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Abstract. In this article we study the equations x4 + dy2 = zp and x2 + dy6 = zp for positive values of
d. A Frey curve over Q(

√
−d) is attached to each primitive solution, which happens to be a Q-curve. Using

Hecke characters we prove that a twist of the elliptic curve representation descends to Q hence (by Serre’s

conjectures) corresponds to a newform in S2(n, ε) for explicit values of n and ε. This gives a systematic
procedure to study solutions of the above equations and allows us to prove non-existence of solutions of both

equations for new values of d.

Introduction

Since Wiles’ proof of Fermat’s last theorem, there has been an increasing interest in solving different
Diophantine equations. Of particular interest is the problem of determining all solutions of a generalized
Fermat equation

AXp +BY q = CZr,

mostly when 1
p + 1

q + 1
r < 1, as in this case solutions correspond to points on curves of genus greater than 1

(see [DG95]). Using Q-curves, solutions of the equation

(1) x4 + dy2 = zp,

were studied in [Ell04] for d = 1 and in [DU09] for d = 2, 3. Both articles prove an asymptotic result, namely
there exists Nd such that (1) has no non-trivial solutions for p > Nd. The constant Nd obtained equals
211, 349, 131 for d = 1, 2, 3 respectively. Furthermore, by a detailed study of the small primes, it is possible
to extend the result to all primes in the cases d = 1, 2. ([BEN10]).

A solution (A,B,C) to (1) is called primitive if gcd(A,B,C) = 1. As explained in [DM97], it is mostly
interesting to understand primitive solutions, as otherwise there might be infinitely many of them. There
are some trivial solutions to (1), namely (±1, 0, 1) and (0,±d, d) for p = 3.

The general strategy for finding primitive solutions of Diophantine equations consist on attaching a Frey
curve to a solution. The Frey curve has the property that modulo p, the residual Galois image has small level,
hence using modularity of rational irreducible representations (Serre’s conjectures) and Ribet’s lowering the
level theorem, one concludes that the solution is related to a newform in a specific level and weight space.
In many instances, after computing such space, one deduces that no such form can exist.

As explained in [DU09], to a primitive solution of (1) one associates the elliptic curve

(2) E(A,B) : y2 = x3 + 4Ax2 + 2(A2 + rB)x,

where r2 = −d. To easy notation, we denote E = E(A,B) when there is no confusion. The existence of
trivial solutions sometimes imposes a big issue in the aforementioned strategy! The advantage of equation
(1) is that the trivial solutions (±1, 0, 1) and (0,±d, d) for p = 3 correspond to elliptic curves with complex
multiplication while others do not.

The curve E is not defined over Q, but is what is called in the literature a Q-curve, i.e. an elliptic
curve whose Galois conjugates are isogenous to E. As will be explained in detail, E is 2-isogenous to the
quadratic twist of E by (the quadratic character associated to the field) Q(

√
−2). Over the compose field

Q(
√
−d,
√
−2), E is a (completely defined) Q-curve. By a result of Ribet ([Rib04]) a twist of E gives a

Galois representation that descends to Q. However, Ribet’s result is not explicit, as it depends on finding a
map trivializing some cocycle and there is not much control of it.
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The strategy used in the literature follows a strategy of Quer ([Que00]) which gives an ad-hoc element
(via Hilbert’s 90 theorem) after a tedious search for it. In particular, it gives no control on the ramification
of the character so determining the level and the Nebentypus of (one) weight 2 modular form attached to E
(after twisting) is not straightforward. In the present article, we give a solution different from Ribet’s one.
We define a Hecke character χ such that the `-adic Galois representation (for any `) attached to E twisted
by χ descends to Q. In this way, we have complete control on the level and the Nebentypus of the resulting
newform. We also compare our approach to Ribet’s classical solution (which implies trivializing a cocycle).

The advantage of our approach is that it can be applied to other Diophantine problems where the Q-curve
is defined over an imaginary quadratic field. For example in [BC12], the Diophantine equation

(3) x2 + dy6 = zp

is considered, for d = 1. The Frey curve attached to a primitive solution (A,B,C) is given by the equation

(4) Ẽ(A,B) : y2 = x3 − 3(5B3 + 4Ai)Bx+ 2(11B6 + 14iB3A− 2A2).

The curve Ẽ is also a Q-curve as its Galois conjugate is 3-isogenous to the quadratic twist of E by Q(
√
−3).

In Section 5 we attach a Frey curve to a solution of equation (3) for a general d, and prove that such curve
is a Q-curve; in particular its Galois conjugate is a twist by Q(

√
−3) of an isogenous curve (our equation is

different from that of [BC12] where the 3-isogeny is not explicit). Our Frey curve comes from the description
of curves with a 3-torsion point given by Kubert ([Kub76]). We apply the same strategy, namely we construct
a Hecke character such that the twisted representation descends to Q, to give an explicit formula for the
level and Nebentypus of the newform attached to a solution of it.

The restriction to imaginary quadratic twists is to avoid fundamental units, a case in which Hecke char-
acters are harder to construct. Nevertheless, our construction of the Hecke character works when the fun-
damental unit of Q(

√
d) (for d positive) has norm −1. Applications of such result to Diophantine problems

will be considered in a sequel (as the techniques are completely different than the ones used for imaginary
quadratic fields).

As an application, in the present article we study equations (1) and (3) for d = 1, 2, 3, 5, 6 and 7 (the cases
that were not considered before), but our approach allows to study any other value of d. We succeed to prove
non-existence of solutions in all cases but d = 5 and d = 7 for equation (3) (where the existence of newforms
satisfying all the required properties makes the classical approach to fail). It would be an interesting problem
to study if the so called “multi-Frey”method can be used in such cases (although it implies working over
other number fields).

The article is organized as follows: in section 1 the main properties of the curve (2) are given. In particular,
we recall the proof that E is a Q-curve and compute its reduction type and conductor at all primes (for
any value of d). This result is needed to give an explicit formula for the level n and the Nebentypus ε of
the newform attached to a primitive solution. Section 2 gives the general strategy to construct the Hecke
character, and describes it explicitly for equation (1). Since the conjugate Galois representation is isomorphic
to its twist by

√
−2, the prime 2 plays a special role in the construction (this is why we give one construction

of the character needed to solve (1) first and another construction to solve (3)). The way to define the
character χ is to split the set of primes ramifying in K/Q depending on their congruence modulo 8. If q is
such an odd prime, the ramification of the local component of χ at q (the unique prime of K dividing q) has
order 1, 2 or 4 and depends only on q (mod 8). Special care needs to be taken for primes dividing 2 (which
is the more technical part of the construction). The main application (Theorem 2.3) gives the recipe for n
and ε using the control on the conductor of ρE,p ⊗ χ and standard techniques.

In Section 3 we relate our construction to that of Ribet. This includes an explicit description of the
field extension N where the cocycle attached to our Q-curve is trivialized (in terms of the character χ), a
description of the Galois group Gal(N/Q) and a trivialization map.

Section 4 recalls the general strategy (and the results needed) to prove non-existence of primitive solutions
of equation (1). The main idea is to use Ribet’s lowering the level result. For doing that, we need the residual
image (modulo p) of the residual representation ρE,p to be absolutely irreducible. To assure the big residual
image hypothesis, we consider two different cases. Either the solution (A,B,C) satisfies that C is divisible
by a prime greater than 3 or it does not. In the first case, the curve E has a prime of multiplicative reduction,
hence cannot be a curve with complex multiplication. Then a result of Ellenberg implies that there exists

2



a bound NK (depending only on the base field K) such that the curve has big residual image at all primes
greater than NK . In the second case, we adapt a stratedy used in [DU09]: namely if C is supported only at
the primes {2, 3} and the residual image is not absolutely irreducible, then there exists a congruence with an
Eisenstein series. For p large enough this violates Hasse’s bound on |ap(E)|. With all tools in hand, we prove
non-existence of solutions for d = 5 (Theorem 4.5), d = 6 (Theorem 4.6) and d = 7 (Theorem 4.7). In some
cases, we exploit the relation to Bianchi modular forms (using an algorithm due to Cremona to compute
such space for imaginary quadratic fields of class number 1) which improves the computational effort.

Section 5 is devoted to study equation (3). Based on Kubert’s description of elliptic curves with a 3-

rational point ([Kub76]), we attached to a non-primitive solution of it a general Frey curve Ẽ (for any value

of d). We prove that the curve Ẽ is a Q-curve by proving that its Galois conjugate is isogenous to its
quadratic twist by

√
−3. Contrary to what happened for the curve E, the primes ramifying in the quadratic

extension K/Q are primes of additive reduction for Ẽ. We study the ramification type of Ẽ at all primes,
including primes dividing 2, 3 and the ones ramifying in K/Q. For the latter ones, we also describe the

local type of the Weil-Deligne representation attached to Ẽ (such information is sometimes useful to discard
newforms which are candidates to come from solutions). In Section 6 we study the problem of how to descend

the Galois representation attached to a Q-curve Ẽ over an imaginary quadratic field K satisfying that its
conjugate curve is isogenous to the twist of Ẽ by a quadratic character ramified at a unique prime t ≡ 3
(mod 4) (the case of interest being t = 3). The general strategy follows the case t = 2 given in Section 2,
but turns out to be more interesting. The set of primes ramifying in K/Q need to be separated into four
different sets depending on properties modulo 4t (more concretely depending on whether an odd prime q is a
square modulo 4 or not, and whether it is a square modulo t or not). Once the local definition of the Hecke
character is given, the proof that the global character satisfies the desired properties is similar to the case
t = 2 (with some extra technicalities).

