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HARMONIC ANALYSIS ON SEMISIMPLE HOPF ALGEBRAS

(© N. Andruskiewitsch, S. Natale

Para Igor, Marina y Natalia

Abstract. Let H be a semisimple Hopf algebra. The relationship is studied between the
character algebra of H and that of a Hopf subalgebra. Hecke algebras are discussed,
as well as their links with quantum spaces of double cosets. An explicit expression for
spherical functions is given. Also, Gelfand pairs are studied, and a description of Fourier
analysis on symmetric spaces via spherical functions is presented. It is shown that the
pair (D(H), H) is a Gelfand pair if and only if / is almost cocommutative; here D(H)
is the Drinfeld double of H.

§0. Introduction

A Hopf algebra is simultaneously an algebra and a coalgebra, both structures relat-
ed by the multiplicativity of the coproduct and the existence of an antipode. Whereas
the study of algebras or coalgebras is “Abelian” in nature, the Hopf algebras are
highly non-Abelian, and the study of them has a flavor closely resembling the theory
of groups; even more, various branches of the Hopf algebra theory have analogies
in group theory. In particular, the theory of semisimple Hopf algebras has a striking
similarity with the theory of finite groups, at least in the esthetic perspective.

In fact, this similarity was clearly mentioned many years ago by G. I. Kac and
was supported by his fundamental results [Kal, Ka2, KaP]. S. Woronowicz showed
in [W] that the class of finite quantum groups precisely coincides with the class
of finite dimensional Kac algebras. It should be emphasized that the existence of
a compact involution in a semisimple complex Hopf algebra (that is, a structure of
finite quantum group, or Kac algebra) is still an open problem; though, the uniqueness
of a compact involution up to conjugation was shown in [An].

In this paper, we explore the relationships between the algebra and the coalgebra
structures of semisimple Hopf algebras that make these objects so rigid. Our aim is
to develop systematically the tools of harmonic analysis in this context. Harmonic
analysis on quantum groups is a field of active research. The foundations of harmonic
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analysis on compact quantum groups were established by Woronowicz in [W]; see
also [PW]. We also mention the paper [VS].

One of the most appealing applications of quantum groups is a new direction in
the study of ¢-special functions, which has been explored actively after Koornwinder’s
paper [K]; see also [V].

In the present paper, our objective is different: we aim to develop some techniques
to “induce” results from Hopf subalgebras of semisimple Hopf algebras. As an ulti-
mate purpose, we mean applications to classification results; however, these will be
the matter of further investigations.

The paper is organized as follows. In §1, we recall the definition of the convolution
product in a Hopf algebra, in the setting of co-Frobenius Hopf algebras, and state
some elementary properties. Some of them go back to [PW]. §2 is devoted to further
properties in the case of semisimple Hopf algebras and their character algebras. In §3,
we begin the study of the relationship between the character algebras of a semisimple
Hopf algebra and a Hopf subalgebra. We define a map f — £ that generalizes a well-
known map in finite group theory (see [CR, Chapter 10]). In §4, we discuss Hecke
algebras and their links with “quantum spaces of double cosets”; the latter are known
in quantum harmonic analysis (see, e.g., [V]). In §5, we discuss spherical functions;
they arise naturally in the decomposition of an induced representation. There and in
the subsequent sections we invoke ideas from harmonic analysis on Lie groups [GV]
(see also [Ti]) and finite groups (see [T, Te]). The topic of §6 is Gelfand pairs (see [K])
in the context of semisimple Hopf algebras; the corresponding quantum quotients are
named symmetric spaces. We discuss several equivalent definitions, including some
from [V], and give some criteria, inspired by similar criteria of Gelfand and Selberg.
Fourier analysis on symmetric spaces via spherical functions is described in §7. The
last sections are devoted to some examples: to biproducts (§8) and to Drinfeld doubles

(§9).

Conventions. Except for §1, we shall work over an algebraically closed field & of
characteristic zero; in §1 & is an arbitrary field. For the theory of Hopf algebras, we
refer the reader to [Sw, Mo, Sch]. Given a Hopf algebra A, we shall regard A as an
A*-bimodule via the transposes of right and left multiplication, that is

(B,a = a) = (Ba,a), (B,a—a)=(af,a), a€A afecA

in a similar way, A* will be viewed as an A-bimodule. The left and right A*-actions
on A can also be written as

a—a=a(a,az), a+—a={a,ar)as; ac A, acA.

We shall also consider the actions of A* on A givenby a — a =Sa —a, 0 —a =
a — Sa; the same notation will be used for the corresponding actions of A on A*.
Unless explicitly stated, A (respectively, A*) is viewed as a (left or right) module over
itself via the (left or right) multiplication.
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§1. Convolution product on co-Frobenius Hopf algebras

Let A be a Hopf algebra over k. A right integral [ € A* is an element such that
Ja={a,1) [, a € A*. In this section we assume that A is co-Frobenius, i.e., that
there exists a nonzero right integral [ € A*. So, the following is true:

(1.1) A* also has a nonzero left integral (see [D]). The space of left (respectively,
right) integrals in A* is one-dimensional (Sullivan’s theorem; see [A, 3.3.10],
and also [DNT, Ra] for shorter proofs).

(1.2) The antipode of A is bijective (see [R1]).

(1.3) The morphism of right A*-modules F4: (A, ~—) — A* defined by

Fala)=a— [, a€ A, (1.4)

is injective (see [D]).

The morphism F, occurring in (1.4) is called the Fourier transform of A (associ-
ated with [). Conversely, if a Hopf algebra A admits an injective morphism of left
A*-modules, A — A*, then it is co-Frobenius (see [D]). As examples of co-Frobenius
Hopf algebras we mention the finite-dimensional Hopf algebras and the cosemisimple
Hopf algebras (including compact quantum groups); more examples can be found in
[BDG, BDGN].

We shall consider the map G = G4 : (A4, —) — A" given by

G(a) = A — a, (1.5)

where now 0 # A € A* is a left integral. It is a monomorphism of left A*-modules.
The following definition appeared in [PW] in the context of compact quantum
groups.

Definition 1.6. Let A be a co-Frobenius Hopf algebra, and let A € A* be a nonzero
left integral. The convolution product +: A ® A — A is defined by the relation

axb= <A,a8(bl)>bz = <A,a28(b)>a1, Cl,b € A.

Here the second identity is [A, Lemma 3.3.7].

