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Abstract. Let ρ1 and ρ2 be a pair of residual, odd, absolutely irreducible

two-dimensional Galois representations of a totally real number field F . In
this article we propose a conjecture asserting existence of “safe” chains of
compatible systems of Galois representations linking ρ1 to ρ2. Such conjecture
implies the generalized Serre’s conjecture and is equivalent to Serre’s conjecture

under a modular version of it. We prove a weak version of the modular variant
using the connectedness of certain Hecke algebras, and we comment on possible
applications of these results to establish some cases of Langlands functoriality.

1. Introduction

Let F be a totally real number field. In [KK03] Khare and Kiming conjectured
that given ρ1 and ρ2 two odd, absolutely irreducible, two-dimensional residual rep-
resentations of the absolute Galois group of F with values on finite fields of different
prime characteristics ℓ and ℓ′, satisfying certain local compatibilities (for all primes
q different from ℓ and ℓ′, there exists a Weil-Deligne parameter and a choice of
integral model such that their reductions modulo ℓ and ℓ′ are isomorphic to the
restrictions of ρ1 and ρ2 to a decomposition group at q), there exists a modular
form which residually coincides with ρ1 at ℓ and ρ2 at ℓ′. This is a very strong
statement and no evidence for its truth is known. In particular it implies that
given two Hilbert modular forms f and g over F , and two prime numbers ℓ and
ℓ′, if we assume suitable local compatibilities, then there exists a Hilbert modular
form h which is congruent to f modulo ℓ and to g modulo ℓ′.

The purpose of this article is to state a weaker conjecture called The Rayuela

Conjecture involving “chains of congruent systems” connecting two given Galois
representations. The idea is not to link any given pair of residual Galois represen-
tations via a single compatible system of Galois representations but via a chain of
such systems, meaning that each of them has to be congruent to the next one in
the chain, modulo a suitable prime, and it will also be required that some reason-
able properties are being satisfied at each of these congruences (this will be done
in Section 2). Such conjecture has important consequences, like Serre’s conjectures
for totally real number fields or base change for totally real number fields (the sec-
ond one follows from a weaker version that we will explain later). The conjecture
for the field of rational numbers follows from the results proved by Dieulefait in
[Die12b] (the reader can easily check that the method used to prove base change
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in loc. cit. implies, in fact is based on, the fact that this conjecture is true over
Q at least for modular Galois representations, and this combined with the truth of
Serre’s conjecture over Q implies the conjecture).

Although we are not able to prove the conjecture itself, in Sections 4 and 5
we prove that some (weak) variant of it holds in the modular world. This is a
generalization of a Theorem of Mazur, a result that he proved for the case of
weight 2 modular forms of prime level N .

In this article, for general weights and levels, and for any totally real number
field, we extend Mazur’s result, and the control we get in the level and weights
of the modular forms involved might be used to prove the modular version of
the conjecture (although there are still some ingredients missing to get the full
statement).

Also we will show that our Conjecture is equivalent to the generalized Serre’s
conjecture proposed in [BDJ10], at least if some strengthening of the available
Modularity Lifting Theorems is assumed. What we show is how one can manipulate
a pair of modular Galois representations to end up in a controlled situation where
both representations have the same Hodge-Tate weights and ramification in a small
controlled set of primes (and then this is combined with Mazur’s result).

Combining the ideas of the present article with some nowadays standard tricks
(like the use of Micro Good Dihedral primes), one can prove for some small real
quadratic fields a Base Change theorem, all that is left is a finite computational
check (to ensure that some Hecke Algebra of known level and weight is connected
in a good way). This is part of a work in progress of the authors but more will be
said at the end of the present article.

For most of the chains constructed in this paper, the construction carries on for
the case of abstract Galois representations (the reader should keep in mind that
the possibility of constructing congruences between abstract Galois representations
where some local information changes and the existence of compatible systems
containing most geometric p-adic Galois representations are the two main technical
ingredients in the proofs of Serre’s conjecture over Q), and then again the use of
Micro Good Dihedral primes combined with the results in this paper is enough to
reduce the proof of Serre’s conjecture over a given small real quadratic field to some
special cases of Galois representations with small invariants (Serre’s weights and
conductor). Thus it is perfectly conceivable that one can give a complete proof of
Serre’s conjecture over a small real quadratic field F , by just completing this process
with a few extra steps designed to remove the Micro Good Dihedral prime from the
level (eventually relying on results of Skinner and Wiles if the residually reducible
case has to be considered) and end up in some “base case for modularity” over F ,
such as the modularity/non-existence of semistable abelian varieties of conductor 3

over Q(
√
5) proved by Schoof ([Sch12]). We plan to check over which real quadratic

fields, such proof of Serre’s conjecture can be completed in a future work.
Section 3 contains the Modularity Lifting Theorems (that will be denoted MLT)

used and needed in the present article. We have included a mixed case that has
only been proved in weight 2 situations, yet we assume its truth in more general
situations. We believe that such a result can be deduced from the techniques in
[BLGGT], but we haven’t formally checked this.
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Conventions and notations: If F is a number field, we denote by OF its ring of
integers. By GF we denote the Galois group Gal(F̄ /F ). All Galois representations
(residual or ℓ-adic) are assumed to be continuous. Let p be a prime ideal in OF .
We denote by Frobp a Frobenius element over p.

To ease notation, instead of specifying a prime π in the field of coefficients of a
Galois representation and reducing mod π, sometimes we will simply say that we
reduce “mod p”, where p is the rational prime below π. We expect that this will
be no cause of confusion.

