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Survey of braided Hopf algebras

Mitsuhiro Takeuchi

ABSTRACT. We characterize finite dimensional Yetter—Drinfeld braided Hopf
algebras intrinsically and review recent results on braided Hopf algebras from
this viewpoint.

The notion of a braided Hopf algebra was introduced by Shahn Majid around
1990 (see his survey [Mj2]). Since then, braided Hopf algebras have been studied by
many people. Here is a list of recent developments of braided Hopf algebra theory.

Hopf module theorem
uniqueness of the integral Lyubashenko [Ly2],
bijectivity of the antipode

Frobenius property Fischman, Montgomery and Schneider [FMS],
Nichols—Zoeller theorem Scharfschwerdt [Schar],

the automorphism U
corresponding to §? Andruskiewitsch and Schneider [AS],
first trace formula

second trace formula Doi [D3],

Sommerhauser [So],

ribbon transformation
U?-formula

S*-formula Bespalov, Kerler, Lyubashenko
and Turaev [BKLT].

Most of the known properties of finite dimensional Hopf algebras have been gener-
alized to finite dimensional braided Hopf algebras.

To go ahead, we have to clarify what a braided Hopf algebra is. It should be
a natural generalization of usual Hopf algebras over a field. Majid has chosen a
categorical way to generalize the Hopf algebra notion. He has considered a braided
tensor category as a generalization of a symmetric tensor category and has defined
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a Hopf algebra object in a braided tensor category. Braided Hopf algebras in this
sense are well studied by people in Majid school.

The Yetter—Drinfeld category is a very nice example of braided tensor cat-
egories. Braided Hopf algebras in this category are algebras and coalgebras in
the usual sense so that they can be considered as natural generalization of usual
Hopf algebras. It has recently been noticed that finite dimensional Hopf algebra
theory can be generalized to finite dimensional Yetter—Drinfeld Hopf algebras. An-
druskiewitsch, Doi, Scharfschwerdt, Schneider and Sommerhiuser take this view-
point. They could be called the Yetter—Drinfeld school. So there are the abstract
category school (or Majid school) and the Yetter-Drinfeld school in braided Hopf
algebra theory.

In this survey, I take a third way. I define a braided Hopf algebra over a
field as an algebraic system without using braided categories. It is an algebra and
a coalgebra having a Yang-Baxter operator on it, satisfying some compatibility
conditions. The precise definition is given in §5. Our main theorem 5.7 tells that
we can characterize finite dimensional Yetter—Drinfeld Hopf algebras completely
in this way. To prove this, we require some long preliminaries as developed in
the previous 4 sections. Coquasitriangular bialgebras and the FRT construction
play essential roles. In §2, we explain Schauenburg’s Hopf version of the FRT
construction in some detail.

Once one characterizes Yetter—Drinfeld Hopf algebras, one can reformulate all
known results on Yetter—Drinfeld Hopf algebras without using Yetter—Drinfeld cat-
egories. However, some remark is required concerning distinction of categorical and
non-categorical objects (§6). In the final section 7, we survey recent main results
on braided Hopf algebras from this viewpoint.

1. CQT bialgebras and the FRT construction

The notion of a coquasitriangular (CQT) bialgebra was first mentioned by
Majid [Mj1] and then formulated and studied by Larson—Towber [LT], Hayashi
[H] and Schauenburg [Schau] around 1991. If R is a Yang—Baxter operator on a
finite dimensional vector space V', there is a CQT bialgebra A(R) such that V is a
right A(R) comodule and that R is induced from the CQT structure. We review this
construction briefly in order to apply it to our characterization of Yetter—Drinfeld
braided Hopf algebras.

Throughout the paper, we work over a fixed field k. A CQT bialgebra means
a pair (A,0) where A is a bialgebra and 0 : A x A — k a (convolution) invertible
bilinear form satisfying:

(1.1.1) Za(wu),yu))ﬂf@)y@) = Z 7 (Z(2), Y(2))¥(1)%(1),
(112) U(l‘y,Z) = ZO’(I‘,Z(l))U(y,Z@)),
(1.1.3) o(z,yz) =Y oz, y)0(zq),2)

for z,y,z € A. We use the usual sigma notation.

If (A, 0) is a CQT bialgebra, the category of right A comodules M is a braided
tensor category. If V and W are right A comodules, V' ® W is a right A comodule
by the codiagonal coaction

VoW s VaWed, vewr Y vg) @wo) ®vawq).
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The CQT structure o induces the following braiding
(1.2.1) TV,W : VeoWw — W RV, v®w +— Za(v(l),w(l))w(g) (9 V(0)-

Refer to [JS], [K], [Mo], for generalities on braided tensor categories.

With the above notation, note that V ® W is a right A ® A comodule, hence
a left (A ® A)* module. The braiding (1.2.1) is simply the action of o composed
with the trivial flip:

o fl
(1.2.2) Wi VeW s VeW —s WaV.