Proposition 1.7. Convolution determines an associative product in A, and G: (A, *) —
A* is an injective algebra homomorphism. This algebra structure possesses the following
properties:

i) The algebra A has a unit element if and only if it is finite dimensional; in this case,
1, is a right integral in A such that (A, 1.) = L

ii) A is an augmented algebra, with the augmentation map A: A — k. The corre-
sponding idempotent is 1 € A.
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iii) If F': A — A is a Hopf algebra automorphism, then F preserves the convolution
product.

iv) The antipode S: A — A is an anti-algebra automorphism of A if and only if
(A, ab) = (A,b8%(a)) for all a,b e A

Proof. We have a b = G(a) — b for all a,b € A. Applying G to both sides, we see
that G(a * b) = G(a)G(b), because G is a morphism of left A*-modules. Hence,

G((a *b) *¢) =G(a)G(b)G(c) = Gla * (b*c))

for all a,b,c € A. Thus, * is associative since G is injective.

Now we prove i). An element « € A is a unit for x if and only if a*xu =a=wu=*a
for all a € A; but this implies (by the uniqueness of the counit) that (a) = (A, ua),
or ¢ = A — wu. Then, for all a € A,

A—uwa=A—u)—a=c—a=c¢cla)e =N\~ c(a)u.

Recalling (1.3), we see that « is a right integral in A and that (A,«) = 1. In turn,
this implies that A is finite-dimensional. Since the above argument can be reversed,
i) follows. We leave ii) and iii) to the reader. For iv), we compute

S(b) * S(a) = (A, (Sb)28%(a))(Sb)y = (A, S(b1)5*(a))S (D).
On the other hand, we have
S(axb) = (A\,aS(b1))S(b2),

and the claim follows, because the antipode S is bijective. e

By [AN, (2.14)], the condition formulated in iv) is always satisfied when A is
cosemisimple and S* = id.

In the rest of this paper, we shall consider the convolution product in the dual
Hopf algebra A = H* of a finite-dimensional Hopf algebra H. In this case, G =
Ga: (H*,*) — H is an algebra isomorphism, and its inverse is the Fourier transform
F = Fy. Also, occasionally, we shall use F := Gy = FoS™!': H — H* and its inverse
G . =Fy4.

§2. Semisimple Hopf algebras

From now on, H will denote a semisimple (hence, finite-dimensional) Hopf algebra
over k. Most of the results below remain valid for the semisimple cosemisimple Hopf
algebras over algebraically closed fields of positive characteristic. We avoid this more
general situation, because, in principle, the results of [EG] make it possible to reduce
everything to the case of zero characteristic.
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We fix integrals [ € H* and A € H such that (¢,A) = 1 and (J,A) = 1; then
(f,1) = dim H. When special emphasis is needed, we shall use the notation Ay for
the normalized integral in H. In particular, F and * will denote, respectively, the
Fourier transform and the convolution product associated with these integrals.

Let R(H) C H* be the character algebra of H, and let H = {x1,.--,x1} be the
set of irreducible characters of H; we have R(H) = @'_, kyi. We recall that, for
X € R(H), the multiplicity of x; in y is defined as the element m(y;,y) € k in the
identity x = > . m(x:, x)x:. Also by definition, for ¢» € R(H) the multiplicity of x in
Y is m(¢, x) = m(xs, ¥)mxi, x). For x = >, m(xi, x)xi € R(H), the degree of
x is degy = Y. m(xs, x) dim(V;), where V; is an irreducible module affording the
character y;, « = 1,...,[. In particular, if y is the character afforded by an H-module
V, then m(y;, x) = dimHompy(V;,V) and degx = dim V. For y € R(H), we shall
use the notation y* := S(y), so that if x is the character of an H-module V, then *
is the character of the dual module V*. 1

It is known that the integral A € H can be written as A = Z deg pupt.

dim H 4~
peH*

Consequently, the convolution product in H* takes the form

deg p
1

a* B(h) = Z degp Y (a, pij)(3,S(pij)h), h e H. (2.1)

- dim H ~
peH* 1,7=1
Here (;; denotes the :jth matrix entry of the corepresentation associated with g,
relative to a fixed basis of an irreducible comodule affording the character . This
generalizes the well-known formula for the convolution product in the group algebra
of a finite group.

Remark 2.2. The convolution product x: H* @ H* — H* splits the comultiplication
map A: H* — H* ® H*. We have the following identities:
(a*ﬁ)l(@(a*ﬁ)z:a*ﬁl@ﬁz,
a1 kg = o
for all o, € H*. This is an immediate consequence of [Sch3, (1.11)].

It is known that the Fourier transform gives a linear isomorphism Z(H) — R(H).
Thus, Z(H*,*) = R(H). Moreover, the following statement is true.

Lemma 2.3. The elements deg yy, y € H , form a complete set of central orthogonal
idempotents in (H*, *).
Proof. For y € H , let £\, € H be the central primitive idempotent such that
(x,E\) = degx. By [AN, (2.11)], we have @Ex = A — S(x). Now, since A
is cocommutative, G(y*) = A — S(v) = S(x) — A, whence

1
deg x

G(\') = S(\) ~ A= ——E,. (2.4)
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Therefore, for any x € H we can write X = F(E,~). Thus, for all y' € H we

deg x
have
by = et BB )4F(Eye) = — F(Ew By)
VIV T degndeg Y VU degydegy’ Y
1 1
=——— 6 vF(Ew) = Sy X-
deg x deg /XX () deg x ox'Xs @
Let (|): H* x H* — k be the bilinear form defined by
(a]B) :== (aS(B),A), «,0€ H". (2.5)

The basic properties of the form ( | ) are as follows.

Proposition 2.6. i) ( | ) defines a nondegenerate, symmetric bilinear form on H*.
ii) For all o, € H*,

ax = (az|f)ar = (alfy) Bs.

iii) Associativity with respect to the convolution product. For all «,3,~ € H*,

(axBly) = (alf*7).

iv) For all o,3,v € H*, we have

(eBly) = (a]yS(8)) = (BIS(a)y)
and
(S(a)[S(8)) = (a]B) .
v) Forall o, € H*, h € H,

(alh =) = (o= h|F) and (h— a|f) = (a|f = h).

vi) Orthogonality relations for characters. Let xi,...,x: be the set of irreducible
characters of H. Then (v;|x;) = 0.5, 1 < 1,7 <. In particular, the restriction of ( | ) to
R(H) is also nondegenerate, and {x1,...,x:i} is an orthonormal basis of R(H).