Concerning local types of strictly compatible systems of Galois representations,
we will use the words “Steinberg”, “principal series” and “supercuspidal”, to denote
the local representations they correspond to under local Langlands.

Acknowledgments: we want to thank Fred Diamond for useful comments and
remarks

2. The Rayuela Conjecture

There are nowadays many MLT that can be applied to propagate modularity
through a congruence between two ℓ-adic Galois representations. For us, the main
interest in congruences between Galois representations is in the case where a MLT
holds in both directions (i.e. modularity of either of the two representations implies
modularity of the other one), so we will call a congruence an MLT congruence if
the hypothesis of some MLT theorem are fulfilled in both directions. Since MLT
hypothesis are becoming less restrictive with time, some of the proofs we give make
use of tricks that are required to reduce to situations in which some of the available
MLT applies, but some of these tricks are very likely to become obsolete in the
near future (when new MLT are proved). There are also steps in the chains that we
are going to build in our attempt to connect two given modular or abstract Galois
representations that involve congruences that are not known to be MLT. This is
the unique reason why we are not able to prove any strong result in this paper,
such as relative base change (see the discussion at the end of the article).

Let us now state our conjecture for abstract Galois representations.

Conjecture 1. The Rayuela Conjecture: Let F be a totally real number field,
ℓ0, ℓ∞ prime numbers and

ρi : Gal(F̄ /F ) → GL2(Fℓi), i = 0,∞,

two absolutely irreducible odd Galois representations. Then there exists a family
of odd, absolutely irreducible, 2-dimensional strictly compatible systems of Galois
representations {ρi,λ}ni=1 such that:

• ρ0 ≡ ρ1,λ0
(mod λ0), with λ0 | ℓ0.

• ρ∞ ≡ ρn,λ∞
(mod λ∞), with λ∞ | ℓ∞.

• for i = 1, . . . , n− 1 there exist λi prime such that ρi,λi
≡ ρi+1,λi

(mod λi),
• all the congruences involved are MLT.

Remark 1. The primes involved always are taken to be in the field of coefficient
of the corresponding system of representations (for the first and second condition)
or in the compositum of the two relevant such fields (for the third conditions).
From now on, this remark applies to all congruence between compatible systems
appearing in this paper.
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The last hypothesis of the conjecture implies that modularity of one of the given
representations can be propagated through the chain of congruences produced by
the conjecture allowing to prove modularity of the other one. It is thus clear that
Conjecture 1 implies Serre’s generalized conjecture over F by just taking ρ∞ to
be an irreducible residual representation attached to any cuspidal Hilbert modular
form over F .

At this time we think Conjecture 1 is out of reach, but since it does not involve
directly modular forms, it might lead to a different attack to Serre’s conjecture.
Note that in the hypothesis of the Conjecture, one can put ρ0 inside a strictly
compatible system of Galois representations as done by [Die04] for representations
over Q and by [Sno09] for totally real fields (using Theorem 7.6.1 and Corollary
1.1.2). The main difficulty for abstract representations is to connect them. During
this work we will show how to manipulate abstract representations such that if we
start with any pair of them we can connect both, through suitable chains of MLT
congruences, to representations having common values for their Serre’s level and
weights, but we cannot go any further so far.

For different purposes, such as applications to Langlands functoriality, it is in-
teresting to study the previous conjecture in the modular setting. In this case we
are able to prove part of it, namely, we are able to build the chain of congruences
but we can not ensure that congruences are MLT at all steps. Still, we find this
interesting because advances in MLT theorems may eventually lead to a proof of
this modular variant of the conjecture, and this will be evidence for the truth of
the Rayuela conjecture. In fact it will give a proof that this conjecture is equivalent
to the generalized Serre’s conjecture over F (the other implication being trivial as
already remarked). The modular variant is the following:

Conjecture 2. Let F be a totally real number field, ℓ0, ℓ∞ prime numbers and

ρi : Gal(F̄ /F ) → GL2(Fℓi), i = 0,∞,

two absolutely irreducible odd Galois representations attached to Hilbert modu-
lar newforms f0 and f∞, respectively. Then there exists a family of odd, abso-
lutely irreducible, 2-dimensional strictly compatible systems of Galois representa-
tions {ρi,λ}ni=1 such that:

• ρ0 ≡ ρ1,λ0
(mod λ0), with λ0 | ℓ0.

• ρ∞ ≡ ρn,λ∞
(mod λ∞), with λ∞ | ℓ∞.

• for i = 1, . . . , n− 1 there exist λi prime such that ρi,λi
≡ ρi+1,λi

(mod λi),
• all the congruences involved are MLT.

The aim of this article is to prove part of Conjecture 2 and show some im-
plications of it related to modularity and functoriality. It is clear that all the
representations appearing in Conjecture 2 are modular. Clearly we have:

Theorem 2.1. Serre’s generalized conjecture + Conjecture 2 imply Conjecture 1.

Proof. This is clear, since if ρ0 and ρ∞ are any two Galois representation and if
Serre’s conjecture holds, they are modular, and then they are connected in the right
way by Conjecture 2. �

Conjecture 2 can be proved using standard arguments mainly due to Mazur, if
we remove the condition that the congruences are MLT.
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Theorem (Mazur). Let F be a totally real number field and f0, f∞ two Hilbert
modular forms, whose weights are congruent modulo 2. Then there exists Hilbert
modular forms {hi}ni=1 such that h1 = f0, hn = f∞ and such that for i = 1, . . . , n−1
there exist λi prime such that ρhi,λi

≡ ρhi+1,λi
(mod λi).