At last, in Section 7 we apply our results to solve new instances of equation (3). In particular, we succeed
to solve the case d = 2 (Theorem 7.1) and d = 6 (Theorem 7.2), while did not succeed to prove the cases
d = 5 and d = 7 due to the existence of newforms matching all conditions of curves coming from real
solutions.

To easy notation during the exposition, if K is a number field or a local field, GalK will denote the Galois
group Gal(K/K).

Acknowledgments. We would like to thank John Cremona for many useful conversations regarding com-
puting with Bianchi modular forms, and for explaining us how to use his code to compute them.

1. The equation (1): properties of the curve E

The curve E satisfies: ∆(E) = 512(A2 + rB)Cp and j(E) = 64(5A2−3rB)3

Cp(A2+rB) . There are two important facts

on primitive solutions: if (A,B,C) is a primitive solution of (1), then gcd(A, d) = 1 and also the following
elementary property holds.

Lemma 1.1. Let (A,B,C) be a primitive solution with p > 3, then

• If d is even, A is odd.
• If d ≡ 1, 3, 5 (mod 8) only one of {A,B} is even and the other one is odd.

The trivial solution (±1, 0, 1) corresponds to a curve curve with complex multiplication by Z[
√
−2] (with

j-invariant 8000) and the solution (0,±d, d) for p = 3 corresponds to a curve with complex multiplication
by Z[

√
−1] (with j-invariant 1728). Note that j(E) is not in Q unless B = 0 (corresponding to a trivial

solution) or (A,B, d) = (3, 5, 7) (corresponding to an elliptic curve with complex multiplication by Z[ 1+
√
−7

2 ]
and j-invariant −3375)). In particular, if (A,B,C) is a non-trivial solution, the curve E is not defined over
Q. Let K = Q(

√
−d).

Lemma 1.2. Let q be an odd prime of K. Then vq(∆(E)) ≡ 0 (mod p).
3



Proof. Clearly if q | gcd(A2 + rB,A2 − rB) then q | 2 (because (A,B,C) is primitive). Then, since Cp =
A4 + dB2 = (A2 + rB)(A2 − rB),

vq(A2 + rB) =

{
0 if q - (A2 + rB),

vq(Cp) otherwise.

�

Lemma 1.3. Suppose that p is an odd rational prime ramified at K/Q and let p denote the (unique) prime
in K dividing p. Then p - ∆(E).

Proof. Since p is ramified, p | r, and since (A,B,C) is a primitive solution, p - A. Then p - Cp(A2 + rB). �

Let NE denote the conductor of E. Assume that p ≥ 11 to avoid extra computations when 2 splits in K.

Lemma 1.4. Let q be a prime ideal of K dividing 2.

(1) If 2 is inert in K then v2(NE) = 8.
(2) If 2 ramifies in K then vq(NE) ∈ {10, 12}.
(3) If (2) = p2p̄2 then either vp2(NE) = vp̄2(NE) = 8 or vp2(NE) = 6 and vp̄2(NE) ∈ {1, 4}.

Proof. Apply Tate’s algorithm ([Tat75]). The invariants of E are: a6 = 0, b2 = 16A, b6 = 0 and b8 =
−4(A2 + rB)2. Let OK denote the ring of integers of K.

(1) The hypothesis implies that d ≡ 3 (mod 8) and 2 is prime in OK . Notice that, by Lemma 1.1,
2 - A2 + rB hence v2(∆(E)) = 9. Since: 2 | b2, 22 | a6, 23 - b8, the curve has reduction type III and
v2(NE) = v2(∆(E))− 1 = 8.

(2) Let q be the unique prime in OK dividing 2 and let π be a local uniformizer. By Lemma 1.1,
q - (A2 + rB), hence vq(∆(E)) = 18. To easy notation, consider the curve

(5) y2 = x3 + 4αx2 + 2βx,

where q - β. Clearly q | b2, q2 | a6, q3 | b8 and q3 | b6. Following Tate’s notation, let an,m = an
πm .

The polynomial P = x3 + a2,1x
2 + a4,2x + a6,3 has a double root at x = 1, hence we make the

translation x→ x+ π in (5), to get the new equation

y2 = x3 + (4α+ 3π)x2 + (8πα+ 3π2 + 2β)x+ 4π2α+ π3 + 2βπ.

Write ãi for the new coefficients. If either d is even (so we can take π =
√
−d) and B is odd, or d is

odd (so π = 1 +
√
−d) and B is even (hence A is odd), vq(π2 + 2β) = 3 hence vq(ã4) = 4 and the

polynomial Y 2 + ã3,2Y − ã6,4 has a double non-zero root. Although we need to make a translation
(to take the double root to zero), such procedure will not change ã4,3, which has valuation 3, so the
type equals I∗2 and vq(NE) = vq(∆(E))− 6 = 12.

Suppose that d is even and B is even. If d
2 ≡ 1 (mod 4) then vq(ã6) ≥ 6 and vq(ã4) = 4, so we

do not need to make any translation and the type is I∗4 and vq(N2) = 18− 8 = 10. If d
2 ≡ 3 (mod 4)

then vq(ã6) = 4 and vq(ã4) ≥ 5 hence the polynomial Y 2 + ã3,2Y − ã6,4 has a non-zero double root,
and after sending the root to 0, we get that the new a4 has valuation 4, so the same computation
works.

At last, if d ≡ 1 (mod 4) and B is odd, vq(ã6) ≥ 5 and vq(ã4) = 4, hence again the type is I∗4 and
vq(N2) = 18− 8 = 10.

(3) Let p be a prime dividing 2. Consider the different cases:
• If either A or B is even (hence the other one is odd) then vp(A2 + rB) = 0 and vp(∆) = 9

(for both primes). Clearly vp(b2) ≥ 4 and vp(b8) = 2 hence the reduction type is III and
vp(NE) = 9− 1 = 8 (at both primes).
• If both A,B are odd, we can assume that vp(A2 + rB) > 1 while vp̄(A2 + rB) = 1 (since

A2+rB
2 is an integer, and vp̄(A2 + rB) = vp(A2 − rB) = vp(A2 + rB − 2rB)). Furthermore,

our assumption p ≥ 11 implies that vp(A2 + rB) ≥ 11 so vp(j(E)) < 0. In particular E has
4



potentially multiplicative reduction. Furthermore, the equation is not minimal at p, under a
change of variables, it equals

y2 = Ax2 +
(A2 + rB)

25
x,

which already has multiplicative reduction. Hence its conductor equals p or p4. To compute the
type at p̄, the hypothesis also implies that vp̄(j) < 0 so the curve has potentially multiplicative
reduction, but it equals a quadratic twist (by the character of conductor 8) of a curve with
multiplicative reduction, hence its conductor equals p̄6.

�

Lemma 1.5. Let p be an odd prime dividing ∆(E). Then E has multiplicative reduction at p.

Proof. By Lemma 1.3 we know that primes dividing ∆(E) are not ramified in K/Q; in particular, if p is an
odd prime dividing ∆(E), p - 4A, hence clearly the reduction of (2) modulo p is multiplicative. �

Recall (as explained in [DU09]) that the curve E is a Q-curve. The 2-isogenous curve of E (corresponding
to the quotient by the 2-torsion point (0, 0)) is the curve

y2 = x3 − 8Ax2 + 8(A2 − rB)x.

Such curve equals the quadratic twist by −2 of τ(E) (the Galois conjugate of E). In particular, if we look
at E over L = Q(

√
−d,
√
−2) then it is a Q-curve in the sense that the curve is isogenous to all of its

Galois conjugates. In particular, for any prime number p, there exists a twists of the Galois representation
ρE,p : GalL → GL2(Zp) which extends to the whole Galois group GalQ (see [Rib04]). Methods to describe
the twist are explained in [Que01, Que00], and a detailed concrete example is given in [Pyl04] (page 47).
The problem is that in such approaches no control on the ramification of the twist is given. Our main
contribution is to give an alternative solution in terms of Hecke characters.

Recall that a representation ρ : GalK → GL2(Qp) descends to GalQ if and only of τρ = ρ, where τ ∈ GalQ
is an element whose restriction is non-trivial, and τρ(σ) = ρ(τστ−1) (we will present a proof of this fact in
Theorem 2.3).

If t is an integer, let ψt denote the character of GalQ corresponding to the extension Q(
√
t)/Q. The

hypothesis of E being a Q-curve whose Galois conjugate equals its quadratic twist by ψ−2 implies that
τρE,p = ρE,p⊗ψ−2. In section 2 we construct a Hecke character χ : GalK → Q× satisfying that τχ = χ ·ψ−2

(as characters of GalK). Then the twisted representation ρE,p⊗χ does descend to a representation of GalQ.
Knowing the conductor of χ allows us (in Theorem 2.3) to specify the level and Nebentypus of the rational
representation.