This observation will be useful later.
Let V be a finite dimensional vector space with basis {e;}. Let {e]} be the dual
basis for V*. We put Cy = V* ® V. This has the following coalgebra structure.

(1.3.1) A(fov)=> (foe)® (e @),
(13.2) s(f @v) = (o)

and V has the following right Cy comodule structure.
(1.3.3) VoValy, ve Y e (e o)

where f € V* v € V. Cy is called the co-endomorphism coalgebra for V. If C' is
a coalgebra, there is a 1 — 1 correspondence between a coalgebra map ¢ : Cy — C
and a right coaction p: V -V @ C.

Let V and W be finite dimensional vector spaces and f : V' — W a linear map.
Let I(f) be the image of

(1.4.1) Wy LSETEEN, o g oy

It is the smallest coideal of Cy @ Cyw such that f becomes a comodule map for
(Cv ® Cw)/I(f), and called the co-centralizer of f [T1, 3.3]. Assume V and W
are right comodules for a coalgebra C. Let ¢y : Cy — C and ¢w : Cw — C be
the corresponding coalgebra maps. The image

(1.4.2) (v @ dw)(I(f))

is also denoted by the same symbol I(f). It is the smallest coideal of C such that
f becomes a C/I(f) comodule map. If o € C*, then f commutes with the action
of o iff o vanishes on I(f).

Let V be a finite dimensional vector space. A linear automorphism
R: VoV 55V ®V is called a Yang-Baxter operator if it satisfies
(1.5.1) (R®id)(id®R)(R®id) = (id®R)(R ®id)(id ®R)

on VeV®V. The pair (V, R) will be called a YB space. The tensor algebra T'(Cy)
has a canonical bialgebra structure so that V' ® V becomes a right comodule for it.
We put

(1.5.2) A(R) =T(Cv)/(I(R))

the quotient bialgebra by the ideal generated by the co-centralizer I(R). This
construction is due to Faddeev—Reshetikhin-Takhtajan [FRT.

1.6. THEOREM. [LT, H, Schau] There is a unique CQT structure o on A(R)
such that the YB operator R equals the braiding v,y (1.2.1) arising from o.
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Let (A,0) be a CQT bialgebra, let U, V,W be finite dimensional right A co-
modules, and let f:V — W be a linear map.

1.7. LEMMA. 1. The folowing are equivalent.
(a) (f®id)ryy =muw(idef),
(b) o(Im(ov), I(f)) =0,
(c) o' (Im(¢u), I(f)) = 0.
2. The folowing are equivalent.
(a) (de@f)rvy = mwu(f ®id),
(b) o(I(f),Im(¢v)) =0,
(c) o7 (I(f),Im(¢v)) = 0.

Here, ¢y : Cy — A denotes the coalgebra map corresponding to the right
coaction, and the co-centralizer I(f) is taken inside A. o~ denotes the convolution
inverse of o.

ProoF. 1. By the observation (1.2.2), (1a) means
def: UV U W

commutes with the action of o. This is equivalent to saying that o vanishes
on I(id®f) = Cu®I(f), yielding (1la)<(1b). Since o is convolution invert-
ible, id ® f commutes with the action of o iff it does with the action of o~*
yielding (1a)<(1c).
2. This is proved similarly.
O

We say the linear map f commutes with the braiding with U if the identities
(1a) and (2a) above hold. Let {U,} be a family of finite dimensional right A
comodules such that the images of ¢, : Cy, — A generate A as an algebra. Let
(I(f)) be the ideal of A generated by the cocentralizer I(f).

1.8. PROPOSITION. If f : V = W commutes with the braidings with U, for all
a, then the CQT structure o on A factors through A/(I(f)). Thus A/(I(f)) is a
quotient CQT bialgebra of A.

PROOF. By using (1.1.2) and (1.1.3), one deduces from 1.7 (1b), (1c) and (2b),
(2c) that o and o~! vanish on A x (I(f)) and (I(f)) x 4, yielding the assertion. [

1.9. COROLLARY. Let R be a Yang-Bazter operator on a finite dimensional
vector space U, let V and W be finite dimensional right A(R) comodules and let
f:V = W be a linear map. If f commutes with the braiding with U, then
A(R)/(I(f)) is a quotient CQT bialgebra of A(R).