Remark 2. Although connectedness of the Hecke algebra was proved by Mazur for
classical modular forms of weight 2 and prime level N using the curve X0(N), the
proof we will give is strongly based in his argument.

Remark 3. If modularity would propagate via any congruence, the previous Theo-
rem would be equivalent to Conjecture 2. Unfortunately this is not clear even for
classical modular forms.

The main result of the present article is the following:

Theorem 2.2. Let F be a totally real number field, ℓf , ℓg prime numbers and

ρf : Gal(F̄ /F ) → GL2(Fℓf ), ρg : Gal(F̄ /F ) → GL2(Fℓg ),

two absolutely irreducible odd Galois representations attached to Hilbert modular
newforms f and g, respectively. Then there exists prime ideals q ⊂ OF and p ∈ Q
which splits completely in F , Hilbert modular forms f∞ and g∞ of parallel weight
2 and level Γ0(pq

2) and two families of odd, absolutely irreducible, 2-dimensional

strictly compatible systems of Galois representations {ρfi,λ}
nf

i=1, {ρ
g
i,λ}

ng

i=1, such that:

• ρf ≡ ρf1,λf
(mod λf ), with λf | ℓf .

• ρf∞,λ∞
≡ ρfn,λ∞

(mod λ∞), for some prime ideal λ∞.

• for i = 1, . . . , n− 1 there exist λi prime such that ρfi,λi
≡ ρfi+1,λi

(mod λi),

• ρg ≡ ρg1,λg
(mod λg), with λg | ℓg.

• ρg∞,λ∞
≡ ρgn,λ∞

(mod λ∞), for some prime ideal λ∞.

• for i = 1, . . . , n− 1 there exist λi prime such that ρgi,λi
≡ ρgi+1,λi

(mod λi),
• all the congruences involved are MLT.

Remark 4. The importance of our main result is that we can translate Conjecture 2
to a situation where the level and the weight are known. Some of the primes
involved are not explicit, since they come from some application of Tchebotarev
density theorem. See Section 6.

3. MLT theorems used

In this section we just enumerate the MLT theorems that will be used during
this work. By E we denote a finite extension of Qℓ.

Theorem 3.1 (MLT1). Let F be a totally real number field, and ℓ ≥ 5 a prime
number which splits completely in F . Let ρ : GF → GL2(E) be a continuous
irreducible representation such that:

• ρ ramifies only at finitely many primes,
• ρ is odd,
• ρ|GFv

is potentially semi-stable for any v | ℓ with different Hodge-Tate
weights.

• The restriction ρ|GF (ξℓ)
is absolutely irreducible.

• ρ̄ ∼ ρ̄f for a Hilbert modular form f .

Then ρ is automorphic.
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Proof. This is Theorem 6.4 of [HT13]. �

Theorem 3.2 (MLT2 - ordinary case). Let F be a totally real field, p and odd
prime and ρ : GF → GL2(E) be a continuous irreducible representation such that:

• ρ is unramified at all but finitely many primes.
• ρ is de Rham at all primes above ℓ.
• The reduction ρ̄ is irreducible and ρ̄(GF (ξℓ)) ⊂ GL2(Fℓ) is adequate.
• ρ is ordinary at all primes above ℓ.
• ρ̄ is ordinarily automorphic.

Then ρ is ordinarily automorphic. If ρ is also crystalline (resp. potentially crys-
talline), then ρ is ordinarily automorphic of level prime to ℓ (resp. potentially level
prime to ℓ).

Proof. This is just Theorem 2.4.1 of [BLGGT]. �

Theorem 3.3 (MLT3 - pot. diagonalizable case). Let F be a totally real field, ℓ ≥ 5
be and odd prime and ρ : GF → GL2(E) be a continuous irreducible representation
such that:

• ρ is unramified at all but finitely many primes.
• ρ is de Rham at all primes above ℓ, with different Hodge-Tate numbers.
• ρ|GFλ

is potentially diagonalizable for all λ | ℓ.
• The restriction ρ̄|GF (ξℓ)

is irreducible.

• ρ̄ is either ordinarily automorphic or potentially diagonalizable automor-
phic.

Then ρ is potentially diagonalizable automorphic (of level potentially prime to ℓ).

Proof. This is Theorem 4.2.1 of [BLGGT]. Note that although it is stated only
for CM fields, one can chose a suitable CM extension and get the same result for
totally real fields using solvable base change. �

Remark 5. The hardest condition to check in the previous Theorem is that of ρ
being potentially diagonalizable, but this is satisfied if, in particular, ℓ is unramified
in F , ρ is crystalline at all primes above ℓ and the Hodge-Tate weights are in the
Fontaine-Laffaille interval.

We also need a mixed variant. Recall the following property.

Lemma 3.4. Let F be a totally real field, and {ρλ} be a strictly compatible system of
continuous, odd, irreducible, parallel weight 2 representations, then ρλ is potentially
Barsotti-Tate or ordinary at λ.