2. Construction of the Hecke character

Let IK denote the idèle group of K and Cl(K) the class group of K. Fix for each prime p an embedding
GalQp

↪→ GalQ. Class field theory relates characters of GalK with characters on the idèle group IK (our
characters will always be finite), hence we will denote by the same letter both incarnations of the same object
(and hope there is no confusion on doing that).

If N is a local field, local class field theory relates abelian extensions of N with continuous characters φ of
N×. Furthermore, the ramification information is encoded in the restriction of φ to O× (the ring of integers
of N). Let L be a global field. From the short exact sequence

(6) 0 // L× · (
∏

q O
×
q × (L⊗ R)×) //// IL // Cl(L) // 0,

we deduce that to define a character of IL it is enough to give its values on (
∏

q O
×
q ×(L⊗R)×), on L× (where

the character is trivial) and on idèles representing the class group of K. Note that (
∏

q O
×
q ×(L⊗R)×)∩L× =

O×L , hence the compatibility condition is that the product of the local components evaluated at a unit equals
1.
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For L = Q, since the class group is trivial, a Hecke character is determined by its values on
∏
p Z×p ×R×.

i.e. give for each prime p a character φp : Z×p → C× and an infinite character φ∞ : R× → C× satisfying

(7)
∏
p

φp(−1)φ∞(−1) = 1.

Such information determines a unique Hecke character ψ, and if ψ has finite order, we can take its image to

take values in Q×.
Let τ ∈ Gal(Q/Q) be such that its restriction to K is not trivial. If χ : IK → C× is a Hecke character on

K, let τχ denote the character given by
τχ(α) = χ(τ(α)).

Looking at characters of the Galois group, the character τχ is given by τχ(σ) = χ(τστ−1).

Problem: Given ψt a quadratic character of GalQ corresponding to an imaginary quadratic extension
ramified at a unique prime, find a Hecke character χ of GalK such that τχ = χ · ψ−t.

We solve the previous problem for t = 2 and for t a prime number congruent to 3 modulo 4 (so ψt
corresponds to an imaginary quadratic extension ramified at a unique prime). Furthermore, we construct a

character ε : IQ → Q× such that χ2 = ε ◦N. Once the existence of the character χ is proven, a well known
result (see Theorem 2.3) implies that the Galois representation attached to the elliptic curve E (respectively

Ẽ) descends to Q and ε will be its Nebentypus.
The characters ε and χ ramify only on primes ramifying in K/Q and on primes dividing 2t. The general

strategy is to split the odd primes {p : p ramifies in K/Q} into four sets depending on the values of ψ−t(p)
(more concretely: for t = 2 depending on the congruence of p modulo 8 while for t an odd prime, depending
whether p is a square modulo t or not and on whether p is a square modulo 4 or not). For primes in each
set, define the local characters εp and χp restricted to the integers Z×p and O×p respectively (where p is the
unique prime in K dividing p). Then we define global characters ε and χ as a product of the local parts on
the set (

∏
q O
×
q × C×). The definitions are given so that both characters satisfy:

(1) The local character χp satisfies that τχp = χp · ((ψ−t)p ◦N).
(2) For q an odd prime, let δq denote the quadratic character in (Z/q)×, then for all odd primes p

ramified in K/Q, χp = εpδp (identifying (Op/p)× with (Z/p)×).
(3) An extra condition at primes dividing 2 so that a compatibility conditions on units holds (a condition

similar to (7) for the units of K).

The first condition is needed for χ to solve the problem. If p is an odd prime not dividing t, the second
condition implies that then χp = εp ◦ N. The proof of this fact is the following: for primes p - 2td, both
characters are trivial, hence the statement trivially holds. For odd primes that p - t and p | d (of norm p),
recall that the restriction of εp to GalKp

equals (as Hecke characters) εp ◦ N, where N : Kp → Qp is the

norm map. Since p ramifies in K/Q the local norm map (modulo p) is given by x→ x2, so the equality

χ2
p(x) = εp ◦N(x) = ε2

p(x)

holds. The last condition is the key for the existence of χ and ε as it will imply that χ can be defined in the
first term of (6) (so we are only led to define it on idèles representing the class group of K).

2.1. The case t = 2. Since our applications involve imaginary quadratic fields, let K = Q(
√
−d) with d a

positive square-free integer and split the odd prime divisors of d in four different sets, namely:

Qi = {p prime : p | d, p ≡ i (mod 8)},

for i = 1, 3, 5, 7.
The character ε: Define an even character ε : IQ → C× ramified at the primes in Q3 ∪Q5 and sometimes
in {2}, with local component εp as follows:

• For primes p ∈ Q1 ∪Q7, the character εp : Z×p → C× is trivial.

• For primes p ∈ Q3, the character εp = δp, the quadratic character δp(n) =
(
n
p

)
.

• For p ∈ Q5, let εp be a character of order 4 and conductor p.
• The character ε∞ (the archimidean component) is trivial.
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Before defining the character at the prime 2, let us introduce some notation. Let ψ−1, ψ2, ψ−2 be the
characters of Z corresponding to the quadratic extensions Q(

√
−1), Q(

√
2) and Q(

√
−2) respectively and let

δ−1, δ2, δ−2 their local component at the prime 2 (see Table 2.1).

Char 1 3 5 7

δ−1 1 −1 1 −1
δ−2 1 1 −1 −1
δ2 1 −1 −1 1

Table 2.1. Table

• Define ε2 = δ#Q3+#Q5

−1 .

By construction, the first hypothesis is satisfied for ε, namely∏
p

εp(−1)ε∞(−1) =
∏

p∈Q3∪Q5

εp(−1)ε2(−1) = (−1)#Q3+#Q5ε2(−1) = 1.

This gives a well defined Hecke character ε of IQ corresponding to a totally real field L whose degree equals
1 if Q3 = Q5 = ∅, 2 if Q3 6= Q5 = ∅ and 4 otherwise. By class field theory, ε gets identified with a character
ε : GQ → Q. Let Nε denote its conductor, given by Nε = 2e

∏
p∈Q3∪Q5

p, where e = 0 if #Q5 + #Q7 even
and 2 otherwise.

Remark 1. The dependence on d of the parity of Q3 +Q5 (and Q7) is given on Table 2.2. In particular, if d
is odd, ε2 depends only on d (mod 8) (not the sets Q3, Q5).

d #Q3 #Q5 #Q7 d #Q3 #Q5 #Q7

1 0 0 0 5 0 1 0
1 1 1 1 0 1

3 0 1 1 7 0 0 1
1 0 0 1 1 0

2 0 0 0 6 0 0 1
0 1 0 0 1 1
1 0 1 1 0 0
1 1 1 1 1 0

Table 2.2. Table

Theorem 2.1. There exists a Hecke character χ : GalK → Q such that:

(1) χ2 = ε as characters of GalK ,
(2) χ is unramified at primes not dividing 2

∏
p∈Q1∪Q5∪Q7

p,

(3) for τ in the above hypothesis, τχ = χ · ψ−2 as characters of GalK .

Proof. Following the strategy described above, let χp : O×p → C× (where Op denotes the completion of OK
at p) be the character given by

• If p is an odd (i.e. p - 2) unramified prime, χp is the trivial character. The same applies to primes
in K dividing the primes in Q3.

• If p is an odd prime ramifying in K/Q and p | p, clearly (Op/p)× ' (Z/p)×. If p ∈ Q1 ∪Q7, let χp

correspond to the quadratic character δp.
• If p ∈ Q5, using the previous item isomorphism, let χp = εp · δp.

In particular, the second property of the general strategy is satisfied. Furthermore, the local component of
the character satisfies the stated properties, namely:

(1) Is proven in the general strategy.
(2) The ramification statement is clear from the definition of χp.
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(3) At primes not dividing elements of Q1 ∪ Q5 ∪ Q7 all characters are trivial, hence the equality. For
primes ramifying in K, τ acts as the identity in the quotient Op/p and ψ−2 is trivial.

The archimidean component of χ is trivial, while its local component at places dividing 2 depends on K and
ε. Suppose that 2 does not split in K, and let p2 denote the unique ideal dividing 2. The character χp2

has
conductor dividing 23; the group structure of (Op2

/23)× and its generators are given in Table 2.3 (where the
order of the generators match the group structure, and the norms are modulo 8). Define χ2 on the set of

d n Structure Generators Norms

1 3 Z/4× Z/4× Z/2 {
√
−d, 1 + 2

√
−d, 5} {1, 5, 1}

3 3 F3 × Z/4× Z/2× Z/2 {ζ3,
√
−d, 3 + 2

√
−d,−1} {1, 3, 5, 1}

5 3 Z/4× Z/4× Z/2 {
√
−d, 1 + 2

√
−d,−1} {5, 5, 1}

even 2 Z/4× Z/2 {1 +
√
−d,−1} {3, 1}

Table 2.3. Table

generators as follows:

• If d ≡ 1 (mod 8), χ2(
√
−d) = 1, χ2(1 + 2

√
−d) = 1, χ2(5) = −1.

• If d ≡ 3 (mod 8), χ2(ζ3) = 1, χ2(
√
−d) = i, χ2(3 + 2

√
−d) = 1, χ2(−1) = 1.

