show that if R is a subalgebra of R such that ∆(R) ⊆ H ⊗ R,
the following statements are equivalent:

1) R is a Frobenius algebra.
2) R is a quasi-Frobenius algebra.
3) RH and HR are R-free.
An open problem is whether a subalgebra R of H satisfying ∆(R) ⊆ H ⊗R is always a

Frobenius algebra.
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§4 Character Theory for Finite Hopf algebras

We want to develop now a character theory for finite semisimple Hopf algebras, similar
to that when H = kG, the group algebra of a finite group G (see references [1] or [3] on
the subject).

From now on, k will denote an algebraically closed field of characteristic 0, and H will
be a finite semisimple Hopf algebra over k. By the theorem of Larson and Radford (3.14)
we know that H∗ is also semisimple and S2 = id.

As H is semisimple, every finite dimensional irreducible H-module is isomorphic to a
direct summand of H. Then, there exist only a finite number of such modules up to
isomorphism (because H is finite). We denote them by them V1, . . . , Vn, V1 = kε.

Definition. The irreducible characters of H are by definition the characters of the irre-
ducible H-modules V1, . . . , Vn.

We denote by Xi := XVi , and by Xi := XVi
∗ .

The character rings of H are defined to be the following subrings of H∗:

RQ(H) :=
n∑

i=1

QXi, and Rk(H) :=
n∑

i=1

kXi.

These are in fact subrings by the basic properties of the characters, see the paragraph
before Lemma 3.12.

We then have the inclusions

RQ(H) ⊆ Rk(H) ⊆ H∗.

Remark. With the above definition, we get that the character of the left regular represen-
tation of H may be written in the form

XH =
n∑

i=1

niXi,

where ni are integers, ni ≥ 1, and n1 = 1. Observe also that X1 = ε.

Let V,W be left H-modules. Then H acts on Hom(W,V ), in the form (h.φ)(w) =
h(1).φ(S(h(2)).w).

Lemma 4.1. Let V , W as above, then HomH(W,V ) = Hom(W,V )H
, the isotypic com-

ponent of trivial type in Hom(W,V ).

Proof. Let φ : W −→ V be an H-linear map, and let h ∈ H, w ∈ W . Then

(h.φ)(w) = h(1).φ(S(h(2)).w) = h(1)S(h(2)).φ(w) =< ε, h > φ(w).

So φ ∈ Hom(W,V )H .
Conversely, suppose φ ∈ Hom(W,V )H , and let h ∈ H, w ∈ W . We have

φ(h.w) =< ε, h(1) > φ(h(2).w) = (h(1).φ)(h(2).w) =

h(1).φ(S(h(2))h(3).w) = h(1) < ε, h(2) > .φ(w) = h.φ(w).

So φ ∈ HomH(W,V ). ¤
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If V,W be finite dimensional H-modules. Then we have a canonical k-isomorphism
V ⊗W ∗ w Hom(W,V ), given by (v ⊗ φ)(w) =< φ,w > v.

This defines an H-linear isomorphism. So in particular, XHom(W,V ) = XV XW∗ .

Lemma 4.2. (Schur’s lemma). Let V,W be irreducible H-modules, then
HomH(W,V ) = δV,W k. (Here δV,W equals 0 if V and W are non isomorphic, and 1 if
they are isomorphic).

Proof.
As V and W are irreducible, any H-linear map φ : W −→ V must be zero or an

isomorphism. Thus, if V and W are not isomorphic, HomH(W,V ) = 0.
Now, let φ : V −→ V be an H-linear map. As k is algebraically closed, we may choose

an eigenvalue of φ, a ∈ k. Hence, ker(φ − a id) 6= 0. And by the irreducibility of V ,
ker(φ− a id) = V . So φ = a id.

This defines a map HomH(W,V ) −→ k, which is clearly an isomorphism. ¤

(4.1) and (4.2) imply

Corollary 4.3. Let 1 ≤ i, j ≤ n, then

XiXj = δijX1 +
∑

k≥2

ckXk,

for some non negative integers ck. ¤

As H is a semisimple k-algebra, applying Wedderburn’s theorem [1, Th. (26.4), p.175],
H is isomorphic to a product of full matrix algebras over skew fields of finite degree over
k. Now, as k is algebraically closed, every such skew field must coincide with k. Thus

(*) H w
n∏

i=1

Mni(k).