Except for ii) and iii), the above items are known.

Proof. A theorem of Larson and Sweedler (see [LS]) shows that ( | ) is nondegenerate.
Symmetry follows easily from the identities S? = id and S(A) = A. This proves 1).
Part ii) is an immediate consequence of the definition of the convolution product. By
ii), (a|B) = e(a * 3) for all o, 3 € H*, whence iii) follows. Part iv) is straightforward
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and is left to the reader. Part vi) can be found, e.g., in [Sch, Theorem 4.7]. To prove
part v), we use the identity

(a]B) = (S(8),Gla)) = (8,6(a)), o,fcH". (2.7)
Indeed, since G is a map of left H-modules, we have

(a <= n|B) = (8(h) = a|B) = (S(B), G(S5(h) — a))
= (5(8), 5(h)G(a)) = (S(B) = S(h), Gla))
= (S(h = 6),G(a)) = (alh = 5)

forall h € H, o, 5 € H*. By symmetry, the second identity also follows. This completes
the proof of the proposition. e

Lemma 2.8. Let x,x' € R(H). Then (x|x") = m(x, ). In particular, if x and ' are,
respectively, the characters of the H-modules V, and V.., then

(X|X/) = dim Hompg (V,, V).

Proof. Both bilinear forms coincide on the basis {x1,...,x:} of R(H). e

§3. Character algebras and induced modules

In this section we discuss the relationship between the character algebras of a
semisimple Hopf algebra and a Hopf subalgebra. First, we state several (mostly,
well-known) versions of the Frobenius reciprocity.

Let A — B be an inclusion of algebras, not necessarily finite-dimensional. Let W
be an A-module and V a B-module. We denote by Ind% W (respectively, Res? V)
the induced module Ind% W := B @4 W (respectively, the A-module obtained from
V' by restriction of scalars).

Lemma 3.1. (Frobenius reciprocity I). There is a natural isomorphism
7: Hom4 (W, Res® V) — HomB(Indg W, V), (tf)(b®@w)=>bf(w),
where f € Hom (W, Resg V), b € B, w € W. In other words, the induction functor is

left adjoint to the restriction functor.

Proof. By [CR (2.19)], there is a natural isomorphism 7: Hom4(W,Homp(B,V)) =
HomB(IndA W, V), given by (7f)(b2w) = f(w)(b) for all f € Hom (W, Homp(B,V)),
b € B, w € W. On the other hand, it is not difficult to check that Hompg (B, V)
Res V, f — f(1), is a natural isomorphism of A-modules. e



10 N. ANDRUSKIEWITSCH, S. NATALE

Now, we treat the existence of a right adjoint functor to the restriction. Let A — B
be an inclusion of algebras such that 4B is finitely generated projective, and let
f#: A — A be an algebra automorphism. For a left A-module W, we denote by
sW the left A-module with the same underlying vector space and with the action
a.gw = B(a).w for all w € W, a € A; similar notation will be used for right A-
modules.

We recall that A — B is called a right 3-Frobenius extension if there exists an
isomorphism

pBa 5 pHoma(4B, 44),.

If this is the case, let f = F(1); then f is a morphism of (A, A)-bimodules f: 4B4 —
aAp, and there exist l;,r; € B, 1 =1,...,n, such that

b_Zfbl ri = Zml (3.2)

for all b € B (see [FMS, 1.3]). The collections [;,r; € B, 1 = 1,...,n, are called
dual bases of B. Moreover, we have the following separability identity in B @4 gB =

Bﬁ—l XA B:
Y lhi@rib=> b @ (3.3)
=1 =1

for all b € B (see [FMS, 1.4 (¢)]).

Lemma 3.4. The following statements are equivalent.
i) A — B is a right 3-Frobenius extension.
ii) For every left A-module W and left B-module V there is a natural isomorphism

C: HomA(Resﬁ V. W) — Homp(V, Ind? sW).

In other words, the [(3-twisted induction functor is right adjoint to the restriction functor.

Proof. If ii) is true, then taking V' = B, W = A yields the desired isomorphism
F: pBs — pHoma (4B, AA)ﬁ. Conversely, assuming i), we can define ( by

Zl @u(riv) € B@a W, u € Homa(Res5V, W), veV.

Then (3.3) shows that ¢ is well defined. Moreover, by using (3.2) and (3.3), it can
be shown that o: Homp(V,Ind5 sW) — Homa(Res5 V, W),

o(t)(v) = (f @id)t(v)



HARMONIC ANALYSIS ON SEMISIMPLE HOPF ALGEBRAS 11

for all ¢ € Homp(V,Ind5 W), v € V, is a well-defined inverse of (. e

In particular, we conclude that the induction functor is right adjoint to the restric-
tion functor if and only if A — B is Frobenius.

A major example of a (-Frobenius extension is provided by any inclusion of
finite-dimensional Hopf algebras A — B. This is [Sch2, 3.6 II], [FMS, Theorem
1.7]. Indeed, once again we recall that, by [NZ], B is free over A. Let [, € B*,
respectively, Ag € B, A4 € A, be nonzero right integrals such that [, — Ap =¢, ie,,
(/3-AB) = 1. By [NZ], there exists A € B such that

Ap = AA 4. (3.5)

Let ap € B* be the right modular element, i.e., bAp = (ap,b)Ap for all b € B, and
let np: B — B be the Nakayama automorphism ng(b) = S7%(b — ap) = (S7%b) ~—
ap, b € B. Consider the algebra automorphism

B=na"'npg: A A (3.6)

Then the extension A — B is $-Frobenius with the Frobenius homomorphism f: B —
A, f(b) = ([p, 0187 (Aa))be, b € B, and with the dual basis (S7'(Az), A1), where
A=S8(A) —ap™ =37 (S71(A)).

Lemma 3.7 (Frobenius reciprocity Il). Let A — B be an inclusion of finite-dimensional
Hopf algebras. Then the induction functor is right adjoint to the restriction functor if
and only if the relative Nakayama automorphism (3.6) is the identity. In turn, this is
equivalent to ooy = (ap)|a.

Proof. This follows from Lemma 3.4, with reference to [FMS, 1.8]. e

We recall that H denotes a semisimple Hopf algebra. Let X' C H be a Hopf
subalgebra. The restriction and induction functors give rise, respectively, to linear
maps R(H) — R(K), x + xk, and R(K) — R(H), 1 s 1.