• If d ≡ 5 (mod 8), χ2(
√
−d) = 1, χ2(1 + 2

√
−d) = 1, χ2(−1) = −1.

• If d ≡ 2 (mod 8) and #Q3 + #Q5 is even, χ2(1 +
√
−d) = 1, χ2(−1) = 1, χ2(5) = 1.

• If d ≡ 2 (mod 8) and #Q3 + #Q5 is odd, χ2(1 +
√
−d) = i, χ2(−1) = −1, χ2(5) = 1.

• If d ≡ 6 (mod 8) and #Q3 + #Q5 is even, χ2(1 +
√
−d) = 1, χ2(−1) = −1, χ2(5) = 1.

• If d ≡ 6 (mod 8) and #Q3 + #Q5 is odd, χ2(1 +
√
−d) = i, χ2(−1) = 1, χ2(5) = 1.

• If d ≡ 7 (mod 8), the prime 2 splits as 2 = p2p2. Let χp2
:= δ−2 and χp2

:= 1 (trivial) or take
χp2 := δ2 and χp2

:= δ−1. To make the proofs consistent, we denote by χ2 = χp2χp2
= δ−2.

With the above definitions, it is easy to check that χ2
2 = ε2 ◦N, using the character values in Table 2.1, the

parity of Table 2.2 and the norm of the generators given in Table 2.3.
To check the second property, clearly τχ2 · χ2 = χ2 ◦N, hence τχ2 = χ−1

2 · χ2 ◦N. An easy case by case
computation on the generators shows that τχ2 = χ2 · (δ−2 ◦N).

It is important to notice that

(8) χ2|Z×2 = δ
v2(d)+1
2 δ#Q5+#Q7

−1 .

Extend χ to K× · (
∏

q O
×
q ×C×) by making it trivial in K×, so all the above properties continue to hold.

Compatibility: the subgroup of units in K is generated by roots of order 2, 3 and 4 (for Q(
√
−1)). Since

all characters have order a power of 2, the compatibility relation at roots of order 3 (if K has one) is trivial.
If K = Q(

√
−1), all sets Qi, i = 1, 3, 5, 7 are empty and the compatibility at

√
−1 follows from the fact that

χ2(
√
−1) = 1 in such case.

To check the compatibility at −1, abusing notation, let p ∈ Qi denote the fact that the norm of p is in
such set, then

(9) χ(−1) =
∏
p

χp(−1) =
∏

p∈Q1∪Q5∪Q7

χp(−1)χ2(−1) = (−1)#Q5+#Q7δ−1(−1)#Q5+#Q7 = 1.

Extension: To extend χ to IK , it is enough to define it on idèles that generate the class group of K. Let
{q1, · · · , qh} be prime ideals of K generating Cl(K) (we can and do assume they are not ramified in K/Q).
Since qi is not principal, it must split in K/Q, so if qi = N(qi), we can take as representatives the idèle ai
in IK with trivial infinite component and finite components:

(ai)p =

{
qi if p = qi,

1 otherwise.

Suppose that qi has odd order in the class group, hence there exists α ∈ K× and u ∈
∏

q O
×
q ×C× such that

ai = αub2i . Then it must hold that

χ(ai) = χ(u)χ(b2i ) = χ(u)ε(N(bi)).
8



If on the contrary, qi has order a power of 2, define χ(ai) =
√
ε(N(ai)) (any of the two ones works) and

extend it multiplicatively. Recall that both χ2 and ε◦N coincide on K× ·(
∏

q O
×
q ×C×) so with this definition

they coincide on the whole idèle group IK .
There is a caveat here: a power of the idèle ai lies in K× · (

∏
q O
×
q × C×) hence we need to prove

that our definition really extends the previous one. Let χ̃ denote the extension and χ the character on
K× · (

∏
q O
×
q × C×); if the idèle ai corresponds to an ideal of order t in the class group, the consistency

relation translates into χ̃(ati) = χ(ati).
Start supposing that the idèle ai satisfies that the ideal attached to it has odd order t in the class group,

in particular there exists bi ∈ IK , α ∈ K× and u ∈
∏

q O
×
q ×C× such that ai = αub2i , and the ideal attached

to bi also has order t in the class group. Then

χ̃(ati) = χ(u)χ̃(b2ti ) = χ(u)ε(N(bti)) = χ(u)χ2(bti) = χ(ati),

because χ2 = ε ◦N on K× · (
∏

q O
×
q ×C×). In particular, this proves compatibility for idèles whose attached

ideal have odd order in the class group.
Suppose that ai is not a square, and has order 2t, with t ≥ 2, in the class group of K. By definition,

χ̃(a2t

i ) = χ̃2(a2t−1

i ). The idèle a2t−1

i corresponds to an ideal of order 2 in the class group; if we prove

compatibility for such idèles, we are done. It is well known that the ideals b = 〈q,
√
−d〉, where q is an

odd prime dividing d, form a set of representatives for the elements of order two in the class group of K.
Such ideal can be represented by the idèle b′i with

√
−d at the place b and 1 at all other places. Then

χ̃(b2i ) = χ̃2(bi) = ε(N(bi)) = εq(d). Furthermore,

(10) εq(d) = εq(d/q)ε2(q)−1
∏

p∈Q3∪Q5

εp(q)
−1,

where the product runs over primes different from q. On the other hand,

(11) χ(b2i ) = χq(−d) = χq

(
−d
q

)
χ2

(
1

q

) ∏
p∈Q1∪Q5∪Q7

χp

(
1

q

)
,

where the product again runs over primes p 6= q. Recall our second hypothesis of the strategy, that states
that χp = εpδp at odd primes, so we can replace in (11) to get

(12) χ(b2i ) = εq(d)
(
χ−1

2 (q)εq(−1)ε2(q)δq(2)v2(d)
)
·

δq(2)v2(d)δq

(
−d
q

) ∏
p∈Q1∪Q3∪Q5∪Q7

p 6=q

δp(q)

 .

If q ≡ 1 (mod 4), the product involving the quadratic character δ∗ is 1 by quadratic reciprocity, while if
q ≡ 3 (mod 4) it equals (−1)#Q3+#Q7 . We can write this as δ−1(q)#Q3+#Q7 . Note that δq(2) = δ2(q). The
following identity holds from the definition of ε2 and (8):

(13) χ−1
2 · ε2 · δv2(d)

2 · δ#Q3+#Q7

−1 = δ2.

Then we are led to prove that εq(−1)δ2(q) = 1, which follows from the definitions, since:

• If q ≡ ±1 (mod 8), εq(−1) = 1 = δ2(q).
• If q ≡ ±3 (mod 8), εq(−1) = −1 = δ2(q).

At last, we need to prove that τχ = χ · ψ−2 ◦N on Ik, and by the previous results, it is enough to prove
it for the idèles ai. Note that τ(ai) is the idéle of K with value qi at qi and 1 at the other places. Then

(14) τχ(ai) = χ(τ(ai)) = χ(ai)
−1χ(aiτ(ai)) = χ(ai)

−1χ

(
aiτ(ai)

qi

)
,

where 1
qi

denotes the image of K× ↪→ IK . Note that aiτ(ai)
qi

is a unit at all places, so

(15) χ

(
aiτ(ai)

qi

)
= χ2(qi)

−1
∏

p∈Q1∪Q5∪Q7

χp(qi)
−1

9



By the product formula,

(16) 1 = ε(qi) = εqi(qi)ε2(qi)
∏

p∈Q3∪Q5

εp(qi).

Since εqi(qi) = ε(N(ai)) = χ2(ai), multiplying (15) and (16) and using the second property of our general
strategy, we get that

(17) χ

(
aiτ(ai)

qi

)
= χ2(ai)χ2(qi)

−1ε2(qi)
∏

p∈Q1∪Q3∪Q5∪Q7

δp(qi).

Recall that qi splits in K, hence
(
−d
qi

)
= 1 so by reciprocity

1 =

(
2

qi

)v2(d)(−1

qi

)#Q3+#Q7+1 ∏
p∈Q1∪Q3∪Q5∪Q7

δp(qi)

From a similar computation, ψ−2(N(ai)) = δ−2(qi), and the result follows from (13),
�

Remark 2. The character χ is not unique, but the last condition implies that the quotient of two such
characters is a character of GalQ, hence all of them differ from χ by a character of GalQ.

Remark 3. Let p be an odd prime ramified in K/Q. The equality τχ = χ · ψ−2 ◦N at the idèle whose p-th
component is

√
−d (a local uniformizer) implies that χp(−1) = δ2(p). This implies that any χ must ramify

at primes in Q5 and Q7. This is also clear from the previous remark, as in our construction χ is ramified at
primes of Q1 ∪Q5 ∪Q7, where its local component at primes of Q5 ∪Q7 is not a square, hence multiplying
χ by a character of Q cannot kill the ramification in such sets. Note also that any character ε must ramify
at primes in Q3 ∪Q5 by a similar argument.

Remark 4. If p ∈ Q1, we can twist χ by an order 4 character, and make it unramified at primes in Q1 at
the cost of adding a quadratic contribution to ε. So we can make χ ramify in Q5 ∪ Q7 and ε ramify in
Q1 ∪Q3 ∪Q5; the ramification at primes in Q1 and Q3 being given by a quadratic character.