Moreover, we can assume that Vi is the natural representation of Mni(k) of dimension ni,
then Vi is an irreducible H-module, and we have an H-isomorphism: Mni(k) w Vi

ni .
Call Ei ∈ Mni(k) the ni × ni identity matrix, and let ei ∈ H be the element which

corresponds to (0, . . . , Ei, . . . , 0) via the isomorphism (∗).
Then, the ei form a set of orthogonal idempotents in H, that is,

eiej = 0, if i 6= j,

ei
2 = ei,

e1 + · · ·+ em = 1.

In particular, H =
⊕

Hei.
We have, for 1 ≤ i ≤ n, that Hei w Mni(k), hence Hei w Vi

ni .
As a consequence, we get
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Proposition 4.4. Each Vi occurs in the left regular representation of H with multiplicity
equals to its k-dimension: ni = Xi(1). In terms of characters, we have

XH =
n∑

i=1

niXi

In particular, dim H =
∑n

i=1 ni
2. ¤

It is clear also, from (∗), that if Z(H) denotes the center of H, then

Z(H) =
n∑

i=1

kei.

Observe that ei acts as the identity on Vi and anihilates Vj , ∀j 6= i. That is,

Xi(ei) = ni, and Xj(ei) = 0, if j 6= i.

Proposition 4.5. Let λ ∈ H∗ be a nonzero integral such that < λ, 1 >= 1. Then
Z(H)λ = Rk(H).

Proof. As Z(H) =
∑n

i=1 kei, the claim will be proved if we show that

eiλ = (dim H)−1
niXi.

Observe that as < λ, 1 >= 1, then XH = (dim H)λ, by (3.4).
Now, if h ∈ H, then

< eiλ, h >=< λ, hei >= (dim H)−1
< XH , hei >=

(dim H)−1
< TrHei , h >= (dim H)−1

< niXi, h >= (dim H)−1
ni < Xi, h > .

¤

Let Λ ∈ H be an integral such that < λ, Λ >= 1. Then we have, as H and H∗ are
unimodular, that λ is a Frobenius homomorphism of H with dual bases (Λ(1),S(Λ(2))).

This gives the following

Corollary 4.6. Let 1 ≤ i ≤ n, then

(dim H/ni) ei = Λ(1) < Xi,S(Λ(2)) > .

Proof. Using the identity eiλ = (dim H)−1
niXi, we compute

(dim H)−1
niΛ(1) < Xi,S(Λ(2)) >= Λ(1) < eiλ,S(Λ(2)) >= Λ(1) < λ,S(Λ(2))ei >= ei. ¤
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Remark. When H = kG, the group algebra of a finite group G, then for Λ =
∑

g∈G g,
corollary (4.6) says that

(|G|/ni) ei =
∑

g∈G

g < Xi, g
−1 >.

Now, as G is a finite group, ρi(g) has finite order as an element of GL(Vi), ∀g ∈ G (where,
as usual, ρi denotes the representation of H = kG in Vi).

Hence the eigenvalues of ρi(g) are roots of unity in k. In particular, they are all contained
in a subring R of algebraic integers such that R is finitely generated as Z-module. Any
element of the group algebra RG is integral over Z (since it generates a subring which is
finitely generated as Z-module). Hence (|G|/ni) ei is integral, and |G|/ni is an algebraic
integer.

But |G|/ni is a rational number, so it must be an integer. Then ni divides |G|.
We have seen then that, for a finite group G, the dimensions of the irreducible repre-

sentations of G divide the order of G.

We want to prove now a theorem on orthogonality of characters due to Larson (1971).
Recall that for f ∈ H∗, < TrH∗ , f >= Tr(Lf ). Define for 1 ≤ i, j ≤ n, (Xi,Xj) :=<

TrH∗ ,XiXj >.