Proof. If the restriction to λ is not potentially crystalline, then it is potentially
semistable non-crystalline, in which case ordinariness is known. In fact, using
potential modularity and the semistability at λ, the system is known to correspond
to an abelian variety with potentially semistable reduction at λ, and potentially
(over a suitable extension) to a parallel weight 2 Hilbert modular form which is
Steinberg at λ. �

The following variant of the current MLT is not yet known:

Assumption 1 (MLT4 - mixed case). Let F be a totally real field, ℓ ≥ 5 be and
odd prime and ρ : GF → GL2(E) be a continuous irreducible representation such
that:
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• ρ is unramified at all but finitely many primes.
• ρ is de Rham at all primes above ℓ, with different Hodge-Tate numbers.
• ρ|GFλ

is potentially diagonalizable for some λ | ℓ and is ordinary at the
others.

• The restriction ρ̄|GF (ξℓ)
is irreducible.

• ρ̄ is either ordinarily automorphic or potentially diagonalizably automorphic
at the same places as ρ̄.

Then ρ is potentially automorphic (of level potentially prime to ℓ).

Remark 6. We believe that using the tools developed in [BLGGT] this result is
accessible. Not only we consider the above result accessible, but also if we restrict
to the case where both Galois representations involved are of parallel weight 2 (thus,
because of the previous Lemma, locally potentially Barsotti-Tate or ordinary at all
primes above p), it is a Theorem as proved in [BD], Theorem 3.2.2.

Remark 7. We will need also need Assumption 1 to hold for p = 2 and parallel
weight 2.

4. Abstract representations:

As mentioned in the introduction, most of the level/weight manipulations that
we are going to perform, work not only for modular representation but for abstract
ones as well. In this section we will work in the greatest generality possible, and
in the next section we will restrict to modular representations putting emphasis on
the results that are nowadays only known for modular representations. The results
in this section are enough to prove Mazur connectedness Theorem. We begin by
recalling the following well-known definition (see [Ser98] for example). If λi is a
prime in a number field K, we denote by ℓi the rational prime below λi and by Li

the set of primes in K dividing ℓi.

Definition 4.1. A compatible system of Galois representations over F is a family
of continuous Galois representations

ρλ : Gal(F/F ) → GL2(Kλ),

where K is a finite extension of Q and λ runs through the prime ideals of OK , which
satisfy:

(1) There exists a finite set of primes S (independent of λ) such that ρλ is
unramified outside S ∪ L.

(2) For each pair of prime ideals (λ1, λ2) in OK and for each prime ideal p 6∈
S ∪L1 ∪L2, the characteristic polynomials Qp(x) of ρλi

(Frobp) lie in K[x]
and are equal.

The most important examples of such families are the ones arising from the
étale cohomology of a variety defined over F . In this case we also have some
control on the roots of the characteristic polynomials, and some control on the
λ-adic representation at primes in L. This motivate the following definition (see
[BLGGT], Section 5).

Definition 4.2. A rank 2 strictly compatible system of Galois representations R of
GF defined over K is a 5-tuple

R = (K,S, {Qp(x)}, {ρλ}, {Hτ}),
where
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(1) K is a number field.
(2) S is a finite set of primes of F .
(3) for each prime p 6∈ S, Qp(x) is a degree 2 polynomial in K[x].
(4) For each prime λ of K, the representation

ρλ : GF → GL2(Kλ),

is a continuous semi-simple representation such that:
• If p 6∈ S and p ∤ ℓ, then ρλ is unramified at p and ρλ(Frobp) has

characteristic polynomial Qp(x).
• If p | ℓ, then ρ|GFp

is de Rham and in the case p /∈ S, crystalline.

(5) for τ : F →֒ K, Hτ contains 2 different integers such that for any K →֒ Kλ

over K, we have that HTτ (ρλ) = Hτ .
(6) For each finite place p of F there exists a Weil-Deligne representation

WDp(R) of WFp
over K such that for each place λ of K not dividing

the residue characteristic of p and every K-linear embedding ι : K →֒ Kλ,
the push forward ιWDp(R) ≃ WD(ρλ|GFp

)K-ss.

Remark 8. If one starts with a 2-dimensional continuous, odd, Galois represen-
tations over a totally real number field F , under some minor hypothesis (which
are exactly the hypothesis for an MLT theorem to hold), one can prove that such
representations is potentially modular. In particular, this implies that the repre-
sentations is part of a strictly compatible system. Since all the congruences we will
work with are where an MLT theorem works in both directions, without loss of
generality, we will assume that all the representations come in strictly compatible
systems.

Definition 4.3. Let {ρλ} be a strictly compatible system of Galois representations.
We say that the system is dihedral if the images are compatible dihedral groups,
i.e. if there exists a quadratic extension L/F (independent of λ) such that ρλ is
induced from a λ-adic character of L.

Lemma 4.4. The family {ρλ} is dihedral if and only if one representation is dihe-
dral.

Proof. It is clear that if the whole family is dihedral, in particular any of them is
dihedral. For the converse, let λ be a prime ideal of OF , and suppose that ρλ0

is dihedral. Then there exists a quadratic extension L/F and a λ-adic character

χλ0
: Gal(L/L) → Kλ0

such that ρλ0
= IndGF

GL
χλ0

. We know that χλ0
is part

of a strictly compatible system of 1-dimensional representations {χλ}, so we are

led to prove that ρλ ≃ IndGF

GL
χλ for all primes λ ⊂ OF . This comes from a

straightforward computation, since the values of the traces (an even the whole
characteristic polynomial) of ρλ0

(Frobp) are given in terms of the values of χλ0
. For

split primes in the extension L/F , the trace of ρλ0
(Frobp) equals−χλ0

(p1)−χλ0
(p2),

where pOL = p1p2 and for inert primes, the trace is zero. In particular, the same
happens to ρλ(Frobp), for all λ so ρλ and IndGF

GL
χλ have the same trace and are

thus isomorphic. �

To apply most MLT’s theorems we will need to have some control of the image
of our residual Galois representations. In particular we will need the image of
its restriction to a cyclotomic extension to be adequate. To avoid checking this
particular condition at each step of our chain of congruences, we will move to
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families with “big image”, in the sense that for all but finitely many primes p (and
in most steps, for all primes of bounded size), the residual representation has an
image containing SL2(Fp).

