Topología

Práctico N°1: Espacios métricos. Espacios topológicos. Subespacios.

- 1. Considerar en \mathbb{R}^n la métrica euclideana. Probar que
 - $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ es cerrado en \mathbb{R}^3 .

 - $\{(x,y,z) \in \mathbb{R}^3 : x,y,z \in \mathbb{Z}\}^c$ es abierto en \mathbb{R}^3 . $\{(x,y) \in \mathbb{R}^2 : 0 < x < 1, \ 0 < y < 1, \ x \neq \frac{1}{n} \ \forall n \in \mathbb{N}\}$ es abierto en \mathbb{R}^2 . Si $f : \mathbb{R} \longrightarrow \mathbb{R}$ es continua, entonces $\operatorname{graf}(f) = \{(x,y) \in \mathbb{R}^2 : y = f(x)\}$ es cerrado en \mathbb{R}^2 .
- **2.** Sea $C[a,b] = \{f : [a,b] \longrightarrow \mathbb{R} : f \text{ es continua}\}$. Probar que

$$d(f,g) = \int_a^b |f(t) - g(t)| dt$$

es una métrica en C[a,b]. ¿Vale la misma afirmación si continuidad se reemplaza por integrabilidad?

- **3.** Si (X,d) es un espacio métrico y $x_0 \in X$, muestre que la función $f: X \longrightarrow \mathbb{R}$, \mathbb{R} con la distancia euclídea, dada por $f(x) = d(x, x_0)$ es continua.
- **4.** (a) Sea (E,d) un espacio métrico y sea $\emptyset \neq A \subseteq E$. Probar que $(A,d|_{A\times A})$ es un espacio métrico.
 - (b) Sea d la métrica euclídea en \mathbb{R} .
 - (I) [0, 1) es abierto en [0, 2] con la métrica restringida.
 - (II) Estudiar los abiertos de $(\mathbb{Z}, d|_{\mathbb{Z}\times\mathbb{Z}})$.
- **5.** Sea (X,d) un espacio métrico. Para cada $A\subseteq X$, no vacío, y cada $x\in X$ definimos $d(x,A) = \inf\{d(x,y): y \in A\}$. Probar que la función $\delta: X \longrightarrow \mathbb{R}$, \mathbb{R} con la distancia euclídea, definida por $\delta(x) = d(x, A)$ es continua.
- **6.** En X = C([0,1]) consideremos las métricas

$$d_1(f,g) = \max\{|f(t) - g(t)| : t \in [0,1]\},\$$

$$d_2(f,g) = \int_0^1 |f(t) - g(t)| dt.$$

- (a) Analizar la continuidad de id : $(X, d_1) \longrightarrow (X, d_2)$ y de id : $(X, d_2) \longrightarrow (X, d_1)$.
- (b) Analizar la continuidad de las funciones $f \mapsto f(1)$ y $f \mapsto \int_0^1 f(t) dt$ para ambas métricas en X.
- 7. Hallar todas las topologías en $\{a,b\}$ y en $\{a,b,c\}$.
- 8. Probar que las siguientes son topologías en el conjunto X.
 - (a) $\tau = \{ A \subseteq X : A^c \text{ es finito} \} \cup \{\emptyset\}.$

 - (b) $\tau_{x_0} = \{A \subseteq X : x_0 \in A\} \cup \{\emptyset\}, \text{ con } x_0 \in X.$ (c) $\tau_{-x_0} = \{A \subseteq X : x_0 \notin A\} \cup \{X\}, \text{ con } x_0 \in X.$
- **9.** (a) Probar que las siguientes son topologías en \mathbb{R} .
 - $\tau_1 = \{ A \subseteq \mathbb{R} : \text{ para cada } x \in A \exists b \in \mathbb{R} \text{ con } [x, b) \subseteq A \}.$
 - $\tau_2 = \{ A \subseteq \mathbb{R} : \text{ para cada } x \in A \exists b \in \mathbb{R} \text{ con } (b, x] \subseteq A \}.$
 - $\bullet \ \tau_3 = \{(a, +\infty) : \ a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$

