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§0. Introduction.

Let k be an algebraically closed field and A a finite Hopf algebra over £.
We consider A™ as a left 4-module by transposing the left regular action of
A and composing with the antipode. Given a nonzere nght integral in A*,
one can define a Fourier transferm on A, which results, thanks to a basic
Theorem of Larson and Sweedler [LS], an isomorphism of left A-modules
from A onto A*.

In case A is semisimple, cosemisimple and involutory, we obtain, by means
of the calculation of the mmtegral in two different ways and a convenient
interpretation of the Plancherel identity for the Founer transform of A, two
formulas relating the algebra and coalgebra structures in A. These formulas,
involving the matrix coecfficients of A*, generalize well known identities for
finite groups [Se, 6.2, Prop. 11, and Ex. 1]. Because of the analogy with
classical harmonic analysis, we call these formulas "inversion formula” and
"Plancherel identity”, see respectively (2.15) and (2.18).
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In 1975, Kaplansky formulated a series of conjectures on Hopf algebras.
One of them states that the dimensions of the irreducible modules over a
semisimple Hopf algebra A divide the dimension of A. which would generalize
Frobenius Theorem for finite groups. We derive from the inversion formula
an expression for the quotient of the dimension of A over the dimension of
an irreducible comodule in terms of the matrix coefficients of 4 and A*; see
{(3.3). As an application, when & is a fleld of characteristic zero, we use
this formula to recover a result of Larson [L] that states Frobenius Theorem
for semisirnple Hopf algebras with an order. We then deduce that a Hopf
algebra of order pg which has an order is a group algebra. Here p < ¢ are
prime numbers, ¢ # 1 mod p.

Fourier transforms for Hopf algebras were first considered by Kac and
Paljutkin [KP, §5] in 1966, in the context of finite dimensional Hopf C-
algebras. For general finite dimensional Hopf algebras, they are implicit in
the above mentioned work of Larson and Sweedler. The natural context for
them is in fact that of Frobenius algebras. We remark, as well, that Fourier
transforms for Hopf algebras have been treated recently in several papers

(e.g. {LM], [LM2], [KM], [Kp], [PW]).

Conventions. We shall work over an algebraically closed field k. The
notation for Hopf algebras is standard: A, &, ¢, denote respectively the
comultiplication, the antipode, the counit; we use Sweedler notation but
dropping the summation symbol. Given a Hopf algebra 4, we shall regard A
as an A*-bimodule via the transposes of right and left multiplication, that is

r—h=hyla by 3= {5k hecdzre A%
We shall also consider the actions of A” on A given by
he—z=8z—h, r—h=h—&c.

Assume that A is finite dimensional. By abuse of notation we shall denote
Ly the same symbols the analogous actions of A on 4*. Unless explicitly
stated 4 is considered as (left or right) A-module by means of the (left or
right) multiplication.

Our references for the theory of Hopf algebras are [Sw), [Mo]. {Sch].

1. Fourier transform on finite Hopf algebras.
Let A be a finite Hopf algebra and let us fix a non-zero right integral
f € A% that is %ﬂ = {z,1) ‘ Yr o A*.

Consider the structure of left A-Hopf module in A* provided by the action
— and the conaction g : A* — A & A*, defined as follows:

(L1} ple) = ®@aw It {oem) e =a (o))

Ya € A. See [Mo, Lemma 2.1.4].
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Definition (1.2). The Fourier Transform of A (associated to [} is the map
F: 4 — A*, defined by

Fla)=a—f, c€ A

Thus if we consider A as a left 4-Hopf module in the natural way, F is an
isomorphism of left A-Hopf modules from 4 onto A* [LS].
Its inverse & : A* — A, is given by

(1.3) Gla)=A — a,

where 0 # A € A is a left integral such that {[,A) = 1, or equivalently
A — f = e Indeed, [ is a Frobenius homomorphism with dual bases

(A1), S(A(ny}) (see [Sch, Thm. 3.6]); that is
i) >Cw A.-w...m..:.:mwvﬂv =a,¥ac€ A4,
“_._v A._ﬁ_.n_:?:wv %m.}ﬁuuu =, /._‘-Q_ S A.