On the other hand, if V is an H-module and W is an irreducible K -module
with character y, we denote by V[y] the isotypic component of type W in Res V. In
particular, we denote by V* := V[ k] the space of K-invariants in V.

Lemma 3.8 (Frobenius reciprocity for characters). Let v € R(H) and ¢ € R(K);
then (XK |¢), = (XW)H)H .

Let v € R(IK) be the character of a representation of i, and let ¢ € K be an
idempotent such that Ke affords the character «». From [NZ] it follows that He affords
the induced character . Indeed, since H is free over K, He = HKe v H @ Ke.
In particular, deg? = (deg¢))[H:K]. Here [H:K| := 4 "which is an integer by
[NZ].

Now, we give a first application of the Frobenius reciprocity (Lemma 3.8).
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Corollary 3.9. Suppose K is a commutative Hopf subalgebra of H. Then for all y € H
we have deg v < [H:K]|.

Proof. Observe that m(y, ") = m(xx,) > 0 for some ¢ € K. Since K is commu-
tative, we have degv = 1, whence deg y < degy = [H:K]. o

In what follows we aim to give an explicit formula for the character of an induced
representation (see Proposition 3.12). We begin with a technical definition, which
will also be of use in the study of spherical functions (see §5).

For f € K*, consider the k-linear map H* — k, o — (ax|f),. Since the form
(| )5 is nondegenerate, there exists a unique f € H* such that

(o |f) g = <04|J?> - (3.10)

for all « € H*. This yields a well-defined linear map 6: K* — H* [ — fv In
particular, if ¢» € R(K), then, by (3.10), for all x € R(H) we have

<X|@Z>H = (X |¥)x = (XW’H)H'

Lemma 3.11. Let f € K*. Then f = ([, S(f),Ax) [,

Proof. Since [ = [, is the identity element for the convolution product in H*, we
have

F=tusn F=(1F) fo= (il f2 = iS(D ARy 0

Example. Suppose H = kG, K = kF, where F C G are finite groups. Then [,, =
|G|61, and Ax = |1T|EheF h.If f € kT, then f = (G132 ,e6(0,S(f), A )dy-1 by
Lemma 3.11. Hence, for all x € G we have

Fla) =1G8,-:S(f), M) = [GF] Y (. h)(6x, )

heF
B { [G:F|f(x), xé€F,
o, x¢F.

The next proposition generalizes a famous formula due to Frobenius (cf. [CR,
(10.3)]).
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Proposition 3.12. If ¢ € R(K), then " = ad Ag(1) = S(Ams) — ¢ — Ap,.

Proof. We put A = Ap. First, observe that if x € R(H), then A; — y — S(A2) = ¥,
because y € H* is a cocommutative element, ¢(A) = 1, and

<A1 — X = S(A2)7$> = <X,S(A2)$A1> = <X,A1$(A2)$> = €(A)<X,x> = <X,$>

for all « € H. So, let x € R(H). By Proposition 2.6v), we have

(xladA()) = (xIS(42) = = A1) = (& = x = S(A2)F) = (\IF) = (\[p™).

The proposition follows, because ad Ay (H*) = R(H) and ( | ) is nondegenerate on
R(H) by Proposition 2.6vi). e

Proposition 3.13. Consider the convolution products in H* and K*. Then:
i) (): K* — H*, fw f,is an algebra map.
ii) The composition Reso( ): K* — K* is scalar multiplication by [H:K|.

Proof. i) Firsti we claim that ax * f = (a* f)x for all f € K*, o € H*. Indeed, the
definition of f implies that

ar o f = ((a2)kl ) () = (el f) (ar)i = (ax flic.

Now, using Proposition 2.6iii), we deduce that, for all f,g € K'*, o € H*,

(awlf = 90y = (e = flg)ye = ((ax Piclg)
- <a i ﬂg)H - <a|f* g)H

Consequently, by the definition of 6, ]/C_:k/g = f* g. Also, from Lemma 3.11 it follows

that [;o = [p.
ii) Let f € K*, € K. Then

(Prsa) = (LS AN [2sw) = (1 (AR S(AR)2) 20 2)
= ([, (A i) (f, S(Ax)2)) = ([, (A )i)(f, 2S((Ak )2))
= ([, Ax)(f @) = [H:K](f, z);

here we have used the fact that, since Ax is an integral in K, we have (Ax)iz @
S((Ar)2) = (Ar)1 ® 2S((Ak)2) for all © € K. Also, since Ax is an idempotent in
H, we see that ([, Ax) = Try(Ax) =dimHAx = [H:K]. e

Remark 3.14. Observe that the relation ]; = [y implies that [, =3 deg b,
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§4. Hecke algebras
Let K — H be an inclusion of Hopf algebras, with H semisimple.

Definition 4.1. Given an idempotent ¢ € K, the Hecke algebra associated with ¢ is
the subalgebra H(H,K,e) := eHe of H. The Hecke algebra H(H, K, Ax) will be
denoted by H(H, K).

From [CR, (5.13), (5.18)] it follows that the Hecke algebra H(H, K, e) is semisim-
ple.

Remark. The Hecke algebra H(H, K, e) depends only on the left module K'e, but not
on the choice of an idempotent ¢ € K. Indeed, by [CR, (3.19)], the Hecke algebra
H(H, K, e) is isomorphic to (Endy He)°P. If f € K is another idempotent such that
Ke = Kf, then He = H @ Ke = H @i Kf = Hf. Therefore, H(H, I, e) and
H(H, K, f) are isomorphic.

Lemma 4.2. Let ¢ € K be an idempotent such that the left K-module Ke affords the
character v € R(K). Then for all x € H, h € Z(H) we have

(x,eh) = %@oh%

In particular,
m(x, ™) = (x,e). (4.3)

Compare (4.3) with [CR, Proposition (11.21)].

Proof. Let V denote the H-module with character +»'’. Then the isotypic component
V[x] is a submodule of V that affords the character 1 = m(y,v)x of H. Let E € H
be the central primitive idempotent such that (v, E) = deg x. Then, since V =« He,
we have Vx| =« EHe = HeE. Hence,

p(h) =Trg(eEh) = Z deg 7(r, heE) = deg x(x,he), h € Z(H),
TEﬁ

which implies the desired identity. e

Theorem 4.4. Let H := H(H,K,e), and let  be the character afforded by the K-
module Ke. Then the following statements are true.

i) Let y be an irreducible H-character. Then x|y # 0 if and only if m(x,vH) # 0.

ii) The map x — x|u is a bijection between the set of irreducible characters x of H
such that x| # 0 and the set of irreducible characters of H.

iii) If ¢ is an irreducible character of H such that ¢ = x|y, as in ii), then

deg ¢ = m(y, ™).
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iv) If V is an H-module affording x € H , then ¢V is an H-module affording x|u.