2. CQT Hopf algebras and rigid Yang—Baxter operators

A bilinear form o on a coalgebra C'is called skew-invertible if there is a bilinear
form o* (called the skew-inverse of o) on C such that

21) D oz, ue)o(@e),y) =c@)el) =D o(@@), 1)’ (@), ye)

for z,y € C.
We begin with a result of Doi [D1, Theorem 1.5]:

2.2. THEOREM. Let (A,0) be a CQT Hopf algebra with antipode S.
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1. The inverse o~ is given by

o (z,y) = 0(S(2),y), =z,yeA
2. o is skew-invertible with skew-inverse

o’(z,y) = o(z,5(y)), =ye€A
3. 0! is skew-invertible with skew-inverse

(0 )(z,y) =0 (S(@),y) = 0(S*(x),y), =,y€A

4. If we put
)\(.’I}) = ZO'S(.’I}(D,[E(Q)), Al(m) = Z(U_l)s(x(l)ax@))a T € A7
then X and \' are inverses of each other in A*.
5. We have

82(56) = Z)\'(m(l))x(z))\(m(g)), x € A
This yields the following consequence which will be used in §4.

2.3. LEMMA. Let (A,0) be a CQT Hopf algebra. If I C A is a bi-ideal such
that o(A,I) = o(I,A) = 0= (A,I) =07 (I,A) =0, then I + S(I) is a Hopf ideal
of A and A/(I + S(I)) is a quotient CQT Hopf algebra of A.

This means that every quotient CQT bialgebra has a quotient CQT Hopf al-
gebra.

PRroOF. Note that S is bijective and we have

o(z,y) = o(S(),S)), o (z,y) =0 " (S(x),S(y))

for z,y € A. Tt follows that S(I) satisfies the same condition as I. By the same
reason, we have

0" (A1) = 0" (I, A) = (0 ) (4,1) = (¢ *)* (I, 4) = 0.

In particular, A and A’ vanish on I. Hence I is §?-stable and I + S(I) becomes a
Hopf ideal. The rest is obvious. [l

Schauenburg [Schau, 3.2.9] has obtained the Hopf algebra version of the FRT
construction Theorem 1.6. To review this result (and also for our later applications),
we introduce some diagrammatic notations.

Let V be a finite dimensional vector space. Let

(2.4.1) e: V'V >k (resp. c:k—=VoV")

be the evaluation (resp. coevaluation) map, i.e.,

(2.4.2) e(fov) = f(v) (resp. c(1) = Zei ®e])
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where f € V* v € V, and {e;}, {e}} are bases of V and V* dual to each other.
These maps will be illustrated by:

1% V
(2.4.3) .. U 3 /\
V v

All maps go from top to bottom.

Let V and W be finite dimensional vector spaces and let T : VW - WV
be a linear map. Lyubashenko [Ly1] has introduced the linear map T° : W*®@V —
V @ W* defined as follows

wr* v w* v

q
(2.5) T _ 1
\—/W %

Let (V,R) be a finite dimensional YB space. We say that (V, R) is rigid if
R*:V*®V — V ®V* is an isomorphism. If this is the case, (R"1)’: V* @V —
V ® V* is also an isomorphism [LS, 0.2].

The following is the Hopf algebra version of Theorem 1.6.

W*

2.6. THEOREM ([Schau, 3.2.9]). Let (V,R) be a rigid YB space. There is a
CQT Hopf algebra (H(R),oc) such that V is a right H(R) comodule and that R
coincides with the braiding v,y arising from o.

We explain briefly how to construct H(R).

An object of a braided tensor category is called rigid (or finite [T2]) if it has
a left dual object. From the axiom of braided categories, a rigid object has a right
dual object, too. If (4,0) is a CQT Hopf algebra, a right A comodule V is rigid
iff V is finite dimensional [T2, 2.11]. In fact, if V' is finite dimensional, V* is a left
A comodule. If we turn it into a right A comodule via the antipode S, this gives a
left dual of V.
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The braiding and its inverse in a braided tensor category will be illustrated as
follows:

V |44 W V
(2.7) _ 1.
Tv,w - \ , 'A% . /
|44 V V |44

2.8. PROPOSITION. Let (A,0) be a CQT Hopf algebra and let V,W be finite
dimensional A comodules. Let V*, W* be the left duals of V,W. We have

L orvwe = ()™

2. TV W = (’I'V’vv_l)b

’
3. TV*,W* = (TV,W)* = (Tvyw)bb.

This follows easily from the following diagrams.

w* V w V
o \ : \/\
V w V w

veoow veoow
N : \/\/\
WV Wy

NaVETA
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(cf. [T3, (2.6.1)-(2.6.3)]).
In particular, this means (V,7y,y) is a rigid YB space.
Conversely, let (V, R) be a rigid YB space. We put
H(R)=T(Cy ® Cy-)/(I(R),I(e),I(c))
the quotient bialgebra of the tensor algebra of Cy @ Cy+ by the ideal generated by
the co-centralizers for

R:VeVoVaV, e:V'aVok ckasVelr

Note that V@V, V*®V, V® V* and k are all right comodules for T'(Cy & Cy ).
Theorem 2.6 is stated explicitly as follows:

2.9. THEOREM. 1. There is a unique CQT structure o on H(R) such that
R = 1v,y the braiding arising from o.
2. H(R) is a Hopf algebra.