Now, condition 1} is equivalent to Fo G = id 4+, and condition ii) is equiv-
alent to Go F = id,,.

Remark. If we thought of the Fourier Transform only as an isomorphism
between the left regular action of A and the transpose of the right regular
action on A*, then we would just get the concept of a Frobenius algebra.
The feature of the Hopf algebra case is that the inverse map of a Fourier
Transform is also a kind of Fourier Transform of the dual Hopf algebra.

We have nondegencrate bilinear forms on 4 and A*, denoted respectively

[, ]and |, ]4 defined as follows:
(1.4) [a,b] = {F(a},d). and _Q_ Ea_ = {a, G( /).

for all a,b € A4, a,3 € A*. The following Theorem is immediate from the
definitions.

Theorem (1.5) (Plancherel Identity). Let a,b € A. then la,b] =
[F{a).F(b}q.

2. Inversion formula and Plancherel identity for semisimple Hopf
algebras.

In this section we interpret the Plancherel identity {1.5) in the case of a
scmusimple (hence finite, see [Sw., Ex. 1-4, pp. 107]} Hopf algebra 4 under
the aditional hypotheses that 1 is also cosemisimple and involutory. Along

the way we obtain an "inversion formula” relating the algebra and coalgebra
structures in 4. The keys are two different expressions for the integral on
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A, one involving its coalgebra structure and the other its algebra structure.
Namely, on one side 1t can e compnted as the projection on the isotypical
component of trivial type in tle decomposition of A as left A*-modulc (see
Proposition (2.9) Lelow). and on the other it is, up to a scalar, the character
of the left regular representation of 4, which in particular implies that the
bilinear forms defined in (1.4} are also SYTIMeLTIc.

We will assume that A is a Hopf algebra that satisfies the following three

conditions.
i) A is semisimple.
ii) A is cosernisimple.
i) §? =id.

For instance, if the characteristic of the base field k is zero, then the three
conditions are equivalent (see [LR] and [LR2]). Conditions 1) and 1i) imply
that the characteristic of & does not divide the dimension of 4 [LRZ, Th. 2}
also, if we suppose that dim 4 # 0. then condition i1} implies i} and ii).

Denote by B = A* the dual Hopf algebra of 4 and let A and B Dbe,
respectively, the sets of isomorphy classes of irreducible representations of A
and B. Conditions i} and i1} give, respectively, by the Wedderburn Theorem,

an isomorphism of algebras

(2.1} Az [[ EndV,.

pEA

and an isomorphism of coalgebras

(2.2} A= D (End W),
kER
where V, is the irreducible A-module affording the representation p and sim-
ilarly W,. The isomorplusm in {2.1} is given by a — {pla)),- {n the other
hand, if # € B, p: B — EndW, s a surjective algehra map, hence its
transpose, ‘p (EndW,)" — B* = A, is an injective coalgebra map. The
isomorphism in {2.2) is obtained by identifying 3 5 Tu € @, cp{End W,
with 3, e 'm(Ty) € A.
Trom now on, we will assume these identifications.

The isomorphisms (2.1) and (2.2) give two expresicns for an element a € A:

(2.3) 0 = M dpe Gp € End 1,

_;mL.
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which corresponds to the decomposition of A into simple algebras, and

(2.4) a= M d,, @, € {End E....L..
nEB

which nowﬂmmncdmm to the decomposition of 4 into simple coalgebras. The a,'s
may be obtained from the a,’s by a, = 3_ . 5 (@, ). The inversion MOHEMF

expresses, conversely, the a,'s in terms of ' at;
a . of the a,'s, relating the al a
coalgebra structures of 4. ’ ) gebra and

bum A and B are ummodular, we need not distinguish between right and

teft _:»mmﬂm_.m. In fact, if we denote by Y4 € B the character of the left regular

wmwnmmm%»wso: of A, and pick the integral [ € B such that {f.1} =1 (such
ntegral exists thanks to the semisimplicity of ! di

: v of B), then X4 = .