Proof. The proof is precisely the same as the proof of [CR, (11.25)]; we use (4.3) in
place of [CR, Prop. 11.21], as well as a straightforward generalization of [CR, Prop.
11.23]. As to part ii), we note that if ¢ is an irreducible character of H afforded by a
minimal left ideal Hu, where v € H is a primitive idempotent, then the H-character
x afforded by the (minimal) left ideal Hu satisfies x|y = ¢. o

Precisely as in the classical case, the moral of Theorem 4.4 is that the knowledge of
the representation theory of the Hecke algebra H(H, I, ¢) amounts to the knowledge
of the decomposition of the induced representation He.

Corollary 4.5. [H:K]degy > dimH(H, K, e) = ZXeIrrH<X7 e)? = (;/)HW)H)H o

Let £ € K be a central idempotent. We define
L*p(K\H/K):={a € H*:E —~a+~ E=a}. (4.6)

Let ¢ € K.IfE= E, € K is the central primitive idempotent such that (¢, Ey) =
deg v, then L?p(K\H/K) =: L?,(K\H/K) C H* is the isotypic component of type
Y @1 in the (I, K')-bimodule structure of H* provided by — @ <. In the case where
E = Ay, we shall use the notation L*(K\H/K), so that L?(K\H/K) coincides with
the subspace of all « € H* such that @ — o — 2’ = ¢(a)e(2" ) for all z, 2" € K.

The coalgebra H/(K+H + HK™) can be thought of as a quantum analog of the
space of double cosets; since KTH + HKT = (L*(K\H/K))*, the dual algebra
(H/K*H + HK™)* can be identified with L?(K\H/K), a subalgebra of H*. It is
also not difficult to verify that L? x(K\H/K) is an L?(K\H/K )-subbimodule of H*;
in fact, L? 5(K\H/K) can be viewed as the space of sections of a vector bundle on
the quantum space of double cosets.

We are more interested in the study of the behavior of L?p(K\H/K) with re-
spect to the convolution product; for this, now we discuss a relationship between
L?*p(K\H/K) and the Hecke algebra H(H, K, E), which generalizes a fact known
for finite groups (cf. [CR, §11D]).

Proposition 4.7. i) L?p(K\H/K) C H* is a subalgebra with the convolution product
and with identity element ([ ,E) [,.

ii) The Fourier transform of H induces an algebra isomorphism F: H(H,K,E) —
L*+(K\H/K), where E = S(E).

Proof. We show that the Fourier transform induces a bijection H(H,K,E) —
L*#(K\H/K), which implies i) and ii) immediately. Observe that the identity el-
ement in L*(K\H/K) will be F(E) = (|, E) [,.
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Let h,u € H. Then

(E — F(ELE) — E,u) = (F(ELE), EuE) = ([,S(E)S(h)S(E)EuE)
= ([, S(h)BuE) = (J,ES(h)Eu) = (F(ELE), u).

This proves the inclusion F(H(H, K, E)) C L?*%(K\H/LK). The proposition will follow
if we prove that
dim L*+(K\H/K) < dim H(H, K, E).

For this, consider the evaluation map 6: L*w(K\H/K) — (H(H, K, E))* given by
8(f)(ERE) = (S(f),ERE). Since for f € L*z(K\H/K) and € H we have

O(fNELE) = (f,ES(h)E) = (E — f = E,S(h)) = (S(f),h).

the relation 6(f) = 0 implies f = 0. Therefore, 6 is injective and the inequality
claimed above follows. e

In the sequel, we shall only consider the algebra structure on L?5(K\H/K) given
by convolution.

§5. Spherical functions on semisimple Hopf algebras

Let K — H be an inclusion of semisimple Hopf algebras. To determine the
representation theory of the Hecke algebras, we need to study analogs of spherical
functions.

Let v and ¢ be characters of representations of H and K, respectively. The
spherical function associated with the pair (y,) is the element ¢, , € H* defined by

Gy = X = Pxy (5.1)

(the second identity is true since the characters are central with respect to convolu-
tion). Compare with [T]. In the spirit of [T, 1], now we state the basic properties of
spherical functions.

Lemma 5.2. Let x € R(H), ¢ € R(K). Then
1) quﬂb(l) = m(%/)aXK) = m(quva)a
i) S(y2) — be,wA/— y1 = €(yA)¢X,¢, y € K.
Suppose v, x' € H, 1, ;{)’ e K. Then

iil ) ;
)bew X XX de%xquw

V) fy 0 = Gy = ¢¢w

Proof. Part i) follows from Proposition 2.6ii).
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ii). Since H is semisimple, S = id. This implies that ii) is equivalent to the relation
d(yx) = ¢(zy) for all € H, y € K, where ¢ = ¢, . We shall use the fact that, for
all y € K,

YS(Ar1) @ Ay =S(AKy) @ Akoy

(see [Sch, Theorem 3.2]). Let « € H, y € K. We compute

Bye) = (aS(0), Axe) (o ye) = (0 yadic )(S(0), Arc)
= (G a(Ag2y)) (1, S(Ak1)) = (6 2 Ax2) (8, yS (A1)
= (X 2A ko) (1, S(Arr)y) = (X 28 (A1 )Y, Akcoy)
= (G ayS( A )N, Axs) = (X, 2yA ) (0, S(Ak 1))
= (G aYA R (S(), Ak 1) = o(xy).

We have used the fact that the relations S(Ax) = Ax and §* =id imply S(Ax;) @
Ary = Ago @ S(Ak); indeed, this follows by applying S @ id to the identity Ax; @
Ary =S(Aky) @ S(Aky). Thus, ii) is proved.

Parts iii) and iv) follow from (5.1) and Lemma 2.3. e

Corollary 5.3 (Orthogonality relations for spherical functions). If x, x’ € bl , v, €

K, then
m(x, ')
1) = ) —_—
(Dx 0l ) = OOy, deg \ deg "
1
Proof. By L 5.2iii), i Iy = Oy O gy ———————— d the clai
roof. By Lemma 5.2iii), iv), ¢y %y o o' O degxdeg;/)qu’w’ and the claim

follows by specialization at 1. e

Corollary 5.4. 1) ¢ = > ven deg Xy
i) x = E¢€[? deg ¥y y-
111) fH = ZxEﬁ,dJEK’ degX deg ¢¢X,¢-

Proof. Since [, = er 7 deg y is the identity element in H* with respect to the
convolution product, part i) follows. Part ii) is deduced from Remark 3.14 and
Lemma 2.3 in a similar way. Part iii) follows from Remark 3.14, with the use of the

relation [, « [, = [,,.