- $\bullet \ \tau_4 = \{(-\infty, a) : \ a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$
- (b) Si en τ_3 y en τ_4 cambiamos la condición " $a \in \mathbb{R}$ " por " $a \in \mathbb{Q}$ ", ¿siguen siendo τ_3 y τ_4 topologías en \mathbb{R} ?
- (c) Verificar que $\{[a,b]: a,b \in \mathbb{R}, a < b\}$ es una base de τ_1 . Mostrar que los elementos de esta base son abiertos y cerrados.
- **10.** Sea $E_n = \{k \in \mathbb{N} : k \ge n\}$ y sea $\tau = \{E_n : n \in \mathbb{N}\} \cup \{\emptyset, \mathbb{N}\}.$
 - (a) Probar que τ es una topología en \mathbb{N} .
 - (b) Para $A = \{3, 4, 19\} \text{ dar } A^{\circ} \text{ y } \overline{A}.$
 - (c) Determinar los conjuntos cerrados en (\mathbb{N}, τ) .
 - (d) Determinar los conjuntos densos en (\mathbb{N}, τ) .
- 11. Probar que la provección $p: \mathbb{R}^2 \longrightarrow \mathbb{R}$, donde p(x,y) = x, es continua y abierta, pero no es cerrada.
- 12. Consideremos \mathbb{R}^2 con la métrica usual y sean $A=\{(x,y)\in\mathbb{R}^2:\ x=\frac{1}{2^n}\ {\rm con}\ n\in\mathbb{R}^2$ $\mathbb{N}, y \in [0, 1]$ y $B = \mathbb{Q} \times \mathbb{Z}$.
 - (a) ¿Es A abierto o cerrado?
 - (b) Dar \overline{A} y Fr(A).
 - (c) Dar \overline{B} .
- 13. Consideremos \mathbb{R} con la topología τ_2 del Ejercicio 9.
 - (a) Probar que $\{(a, b] : a, b \in \mathbb{R}, a < b\}$ es una base se τ_2 .
 - (b) Sean $A = [1, 2], B = \{0\}, C = \{\frac{1}{n} : n \in \mathbb{N}\}\ y D = [0, \infty).$ Dar $A^{\circ}, \overline{B}, Fr(A \cup B),$ D° , Fr(D), \overline{C} , \overline{D} y C° .
 - (c) Probar que si $A \subseteq \mathbb{R}$, entonces A A' es numerable.
- 14. Sean $A, B, A_i, i \in \mathbb{I}$ (I un conjunto arbitrario) subconjuntos de un espacio topológico X. Decidir si las siguientes igualdades son válidas. En caso que no lo sean, decidir si alguna de las inclusiones \subset o \supset vale.
 - (a) $\overline{A} \cap \overline{B} = \overline{A \cap B}$.
 - (b) $\bigcap_{i \in \mathbb{I}} \overline{A_i} = \overline{\bigcap_{i \in \mathbb{I}} A_i}$. (c) $\overline{A} \overline{B} = \overline{A B}$.
- **15.** Sea $X = F_1 \cup F_2$ con F_1 y F_2 cerrados en X. Sean $f_i : F_i \longrightarrow \mathbb{R}$ continuas tales que $f_1|_{F_1\cap F_2}=f_2|_{F_1\cap F_2}$. Probar que la función $f:X\longrightarrow \mathbb{R}$ definida por $f(x)=f_i(x)$, si $x \in F_i$, es continua.
- **16.** Sean $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ y $[0,2\pi)$ con las topologías relativas de las usuales de \mathbb{R}^2 y de \mathbb{R} respectivamente. Probar que la función $f:[0,2\pi)\longrightarrow S^1$, definida por $f(t) = (\cos(t), \sin(t))$ es biyectiva y continua, pero no es abierta ni cerrada y por lo tanto no es un homeomorfismo.