[LR2]. That is, as dim A # 0, b ther fdma) ], e

(2.5) =
= Gma M Py,
pEA

where X, denotes the character of the irreducibl i 4
: ¢ € representat
m, is the dimension of V. P stion ¢ € 4 and

By gm‘m.PBm reason, any integral A in A is a multiple of the character Xg.
The condition {[, A} = 1 implies {¢, \} = dim A, thus

(2.6) A= 3 nu&,

ﬂ_mm

Ermn..m n, =dimW,, and A}, is the character of u € .

iven u € B, we shall identify W, @ W7 wit : ;

way, and W7 @ W, with (End &m_ﬁ:ﬂ A M_HHMH“ Nwwvwr m ﬂ__sﬁwrm Mmsm_
following commutative diagram: B 1 the top of the

e ﬂn
Wi@W, —— (EndW,)"C 4

(2.7) L TH

W,@W; ——— EndW, CB.

canonical

mOHﬁ T s &—Hm usu twist pﬂ& HH 15 the canoni N— SO0 C(«m.—A..A_ y
= BH = T - ¥
e < 150TTL H.—u—uzmms pr B —u
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ven » £ Z.‘? £ W, *. the matriz cocfficient )., € 4 1s the image uu-
der 9" of 1 _u/c_::? {dhoe ) = (o i) for e - B. In particular,
ifrcBandw=dcW, W then

(2.8) (G ot & F) = b, () (L 0).

Proposition (2.9). Let p,7 € B and denote by ut € B the representation
of B in W," induced by the antipode. Le. pi(z) = {p(Sz)), r € B. Then
we have:

j= (Dﬁvﬁun.m:\

a_}a.

a) Sia,

b} W, & W, contains the trivial representation of Bif = In
particular (End W, )" (End W,)" contains k1 = (End W, )" iff 7 = u?

c) {{ {EndW,)") = 0, except when ju 1s trivial. Therefore the integral
[ can be identified with the projection onto (End W, )* = k1 with kernel
Bpe (End 11, )7

d) The characteristic of k does not divide the dimension ny, of the irre-
ducible A-comodnle W,

Proof. a). Tt follows from the definitions.
b). The canonical isomorphism

.E\.._: 0 W — :OB:,,F._ S\.,:u

is a B-linear map. The isotypic component of trivial type in Hom{W,, W} s
exactly the space of B-linear maps. Therefore, if W, and W, are irreducible,
the multiplicity of the trivial representation in W, @ W4 is 1 (respectively
0) iff W, and W, arc (resp. are not) isomorphic. This says that W, & W,
contains the trivial representation iff W, = W,

For the last assertion observe that for cach y € B, (EndW,)" is the
jsotypical comnpenent of type g in 4 and that the multiplication map AQA —
A is a morphism of B-modules,

¢). In general. if €' is any coalgebra such that 1 ¢ €, then {f.C) =0
Indeed. {f.aq))eq = {f,a})1 € k1N C =0, Ya € C. This proves the first
assertion and the second follows from the first.

d). See [L2]. O

Note. Darts a) to ¢} of Proposition (2.9} hold nore generally for cosemisimple
Hopf algebras over an algebraically closed field of arbitrary characteristic. See
[Sw2]. Part d) is valid for involutory cosewisimple Hopf algebras, see [L2].
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Let {») be a basis of W, and (o) € W,"* its dual basis; then {¢*

a € (a), v € (v), is a basis of (End W, )" C A. o

Let e € A. e = 3] pa,, with a, € (EndW,}". Each @, has an expres-
sion of the form

(2.1 ay = Mnnh&n@? for some af, , € k.

a,u

We want to compute F{¢Lq,), for i € B,and a € W, v e W,.