Proposition 4.5. Let ρλ be a strictly compatible system of odd dihedral represen-
tations. Then there exists a strictly compatible system of odd non-dihedral repre-
sentations {ρ2,λ} and a prime p such that ρp ≡ ρ2,p (mod p) and MLT hods in both
directions.

Proof. It is well known that dihedral compatible families do not have Steinberg
primes in the level, so we just need to add a Steinberg prime to our representation
by some raising the level argument. Let λ be a prime over a prime p > 5 and such
that:

• p splits completely in F .
• λ 6∈ S, i.e. ρq is unramified at λ if q 6= λ.
• L and F (ξp) are disjoint, i.e. F (ξp) ∩ L = F .

We want to add a Steinberg prime q modulo λ, and by the previous choice, we
are in the hypothesis of Theorem 7.2.1 of [Sno09] which says that it is enough
to raise the level locally. The local problem is standard, and can be achieve by
Tchebotarev’s Theorem as follows: take q inert in the extension L/F , so that
aq = 0. Then the local raising the level condition becomes N q ≡ −1 (mod p), so
we chose any such prime and get a global representation with the desired properties.
The existence of a strictly compatible system attached to such global representation
follows from Taylor’s potential modularity result (see [BLGGT]) plus the argument
from [Die04], as generalized in [BLGGT]. That MLT holds in both directions comes
from Theorem 3.1. �

Proposition 4.6. Let {ρλ} be a strictly compatible system of odd, non-dihedral
representations. Then there exists an integer B, such that if N(λ) > B then
SL2(Fp) ⊂ Im(ρλ).

Proof. According to Dickson’s classifications of subgroups of PGL2(Fλ), when we
consider the residual representations, they might:

(1) contain PSL2(Fλ),
(2) be reducible,
(3) be dihedral,
(4) be isomorphic to A4, S4 or A5.

We want to prove that in our hypothesis, there are only finitely many primes where
the first case does not hold. But the second case is exactly Lemma 5.4 of [CG11],
the third case Corollary 5.2 of [CG11] (here we use the assumption that the system
is not dihedral), and the last case is Lemma 5.3 of [CG11]. �

Remark 9. Another way to prove the last Proposition (following the classical
approach of Ribet) it to first apply some potential automorphy result (like in
[BLGGT]) to deduce that the system is potentially modular. Then its restriction
is isomorphic to that of a Hilbert modular form. Furthermore, since our abstract
representations are not dihedral, the respective Hilbert modular form has no CM.
But for Hilbert modular forms, such result is proven in [Dim05] Proposition 0.1.

By the above considerations, from now on we will only consider non-dihedral
families, so we will skip writing this hypothesis in the next results.
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Proposition 4.7. Let {ρ1,λ} be a strictly compatible system of odd irreducible
Galois representations. Then there exists a compatible system {ρ2,λ} of parallel
weight 2 representations and a prime p such that ρ1,p ≡ ρ2,p (mod p) and MLT
holds in both directions.

Proof. Let p > 5 be a prime which splits completely in F , does not divide the level
of ρ, is larger than all weights of the system and such that the image of ρ1,p is large.

Let det(ρ) = ψχp, where χp is the reduction of the cyclotomic character, and let ψ

be any lift of ψ. Then Theorem 7.6.1 of [Sno09] implies that ρ admits a weight two
lift to Qp which ramifies at the same primes as ρ and ψ, with determinant ψχp.
MLT hold in both directions by the same proof as the previous Proposition. �

4.1. Adding a good dihedral prime. As already mentioned, while working with
MLT one needs to ensure that residual images are big enough to be in the hypothesis
of such a theorem. Sometimes, one needs the restriction of the residual representa-
tion to the cyclotomic extension of p-th roots of unity to have adequate image, but
for most MLT requiring irreducibility of this restriction is enough (and for p > 5 it
is known that both properties are equivalent). A way to get this property guaran-
teed at most steps is by introducing to the level an extra prime which forces the
image modulo all primes up to a certain bound to be “non-exceptional”, i.e. it is
irreducible, and its projectivization is not dihedral, nor the exceptional groups A4,
S4, A5. A way to get this, is by adding a “good dihedral prime” (with respect to
the given bound) as was introduced by Khare and Wintenberger in their work on
Serre’s conjecture. The difference with the classical setting is that since we work
with two strictly compatible systems at the same time, we need to add the same
good dihedral prime to both of them.

Proposition 4.8. Let {ρ1,λ} and {ρ2,λ} be two strictly compatible systems of con-
tinuous, odd, irreducible representations of parallel weight 2. Fix B a positive inte-
ger, larger than 5 and than all primes in the conductors of both systems. Let p ≡ 1
(mod 4) be a rational prime such that:

• p is bigger than B.
• p splits completely in the compositum of the coefficient fields of ρ1 and ρ2.
• p is relatively prime to the conductors of both systems.
• Im(ρi,p) = GL2(Fp), i = 1, 2, for some prime p over p.