Theorem 4.7 (Orthogonality relations). Let 1 ≤ i, j ≤ n, then

(Xi,Xj) = δij dim H.

Proof.
By corollary (4.6), we have that for 1 ≤ i, j ≤ n, XiXj = δijX1 +

∑
k≥2 ckXk, with

ck ≥ 0. Then,

(Xi,Xj) =< TrH∗ ,XiXj >= δij dim H +
∑

k≥2

ck < TrH∗ ,Xk >.

(Observe that < TrH∗ ,X1 >=< TrH∗ , ε >= dim H∗ = dim H).

We claim that < TrH∗ ,Xk >= 0, for all k ≥ 2.

From (3.4), we know that if the integrals Λ ∈ H, λ ∈ H∗ are chosen as above, then
TrH∗ = (dim H) Λ̃, (where < Λ̃, h∗ >=< h∗,Λ >, ∀h∗ ∈ H∗).

Now, as H is semisimple, and thus unimodular, the space of integrals is contained in
the center of H.

Let then k ≥ 2, and let ρk : H −→ End(Vk) denote the algebra map affording the H-
module structure in Vk. Then the image of the integral is an H-linear map since the integral
is central. By Schur’s Lemma (4.2) there exists an element a ∈ k such that ρk(Λ) = a id.

Let h ∈ H+ = ker(ε). We have

aρk(h) = ρk(Λ)ρk(h) = ρk(Λh) =< ε, h > ρk(Λ) = 0.

Now, as k ≥ 2, we may find h ∈ H+ such that ρk(h) 6= 0, and this implies that a = 0.
But then Λ.Vk = 0, so < TrH∗ ,Xk >=< Xk, Λ >= 0, as we claimed. ¤
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Corollary 4.8. The irreducible characters of H, X1, . . . ,Xn, are k-linearly independent in
H∗, and the map RQ(H)⊗Qk −→ Rk(H), x⊗ 1 7→ x, is an isomorphism of k-algebras. ¤

Theorem (4.7) implies, moreover, that (dim H)−1/2Xi, 1 ≤ i ≤ n, is an orthonormal
basis of Rk(H) with respect to the form ( , ).

In particular, if V is a finite dimensional module for H, then its character XV is ex-
pressible in a unique way as a linear combination

(1) XV =
∑

i

miXi,

where mi = (dim H)−1(XV ,Xi). So that if V, W are finite dimensional H-modules, V w W
iff XV = XW .

Remark. As H is semisimple (and thus S2 = id), we have that for every finite dimensional
H-module V , V ∗∗ w V as H-modules.

Also, if W is a finite dimensional H-module, the canonical isomorphism (V ⊗W )∗ w
W ∗ ⊗ V ∗ is an H-isomorphism.

Putting these together, we find that the map x 7→ x, defined by Xi 7→ Xi, gives an
involutory antialgebra map in Rk(H) (and also in RQ(H)).

Corollary (4.8) says that Rk(H) is obtained by RQ(H) by extension of scalars. Using
this fact, we will prove the following result, which is due to Zhu (1994).

Theorem 4.9. Rk(H) is a semisimple k-algebra.

Proof. We first show that RQ(H) is semisimple.
For this, observe that if 0 6= x ∈ RQ(H), say x =

∑
i xiXi, xi ∈ Q, then by (4.3)

xx =
∑

i,j

xixjXiXj =
∑

i,j

xixj (δijX1 +
∑

k≥2

cijkXk) = (
∑

i

xi
2) X1 +

∑

k≥2

bkXk,

for some coefficients cijk and some rational numbers bk.
And, as xi ⊂ Q are not all zero,

∑
i xi

2 6= 0, so xx 6= 0.
Suppose now that there exists 0 6= x ∈ rad(RQ(H)). Call y := xx. Then y 6= 0 and

y ∈ rad(RQ(H)). Moreover, y = y.
So, y2 = yy 6= 0, y4 = y2y2 6= 0, and in general y2t

= y2t−1
y2t−1 6= 0, for all t ≥ 1.