Proposition (2.11). F(¢L,,) = %H_ @ a.
H

Praof. 1t is enough to show that the restriction of G to W, o W » satisfies
(v D a) = nudhe:

since 1, # 0 by {2.9) d), we can then apply F to both sides of the equality
and get the Proposition.

Now, G(v@a)=A —v@a =3 gzn(¥ —vRa) Let b€ B and
write & = 3 _ g bs, with b, € End W,. Then

A\.ﬂq‘ — v o, &v - M A\ﬂ\ﬂ_ﬁﬁv @ Q_vo.v = &ﬂ.t _.H_ﬂ:c @ Qum_tv = A.m_.__:A M@d, @_:V,
s .

So, X, «— v 2 a equals ¢4, if 7 = g, and 0 otherwise. O
Corollary (2.12). Forae W,”. fe W,". ve W, uec W,

{1, S( B Bh00) = e} (8.1,

H

Proof. By (2.11) and (2.8)

A._ﬂ...m'ﬁ ﬁw“@-. vm.._vm@: Am...ﬁ ®=v ﬂv_.m@:v = &t T JAQ HﬁvA_Q ﬂ_v n

Ry

Note. Corollary (2.12) follows from [DK, Prop. 3.4 and 3.5], using that §? =

id. The result DI, Prop. 3.5] (for arbitrary cosemisimple Hopf algebras) is
equivalent to the following [A, (1.8}]
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(2.13) (f,ab) = Te('STM),

if o € 4 is identificd with § € End W« and b € 4 is identified with T €
End W,. Here M € End W, 15 a B- _n_cgc:ur_ma between W and W s such
that Te{ M) = 1. The existence of such A follows from [L2]. Tt is important
liere the following result due to Larson [L2, Thm. 3.3} The antipode of a
cosernisimple Hopf algebra is bijective.

The key for the following Proposition is (2.13); part 1) is contained in [A]
and part ii) was motivated by a question of H.-J. Schneider. This result,
however, will not be used in the rest of the article,

Proposition 2.14. Let A be a (possibly infinite dimensional} cosemisimple
Hopf algebra. Let {a|b) := {[,ab} be the Killing form of A.

i) (| ) is symmetric iff §* =id.

i) (alb) = (S2(b)la) for all a,b € A iff §* = id.

Proof. i). Let @ € A corresponding to § € End W, and b € 4 corresponding
to T € mﬂn__s\ By (2.13), {a|p) = Tx('STM). rﬁ us compute (bla). By
the definition o*. M,

ﬁ.\iulhmm%uaw = g M), forall = £ B.

Hence -1 Tr .>\._ -1 ————(*M)7! plays the role of M for p?. Now, as b corresponds to
Te m“z& W, then it corresponds to M™'TM € End W s Applying (2.13)

to ,: we get

(bla) = 7 kl_ Te( (M TMIS( M)
= a.:sl, T T M)7LS5)
= e:sl_ Tr(*SMT'T).
Thus (afb) = (bla) for all such a, biff Tr("STM) = vl Tr('SM™IT), iff

M= (dm W, )" tidw,. As p € B is arbitrary, this is equivalent to 82 = id.
Indeed 5%(b) corresponds to MTM ™! € End W,,.

ii). By the preceding, $4(b) corresponds to M2T A~ € EndW,,. On the
other hand, $%(b) corresponds to T € End Waa, hence
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1

2
(S°(0)la) = Ty

Tr{' TS (M™1)).

Thus {a|b) = (§2(b)|a) iff M? = idw,, iff $* =id. DO

Tr SL

We can now prove our first main result.