Then there exists a prime q not dividing the conductor of the systems such that:

• q ≡ −1 (mod p).
• q splits completely in the extension F ′ given by the compositum of all qua-
dratic extensions of F ramified only at primes above rational primes ℓ < B.

• q ≡ 1 (mod 8).
• There exists a prime ideal q in F over q such that the image of ρp(Frobq)
has eigenvalues 1 and −1.

With this choice of primes, there exists two strictly compatible systems of continuous
representations {̺1,λ} and {̺2,λ} of parallel weight 2 such that:

(1) ρ1,p ≃ ̺1,p.
(2) ρ2,p ≃ ̺2,p.
(3) {̺i,λ}, for i = 1, 2, is locally good dihedral at q (w.r.t. the bound B).
(4) ̺i,p, is Barsotti-Tate at all primes dividing p and has the same type as ρi,p

locally at any prime other that q for i = 1, 2.
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(5) The congruences are MLT.

Remark 10. We do not want to make precise what condition (4) of the last statement
means (the local type), since it will not be important for our purposes, but what
we prove is the following: for abstract representations, we will use Theorem 7.2.1
of [Sno09], where a “type” is understood as a Weil type (no information on the
monodromy), while for modular representations (actually residually modular ones),
we will use Theorem 3.2.2 of [BD], which uses the complete notion of type.

Proof. The existence of the primes p and q follows with almost the same arguments
as [Die12a] (Lemma 3.3). The only difference is that we need to consider the
compositum of Q(i), F and the coefficient field of ρ1 and ρ2. Take p big enough
(for the images to be large) and split in such extension. Then q is chosen using
Tchebotarev density Theorem, with the condition that it hits complex conjugation
in the same suitable field.

We are lead to prove the existence of a lift of ρ̄1,p with the desired properties.
By Theorem 7.2.1 of [Sno09], or by Theorem 3.2.2 of [BD] (see the last remark),
we know that a global representation with the desired properties exists if and only
if locally the corresponding lifts do exist, so we only need to show which are the
local deformation conditions:

• At the primes l 6= q, that of ρi|Gl
.

• ̺i|Dq
= Ind

Qq [
√
ǫ]

Qq
(χ), where Qq[

√
ǫ] is the unique quadratic unramified

extension of Qq, and χ is a character with order p (this is called type C in
[Sno09]).

This proves the existence of ̺i,p. The congruence is MLT in both directions because
of Theorem 3.1 (in this case both forms are of parallel Hodge-Tate weight 2 which
is smaller than the prime p). Since we are in the hypothesis of an MLT theorem, we
can put such representation into a strictly compatible system and get the result. �

Remark 11. Although we stated the result for representations of parallel weight 2,
in general we can first move to parallel weight 2 (using Proposition 4.7) and then
add the good dihedral prime.

With this result, we can prove Mazur’s Theorem.

Theorem (Mazur). Let F be a totally real number field, f0 and f∞ two Hilbert
modular forms, whose weights are congruent modulo 2, then there exists Hilbert
modular forms {hi}ni=1 such that h1 = f0, hn = f∞ and such that for i = 1, . . . , n−1
there exist λi prime such that ρhi,λi

≡ ρhi+1,λi
(mod λi).

Proof. By the previous results, we can assume that both forms are of parallel weight
2, and do not have complex multiplication (or we move to such a situation using
Proposition 4.5 and Proposition 4.7), for some common level Γ1(n) (of course they
might not be new at the same level). The idea now is to find both modular forms
in the cohomology of a Shimura curve, and for this purpose we need to add an
auxiliary prime to the level where both forms are not principal series (in case [F : Q]
is odd). So what we do is to raise the level of both forms at an auxiliary prime
p as in Proposition 4.8 (we could also add a Steinberg prime). Now we consider
the Shimura curve Xp(n) ramified at all infinite places of F but one, and at the
auxiliary prime p if needed (depending whether [F : Q] is odd or even) and with
level n.
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We apply Mazur’s argument just as in [Maz77] (proposition 10.6, page 98) with
some minor adjustments. The main idea of his proof is the following: if the Ja-
cobian J is a product of two abelian varieties A × B, since J decomposes (up to
isogeny) as a product of simple factors with multiplicity one, there are no nontrivial

homomorphisms from A to B̂ nor from B to Â. Then the principal polarization of
J induces principal polarizations in A and B, but a Jacobian cannot decompose as
a nontrivial direct product of principally polarized abelian varieties. From this it
follows that SpecT is connected, where T denotes the Hecke algebra acting on J .

In his original article Mazur was dealing with the curve X0(N), with N a prime
number, so there are no old forms appearing in J0(N). To use the same argument
in our context, we have to deal with old forms as well, and the problem is that the
abelian varieties Af corresponding to old forms do not appear with multiplicity one
in the decomposition (up to isogeny) of the Jacobian of a modular or a Shimura
curve. But this is not a problem if we observe that for what we want it is not
necessary to prove the connectedness of SpecT, it is enough to show that the
anemic Hecke algebra T0 generated only by the Hecke operators with index prime
to the level is connected. Therefore, what we need is to discard the cases where
the Jacobian of Xp(n) decomposes as a product of abelian varieties A × B with
every simple factor in A and every simple factor in B being orthogonal (recall that
now these simple factors need not appear with multiplicity one). In such case, the
same proof as in Mazur’s article applies, and gives the connectedness we are looking
for. �

5. Killing the level

Now that we have a good dihedral prime, which controls the image of the residual
representations in the families of the two representations for small primes, we want
to connect them at a chosen level. From know on, we will only consider modular
representations, pointing out in each case the needed result for abstract ones.