PrOOF. 1 Let us write R = Ry,y. Define linear isomorphisms
Ryy-: VoV =SV aV,
Ry.y :V*@V -5 VeV*,
Ry:y- :V*@V* SV V"

similarly as 1-3 of 2.8 by replacing 7 with R. These maps form a family of Yang—
Baxter operators [Schau, 3.1.1, 3.1.9]. If we put

A(R) =T(Cv & Cv+)/(I(Rv,v),I(Rv,v+),I(Rv+v),I(Ry~v+))

these braidings are induced from a uniquely determined CQT structure o on A(R).
This is a multi-vector-space version of Theorem 1.6 (see [Schau, 3.2.9]). Since
Ry v+, Ry« y and Ry~ v+ are constructed from R, e, c, we have

I(Ry,y+), I(Ry~yv), I(Ry«y-) C (I(R),I(e),I(c))
hence H(R) is a quotient bialgebra of A(R). It is easy to see that e and ¢ commute

with the braidings with V and V*. Since A(R) is generated by the images of Cy and
Cvy+, applying Proposition 1.8, it follows that H(R) is a quotient CQT bialgebra

of A(R). This proves 1.
Proof of 2 will be given in Appendix. O

3. The Yetter—Drinfeld category

So far, we have worked with CQT bialgebras and Hopf algebras. But many
authors prefer to work with Yetter—Drinfeld categories. We recall the definition.
Let L be a Hopf algebra with bijective antipode. Let V' be a right L module and
right L comodule. It is called a Yetter—Drinfeld module if we have

(3.1) Y v - hay ®vyhiy = D0 b)) © hay (v hey) )

for h € L, v € V (see [Mo, 10.6.10]). If V and W are right L Yetter—Drinfeld
modules, then so is V ® W with the diagonal action and coaction. The category of
right L Yetter—Drinfeld modules ny is a braided tensor category with braiding

(3.2) vw VoW -"SWaV, v®w»—>2w(g)®v-w(1).
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Let (A, o) be a CQT Hopf algebra. If V' is a right A comodule, it is a right A
module with action

(3.3) v-a= Za(v(l),a)v(g), vEV, a€ A

The Yetter—Drinfeld condition (3.1) is satisfied. Thus V' becomes a right A Yetter—
Drinfeld module. If V and W are right A comodules, the right A action on V@ W
coincides with the diagonal action. It is easy to see that the braiding 7w of (1.2.1)
coincides with (3.2). We note that the antipode of A is bijective (2.2). We conclude
that we have a canonical functor

(3.4) MA S YDY, VsV

which preserves the tensor product, the unit object and the braiding (cf. [Mo,
10.6.14]).

4. Bialgebras and Hopf algebras in braided tensor categories

We review the notions of bialgebras and Hopf algebras in a braided tensor
category following [Mj2, T2] as well as their basic properties.

Let M be a braided tensor category with unit object I. An algebra (resp.
coalgebra) in M means a triple (4, m,u) (resp. (C,A,€)) where A € M (resp.
CeM),m: AA— A u:I— A (resp. A:C - C®C,e:C — I) satisfying
the (co)associativity and the (co)unit condition. The structures are illustrated by
symbols:

A A C C

(4.1) U A €

A A C C

A bialgebra in M means a 5-tuple (H, m,u, A, e) where H € M, (H, m,u) is an
algebra and (H, A, ¢) a coalgebra satisfying the following compatibility condition:

H H III H
/L : |
(4.2) H H H H
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ie, Aom=(mem)(id®r®id)(A® A),cou=id,com=e®e, Aou =u® u.
We use the notation (2.7).

If H is a bialgebra, the set of M maps H — H becomes a monoid under
the convolution product. If the identity is convolution invertible, the inverse S is
called the antipode and H a Hopf algebra in this case. Thus the antipode S is
characterized by the diagram

H H H

H H H

It is known [Mj2, Lemma 2.3] that S is a braided anti-bialgebra map in the following
sense:

H H

H H H H
: s S ( )s
(4.4) _ _
s = S s /L \
H H H H H

H

5. Braided bialgebras and Hopf algebras

In this section we define braided bialgebras and Hopf algebras over k without
using braided tensor categories. We discuss relations with bialgebras and Hopf
algebras in some known braided categories.

5.1. DEFINITION. A braided k bialgebra means a 6-tuple (H,m,u,A, e, R)
where H is a k vector space and the following are k linear maps

m:HoH—H u:k—>H Ar:H>H®H ¢ H—k, R-HoH-"S5H®H

satisfying the following conditions:

1. (H,m,u) is a k algebra,

(H,A,¢) is a k coalgebra,

R is a Yang—Baxter operator on H,

The structures m,u, A and € commute with R,

€: H — k is an algebra map and u : k — H is a coalgebra map,
we have

S ot W

Aom=me@m)(id®R®id)(A ® A).