Remark 5. The conductor f of χp for q | 2 has valuation:

v(f) =



5 if d ≡ 1 (mod 8),

3 if d ≡ 3 (mod 8),

3 if d ≡ 5 (mod 8),

0 if d ≡ 2 (mod 8) and 2 | #Q3 + #Q5,

4 if d ≡ 2 (mod 8) and 2 - #Q3 + #Q5,

3 if d ≡ 6 (mod 8) and 2 | #Q3 + #Q5,

4 if d ≡ 6 (mod 8) and 2 - #Q3 + #Q5,

When d ≡ 7 (mod 8) it is either 0, 2, 3 depending on the choice.

A result similar to Theorem 2.1 holds for real quadratic fields, where an extra condition at the archimedean
places needs to be imposed.

Theorem 2.2. Suppose that K = Q(
√
d) is a real quadratic field, whose fundamental unit has norm −1.

Then the same results of the last theorem hold.

Proof. Since we prioritize the imaginary quadratic field, to take advantage of the previous cases, write
d = −(−d) (so d < 0 in the above notations/definitions) and take precisely the same local definitions for
both ε and χ.

There are two important facts to consider: while proving (9), we get a −1 factor coming from the fact
that we change d ↔ −d, hence we need to add ramification at one of the archimedean places (we will later
specify which one).

Let ε be a fundamental unit (fixed). The proof works mutatis mutandis once we checked the compatibility

of χ at ε. The advantage of assuming ε has norm −1, is that Q3 = Q7 = ∅ (if ε = a+ b
√
d, with 2a, 2b ∈ Z,
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the condition a2 − db2 = −1 implies that −1 is a square for all odd primes dividing d). Furthermore, for
all such primes, the reduction of ε has order 4, so that χp(ε) = ±1 if p ∈ Q1 and a primitive fourth root of
unity if p ∈ Q5. We claim that χ2(ε)

∏
p∈Q5

χp(ε) = ±1 (and therefore χ2(ε)
∏
p∈Q1∪Q5

χp(ε) = ±1).

• If d ≡ 1 (mod 8) then #Q5 is even and χ2 is quadratic, hence the statement.
• If d ≡ 5 (mod 8) (the case d = 3 in Table 2.3) #Q5 is odd, 2 is inert and χ2 has order 4 and

evaluated at any element of order 4 gives a primitive fourth root of unity.
• If d ≡ 2 (mod 8) and #Q5 is even, χ2 has order 2, while if #Q5 is odd, χ2 has order 4 and ε has

order 8 (which follows from Table 2.3, as its norm equals −1) so χ2(ε) is a fourth root of unity.

Then if the product χ2(ε)
∏
p∈Q1∪Q5

χp(ε) = 1, define χ to be trivial at the archimedean component where ε
is positive and the sign character at the other, while if the product equals −1, take the opposite choice. Since
N(ε) = −1, the compatibility is satisfied and the same proof of the imaginary quadratic case applies. �

For general real quadratic fields, the computation is more subtle, and it involves studying many different
cases. For example, if K = Q(

√
195), the positive fundamental unit equals ε = 14 −

√
195. It reduces to 1

modulo (the prime in K dividing) 13, while to −1 modulo 3 and 5. Its reduction modulo 8 (although d ≡ 3

(mod 8) in the previous computations it corresponds to the value d = 5) equals
√

195
3
(1 + 2

√
195)3 then

the previous definitions give that χ13(ε) = 1, χ5(ε) = −1, χ3(ε) = 1 and χ2(ε) = 1 hence the compatibility
condition is not fulfilled independently of our definition at the archimedean places.

It is important to remark that we run some numerical experiments with real quadratic fields (a couple
of hundreds) and in all cases, a character of the expected conductor is found. In a sequel we will explain
how to compute the Hecke character for real quadratic fields and use them to solve our equations for some
negative values of d.

Theorem 2.3. Suppose that K/Q is imaginary quadratic. Then the twisted representation ρE,p⊗χ descends

to a 2-dimensional representation of Gal(Q/Q) attached to a newform of weight 2, Nebentypus ε, level N
given by

N = 2e
∏
q

qvq(NE) ·
∏
q∈Q3

q ·
∏

q∈Q1∪Q5∪Q7

q2,

where the product is over odd primes, and q denotes a prime of K dividing q. The value of e is one of:

e =


1, 8 if 2 splits,

8 if 2 is inert,

6, 7 if 2 ramifies but 2 - d,
8, 9 if 2 | d.

Furthermore, the coefficient field is a quadratic extension of Q(χ).

Proof. As was mentioned before, the result follows mostly by Ribet’s theorem, but we give an alternative
proof based on Galois representations (which is well known to experts) to get the full statement.

Let ρ denote ρE,p ⊗ χ. Its conductor equals lcm{NE , cond(χ)2} and its Nebentypus matches ε restricted
to GalK (by the first claim of Theorem 2.1). Let τ be as in Theorem 2.1 (i.e. an element of GalQ whose
restriction to Gal(K/Q) is non-trivial) and suppose furthermore that it corresponds to complex conjugation
(although this is not really necessary). It is enough to define the extension of ρ at τ and check the Nebentypus
statement on it.

Let ρτ denote the Galois representation ρτ (σ) = ρ(τστ−1). Our hypothesis implies that ρ and ρτ are
isomorphic (as they have the same trace at Frobenius elements). In particular, there exists A ∈ GL2(Qp)
such that ρ = AρτA−1. Furthermore, since ρ is irreducible (as E does not have complex conjugation) the

matrix A is unique up to a scalar. The equality ρ(σ) = ρτ
2

(σ) = A2ρ(σ)A−2 implies that A2 = λ (a scalar).
If such an extension exists, say ρ̃ : GalQ → GL2(Qp), then ρ̃(τστ−1) = ρ̃(τ)ρ̃(σ)ρ̃(τ)−1. In particular,

if σ ∈ GalK , ρτ (σ) = ρ̃(τστ−1) = ρ̃(τ)ρ(σ)ρ̃(τ)−1, so ρ̃(τ) = µA. Since ρ̃2(τ) = ρ(τ2) = 1, µ2 = 1
λ . It is

easy to verify that defining ρ̃(τ) = 1√
λ
A gives an extension (the two choices of the square root give the two

possible extensions, namely one and its twist by the quadratic character attached to the extension K/Q).
Since any extension is odd, det(ρ̃)(τ) = −1 = ε(τ)χp(τ) (where χp denotes the cyclotomic character) giving

the Nebentypus claim. Modularity of the representation follows from Serre’s conjectures ([KW10][KW09]).
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The conductor exponent of the representation ρ̃, at primes q which are unramified in K/Q equals that of
ρE,p ⊗ χ. Let us postpone the case q = 2 and consider primes ramifying in K/Q. Let q be such a prime,

and consider the local representation Ind
GQq

GKq
(ρE,p|GKq

⊗ χq) = ρ̃|GKq
⊕ (ρ̃|GKq

⊗ µKq
), where µKq

is the

quadratic character giving the extension Kq/Qq. Recall the well known formula (see for example Theorem
8.2 of [Hen79])

(18) vq(Ind
GQq

GKq
(ρE,p|GKq

⊗ χq)) = f(Kp/Qp)(2δ(Kq/Qq) + vq(ρE,p|GKq
⊗ χq)),

where δ(Kq/Qq) denotes the q-valuation of the different. Recall that χq is unramified for q ∈ Q3 and of
conductor q for q ∈ Q1 ∪Q5 ∪Q7. The conductor of ρ̃|GKq

equals that of its twist (which is clear for primes
not in Q3 and for primes in Q3 follow from the fact that its Nebentypus equals εq = µKq

, so both parts are
ramified) proving the level formula.

The value of e follows from Lemma 1.4 and the formula (18). Note that the conductor of χ2 (see Remark 5)
has valuation too small to affect the conductor of the twisted representation when 2 is inert or ramified. In
the split case, say 2 = pp̄ we chose the local character χp2 so that the twist of E by χp has split multiplicative
reduction of conductor p (recall that there were two possible definitions for χp) to get the result. �

Remark 6. The coefficient field can be computed from the following observation: if p is a prime inert in K/Q
then Tr(ρ̃(Frobp))

2 = ap(E)χ(Frobp) + 2ε(Frobp)p.

Remark 7. If K is real quadratic the same proof gives an extension, but we cannot prove whether the
Nebentypus equals ε or εµK . For imaginary quadratic fields, knowing that ρ̃ is odd allows us to distinguish
the character (which is why we define ε to be even), but we do not know how to distinguish between the two
ones for real quadratic fields.

3. Relation with Ribet’s approach

Suppose K/Q is imaginary quadratic (so d > 0). Let L = Q(
√
−d,
√
−2). The curve E, its Galois

conjugates and the isogenies are all defined over L. Let {σd, σ2} be the generators for Gal(L/Q) given by
σd(
√
−d) = −

√
−d, σd(

√
−2) =

√
−2 and σ2(

√
−d) =

√
−d, σ2(

√
−2) = −

√
−2.