Theorem (2.15) (Inversion Formula). Keeping the notation above, the
coefficients a% | in (2.10) are given by the formula

v
n d
H —_ » I
aft = —L M i, X A a v
@, - . .
u Q—B;&. . pete a*fHurp
pEA :

Here we indicate by a* € (v), the element defined by {a*. 3} = 4,4,
8 € (o}, and analogously for v* € (a). _

Proof. We have, for all & € {&) and v € (v),

ﬁwu—mu m_“ v ﬂ....__ﬁcz ﬂ-@ﬁ- v._ Qv,

which follows from Proposition (2.11).
On the other hand, if we express the integral in terms of the character of
A, we obtain

stcm.gu.ﬁo.u, ay = nu{{f, ﬂﬂ@«.. a) =

%.5 A MH Mok A o ®__.av - m:ﬁl Ms.:.:& A at@ue e u

pEA pEA

which gives the claimed identity in view of (2.16). 13

We next want to interpret Plancherel identity (1.5},
Lemma (2.17)., Let p € uﬁ and let o, 8 ¢ W,*, u,v € W,. Then
v®a,u®Bla=nyla,ul{8,v).
FProof. By definition and (2.8)

PReaudlla={rRaGludd)={pQan,dhy,)=ndeu}{fv) O

Let @ and & n A. Keep the notation in (2.10) for a and b.
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Theorem (2.18) {Explicit Plancherel Identity).

1 L
ST Apleb) =dim A>T — S al. 500

ar
pEA w€ B R

Proof. By (2.5}

ST X,y (ab) = dim A (f,ab) = dim 4 (/. > aub.).

pEA _‘_.,._.mmw

This equals, by Proposition (2.9} b} and c}.

dimA Y ([ aub,) = dimA 3.8 0 )bue) =

tm_‘w _:mm
dmA Y (FS(ay) bue) = dimA Y [Sla, ), byel.
el LER

The first equality because §? = id. Now we use the Plancherel identity { 1.5)
to obtain

(2.19) > mpXy{ab) = dim A Y " [F(Sa,). F(b,ela.

pEA wEB

Let now p € B, and let us compute [F(Sa, ), F(b,q)|¢. By Proposition {2.9)
a), S{e ) =3 ,,0h ﬂwn So that, using (2.11), we may write
1 1 .
F(Sa,)= — Y a¥, a®v, and Flbu)=— b, 85w

n
My @, g

Thus,

.M 13 hm
[F(Sa,), F(b,q il = — M ar;.,vn..u [a @ v, ®uly =
Tu o fuu
Y B e,

4]
" e Bun

the last equality thanks to Lemma (2.17} applied to p?. Now, as (w.v....)

and (e, d,... ) are dual bases, we have

1 x— e
(2.20) F(Sa,), Flbua)la = — > _abs g0 5.

Pa Fu
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Putting together (2.19) and (2.20), we get the claim. 5

Example. Let G be a finite group. 4 = kG its group algebra, 6, the
set of 1somorphy classes of irreducible representations of G, In this sat-
ting the inversion formula and Plancherel identity give, respectively, for

U ) e UsS = Munmm., u,

1
Uy = Gl M Mmpdp(s  u,), and M E_o..&n?i = |G} MH Ugthg—1.

pEG peG 1EG

Sce [Se, 6.2, Prop. 11 and Ex. 1.

§3. On the dimensions of the irreducible modules.

As an application of the above results, and in particular of the inversion

dim 4
n,

We remark that it was conjectured by Kaplansky in 1975 that the dimen-
stons of the irreducible modules divide the dimension of 4. In the case of
finite groups this is true, and is known as Frobenius Theorem [Se. 6.5, Cor.
2.

formula (2.15), we will prove a forimula for the quotient

Let p € A. Fix a basis (v;)i2y of ¥, and let (#:*)2% be the dual basis in

V,*. Consider the matrix coefficients p; 1= va_.@& € B: that is,
{pij.a) = (. g, @) = (", pla)(v;))

Yoe A 1 <i,7<m,.
The following properties are easily checked.

iy

(3.1) Alpis) = Y pa & piye elpyy) = 85

k=1
Also,
(3.2) = pin
i=1

where X, denotes the character of V),.