SURVEY OF BRAIDED HOPF ALGEBRAS 11

Although we do not work in a braided category, we will use the previous di-
agrammatic notations. We use (4.1) to denote m,u, A and ¢ for H, and (2.7) to
denote R and R~!. The braiding R induces braidings

Ryt H®™ @ H®" = H®" @ H®™
in a canonical way. For instance, we have

H HH HH

\\/
B AN

H H H H H

(4) is interpreted in terms of these braidings (see below Lemma 1.7). For example,
“m commutes with R” means we have

SN N
VAWA

(5) and (6) are illustrated by diagrams (4.2).

Let H be a finite dimensional braided bialgebra with braiding R. By Theorem
1.6, H is a right comodule for the CQT bialgebra A(R) and R is induced from the
CQT structure. By Corollary 1.9, A = A(R)/(I(m),I(u),I(A),I(€)) is a quotient
CQT bialgebra of A. By construction, m,u, A and ¢ are A comodule maps. It
is obvious to see that (H,m,u,A,e) becomes a braided bialgebra in the braided
tensor category M4. This proves:

5.2. PROPOSITION. 1. Let A be a CQT bialgebra. If (H,m,u,A€) is a
bialgebra in M4, then (H,m,u, A&, 7y pr) is a braided k bialgebra, where
TH, g means the braiding in MA,

2. If (H,m,u,A,e,R) is a finite dimensional braided k bialgebra, there is a
CQT bialgebra A such that



12 MITSUHIRO TAKEUCHI

(a) H is a right A comodule,
(b) R= TH,H
(c) (H,m,u,A,¢) is a bialgebra in M4,

5.3. DEFINITION. A braided bialgebra H is called rigid if it is finite dimensional
and the braiding R is rigid (see below (2.5)).

If H is arigid braided bialgebra, it is a right comodule for the CQT Hopf algebra
H(R) (Theorem 2.9). Condition (4) of 5.1 implies that m,u, A and e commute with
the braiding with H*, too. More generally, assume (A, o) is a CQT Hopf algebra
in Lemma 1.7. One can show easily if f commutes with the braiding with U, then
it also commutes with the braiding with U* (use (2.8)). Applying Proposition 1.8,
we see H(R)/(I(m),I(u),I(A),I(e)) is a quotient CQT bialgebra. By Lemma 2.3,
this admits a quotient CQT Hopf algebra. Thus we have:

5.4. PROPOSITION. 1. Let A be a CQT Hopf algebra. If H is a finite
dimensional bialgebra in M, then it is a rigid braided bialgebra.

2. Conwversely, if H is a rigid braided bialgebra, it can be realized as a bialgebra
in M4 for some CQT Hopf algebra A.

If H is a braided bialgebra, it is an algebra and a coalgebra. Hence Endy (H)
has the structure of an algebra with the convolution product. If the identity is
invertible, the inverse S is called the antipode. A braided bialgebra with antipode
is called a braided Hopf algebra.

5.5. PROPOSITION. Let H be a braided Hopf algebra with braiding R and an-
tipode S. Then S commutes with R.

PRrROOF. The antipode S satisfies condition (4.3). We claim we have

H H H H
N
(5.5.1) S = S
d
H H H H
In fact, since m,u, A and £ commute with R, we have
H H H H H H HH

\ Y
()]s /\)

/
H H H H H H H H
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Hence we have

H H H H H H
\

s@s Qs _ S
H H H H H H

By the (co)associativity, the left-hand side equals

H H H H H H
\ A \ A \
S sS_ S8 _ S8
H H H H H H
This yields (5.5.1). It implies immediately
H H H H
\ \ S
(5.5.2) —
S \ \ :
H H H H
Similarly we have
H H H
N AN
(5.5.3) — .
AN N\
H H H H
Hence S commutes with R. O

Using this proposition, we have the following Hopf version of 5.2 and 5.4. The
proof is completely similar.
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5.6. PROPOSITION. 1. Let A be a CQT bialgebra (resp. Hopf algebra). If
H is a Hopf algebra (resp. finite dimensional Hopf algebra) in MA, then it
is a braided Hopf algebra (resp. rigid braided Hopf algebra).

2. Conversely, let H be a finite dimensional (resp. rigid) braided Hopf algebra.
Then it can be realized as a Hopf algebra in M*A for some CQT bialgebra
(resp. Hopf algebra) A.

Let L be a Hopf algebra with bijective antipode. A bialgebra (resp. Hopf
algebra) in the Yetter—Drinfeld category ny is called a Yetter—Drinfeld bialgebra
(resp. Hopf algebra). By means of the functor (3.4), we can characterize rigid
Yetter—Drinfeld Hopf algebras as follows:

5.7. THEOREM. 1. A Yetter—Drinfeld bialgebra (resp. Hopf algebra) is a
braided bialgebra (resp. Hopf algebra). It is rigid if finite dimensional.