Since E does not have complex multiplication, one can attach to E a 2-cocycle. For each τ ∈ Gal(L/Q)

let φτ : Eτ → E be an isogeny, and define c(τ, τ ′) = φτ ◦ τφτ ′ ◦φ−1
ττ ′ , where τφτ ′ : (Eτ

′
)τ → Eτ is the isogeny

obtained by applying τ to φτ ′ . All the endomorphisms considered are in End(E) ⊗ Q (hence the inverse
means the dual isogeny divided by its degree).

The cocycle c does not depend on the choice of isogenies (up to a coboundary). In our case, taking
φ1, φσ2

as the identity, and φσd
, φσdσ2

as the 2-isogeny described before, the values of c are given in Table 3.1
(which matches Pyla’s example in page 49 of her Ph.D. thesis). Let Inf(c) ∈ H2(GalQ,Q×) be the image

c(τ, τ ′) 1 σ2 σd σ2σd
1 1 1 1 1
σ2 1 1 −1 −1
σd 1 1 −2 −2
σ2σd 1 1 2 2

Table 3.1. Table

of c under the inflation morphism. By a result of Quer (Proposition 2.1 of ([Que01]) Inf(c) belongs to the

2-torsion subgroup and has trivial image in H2(GalQ,Q
×

) (as the latter group is trivial by a result of Tate).
In particular, to trivialize the cocycle, we need to enlarge the coefficient field (and our field L).

The cocycle Inf(c) can be decomposed into a sign part, and a “positive part” (see Section 3 of [Que00]).
The sign part corresponds to the quaternion algebra (−d, 2) (see Theorem 3.1 of [Que01]). The splitting
character is then ramified at all primes where such algebra ramifies, namely the primes in Q3 ∪Q5 (as our
character ε).

Let M be the extension of K corresponding (via class field theory) to χ. Then a splitting map is obtained
over the Galois closure of M/Q. Note that such Galois closure is obtained by composing M with the extension
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corresponding to the character τχ, which equals N = M(
√
−2). Consider the following three cases (were in

all of them N denotes the total extension).

3.1. Case Q5 = Q7 = ∅. Following Remark 4, we can take the quadratic character ε to correspond precisely
to the real quadratic field Q(

√
2d). The character χ has order 4 corresponding to a degree 4 extension M

of K (which equals N). The third condition of Theorem 2.1 implies that the character τχ is contained in
the compositum of M and Q(

√
−2). But K(

√
−2) equals the fixed field of χ2, so M/Q is a Galois extension

with Galois group isomorphic to D4 (the dihedral group with 8 elements). In this case, we can even give an
explicit construction of M . For each odd prime p dividing d, the hypothesis implies that p splits in Q(

√
−2)

(which has class number one).
Let p be one of the two ideals appearing in the factorization of p over Q(

√
−2) and let αp be a generator.

Let α2 =
√
−2 and let T be the quadratic extension of Q(

√
−2) obtained by adding the element γ =√∏

p|d αp · α2. The Galois closure of T is the compositum of T with the quadratic extension T̃ of Q(
√
−2)

obtained by adding the element γ̃ =
√∏

p|d αp · α2 (see Figure 1). Such field contains the subextension

M

2 2

2

T̃ T Q(
√
−d,
√
−2)

Q(
√
−2) Q(

√
−d) Q(

√
2d)

Q

Figure 1. Field extension diagram

Q(γγ̃) = Q(
√

2d) (recall that in this case the two different choices of ε correspond to the quadratic fields
Q(
√
−2) and Q(

√
−2d)). The Galois group Gal(M/Q) ' D4 = 〈σ, τ : σ4 = τ2 = 1, τσ = σ3τ〉. The

quadratic extension Q(
√
−d) corresponds to the fixed field of σ (a normal subgroup of order 4). As explained

in [Pyl04], in this case σ and τ restrict to our σ2 and σd respectively, and a trivializing cocycle is given by
the map β : D4 → Q̄× given in Table 3.2. Note that the ambiguity in the choice of M (the choice of an ideal

g 1 σ σ2 σ3 τ στ σ2τ σ3τ

β(g) 1
√
−1 −1 −

√
−1

√
−2

√
2 −

√
−2 −

√
2

Table 3.2. Trivializing cocycle case 3.1

above p for each p | d) corresponds to the fact that while constructing the character χ we took square roots.
Different choices of the root give different fields M , and they differ by quadratic twists corresponding to the
quadratic unramified extensions of K.

An easy computation proves that the Nebentypus attached to β matches ε(σ) (see [Pyl04] page 52 for the
details).

3.2. Case Q5 = ∅ but Q7 6= ∅. As in the previous case, the character χ corresponds to a degree 4 extension
M of K and ε to a real quadratic extension of Q; let

√
n denote a generator for it.

The third condition of Theorem 2.1 implies that N = M(
√
−2), so N/Q is a Galois extension of degree

16. Furthermore, N contains the fields Q(
√
−d), Q(

√
−2) and Q(

√
n). This implies that Gal(N/Q) is

isomorphic to the central product of D4 × Z/4 (also called the Pauli group url), equal to the direct product
13
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of the two groups, identifying the order two rotation with the order two element of Z/4, i.e. it can be given
by Gal(N/Q) ' 〈σ, τ µ : σ4 = τ2 = 1, τσ = σ3τ, σ2 = µ2, σµ = µσ, τµ = µτ〉.

The group D4 1 Z/4 has many automorphisms, hence we can make some choices on the presentation to
identify fixed fields with subgroups. The extension N/K ' Z/2 × Z/4, and we can assume it corresponds
to the fixed field by 〈σ, µ〉 (all other ones are related by outer automorphisms to it). Then M = N 〈σµ〉,

K = N 〈σ,µ〉, and Q(
√
−d,
√
n) = N 〈σµ,σ

2〉. Figure 2 shows the field diagram extensions.

N

2 2

Q〈σµ〉

2

χ 4

Q〈σ
2〉

22

Q〈σµ,σ
2〉

2

2

Q〈µ〉

2

Q〈σ,µ〉

2

Q(
√
n)

2

Q(
√
−2)

2

Q

Figure 2. Field extension diagram

In particular, the following holds:

• σ(
√
−d) =

√
−d = µ(

√
−d) and τ(

√
−d) = −

√
−d (hence τ can be taken as the generator for

Gal(K/Q)),
• The condition τχ = χψ−2 implies that τχ(σ) = χ(τστ) = χ(σ3) = χ(σ)ψ−2(σ) hence ψ−2(σ) = −1.

In particular, σ(
√
−2) = −

√
−2 hence µ(

√
−2) =

√
−2. Since the choice of the reflection is not

unique, we can (and will) assume that τ(
√
−2) = −

√
−2.

Then σ and τ restrict to our σ2 and σd while µ restricts to the identity element in L. A map β :
Gal(N/Q)→ Q̄× trivializing the cocycle Inf(c) is given in Table 3.3. In fact, the map β satisfies that

g 1 σ σ2 σ3 τ µ στ σ2τ σ3τ σµ σ2µ σ3µ µτ σµτ σ2µτ σ3µτ

β(g) 1
√
−1 −1 −

√
−1

√
−2

√
−1

√
2 −

√
−2 −

√
2 −1 −

√
−1 1 −

√
2
√
−2

√
2 −

√
−2

Table 3.3. Trivializing cocycle case 3.2

β(σiτ jµk) = β̃(σiτ j)(
√
−1)k,

where β̃ equals the trivializing cocycle of the previous case.

3.3. Case Q5 6= ∅. The character ε has order 4 in this case, and χ order 8, so the extension N/Q order 32.
The group Gal(N/Q) contains a quotient isomorphic to Z/4×Z/2 ×Z/2 hence a little inspection between all
groups of order 32 with such quotient shows that Gal(N/Q) is isomorphic to the central product of D4×Z/8
(url), which can be presented as 〈σ, τ, µ : σ4 = τ2 = µ8 = 1, στ = τσ3, µσ = σµ, τµ = µτ〉.

The following facts hold: N 〈σµ
2〉 = M , N 〈µ,σ〉 = K and Gal(N/K) = 〈σ, µ〉 ' Z/8 × Z/2. N 〈σ

2〉 =

Qε(
√
−d,
√
−2) and N 〈µ

2〉 corresponds to the compositum of the three quadratic extensions. Figure 2 shows
the field diagram extensions. Regarding restrictions to L, we have the following:

• σ(
√
−d) =

√
−d, µ(

√
−d) =

√
−d and τ(

√
−d) = −

√
−d.
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N

2 2

Q〈σµ
2〉

2

χ 8

Q〈σ
2〉

22

Q〈σµ
2,σ2〉

24

Q〈µ
2〉

4

Q〈σ,µ〉

2

Qε

4

Q(
√
−2)

2

Q

Figure 3. Field extension diagram

• σµ2(
√
−2) = −

√
−2 hence σ(

√
−2) = −

√
−2 and the equality τχ = χψ−2 implies that µ(

√
−2) =√

−2 as in the previous case. Note that the choice of the reflection is not unique, hence we can
assume that τ(

√
−2) = −

√
−2.

With these choices, the restriction of σ and τ to L match σ2 and σd respectively, while µ restricts to the

identity. A map β : Gal(N/Q)→ Q× that trivializes the cocycle Inf(c) is given by the formula:

β(σiτ jµk) = β̃(σiτ j)ζk8 ,

for ζ8 an primitive eighth root of unity, 0 ≤ i ≤ 3, 0 ≤ j ≤ 1, 0 ≤ k ≤ 3 and β̃ as in Table 3.2.