In the sequel, we give a more explicit description of the algebraic nature of the
spherical functions.

Let x € H, ) € K. Let p: H — End(V) be the representation of H affording
the character x, and let E,;, € K be the central primitive idempotent in K such that
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(1, Ey) = degt. We recall that V[¢] denotes the isotypic component of type . We
introduce ®, : H — End(V[¢]) by the relation

®,4(h) = p(EyhEy),

i.e., ®,  is the composition of p with the map H — H(H, K, Ey) givenby h — EyhEy,
(cf. [GV, 1.31])).

1

Proposition 5.5. For all h € H we have ¢, (h) = dog 0 Tr(®, 4(h))

(]
Proof. Let / € H. Then, using (2.4), we obtain

1
Srw(h) = (0. 8(8) = M) vah) = (1 (S0) = M) = g (x Buh). @

Corollary 5.6. ¢, = 0 if and only if m(x,v") =0. e
Lemma 5.7. Let x € H. Then Ey — éy.5 — Ey = ¢y
Proof. This follows from Proposition 5.5. e
Proposition 5.8. The spherical functions degv¢y ylun ke, = Xlun i e, with

m(x, ) # 0, are all the irreducible characters of the Hecke algebra H(H, K, Ey).
Proof. This is a consequence of Theorem 4.4 and Proposition 5.5. e

For ¢ € f(, X € ﬁ, we shall use the notation ¢, := deg y deg o, 4.

Corollary 5.9. The collection {4 : m(x,vf) # 0} is a complete set of central
primitive idempotents in L*,(K\H/K).

Proof. Lemma 3.8 implies that (:/7)* = (1/*); therefore, m(y,¢™) > 0 if and only
it m(x*, (¥7)*) > 0. Let E, be the central primitive idempotent in H such that
(x,E,) = degx. Then, by Theorem 4.4, { E\«Ey~ : x € ﬁ, m(x, ) #£ 0} is a
complete set of central primitive idempotents in H(H, I{, Ey« ). If we prove that

1
= — A e —
G(qbXJ/J) be,lb degxdeg;/)
for all y € H , then the claim will follow from Proposition 4.7. Let « € H*. Then,
using Proposition 5.5, we can write

(0, G(dy ) = (ady,u, A) = (Py,0r 0 = A)

Ey B, (5.10)

1 1
1 1

(0GB — a)) = g

(o, By By ). o

= deg;/) <Oé;E¢*,G(X)>

1
N deg ) deg x



HARMONIC ANALYSIS ON SEMISIMPLE HOPF ALGEBRAS 19

Now, our aim is to give a characterization for spherical functions.
Given a vector space V, 2 € Hom(H, V), and o € H*, we define a*() (respectively,
Q*a) in Hom(H,V') by

a*x Q) = (o, \1)QS(Az)x) (respectively, Qx*a(x) = (QxA1)a,SA2)), « € H.

It is easy to check that a * (Q % 8) = (a *x Q) * 3 whenever § € H*. Clearly in the
above definitions we do not need the semisimplicity of H, and they also make sense
in the case where o € Hom(H, A), A is an algebra, and V is a left (respectively, right)
A-module; of course, the associativity above requires that V' be an .A-bimodule.

We recall that F(x) = FS(z), « € H.

Lemma 5.11. Let U be a finite-dimensional vector space, E € K a central idempotent,
®: H — EndU a linear map such that ®(1) = id and

O(x) = ®(E2E), r e H. (5.12)

The following statements are equivalent.

i) f — ®(f) yields a representation of H(H, K, FE).

ii) ®(xEy) = ®(2)®(y) for all x,y € H.

iii) There exists a representation p: H(H, K, E) — End U such that F(f)+® = p(f)®
foral f e H(H,K,E).

iv) There exists a representation p': H(H,K,E) — EndU such that ® « F(f) =
®p'(f) forall f € H(H, K, E).

If these conditions are fulfilled, then necessarily p(f) = p'(f) = ®(f).

Proof. Observe that (E) = id. Since
®(xEy) = ®(ExEyE),  ®(2)3(y) = ®(ExE)(EyE)
by (5.12), we see that i) is equivalent to ii). We note that
F(f) = @(x) = (F (), A)2(S(A2)x) = & ((F(f), M)S(A2)x) = &(fx)

for all f,» € H. Hence, condition iii) means that p(f)®(z) = ®(fz) for all f €
H(H,K,E), x € H. Taking + = 1 we infer that ® = p yields a representation of
H(H, K, E). Conversely, if i) is true, then

O(fr) = B(fEx) = d(f)®(x), f € H(H K E), v €H.

Here, the first identity is fulfilled because f € H(H, K, E) and the second because i)
— ii). Thus, iii) is proved. In a similar way we can show that i) <= iv). e
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Theorem 5.13. Let U be a finite-dimensional vector space, and let E € K be a
primitive central idempotent corresponding to i € K. Let ®: H — End U be a linear
map satisfying (5.12) and such that ®(1) = id. Then ® = &, ,, for some representation
pof HonV (and U = V[]) if and only if ® satisfies the equivalent conditions of
Lemma 5.11. Moreover, p is irreducible if and only if 50 is @ |y (1, i E)

Proof. It is clear that ® = @, ,, with U = V[¢/] satisfies the relations ®(1) = id and
(5.12), as well as relation ii) in Lemma 5.11. Conversely, suppose that ®: H — End U
satisfies ®(1) = id, relation (5.12), and the conditions of Lemma 5.11. First, we
assume that ®|y g i ) is irreducible. By Theorem 4.4, there exists an irreducible
representation p: H — EndV such that plyg k) = @y, x,p on EV = V[].
By (5.12), ® = &, 4. In general, we decompose U = P, ; U;, where U; is an
irreducible H(H, K, E)-submodule, ¢ € I. Then ®(x)U; C U; for all + € H, and
we have ®;: H — EndU,; satisfying the same conditions as ®. Hence, there exist
irreducible representations p;: H — EndV; such that &, = ®,, ;. Then & = &,

with p:= B, pi. e

§6. Symmetric spaces for semisimple Hopf algebras
We keep the notation of §5.