5.1. Modifying the non-Steinberg primes. From now on we work under the
assumption that MLFMT (Assertion 1) is true. We call an abstract strictly compat-
ible system of continuous, odd, irreducible Galois representations modular if there
exists a Hilbert modular form, whose attached Galois representations matches the
abstract one.

Theorem 5.1. Let {ρ1,λ} be a strictly compatible system of continuous, odd, ir-
reducible, Galois representations attached to a Hilbert newform f over a totally
real number field F of parallel weight 2, containing in its conductor a locally good
dihedral prime q (w.r.t. some sufficiently large bound B). Then:

• There exists a strictly compatible system of continuous, odd, irreducible,
parallel weight 2 representations {ρ2,λ}, which is semistable at all primes
except the same good dihedral prime q and such that the Steinberg ramified
primes are bounded in norm by B.

• There exists a chain of congruences of compatible systems linking {ρ1,λ} and
{ρ2,λ} such that all congruences involved occur in residual characteristics
bounded by B and are MLT.

In particular the system {ρ2,λ} is also modular.
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Proof. Let λ be a prime which is supercuspidal or principal series. Let p be a prime
number dividing the order of the character corresponding to ramification at λ. We
consider two different cases: if p is relative prime to λ, we call it the tamely ramified
case, while the other case we call it the wildly ramified case.

The tamely ramified case. Let p be a prime ideal in K (the coefficient field)
dividing p, and consider the residual mod p representation. Then the p-part of
the ramification is lost, so we take a minimal lift with the same parallel weight 2
(it exists by Theorem 3.2.2 in [BD]). Observe that at this step we are not only
modifying the ramification type at λ, but also at any other prime supercuspidal or
principal series in the prime-to-p part of the conductor with ramification given by
a character of order divisible by p. Then by Lemma 3.4, we might be in a mixed
situation of potentially Barsotti-Tate and ordinary representations. Using Theorem
3.2.2 of [BD] (recall that this is a special case of our Assumption 1), we get rid of
this p-part of the inertia with an MLT congruence. Iterating this process, we end
up killing all tamely ramified ramification given by characters, i.e. the prime-to-p
part of the ramification at primes dividing p is killed. So we are reduced to the case
where all primes in the conductor are either Steinberg or with ramification given
by a prime order character whose order is divisible by the ramified prime.

The wildly ramified case. In this case, we will move the wildly ramified primes
(up to twist) to tamely ramified primes, so the previous argument ends our proof.
For a prime t in the conductor of the wildly ramified case, let us call t the rational
prime below t and consider a mod t congruence, up to twist by some finite order
character ψ, with the Galois representation corresponding to a Hilbert newform H
of parallel weight 2 with at most t to the first power in the level (i.e. Γ1 at t), and
the same for the other primes dividing t. The existence of such a form is proved in
[BDJ10], Corollary 2.12.

By level-lowering, we can assume that the only extra primes in the level of H are
those primes that have been introduced to the residual conductor while twisting
by a character ψ. It is easy to see that such character can be chosen such that at
primes other than those dividing t it has square-free conductor. To this congruence,
Theorem 3.2.2 of [BD] applies (the conditions for this theorem are preserved by
twisting, and modularity too) so we are reduced to a case where we have a system
that is either Steinberg or tamely ramified principal series at primes dividing t, and
tamely ramified principal series at all extra primes introduced by ψ. If we iterate
this process at all wildly ramified primes, we end up with a system with no wildly
ramified primes. We repeat the previous case procedure of killing all ramification
given by tamely ramified characters, but now in the absence of wild ramification
we finish with a compatible system such that all its ramified primes other than the
good-dihedral prime are Steinberg. It is not hard to see that in all this process, for
a suitably chosen bound B, all auxiliary primes can be taken to be smaller than
B. �

Remark 12. Except for the application of Corollary 2.12 of [BDJ10] at a key point,
and a better control of the local types (which seems reasonable for abstract rep-
resentations), all congruences in the above proof are known to exist for abstract
Galois representation, so an analogue of the above result for abstract compatible
systems can be proved assuming that this result from [BDJ10] generalizes to the
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abstract setting (thus relating the modularity of any geometric compatible system
to that of a system with only Steinberg primes).

5.2. Killing the Steinberg primes. This part of the process is a little more
delicate, and the MLT theorems are more restrictive, so what we do first is move
the Steinberg primes to primes which split completely in F .

Theorem 5.2. Suppose that Assumption 1 is true. Let {ρ1,λ} be a system of
modular continuous, odd, irreducible, parallel weight 2 representations with a big
locally good dihedral prime q. Let L | ℓ (ℓ ∈ Z) be a Steinberg prime of the system
which does not split completely in F . We also assume that the system is either
unramified or Steinberg at all primes dividing ℓ. Then:

• there exists a strictly compatible system {ρ2,λ} of continuous, odd, irre-
ducible, parallel weight 2 representations, which has the same ramification
behavior at all primes except those dividing ℓ, where it is unramified, and
has at most a set of extra Steinberg primes, all of them dividing the same
rational prime which splits completely in F .

• there exists a chain of MLT congruences linking the two systems.