4. Solving equation (1)

During this section we will assume that K/Q is imaginary quadratic. Theorem 2.3 implies that the
representation ρ̃p equals that of a newform f in S2(N, ε) for a precise level N . Suppose that p - d (so that
it does not ramify in K/Q). If we can assure that ρ̃p has absolutely irreducible residual image, Lemma 1.2
implies that the form f satisfies the lowering the level hypothesis at primes q dividing NE but not dividing p.
The finite hypothesis (to remove p also from the level) at p for primes p | p follows from the same argument
given in [Ell04] (page 783) under our assumption that p does not ramify in K/Q. Then by Ribet’s lowering
the level result (see [Rib91]) there exists an eigenform g ∈ S2(n, ε) where

(19) n = 2e ·
∏
q∈Q3

q ·
∏

q∈Q1∪Q5∪Q7

q2,

where e is one of:

e =


1, 8 if 2 splits,

8 if 2 is inert,

6, 7 if 2 ramifies but 2 - d,
8, 9 if 2 | d.

such that ρE,p ≡ ρg,K,p⊗χ−1 (mod p), where ρg,K,p is the restriction of the representation ρg,p to the Galois
group GalQ. Let us state two results on the big image hypothesis needed in Ribet’s lowering the level result.

Theorem 4.1. If (A,B,C) is a non-primitive solution such that C is supported at primes dividing 2 and
3 then there exists a bound NK such that if p > NK the representation ρEA,B ,p has absolutely irreducible
image.
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Proof. The proof is similar to [DU09] (case (ii)). Recall that E has at most multiplicative reduction at
primes dividing 3. The case C = ±1 (a unit) corresponds to the trivial solutions (±1, 0,±1). Suppose then
that C = 2α3β . Recall that if 3 is ramified in K/Q then β = 0 by Lemma 1.3. The curve E has conductor
2a ·3b, where a ≤ 12, b ≤ 1 and Nρ̃ = 2s ·3 ·

∏
q∈Q3

q ·
∏
q∈Q1∪Q5∪Q7

q2, where s ≤ 9 by Theorem 2.3. Suppose
that the residual image of ρ̃p is reducible, i.e.

(20) ρ̃p
s.s ' ν ⊕ εν−1χcyc,

where χcyc denotes the cyclotomic character. If 3 | C, it is unramified in K/Q hence it does not divide the
conductor of ε and it cannot divide the conductor of ν either.

Let d̃ = d
2v2(d) (i.e. the prime to 2 part of d), hence cond(ν) | 24 · d̃ and if a prime q in Q3 divides the

conductor of ν, νq = εq (quadratic). Let ` be a prime such that ` ≡ 1 (mod 16d̃); in particular, ` splits

in K/Q, say ` = ll. Then ρ̃p(Frob`) = alχ(l) is an integer (as the form has an inner twist) and satisfies

|al| ≤ 2
√
`, but (20) and our assumption on ` implies that it is congruent to `+ 1, so p | `+ 1−alχ(l) (which

is non-zero), hence for p > 2
√
`+ `+ 1 no such reducible representation can exist. �

Remark 8. The constant NK depends on the first prime congruent to 1 modulo 16d̃. According to Dirichlet’s
theorem, 1/ϕ(16d̃)-th of the primes are congruent to 1 modulo 16d̃, but giving a precise bound on the first
such prime is very ineffective for computational purposes.

The previous result is needed to discard solutions that might correspond to elliptic curves with complex
multiplication.

Remark 9. While working with equation (1), the value C of a primitive solution could be even only when
d ≡ 7 (mod 8) (if p > 3). In such a case, the proof of Lemma 1.4 implies that the level valuation of the
newform g at the prime 2 equals 1 and ε is unramified at 2, hence the form g has a prime of multiplicative
reduction. In particular, it cannot correspond to a form with complex multiplication and we are led to
consider the case when C happens to be divisible only by the prime 3. The newform g obtained after
applying Ribet’s lowering the level result to the curve E must be in the raising the level hypothesis, so
N(ε−1(3)(3 + 1)2 − a3(g)2) must be divisible by p.

Assume on the contrary that there exists an odd prime p dividing C and not dividing 3. By Lemma 1.3
we know that primes dividing ∆(E) are not ramified in K/Q and by Lemma 1.5 they have multiplicative
reduction. In particular E does not have complex multiplication and we are in the hypothesis of Ellenberg’s
big image result ([Ell04, Theorem 3.14]).

Theorem 4.2 (Ellenberg). Given d, if the curve E is a Q-curve and does not have complex multiplication,
there exists an integer Nd such that the projective image of the residual representation of ρE,p is surjective
for all primes p of norm greater than Nd.

In [Ell04] it is explained how to get an explicit bound for Nd. Concretely, let N be a any positive integer,
and χ the character corresponding to K/Q (of conductor f). Let F be a Petersson-orthogonal basis for
S2(Γ0(N)). Define

(am, Lχ)N =
∑
f∈F

am(f)L(f ⊗ χ, 1).

If M | N , define (am, Lχ)MN as the contribution from the old forms of level M . Then Ellenberg’s result states
that for any prime p for which

(21) (a1, Lχ)p−new
p2 = (a1, Lχ)p2 − p(p2 − 1)−1(a1 − p−1χ(p)ap, Lχ)p

is non-zero, the residual image is large for p. Then one is left to bound the previous contributions. The main
term comes from the first term. In [Ell05] (Theorem 1) a formula to compute (a1, Lχ)p2 is given, written as

(a1, Lχ)p2 = 4πe−2π/σNlog(N) − E(3) + E3 − E2 − E1 + (a1, B(σN log(N))),

where σ is taken to be q2

2π (as in [DU09]) and N = p2. The main contribution comes from the first term
(close to 4π) and in Ellenberg’s article a bound for all other terms is given. In [DU09] (see the proof of
Lemma 8, which we followed closely) is shown how to use the bounds to compute an explicit value of Nd.
In particular (following their notation) to bound E(3) one splits the sum depending on whether c ≤ p4 or
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c > p4 (we remark this as there is a typo in such article since c should be p2c). All given bounds decrease
with p, hence evaluating them at a good candidate is enough to get the result (for all greater values). Taking
the bounds corresponding to the contributions of the other terms of (21) exactly as in Lemma 3.13 [Ell04]
allows to make Nd explicit.

Our examples cover only the cases d = 1, 2, 3, 5, 6, 7 of conductors 4, 8, 3, 20, 24, 7 respectively.

Proposition 4.3. The bound Nd in Ellenberg’s result can be taken as: N2 = 353, N3 = 137, N5 = 439,
N6 = 569 and N7 = 137.

Proof. Follows from the previous discussion and an implementation of the bounds in [DU09] for a general
value of f (implemented in Pari/GP [PAR19]). �

Remark 10. The previous bound can be improved by a finite computation for the smaller values of p as
follows: if there exists a newform f ∈ S2(Γ0(d′p2)), where d′ | d (recall that K = Q(

√
−d)) satisfying one of

• d′ = d, wpf = f and wdf = −d or
• d′ < d, wpf = f ,

and such that L(f, χ) is non-zero then Theorem 4.2 holds for p. In [Kou20, Proposition 5.4] it is proven that
N3 = 11 via searching for such an f for all small values of p. Running the same script for the other fields
proves that Nd = 11 in all other cases as well.

If p > max{Nd, NK}, we can apply Ribet’s lowering the level result, and the curve E will be congruent
modulo p to a form g ∈ S2(n, ε) with n as in (19). We compute the space of such forms and try to discard
all forms in such space. First we discard all forms with complex multiplication (Theorem 4.1 implies the
curve has a multiplicative prime and then Ellenberg’s result implies the projective image is surjective, hence
it cannot be congruent to a form with complex multiplication, whose image is contained in the normalizer
of a non-split Cartan group) and we try to discard the remaining ones using Mazur’s trick (see Lemma 7.2
of [cS18]).

Proposition 4.4 (Mazur’s trick). Let g ∈ S(n, ε) be such that ρE,p ⊗ χ ≡ ρg,K,p (mod p). Let q 6= p be a
rational prime with q - n. Let

B(q, g) =


N(aq(E)χ(q)− aq(g)) if A4 + dB2 6≡ 0 (mod q)and

(
−d
q

)
= 1,

N(aq(g)2 − aq(E)χ(q)− 2qε(q)) if A4 + dB2 6≡ 0 (mod q)and
(
−d
q

)
= −1,

N(ε−1(q)(q + 1)2 − aq(g)2) if A4 + dB2 ≡ 0 (mod q).

Then p | B(q, f).

Proof. The first case corresponds to a split prime (in such case the decomposition groups over Q and over
K are the same), the second corresponds to an inert prime (where the formula is well known) and the last
one corresponds to a case of “lowering the level”, were the formula corresponds to Ribet’s condition. �

Then we compute some values of

C(q, g) =
∏

(A,B)∈F2
q

(A,B)6=(0,0)

B(q, g),

and compute the set of common prime divisors, obtaining a bound for p. At last, if some form passes both
checks, we compare the “local type” of it and that of the representation ρE,p, knowing that two congruent
forms must have the same restriction to inertia (modulo p). In most cases this “tests” are enough to discard
all candidates g.