2. Conwversely, an arbitrary rigid braided bialgebra (resp. Hopf algebra) can be
realized as a Yetter—Drinfeld bialgebra (resp. Hopf algebra).

Obviously, there are many possible realizations in 2.

6. “Categorical” vs. “non-categorical”

The previous Theorem 5.7 characterizes finite dimensional Yetter—Drinfeld Hopf
algebras allowing to reformulate all known results on Yetter—Drinfeld Hopf algebras
in terms of braided Hopf algebras. However, we should be careful in distinction
of categorical objects and non-categorical ones. Assume we work in the Yetter—
Drinfeld category ny. For an object V in ny, we should distinguish subobjects
in the category among all subspaces of V. If V,TW are two objects in YD¥ we
should distinguish morphisms V' — W in ypﬁ among all linear maps V — W.

Let (V, R) be a finite dimensional YB space. A linear endomorphism f: V — V
is called an endomorphism of (V, R) if

(6.1) R(f® f)=(f® [)R.
We say it is categorical if f commutes with R, i.e.,
(6.2) R(f®id) = (d®f)R, R@def)=(f®Iid)R.

Obviously, (6.2) implies (6.1). If f is a categorical endomorphism, there is a CQT
bialgebra A such that

1. V is a right A comodule,

2. R= TV,V,

3. fis aright A comodule map, by the argument above 5.2.

If (V, R) is rigid, we can take a CQT Hopf algebra as A, and this means f can be
realized as a Yetter—Drinfeld homomorphism.

Let H be a rigid braided Hopf algebra. An automorphism of H means a linear
automorphism f of H preserving all structures m,u,A,e and R. (f preserves R
meaning (6.1)). Then, f commutes with S automatically. We say f is a categorical
automorphism if (6.2) is satisfied. This is the case iff H can be realized as a
Yetter—Drinfeld Hopf algebra in such a way that f is a morphism in the category.

Let (V, R) be a YB space. A YB subspace means a subspace W of V such that

(6.3) R-WaW W eW.
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The restriction Ry is a Yang—Baxter operator on W. We call W a categorical YB
subspace if R induces isomorphisms

(6.4) R:VOW-S3WaVadR:WaV-5VaW.

Obviously (6.4) implies (6.3).

Assume V is finite dimensional. The subspace N(W) = N+ @ W of Cy =
V* @V is a coideal which is smallest among all coideals I such that W is a Cy /I
comodule. It is called the co-normalizer of W [T1, Prop. 3.3].

Let (4,0) be a CQT bialgebra and V a finite dimensional right A comodule.
It is a YB space with YB operator 7y, .

6.5. LEMMA. If W is a categorical YB subspace of V', then we have
o(Im ¢y, N(W)) = o(N(W),Im ¢y) = o' (Im ¢y, N(W))
=0 '(N(W),Im¢y) =0,
where N (W) means the image of N(W) by ¢y : Cy — A.

PRrROOF. This is proved similarly as Lemma 1.7. In fact, (6.4) means V @ W
and W ® V are stable under the action of o. Since N(V @ W) = Cy ® N(W)
and N(W @ V) = N(W) ® Cy, this means ¢ and o~ * vanish on Cy ® N(W) and
N(W)®Cy. |

The converse is also true.
If A is generated by Im ¢y, it follows that A/(N(W)) is a quotient CQT bial-
gebra of A.

6.6. PROPOSITION. Let (V, R) be a finite dimensional YB space and let W be
a categorical YB subspace of V.

1. There is a CQT bialgebra (A,o) such that
(a) V is a right A comodule,
(b) R =TV,V,
(c) W is an A subcomodule of V.
2. If (V, R) is rigid, (A,0) can be taken to be a CQT Hopf algebra. In partic-
ular, (W, Rw) is also rigid.

PROOF. 1. This follows immediately by applying 6.5 to A(R).

2. If (A,0) is a CQT Hopf algebra in Lemma 6.5, then o and ¢! vanish on
Im ¢y« x N(W) and N(W) x Im ¢y «, too. Use 2.8 to see this. The assertion
follows by applying this to H(R) and using Lemma 2.3.

([l

In particular, we can speak of a categorical braided Hopf subalgebra of a braided
Hopf algebra.

7. Survey of braided Hopf algebras

We have characterized finite dimensional Yetter—Drinfeld Hopf algebras in The-
orem 5.7. This allows us to reformulate recent results on finite dimensional Yetter—
Drinfeld Hopf algebras intrinsically. In fact, it is always possible to prove them in
our context. We review some of main results and notions below.

Let H be a rigid (hence finite dimensional) braided Hopf algebra over k.

7.1. PROPOSITION. The antipode S is bijective.
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See [T2, 4.1 Theorem)].
7.2. PROPOSITION. H 1is a Frobenius algebra and coalgebra.