. d
With the notation above, and letting ,amm = m\.“.u..@s., we have
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Theorem (3.3). Lei i € B, and let (v) C W, {a) & W, be dual bases.
If o € {a) and v € (v}, then

dimm 4 — MU m, M Aﬂ_n.t_”xw.m-. im.__.,_v AD.tﬁb..».:q;v.

T pEA Pke=1

Observation. If v € W, and a € W} satisfy {o.v) = 1, then {3.3) implies
the suggestive formula

dimd _ > m, M (o, plpf M)y (o, plpi o))
e pEA LA
Proof. Specializing the inversion formula (2.19) ma = ¢he,, we get
LT ] ﬁ__\m ;1
1] = —#_ ., X A vt e P cv .
dim A M p e G 27
pE A
Hence,
. ) . _
E = MU m, Ay A mm@e, eﬁ@:v = M i, {B{AXp ) @w.@«.. i ew@:v =
._J: _:m.x.» _:m.ﬁ
mg
. L T
ST me Y (P S} (ki Bageds

pEA th=1

the last equality by (3.1) and (3.2). Using the definition of the matrix coef-
ficients, and (2.9} a), this equals

MU ", M CK?;::J.Q.V (o, plpri o)) =

pEA  Bk=1

M My M (o, 1 Spip ™)y {oplpriHv)} =

pEA k=1
S mp 3 (ot e (e i),
pEA ik=1

as claimed. O
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§4. Application to Hopf algebras with an order.

From now on we will assume that the characteristic of I is zero.

Let K be an algebraic number field and let R Le the ring of algebraic
integers in K. We may assume that & C k. An R-order of A4 is a Hopf
algebra A® over R such that 4 « AfQpk as Hopf algebras over k, and AR
1s projective and finitely generated as R-module {L, §1]. As an application
of Theorem (3.3) we will give a new proof of a result of Larson [L, Prop.4.2]
which states that under the assumption that A has an order. the dimensions
of the irreducible modules divide the dimension of A.

Remark. H.-J. Schneider has pointed out to us a third way to get Larson’s

Theorem via an argument, which involves Casimir elements, that appears in
[KMe].

In this section we will assume that 4 has an R-order. For any ring exten-
sion R C § C k, we will denote 45 := 48xpS. so that A = A%,

Lemma (4.1). Let H be a Hopf algebra over a field L. If L C F is a feld
extension of L and HY = H@F, then H is semisimple iff HF js. (Thus the
serusimplicity of a Hopf algebra does not depend on the base field).

Proof. It follows from Maschke Theorem for Hopf algebras. O

If H 1s any algebra over a ficld L and F is an cxtension field of L, for any
H-module ¥V we may consider the H -module ¥VF := V@, F. L is called a
splitting field for H if for every irredueible H-module V', and for every feld
extension F of L, V¥ is an irreducible H -module [CR, Def. {29.12)]. In
the case of Hopf algebras we have the following Lemma. Compare with [CR,
Th. (20.16)].

Lemma (4.2). Let H be a finite Hopf algebra over an algebraic number
field K, then there exists a finite extension field L of K which is a splitting
fleld for H. O

We now return to the case under consideration.

Remark {8, It is clear that the dimensions of the irreducible modules are
the same in any extension A7 of A", where Lisa splitting field for A%, Just
observe that dimgV'F = dimy V for any A%-module V, and any field exten-
sion L C F, and use [CR, Th. {28.13}]. Thus to show that the dimensions
of its irreducible modules divide the dimension of 4, it is enough to show
that the proper occurs for A*, where L is a splitting ficld for A¥. Also, by
Lemma (4.2}, we may suppose that L is an algebraic number field, and apply
the above remarks to its algebraic closure in & (which is also a splitting field
for A%).