But this is absurd, since all the elements in rad(RQ(H)) are nilpotent.
Then x must equal 0, so rad(RQ(H)) = 0 and RQ(H) is semisimple.
By the results in [1, §69, p. 459], as RQ(H) is semisimple, then RQ also is. Then RQ(H)

is a direct product
RQ =

∏
Mni(Q),

of full matrix algebras over Q. But as k is algebraically closed and char k = 0, Q ⊆ k, and
we also have

Mni(Q)⊗Qk w Mni(k).

Now, as Rk(H) is the extension by scalars of RQ(H), Rk(H) is semisimple, as we
claimed. ¤
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The Class Equation for Hopf algebras.

We state now some results concerning algebraic number theory, that will be needed in
the sequel. The reader can find in [1, Ch. III] the proofs of these results.

Definition. An integral domain R is called a Dedekind domain, if it satisfies the following
conditions:

i) R is a noetherian ring.
ii) Every non-zero prime ideal in R is maximal.
iii) R is integrally closed in its field of quotients, K. (That is, if a ∈ K is integral over

R, then a ∈ R).

If M is a torsion free module over a Dedekind domain R, then the rank of M is the
dimension of M⊗RK over K. If M is finitely generated, then it has finite rank.

Let K be an algebraic number field (i.e., a finite extension of the field Q of rational num-
bers), and let R denote the ring of integers of K, R = {a ∈ K : a is an algebraic integer}.
Then R is a Dedekind domain (whose field of quotients is K).

If R is an integral domain, and K is its field of quotients, a finitely generated R-
submodule 0 6= I of K, is called a fractional ideal of R.

Proposition 4.10. Let M be a finitely generated, projective module of rank t over a
Dedekind domain R. Then there exist m1, . . . , mt ∈ M , and fractional ideals I1, . . . , It of
R such that

M = I1m1 + · · ·+ Itmt,

where the indicated sum is direct. ¤

Lemma 4.11. Let K be an algebraic number field, R its ring of integers, and call K the
algebraic closure of K.

Suppose A is an R-algebra finitely generated and projective as an R-module, such that
A⊗RK is semisimple.

Then, there exists an isomorphism of K-algebras

A⊗RK −→
s∏

α=1

Mnα(K), eαij 7→ Eαij ,

for some s ≥ 1, and natural numbers nα (where Eαij denotes the s-tuple consisting of
all zeros, except for the α-place, where it equals the nα × nα matrix whose entries are
akl = δikδjl), such that every a ∈ A may be written in the form

a =
∑

α,i,j

rαij eαij ,

with rαij algebraic integers.

Proof.
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(Observe that we are identifying a ∈ A with a⊗ 1 in A⊗RK).
As A⊗RK w (A⊗RK)⊗KK, then A⊗RK is semisimple, and we may assume that

A⊗RK '
s∏

α=1

EndK(Vα),

where Vα are irreducible A⊗RK-modules (say, of dimension nα).
The claim will be proved if we can show that for each irreducible A⊗RK-module, there

exists a basis over K, such that the matrices representing elements of A in that basis, have
all entries algebraic integers.

Now, let V be an irreducible A⊗RK-module, with K-basis v1, . . . , vt. The matrices
representing elements of A in this basis have all entries in a finite field extension of K
(since A is finitely generated over R). Instead of extending K we may assume that all
these entries are in K.

Call U :=
∑

i Avi ⊆ V . Then U is a finitely generated, projective R-module of rank t,
and thus there exist u1, . . . , ut ∈ U , and fractional ideals I1, . . . , It of R such that

U =
∑

i

Iiui.

Also, we may find K ⊆ K ′, an algebraic number field extension (R ⊆ R′ = the ring of
integers of K ′), such that all fractional ideals in K become principal in K ′. (See [1, Th.
(20.14), p.130]).