In particular, the system {ρ2,λ} is also modular.

Proof. We look at ρ1,λ′ for a prime λ′ dividing ℓ and we reduce it modulo ℓ. We can
construct then a modular lift which is unramified at L and at all primes dividing
ℓ, and with weights among those predicted by the Serre’s weights of the residual
representation. This follows from the results of [BDJ10], since in the Steinberg
case the determinant locally at primes above ℓ is a fixed power of the cyclotomic
character and in this case it follows from Proposition 2.5 in [BDJ10] that a lift
with level prime to ℓ exists. Note that this congruence is MLT, at least under
Assumption 1, which applies because at Steinberg primes, weight 2 representations
are ordinary, and the crystalline lift of higher weight can also be taken to be ordinary
(observe that to deduce modularity of the weight 2 family from the other one we
can apply Theorem 3.2.2 in [BD]).
Let p be a big prime (bigger than the weights of this second family) which splits
completely in F , then by [Sno09] we can construct a third family with parallel
weight 2 by looking modulo p, and this congruence is MLT because of the results in
[BLGGT] (we are comparing a Fontaine-Laffaille with a potentially Barsotti-Tate
representation, so they are both potentially diagonalizable). We apply the previous
section method to this new family to end up with a representation which is at most
Steinberg at all primes dividing p as desired. Observe that in this last step no extra
ramified primes are introduced because we do not have wild ramification at p (the
parallel weight 2 lift implies tamely ramified principal series at all primes above
p). �

Now that we have only totally split Steinberg primes in our family, we can get
rid of the Steinberg primes.

Theorem 5.3. Let {ρ1,λ} be a system of modular, irreducible, parallel weight 2
representations, whose ramification consists of a big locally good dihedral prime q

and Steinberg primes which split completely in F . Then:

• There exists a strictly compatible system {ρ2,λ} of continuous, odd, irre-
ducible representations which are only ramified at the locally good dihedral
prime q.
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• There exists a chain of MLT congruences linking the two systems.

In particular, the system {ρ2,λ} is also modular.

Proof. The procedure is quite similar to the one in the previous Theorem, but now
we can use Theorem 3.1. For each Steinberg prime of residual characteristic ℓ we
look at ρ1,λ with λ | ℓ. There exists a minimal lift which is crystalline at all primes
of residual characteristic ℓ, as follows again by the results in [BDJ10]. Now, since
the prime is split, the congruence is MLT by the cited Theorem. The only delicate
point here is that to apply Theorem 3.1 we need the residual characteristic to be
different from 2 and 3, so if we have such a small Steinberg prime, we first apply
Theorem 5.2 to transfer the ramification to Steinberg ramification at some larger
split prime. �

Remark: In the previous two Theorems, modularity of the given system was
only used to ensure existence of the lift corresponding to a system with no ℓ in its
conductor, and this was deduced from results of [BDJ10]. In the case of abstract
Galois representations, after computing the Serre’s weights of the residual represen-
tation one should be able to propose locally at all primes above ℓ a crystalline lift
of the residual local representation, but then the problem is that in order to apply
results such as those in [BLGGT] that guarantee existence of a global lift with such
local conditions, one should be in a potentially diagonalizable case. In particular,
under the conjecture that all potentially crystalline representations are potentially
diagonalizable, the previous two theorems shall generalize to the abstract setting
(of course, the conclusion that the last system is modular shall also be removed).

Proof of Theorem 2.2. With the machinery developed in the previous chapters,
starting with two modular representations, we can take each of them to repre-
sentations which are only ramified at the good dihedral prime q. The only problem
is that while killing the Steinberg primes, we lost control over the weights, so to
take the families to parallel weight 2, we chose an auxiliary prime p which splits
completely in F and consider a parallel weight 2 lift of each family modulo p, with
the same local type at q. Note that we cannot assure that the forms we get at
the end of the process will be newforms for Γ0(pq

2), because at some of the prime
ideals of F dividing p our representations could be unramified. �

6. Further developments

As mentioned before, although we have some good control on the level of the
forms we started with, the primes in the level are not explicit. One can go further
and change the primes in the level for smaller and concrete ones, so as to check
whether the connectedness of the Hecke algebras in Mazur’s Theorem corresponds
to a chain where all congruences are MLT or not. For this purpose, one can use the
notion of micro good dihedral primes. Adding a micro good dihedral prime (which
is chosen asking some splitting behavior in the base field) one can get rid of the
good dihedral prime, and also bound the Steinberg primes in the level. These ideas,
although standard (see for example [Die12a]) are more delicate, and involve some
technicalities that we prefer to avoid in the present article. With this control, one
can give an algorithm that given a totally real number field, checks whether our
approach implies Base Change over that field via a finite computation involving
Hilbert modular forms. See [DP] for more details.
Concerning Serre’s conjecture over a specified small real quadratic field, one should
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carefully check that the chain of congruences constructed carries on to the case of
abstract representations, and then once having reduced the problem to the case
of representations of concrete small invariants (those where the above process con-
cludes, after the introduction of the micro good dihedral prime) one should connect
such representations to some “base case” where modularity or residual reducibility
is known (applying for example the result of Schoof recalled in the introduction),
checking on the way that all congruences are MLT (with the advantage that over
quadratic fields there are also MLT of Skinner and Wiles that deal with the residu-
ally reducible case, under suitable assumptions). We plan to check in a future work
if this strategy succeeds in giving a proof of Serre’s conjecture over some small real
quadratic field.
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