We will need the following Lemma. See [K. Thm. 1]. {Sch, Lemma (4.11)].
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Lemma {(4.4). Let L be an algebraic munher fickd. S the ring of integers
in L, and L its algebraic closure in k. Suppose H is an S-algebra which
15 finitely generated and projective as an S-module. and such that HL isa
semisimple algebra over L. Then for any HE-module V' there exists a L-basis
such that the entries of the matrices representing the action of elements of

H in this basis are algebraic integers. O

Remark ({.5). Let A¥ be an order of 4 over the ring S. so that 4% is
finitely generated and projective as S-module, then (4%} := Homg( A%, §)
also 15s. Hence the canonical map __...»_m%@mw — Homg{ A% #) is a k-linear
isomorphism. On the other hand. recall the isomorphism, Eoz_.ilm,_f o)
Homy{ A, k), also canonical. These give a map (45) =gk — Homg (A4, k) =
A* = B, which 1s easily verified to be an isomorphism of Hopf algebras over

k. Thus {A%)" is an S-order of B.

Theorem (4.6). The dimensions of the irreducible A-modules divide the
dimension of 4.

Proof. By Remark {4.3), it will suffice to prove the claim for AL, where L
is a splitting ficld of A® which is an algebraic number field, and I denotes
the algebraic closure in k of L. As Al isa semisimple Hopf algebra over the
algebraically closced field I. we may apply Theorem (3.3).

Denote by S the ring of integers of I, so 4% = 47,8 is a finitely
generated and projective S-module, and we may apply Lemma (4.4) to the

irreducible module ¥V, p € AL,

Choose then a basis (v;) of V, such that the elements of A% are repre-
sented, in this basis, by matrices with entries algebraic integers. Call F
the integral extension of § generated by the matrix entries of p(A%). So
that the matrix coefficients p;; € B corresponding to the basis (v;), map AS
mnto E. 2039.9,_..@:@. map AY = E A% into E. In other words, we have

pi; € (AFY Vo e AT
Fix now g € BL. DBy Remark (4.6), and again applving Lemma (4.4)

now to the irreducible BL-module W.. p€ BT, we can take the basis {(v)
such that the entries of the matrices representing clements of (AF)" = BF

arc algebraic integers. In particular, {a, u(pi ){v)} are algebraic integers for

= ) liin 4 |
all pin AL, But then, by Theorem (3.3} the rational number T isan
Ty

algebraic integer. hence an integer. Thus the dimensions of the irreducible
comodules divide the dimension of A. Interchanging the roles of 4 and B,
the result follows. []
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Semisimple Hopf algebras of order pg. Let p and ¢ be prime numbers,
p<q.¢7% 1 modp Let A be a semisimple Hopf algebra with an order.
We will prove that if the dimension of A is pg, then 4 is isomorphic to §Z

hence it 1s commutative and cocommulative.

P

Using the 1somorphisms (2.1) and (2.2}, and Theorem (4.6}, we may write

pg=dim4 = M T:_Lu = M T:Lm,

tmm., tmm

with m,{dim A, and n,|dim 4, ¥p € M nE B. Observe also that T.:;u and
Tﬁ.Lu arc strictly less than pg. Thus, cach n, and m, must equal either 1
ar p.

Call by (respectively by}, the number of 1 € B such that n, =1 (respec-
tively n, = p). Then pg = b + byp®, so that plb;. But as b; = |G(4)],
where G A) is the group of grouplike elements in A, by the Nichols-Zoeller
Theorem [NZJ, b1 |pg. Hence b; = p or pq.

If by = pg. then A = kG(A4) is a group algebra and the result follows from
elementary group theory. But if b; = p, pg = p+byp?, henccg=1+4+bp=1
mod p against the assumption.
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