See [FMS, 5.8 Cor.], [D2, Theorem 3]. By a Frobenius coalgebra, we mean
the dual algebra H* is Frobenius. See [DT, 8.3 Example].

7.3. THEOREM. Let K be a categorical braided Hopf subalgebra of H. Then H
is a free left and right K module.

See [Schar, T4]. This may be called the braided Nichols—Zoeller theorem [Mo,
3.1]. Some effort to generalize to non-categorical braided Hopf subalgebras is found
in [G].

7.4. DEFINITION. We put

I.(Hy={te H | th=¢(h)t, Vh e H},

Ii(H)y={te H| ht=c(h)t, Vhe H}
which are called right and left integral spaces. These spaces are 1-dimensional
[Ly2, Theorem 1.6], [FMS, 5.8 Cor], [T2, 4.6 Theorem], [D2, Theorem 3]. These
are categorical YB subspaces of H (see (6.4)), since each of them is presented as
the equalizer of two morphisms in a braided category, where H is realized as a

Hopf algebra. If we take a non-zero right integral ¢ € H, there is an algebra map
« : H — k such that

(7.4.1) ht = a(h)t, he N.

It is called the modular function. Since I.(H) is categorical, it follows that « is
categorical. More strongly, if we realize H as a Hopf algebra in a braided category,
then « is a morphism in the category.

Similarly, we can define right and left integral spaces in H*, I,.(H*) and I,(H*)
which are 1-dimensional. If we take a non-zero right integral ¢ € H*, there is a
group-like element a € H such that

(7.4.2) > hydlhe) = d(h)a, he H.

It is called the modular element. Dually to the above, we see Ker(¢) is a categorical
YB subspace of H and a : k — H is a categorical coalgebra map. The pair can be
chosen so that ¢(¢t) = 1 [D2, Theorem 3]. Then we have the following S — ¢ — ¢
relation:

H H
t
(7.4.3) s \ ;
¢
H H

ie,Sh)=>(¢® id)(t(l) & R(t@) ®h)), h € H.
This relation is the starting point of the study of braided biFrobenius algebras
DT, §7).
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7.5. DEFINITION. We define a linear map 6 : H — H called the ribbon map as
follows

H
H*

(7.5.1) 0:

where >< means the trivial flip.
It is invertible with inverse

N\

H H
/

(7.5.2) o~ /
o

H

H

This was introduced by Sommerh&user [So, 3.5]. It is called the ribbon map,
since we have

H H H i i i
\/ 0 0 0
(7.5.3) _ _
9 b
;\-/ 0" N\
o il o H H o

In general, 6 is a non-categorical YB automorphism of (H, R).

7.6. PROPOSITION. Put U = 8§20 = 0S?. It is a (non-categorical) automor-
phism of the braided Hopf algebra H.

This follows from (7.5.3) and 4.4. The automorphism U is due to [D3, (25)].
This was introduced in [AS] with notation 7.

7.7. THEOREM (First trace formula). Choose right integrals ¢ € H* andt € H
in such a way that ¢(t) = 1. Then we have

tr(U) = d(1)=(t).
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See [AS, Theorem 7.3], [D3, 2.2]. As noted in [AS, ibid.], the trace tr(U) is
interpreted as the braided trace trg(SZ) as follows:

VRN VRN
H  H* H H
H H*
tI‘(U) = —
U /
82
H* H o b2, ™
N— . H* H
N
7~ N\
H H*
= \82 = tr8(82)
H* H
N

Doi [D3] has established the second trace formula for a finite dimensional
Yetter—Drinfeld Hopf algebra (with some involutory condition). We review his
result below.

In general, if V is a finite dimensional left C' comodule for a coalgebra C, its
Larson character x(V) € C [L, p. 355] is defined as follows:

VRN
Vv vV
x(V): |
(7.8.1)

c Vv
I

Doi puts y = x(H) for the regular comodule structure. It is a cocommutative
element and we have U(y) = y. The following diagram shows that £(y) = dim H.

/N 7N\
H H* H H*

(7.8.2) e(y) = = = tr(id).
H* H H* H

(
(
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Assume that H is realized as a Hopf algebra in YD¥ for an involutory Hopf
algebra L. Now “L is involutory” means “left dual=right dual” in ny. Hence the
maps

H H*
(7.8.3) )
H* H
N H* H

are morphisms in YD¥ (i.e., categorical).

7.8. THEOREM (Second trace formula). If H is a finite dimensional Hopf al-
gebra in ny for an involutory Hopf algebra L, then

(dim H) tr(U|my) = ¢(1)e(t)
where ¢ € H* and t € H are right integrals with ¢(t) = 1.

This is [D3, 2.6 Theorem)].

It is possible to formulate this theorem without using Yetter—Drinfeld cate-
gories. It is enough to assume the maps of (7.8.3) are categorical.