In particular, there exist si ∈ K ′, such that R′Ii = R′si, for all i = 1, . . . , t. Then

R′U =
∑

i

R′Iiui =
∑

i

R′siui =
∑

i

R′vi
′.

where vi
′ = siui. Now, in the basis (vi

′), the matrices representing elements of A⊗RR′ ⊆
A⊗RK ′ have all entries in R′, and thus are algebraic integers. It remains to observe the
inclusion: A = A⊗RR ⊆ A⊗RR′. ¤

Definition. Let A be a finite dimensional k-algebra. A k-linear map t : A −→ k, is called
a trace like function if it satisfies the following conditions:

a) ∀x, y ∈ A, t(xy) = t(yx).
b) If 0 6= e is an idempotent in A, then 0 6= t(e) is a natural number.
c) If e, f are nonzero idempotents in A, such that eA w

A
fA, then t(e) = t(f).

Remark. Note that the usual trace map TrA is trace like. But also TrA restricted to any
subalgebra B of A is trace like. Indeed, a) is clear, and b) follows since TrA(e) = dim(eA).
To prove c), note that eB ⊗B A ' eA.

The following lemma is due, independently, to Kac (1971) and Zhu (1994).
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A non-zero idempotent e in an algebra R is called primitive, if it can not be expressed
as the sum of two non-zero orthogonal idempotents.

Lemma 4.12. In the situation of lemma (4.11), let t : A⊗RK −→ K be a trace like
function.

Assume that there exist 0 6= d ∈ N, and ai, bi ∈ A, 1 ≤ i ≤ n := dim(A⊗RK), such that
t(akbl) = δkld, ∀k, l.

Then, if 0 6= e ∈ A⊗RK is a primitive idempotent, t(e) divides d.

Proof. Keeping the notations in lemma (4.11), we may write

ak =
∑

α,i,j

rk,αij
eαij

, bl =
∑

β,µ,ν

sl,βµν
eβµν

,

where rk,αij and sl,βµν are algebraic integers.
The t(eαii) are natural numbers. Since the eαii form a complete set of orthogonal

primitive idempotents, there is an αii such that e and eαii generate isomorphic right
ideals. Hence, by property c), t(e) = t(eαii).

In view of the relations

eαij eβµν = δα,βδµ,jeαiν , ∀α, β, µ, ν, i, j ,

which, in particular, imply that for ν 6= i

t(eαiν ) = t(eαiieαiν − eαiν eαii) = 0,

we get,
akbl =

∑
rk,αij sl,βµν eαij eβµν =

∑

α,i,j,ν

rk,αij sl,αjν eαiν ,

and then

dδkl = t(akbl) =
∑

α,i,j,ν

rk,αij sl,αjν t(eαiν ) =
∑

α,i,j

rk,αij sl,αjit(eαii).

Since n = number of all eαij : 1 ≤ α ≤ s, 1 ≤ i, j ≤ nα, there is a bijection

{1, . . . , n} −→ {αij : 1 ≤ α ≤ s , 1 ≤ i, j ≤ nα}.
Define

ak,αij = rk,αij (t(eαii)/d)1/2
, bαij ,l = sl,αji(t(eαii)/d)1/2

.

By the calculation above, the n × n matrices A = (ak,αij ) and B = (bαji,l) verify that
AB = id, but this implies that BA = id.

Then ∀α, i, ∑

l

bαii,lal,αii = 1, or
∑

l

sl,αiirl,αii = dt(eαii)
−1

,

which is an algebraic integer. But as it is a rational number, it must be an integer. So
t(eαii) divides d. ¤
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The following theorem is due to Kac and Zhu.2

Theorem 4.13. ”Class Equation”. Let λ ∈ H∗ be an integral, such that < λ, 1 >= 1,
and let λ = e1, e2, . . . , en, be a complete set of orthogonal primitive idempotents in Rk(H).
Then

dim H =
n∑

i=1

dim(eiH
∗),

with dim(e1H
∗) = 1, and dim(eiH

∗) / dim H, ∀1 ≤ i ≤ n.

Proof. Since H∗ =
⊕

i ei H∗, dimH = dim H∗ =
∑n

i=1 dim(eiH
∗). It is clear also, as λ is

an integral, that dim(e1H
∗) = 1.