Definition 6.1. We say that (H, i) is a Gelfand pair if L*(K\H/K) is a commutative
subalgebra of H* with the convolution product. In this case, the quotient H-module
coalgebra H/HK™ is called a symmetric space.

A representation V' of H is said to be multiplicity free if any irreducible represen-
tation of H appears with multiplicity at most one in V.

We recall that if V is an H-module, then V* denotes the space of K-invariants
in V. Part of the following result can be found in Vainerman’s paper [V].

Proposition 6.2. The following statements are equivalent.

i) (H,K) is a Gelfand pair.

ii) H(H, K) is a commutative subalgebra of H.

iii) Ind® = is multiplicity free.

iv) For every irreducible representation p: H — EndV, we have dimV* < 1.

v) For every irreducible representation p: H — EndV, there exists a basis
{v1,...,v4} of V such that the matrix entries c;; of p in this basis satisfy the rela-
tions

(cij, AkhAK) = 61é1(c11, AkhAk), he H.

In other words, there exists ¢ € H* such that in the basis {v;} the matrix of p(AxhAx),

h € H, is of the form
p(AxchAr) = <¢<Oh> g) |
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Proof. The equivalence i) < ii) follows from Proposition 4.7. For ii) < iii) it
suffices to put e = Ax in Theorem 4.4. The fact that iii) <= iv) is a consequence of
Frobenius reciprocity (Lemma 3.8). We note that v) means that dim Ax HAxV < 1.
Since Ak HARV = AV = V! because A% = 1, we conclude that iv) <= v). e

Remark 6.3. Observe that HKt = H(1 — Ag). Hence,yviewed as left H-modules,
Indf ey = HAx v« H/H(1—Ax) = H/HK™*. Let H*°™ C H* be the right coideal
subalgebra of left coinvariants of the Hopf algebra surjection H* — K*, that is,

H*COI(* - {O{ E H* : <a7 $h> — 5($><O{7 h>7 \V/l' E .[(7 h E H}

Then H*°%" is an H-submodule of H* with respect to the action —. Clearly,
(H/KTH)* = H*°X" (we mean left H-modules).

On the other hand, it is not difficult to check that the map F: HAx — H* K
given by F(hAx) = [ — hAx = hAx — [ is an isomorphism of left H-modules.
Therefore, Ind cf «» H*°X" « (H/K+H)*,

Now, we present sufficient conditions ensuring that (H, I{') is a Gelfand pair. Our
first statement is inspired by a criterion due to Selberg (cf. [Te, §2.5; GV, 1.5.2,
1.5.3)).

Proposition 6.4. Let 6: H — H be a linear isomorphism such that, for all + € H,
= (0@ 0)(zAy @S(A2)) mod (HKT + KTH)©@ H+ H®@ (HK'T + KTH).

(6.5)

Suppose, moreover, that S(z) —6(z) € KTH + HK™ for all x € H. Then (H,K) is a

Gelfand pair.

Proof. By Proposition 1.7iv), S: (H*,*) — (H*,«) is an anti-algebra automorphism.

Clearly, S(L*(K\H/K)) = L*(K\H/K). Let f € L*(K\H/K). If = € H, then

Sa =0z 437, aih; + 37 1/ jb; for some hy, b € H, a;,b; € KT. Consequently,

(Sf,w) = (£,S2) = (f02) + 3 {Fraihi) + 3 (£, 1'505) = (f,02) = ('6F, ).

This shows that 6 and S coincide on L?*(K\H/K); in particular, ‘0(L*(K\H/K)) =
L*(K\H/K).

We claim that ‘0: (L*(K\H/K),*) — (L*(K\H/K),*) is an algebra automor-
phism, which implies the proposition. Let f,g € L?*(K\H/K), v € H. Then, by (6.5),
we have

(("0F) * ("6g).x) = (("01)28("0g), AN("6f)1,x)
<t9f7 :1;A1><t9g, S(A2)> = <f7 9(1’/\1 )><gv 98(A2)>

(f.0(x)A1)(g. S(A2)) = (f * g.0(x)) = ('0(f x g),2). o
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Corollary 6.6 (Gelfand criterion). Suppose there exists a Hopf algebra automorphism
8 of H such that S(x)—0(z) € KYH+ HK™ forall x € H. Then (H, K) is a Gelfand
pair.

Proof. Since 6 is a Hopf algebra automorphism, it is clear that € satisfies (6.5). o

Corollary 6.7. Suppose there exists a Hopf algebra automorphism 0 of H such that
i) O(a) = a for all a € K
ii) H=KP,where P={hecH:6(h)=S(h)}
Then (H, K) is a Gelfand pair.

We note that, necessarily, the automorphism 6 is an involution of H.

Proof. If h € H, then h = ). a;p; with a; € K, p; € P. Then 6(h) = > . a;S(p;)
and S(h) = .. S(pi)S(a;). Now, for all 7, a;S(p;) = ¢(a;)S(p;) modulo K*H and
S(pi)S(ai) = (a;)S(p;) modulo HK™, so that 8(h) = S(h) modulo HK+ + KT H,
and it remains to refer to Corollary 6.6. e

§7. Harmonic analysis on symmetric spaces

In this section we fix a Gelfand pair (H, K). Let HX be the set of all irreducible
characters y € H such that m(y,ett) = 1. For all x € H , we denote the spherical
function ¢, ., by ¢,; recalling §5, we see that ¢, := deg x¢,. By Proposition 5.5,
dy(h) = (x,Axh) for all h € H. Rewriting the integral of K in terms of the matrix
entries of K, we obtain the following expression for the spherical functions:

)=z 33 (dear)x(rih). (7.1)

reios 1<i,j<deg

We note that the spherical function ¢, satisfies ¢, = ¢, where ¢ is as in Proposi-
tion 6.2v), and V is the irreducible module affording y. In other words, ¢, is the
composition of a distinguished matrix entry of V' with A — AxhAg.

In the symmetric case there are elegant characterizations of the spherical functions.

Proposition 7.2. Let ¢: H — k be a linear map. Then the following statements are
equivalent:

i) ¢ = &, for some x € HE;

ii) (1) =1, p(AraAr) = ¢(x), and (x)p(y) = ¢p(xAry) for all v,y € H.