Bespalov, Kerler, Lyubashenko and Turaev [BKLT] have established Radford’s
S* formula for braided Hopf algebras. They have worked in a braided tensor cat-
egory. We reformulate their main results in our context. Let H be a rigid braided
Hopf algebra. Some analogue of 4 is defined as follows:

H

i /\
H
/

T
=

*

H

\ ) 0" : /
H*

T
=

H H H H H

N |
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The map 6, is categorical in contrast to . It follows that the composite S*0y = §,S5*
is a categorical automorphism of H.

Take right integrals ¢ € H* and t € H as before. The space kt is a categorical
YB subspace of H. Hence there is a linear automorphism 2 of H such that

H kt H &kt
.

= Q

\
H kt H kt

One sees () is a categorical automorphism of H. Let a € H and o € H* be the
modular element and function, respectively. Then we have

7.9. THEOREM ([BKLT, Theorem 3.6]).

S, =(a-a Ha = —a)Q.

Here, a-a~ ', a=' = — o and Q are all categorical automorphisms of H

commuting with one another. Generalization of this formula to braided bF algebras
is found in [DT, 16.3 Theorem)].

Appendix. Proof of Theorem 2.9 (2)

We begin with the following observation. Let A be a bialgebra and let V' be a
finite dimensional right A comodule with corresponding coalgebra map ¢y : Cy —

A.

A.1. PROPOSITION. V has a left dual in the tensor category M2 iff ¢y is
convolution invertible.

ProOF. The ‘if’ part. V* is a left Cy comodule. The inverse ¢‘71 :Cy — A
is an opposite coalgebra map. If we view V* as a right A comodule through (b;l,
this gives a left dual of V.

The ‘only if” part. Assume V* has a right A comodule structure f — _ fo) ®
fa) such that e : V* @V — k and ¢ : k - V ® V* are both A comodule maps.
Let {e;} and {e}} be bases of V' and V* dual with each other. The fact that
c:1—= 3% .e;®e;isan A comodule map means

(A.l.l) Z €;,0) ® 62(0) X €i7(1)ez(1) = Zei ® e; ® 1.
Define ¢ : Cy = V* ® V — A by putting

(A.1.2) Y(fov)=> fo®fe), FEV, veEV.
Recall that ¢y : Cy — A is defined by

(A13) f®’U Zf 'U(l)-
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We claim ¢y x 1) = ue. In fact,
(v ) (f @) = Z¢Vf®e (ef ®v)
_ Z Fleso)eimeto@ety,  (by (AL1))
:Zfeieiv = f(v) = e(f ®v).

Similarly we have ¢ x ¢y = ue. Hence ¢y is convolution invertible. |

Put A = A°P-°°P_ Call a right A comodule V rigid if it is finite dimensional and
has a left dual in MA. Then V has a right A comodule structure through coalgebra
map ¢y, : Cy — A.

A.2. PROPOSITION. Let V and W be right A comodules.

1. If V and W are rigid, then V @ W is rigid and its A comodule structure is
the tensor product of the A comodules V and W .

2. Assume V and W are rigid. If f : V — W is an A comodule map, then it
is an A comodule map.

PROOF. 1. If we identify Cyew = Cy ® Cw, then ¢y gw factors as:

dvew : Cy ® Cw VEOW, A Ty A

If ¢y and ¢w are convolution invertible, then ¢y gw is invertible with inverse
—1 op
bvhw i Cv 0 Cw 22, 4o a ™7 4
This proves the assertion.

2. In general, assume V and W are finite dimensional right comodules for a
coalgebra C, f : V. — W alinear map and ¢ : C — A a convolution invertible
linear map with an algebra A. It is easy to see if ¢ vanishes on I(f), then
¢! also vanishes on I(f). It is enough to apply this to C = Cy @ Cw,
¢ =(ov,ow).

O

ProOOF OF THEOREM 2.9, 2.

Put A = H(R) which is a CQT bialgebra by 2.9, 1. V and V* are finite
dimensional A comodules. Since e : V*®V - kandc:k - VV* are 4
comodule maps, V* is a left dual of V in M#. The braidings Ry- v and Ry y-
are A comodule maps by the proof of 2.9, 1. Hence the following pairings are A

comodule maps:
v

v

By using them, we may view V as a left dual of V* in MA. Thus V and V* are
rigid A comodules. They have A comodule structures. By Proposition A.2, we see
R: VeV sVeV,e:V*®V - kandc:k - V®V* are all A comodule
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maps. By construction, the coalgebra maps Cy — A, Cy~ — A (corresponding to
the A comodule structures) induce a bialgebra map S : H(R) = A — A. One has
id*S = S xid = ue on Cy @ Cy+, since S coincides with ¢)‘_,1 on Cy and ¢)‘_,1 on
Cy+. Since Cy @ Cy~ generates A, it follows that S is the antipode of H(R). O

[AS]

[BKLT]
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