Call A = RZ(H) =
∑

i Z Xi, which is a free Z-module of finite rank n, and such that
A⊗Z Q = RQ(H) is semisimple.

Let t = TrH∗ : Rk(H) −→ k; it is a trace like function by the remark after the definition
of such functions.

Now, if we consider ai = Xi, bi = Xi, 1 ≤ i ≤ n, (ai, bi ∈ A), then lemma (4.12) applies
with d = dim H by the orthogonality relations (4.7). (Observe that, as k is algebraically
closed and char k = 0, A⊗Z Q ⊆ Rk(H)).

On the other hand, as e1, . . . , em are orthogonal idempotents, t(ei) = dim(eiH
∗).

Thus, t(ei) = dim(eiH
∗) /d = dim H, which finishes the proof of the theorem. ¤

As a consequence of theorem (4.13), we show a theorem of Masuoka [9] on semisimple
Hopf algebras of dimension pm, p a prime generalizing previous results of Kac [3] and Zhu
[21]. We need the following lemma.

Lemma 4.14. Let λ ∈ H∗ an integral, such that < λ, 1 >= 1. Then

1) dim(hλ H∗) = 1, h ∈ H, if and only if, there exist 0 6= α ∈ k and g ∈ G(H) such
that h = αg.

2) If a ∈ Rk(H) is such that dim(aH∗) = 1, and aH∗ is not the trivial H∗-module, then
there exist 0 6= α ∈ k, and 1 6= g ∈ G(H)

⋂
Z(H), such that a = αgλ.

Proof.
1) Let h ∈ H. Then dim(hλH∗) = 1, if and only if there exists g ∈ G(H), such that

∀p ∈ H∗, (hλ)p = (hλ) < p, g >.
But that is equivalent to the existence of a g ∈ G(H) such that ∀x ∈ H,

< hλ, x(1) > x(2) =< hλ, x > g, or < ghλ, x(1)g
−1 > x(2)g

−1 =< ghλ, xg−1 > 1,

if and only if ghλ is an integral in H∗. Which is equivalent to the existence of a nonzero
α ∈ k such that ghλ = αλ, i.e., h = αg−1.

2Added in 1997: In a recent paper by M. Lorenz [M. Lorenz, On the class equation for Hopf algebras,
Proc. Amer. Math. Soc. (1997)] a shorter proof of 4.13 is giving using less algebraic number theory.
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2) As a ∈ Rk(H) (and a 6= 0), there exists 0 6= x ∈ Z(H) such that a = xλ. Then, by
1), there exists 0 6= α ∈ k and g ∈ G(H), such that x = αg. In particular, g ∈ Z(H) by
(4.6).

Suppose g = 1. Then xλ = αλ, and so aH∗ = λH∗, which is the trivial H∗-module.
But this contradicts our assumption on a, so g 6= 1. ¤

Theorem 4.15. Let H be a semisimple Hopf algebra such that dim H = pm, with p a
prime, and m ≥ 1. Then H contains a central grouplike g 6= 1.

Proof. By theorem (4.13), we may write

pm = 1 +
∑

i

dim(eiH
∗),

with ei 6= λ a primitive idempotent in H∗, and dim(eiH
∗) / dim H = pm, ∀i.

Then, there must be a primitive idempotent ei 6= λ, such that dim(eiH
∗) = 1.

Now, as ei 6= λ, eiH
∗ is not the trivial H∗-module, so the previous lemma implies, in

particular, that H possesses a central grouplike g 6= 1. ¤

Hopf algebras of prime order. We now apply the previous results to arbitrary, not
necessarily semisimple, Hopf algebras of prime order. k will denote an algebraically closed
field of characteristic zero.

Let p be a prime, and let Zp be the cyclic group of order p. Consider the Hopf algebra
H = kZp.

Observe that H∗ = kZp contains a grouplike G of order p (defined by G(a) = ωp, where
a is a generator of Zp, and ωp is a primitive p-th root of unity in k). Then kZp contains
the k-linear span of the powers of G, which is isomorphic (as a Hopf algebra) to kZp. So,
because they have the same finite order, H∗ = kZp w kZp = H.