Proof. This follows from Theorem 5.13. e

The next proposition is a consequence of Corollaries 5.3 and 5.9.
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Proposition 7.3. i) Relative to the nondegenerate bilinear form ( | ) introduced in (2.5),
the set { o\ : x € HX Y forms an orthonormal basis of L*(K\H/K).

ii) The collection { v : x € HE } is a complete set of orthogonal primitive idempo-
tents in L*(K\H/K). e

Corollary 7.4 (Fourier expansion in L*(K\H/K). Let f € L*(K\H/K). Then

f= Z (flex) ex = Z deg X (f|ox) Dy @

YEHE YEHE

We define a map &: L*(K\H/K) — R(H)* as follows: (&(f),x) = (floy),
feLl*K\H/K), x € H. The map & might be called the spherical transform; then
Corollary 7.4 would yield an analog of the inversion formula in Fourier analysis.
Observe that

(6(f),x) = (floy) = (fIAx = x = Ax) = (Ax = f = Ax[x) = (FIx) = (G(): x)

by Propositions 5.5 and 2.6v) and by (2.7). Thus, &(f) is nothing but the restriction
of G(f) to R(H).

Proposition 7.5. Let x,y € H(H, K). Then

([Lay) = D degxx(z)x(y).

XEHI{

Proof. Using Corollary 5.4iii), Lemma 5.7, and Proposition 5.8, we obtain

([,ay) = Y degxdegvoy,plzy)

xeﬁ,zpeﬁ'

= ) degydegipy y(AxryAx)
xeﬁ,zpeﬁ'

= Z deg x deg ¥\ w(EpAxryAx Ey)

xeﬁ,zpeﬁ'

=) degyoy(zy) = Y degxx(z)x(y). o

xeH xEHKE
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§8. Smash products and biproducts

Let K — H be an inclusion of semisimple Hopf algebras. Assume there is an
algebra isomorphism H = R# K, where R is a left {-module algebra, and # stands
for smash product. Let R™ C R be the subalgebra of all K-invariant elements in R,

RN ={reR:zr=c(x)r, z€ K}.

By [Mo, Lemma 4.3.4], the Hecke algebra H(H, K) is isomorphic to R*. Hence,
(H,K) is a Gelfand pair if and only if R® is a commutative subalgebra of R.

In particular, the above applies when R is a braided Hopf algebra in the category
of Yetter-Drinfeld modules over K and H = R#K is a biproduct over K. In this
case, we have the left H-module coalgebra isomorphisms

Ind ey w H/HKY « R

(see [R2]), where the action —: H @ R — R of H on R is given by (r#z) — s :=
r(x = s) forall r,s € R, z € K.

§9. Almost cocommutative semisimple Hopf algebras and the Drinfeld double

Let H be a semisimple Hopf algebra. We denote by D(H) the Drinfeld double of
H and identify D(H) = H* @ H and D(H*) = H ® H* as vector spaces. For h € H,
o € H*, the elements o« @ h € D(H) and h @ o € D(H)* will be denoted by a#h
and h#a, respectively. There are Hopf algebra inclusions H - D(H), h ~ #h, and
Hreor D(H), a — a#1. We identify H and H*“°Y with their images in D(H ).

We recall (see [Z]) that a left D(H)-module algebra structure of D(H) on H can
be given by

afth.a = (haS(hy)) — S '(a), a € H* h,z € H. (9.1)

On the other hand, if we consider the left (faithful) R(H)-action — on H, f —
h = (f,h2)h1, then, as was shown in [Z], this action together with the D(H )-action
(9.1) form a commuting pair. This implies that there is a bijective correspondence
between the irreducible D(H )-summands and the irreducible R(H )-summands in
H. Also, if Vy,...,V, are representatives of the isomorphism classes of irreducible
R(H)-modules, then, viewed as a D(H) ® R(H )-module, H is isomorphic to a direct
sum, .
Ho@PwW: oV,

i=1
where W, is the irreducible D(H )-module corresponding to V;. In particular, if e; €
R(H) is the primitive idempotent affording Vi, then dim W, = dim(H*e;) for all
i=1,...,s (see [Z]).
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Lemma 9.2. We have an isomorphism of left D(H)-modules H = (Indg(H) em)*.

Proof. Consider the sequence of maps
H % D(H) 5 H*P,

where 7 is the coalgebra map defined by =(a#h) := e(h)a. Clearly, H = D(H)*°™,
and there is isomorphism of left D(H)-module coalgebras H*“°> « D(H)/D(H)H™,
where the D(H)-module structure on H*“°P is given by

a#th.f = (idee) (afhf#l) = a (n = f =S (ha)), a,feH", he H (x)

As was mentioned before, D(H)/D(H)H* = Indg(H) ep (isomorphism of D(H )-
modules). On the other hand, dualizing the left action of D(H) on H*“°P given by (%),
results in the left D(H )-module algebra structure on H determined by (f, a#h.z) :=
(S(a#h).f,x), o, f € H*, h,x € H. In turn, this D(H)-module structure coincides
with (9.1), and the claim follows. e

Lemma 9.3. The Hecke algebra H(D(H ), H) is isomorphic to R(H).
Proof. Let A € H be a normalized integral. Then, for all « € H*, h € H we have

A(a#R)A = =(h) {0, ST (Ay)_A1)#A = e(h) ad A(a)#A.

Now, ad A(H*) is the isotypical component of trivial type in H* with respect to the
adjoint action of H, ad: H @ H* — H*, h @ f — adh(f) = (f,8 ' (h2)_h1). As is
well known, this coincides with R(H). Hence, H(D(H),H) = R(H)#A. Also, it is
not difficult to see that if o, 3 € R(H), then (a#A)(8#A) = af#A. This proves the
claim. e

Remark 9.4. Let e € R(H) be a primitive idempotent. If v is the irreducible D(H )-
character afforded by D(H)(s#¢), and A € H is the normalized integral, then The-
orem 4.4 shows that

dim R(H)e = (x, A).

We recall that a Hopf algebra H is said to be almost cocommutative if there exists
Q € (H @ H)* such that A“P(h) = QA(R)Q~! for all h € H. If H is semisimple,
then H is almost cocommutative if and only if R(H) is a commutative algebra.

Corollary 9.5. The pair (D(H),H) is a Gelfand pair if and only if H is an almost
cocommutative Hopf algebra.
Proof. This is a consequence of Proposition 6.2 and Lemma 9.3. e

Thus, whenever H is a quasitriangular Hopf algebra, (D(H), H) is a Gelfand pair.
In particular, if G is a finite group, then (D(kG), kG) is a Gelfand pair.
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