Theorem 4.16. (Zhu, 1994). Let H be a Hopf algebra over k of prime order p. Then
H is isomorphic to the algebra of functions on the cyclic group Zp.

Proof. If p = 2, it is easily seen that H must be commutative and cocommutative, and the
result follows from the theorem which asserts that every finite dimensional cocommutative
Hopf algebra over an algebraically closed field of characteristic zero is isomorphic to a
group algebra kG for some finite group G, and it is clear that G must be isomorphic to
Z2.

Assume now p > 2. We consider separetaly three cases.

First Case: H or H∗ not unimodular.
Suppose H is not unimodular (the proof is analogous for H∗). Then the modular

function α ∈ H∗ (see §3) is a nontrivial grouplike element in H∗. By theorem (3.15), the
linear span of the powers of α, k < α > (which is a Hopf subalgebra of H), must coincide
with H. So in particular it is isomorphic to kZp, and we have

H w H∗∗ = (k < α >)∗ w kZp
∗ w kZp.
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Second Case: H and H∗ unimodular, but H or H∗ not semisimple.
By (3.4), we must have Tr(S2) = 0. And as H and H∗ are unimodular, S4 = id. But

then, the eigenvalues of S2 are all 1 or −1, and their sum is 0. This implies that the order
of H must be even, which is an absurd. So this case is not possible.

Third Case : H and H∗ both semisimple.
By theorem (4.15), H contains a central grouplike g 6= 1. Hence, by the Nichols-

Zoeller’s theorem, H = k < g >w kZp. Note that we did not use ”2) =⇒ 1)” of Theorem
(3.13). ¤
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Appendix

Here is a complete list of the conjectures made by Kaplansky (except one which is easy).

1. If C is a Hopf subalgebra of the Hopf algebra B then B is a free left C-module.

Remark. In general this is false. A counterexample is given in [12]. Some particular cases
are known, most notably if B is finite dimensional [11], as seen in the text, but also if C is
finite dimensional and either semisimple or normal. The following form of the conjecture
is still open: is B is faithfully flat over C? And dually, is a Hopf algebra faithfully coflat
over its quotient Hopf algebras?

2. Call a coalgebra C admissible if it admits an algebra structure making it a Hopf algebra.
The conjecture states that C is admissible if and only if every finite subset of C lies in a
finite dimensional admissible subcoalgebra.

3. A Hopf algebra of characteristic zero has no non-zero central nilpotents.

4. If H is a finite dimensional Hopf algebra, such that H or H∗ are semisimple, the square
of the antipode is the identity.

Remark. We have seen this is true if the characteristic of the ground field k equals zero.

5. If H is a (semisimple) Hopf algebra over the algebraically closed field k, then the sizes
of the matrices occuring in any full matrix constituent of H divides the dimension of H.

Remark. This is seen in the text if H is a group algebra.

6. If H and H∗ are semisimple the characteristic of k does not divide the dimension of H.

Remark. This is a consequence of theorem (3.13) first proved by Larson and Radford.

7. If the dimension of H is prime (k algebraically closed), then H is commutative and
cocommutative.

Remark. This is the result of Zhu shown in the text (th. 4.16) if the characteristic of k is
zero, and is still open if the characteristic is positive.

8. If the characteristic of k does not divide the dimension of H, the dimension of the
radical is the same in H and in H∗.

Remark. If the char k = p divides the dimension of H one has the following counterexam-
ple: H = Zp is not semisimple, but H∗ is.

We have seen that in characteristic zero H is semisimple iff H∗ is. But the conjecture
is false even in characteristic zero (take the Frobenius- Luztig kernel of sl(2))3.

3This counterexample was suggested by N. Andruskiewitsch.
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9. Again under the hipothesis that the characteristic of k does not divide the dimension of
H, the conjecture states that there are only a finite number (up to isomorphism) of Hopf
algebras of a given dimension.

Remark. The following result is known (D. Stefan, 1995): The set of types of semisimple
and cosemisimple Hopf algebras of a given dimension is finite (in any characteristic).
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