4.1. Some cases of (1). In this section we apply the previous results to solve some cases of equation (1)
(and provide references to the cases studied before).

4.1.1. The equation x4 + dy2 = zp, with d = 1, 2, 3. These cases were considered in the articles [Ell04],
[BEN10] and [DU09].
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4.1.2. The equation x4 + 5y2 = zp. In this case ε is a character of order 4 and conductor 4 · 5, hence χ has
order 8. The form g attached to a solution lies in one of the spaces S2(26 · 52, ε) or S2(27 · 52, ε).

The space S2(26 · 52, ε) has 22 conjugacy classes, five of them with CM while the space S2(27 · 52, ε)
has 12 conjugacy classes, none of them with CM. Computing C(q, g) for q = 7, 11, 13 we can discard all
forms without CM in both spaces for p > 17. If C is divisible by a prime greater than 3 then Ellenberg’s
result implies that our form cannot have CM (discarding the remaining ones). Clearly C cannot be odd, as
otherwise looking modulo 8, C ≡ 6 (mod 8) (hence is not a p-th power). If C is a power of 3, then the CM
forms should satisfy the raising the level hypothesis, in particular p | N(16ε−1(3)− a3(g)2), which does not
occur if p > 13.

Theorem 4.5. Let p > 273 be a prime number. Then there are no non-trivial solutions of the equation

x4 + 5y2 = zp.

Proof. The prime ` = 241 can be used in the proof of Theorem 4.1, giving the bound NK = 273. Since
N5 = 11 (by Proposition 4.3 and Remark 10) the above argument gives the result. �

4.1.3. The equation x4 + 6y2 = zp. In this case ε is a character of conductor 4 · 3 and order 2 whereas χ has
order 4. The form g attached to a non-trivial solution lies in one of S2(28 · 3, ε) or S2(29 · 3, ε). Note that if
(A,B,C) is a primitive solution, C is prime to 6 hence we are always in Ellenberg’s hypothesis (namely C
is divisible by a prime greater than 3).

The space S2(28 · 3, ε) has 10 conjugacy classes. Six of them have CM. An easy computation of C(5, g)
shows that we can discard the four forms without CM for p > 7.

The space S2(29 · 3, ε) has 13 conjugacy classes and three of them have CM. Mazur’s trick for q = 13
allows us to discard all the non-CM forms for p > 383. Computing also C(23, g), C(29, g) and C(31, g) we
can decrease the bound so the result still works for p > 19. Notice that in this case there exists a near
solution, like

114 + 6 · 192 = 75

hence a strong version would at most hold for p ≥ 7 (although we did not try to reach such a small bound).

Theorem 4.6. Let p > 19 be a prime number. Then there are no non-trivial solutions of the equation

x4 + 6y2 = zp.

Proof. Note that we do not have to use Theorem 4.1 because d is already divisible by 6 hence gcd(6, C) = 1.
Since N6 = 11 (by Proposition 4.3 and Remark 10) the result follows. �

4.1.4. The equation x4 + 7y2 = zp. The character ε is trivial while the character χ is the quadratic even
character of conductor 7 · 8. The newform g attached to a solution has trivial Nebentypus and (by Theo-
rem 2.3) level 2 · 72 or 28 · 72. Before discarding forms, note that any primitive solution corresponds to a
value of C prime to 3 (as 3 | x4 + 7y2 if and only if 3 | x and 3 | y). Remark 9 imples that C cannot be even,
hence the curve E contains a prime of multiplicative reduction (so Ellenberg’s result applies).

Let us give two different ways to discard the forms in the first space. If g ∈ S2(Γ0(2 · 72)) is a newform
(candidate for a solution) its base change to K gives a Bianchi modular form whose twist by χ−1 must

correspond to a Bianchi modular form of level ( 1+
√
−7

2 )6 ·( 1−
√
−7

2 ). Such space can easily be computed (using
Cremona’s algorithm [Cre84], available at https://github.com/JohnCremona/bianchi-progs/releases/
tag/v20200713) the result being also available at the lmfdb. There are two forms whose level has norm 128,

given by 2.0.7.1-128.4 and 2.0.7.1-128.5, whose level equals ( 1+
√
−7

2 )3( 1−
√
−7

2 )4 and its Galois conjugate, so
none comes from a solution of our equation.

The space S2(Γ0(2 · 72)) has 2 conjugacy classes, one of them has rational coefficients (corresponding to
an elliptic curve) and the other with coefficients in the quadratic extension corresponding to the polynomial
x2 − 2x − 7. Mazur’s trick with q = 3 discards the rational form for p > 2. The second form cannot be
discarded using Mazur’s trick, as it corresponds to an elliptic curve matching our requirements. Since it
does not appear in the space of Bianchi modular forms, its local type at 7 must not be the correct one (so
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the twist by χ−1 of its base change to K is ramified at
√
−7). If we compute it with magma, it shows that

the local component is supercuspidal, but induced from an order 8 character of the unramified quadratic
extension of Q7, hence it does not match that of our elliptic curve (induced from an order 4 character of the
same extension).

The space S2(Γ0(28 · 72)) has 98 conjugacy classes, 17 of them being rational. After eliminating the 30
forms with CM, we can discard all of the rational forms using the Mazur’s trick with q = 3. The remainders
forms are harder to eliminate but it can be done for p > 53 by computing C(q, g) for q = 3, 5, 17, 31.

Theorem 4.7. Let p > 137 be a prime number. Then there are no non-trivial solutions of the equation

x4 + 7y2 = zp.

Proof. The result follows taking ` = 113 in Theorem 4.1, using the bound N7 = 11 (by Proposition 4.3) and
the previous analysis. �

5. The equation (3): properties of the curve Ẽ

The construction of the Frey curve in [BC12] does not show explicitly the 3-isogeny. Knowing that our
curve will have a 3-torsion point, it makes sense to start with the parametrized family of elliptic curves
having a 3-torsion point as given by Kubert in [Kub76, Table 1]: such curves have a minimal model of the
form:

E : y2 + a1xy + a3y = x3,

where P = (0, 0) is a point of order 3. The curve E has discriminant a3
3(a3

1 − 27a3). Its 3-isogenous curve
has equation

y2 + a1xy + a3y = x3 − 5a1a3x− a3
1a3 − 7a2

3,

with discriminant a3(a3
1 − 27a3)3. To a solution (A,B,C) of (3), we attach the elliptic curve:

(22) Ẽ(A,B) : y2 + 6B
√
−dxy − 4d(A+B3

√
−d)y = x3.

The discriminant of Ẽ equals −2833d4Cp(A+B3
√
−d)2 and its j-invariant 2433B3

√
−d(4A−5B3

√
−d)3

Cp(A+B3
√
−d)2

.

The quadratic twist by
√
−3 of Ẽ(A,B) corresponds to the equation

(23) y2 + 6B
√
−dxy + 12d(−A+B3

√
−d)y = x3 + 36B2dx2+

(144ABd
√
−d+ 144B4d2)x+ 288AB3d2

√
−d+ 144B6d3 − 144A2d2.

The quotient Ẽ(A,B) by 〈(0, 0)〉 (a curve 3-isogenous to Ẽ(A,B)) has equation

(24) y2 + 6B
√
−dxy − 4d(A+B3

√
−d)y = x3+

(−120B4d2 + 120ABd
√
−d)x+ 976B6d3 − 1088AB3d2

√
−d− 112A2d2.

Via the usual change of variables (making a1 = a3 = a2 = 0) it is easy to check that both (23) and (24)
translate to the curve

y2 = x3 + (108ABd
√
−d− 135B4d2)x− 756AB3d2

√
−d+ 594B6d3 − 108A2d2.

In particular, the Galois conjugate of Ẽ(A,B) is isomorphic to the quadratic twist by
√
−3 of the quotient

Ẽ(A,B))/〈(0, 0)〉, hence a Q-curve.

As in section (1), there are some basic results that Ẽ(A,B) must satisfy. Again, we will denote Ẽ = Ẽ(A,B).
Lemma (1.1) holds exactly the same, while we have to modified a little the others, namely:

Lemma 5.1. Let q be a prime of K such that q - 6d. Then vq(∆(Ẽ)) ≡ 0 (mod p).

Proof. Clear from the value of ∆(Ẽ). �

It is also clear that if q | ∆(Ẽ) and q - 6d then Ẽ has multiplicative reduction at q.
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Lemma 5.2. Suppose that p is an odd rational prime ramified at K/Q and let p denote the (unique) prime

in K dividing p. Then vp(∆(Ẽ)) = 8 + 3vp(3).

Proof. Since p is ramified, p |
√
−d, and since (A,B,C) is a primitive solution, p - A. Then, using that

p - Cp(A+B3
√
−d) and that vp(d) = 2 the result follows. �

Remark 11. The curve Ẽ has bad additive reduction at all odd primes ramifying in K/Q. However, over the

extension K( 6
√
−d) it attains good reduction (via the usual change of coordinates (x, y)→ ( 3

√
(−d)2x, dy)).

If q | d is such an odd prime, let q = 〈q,
√
−d〉 denote the ideal in K dividing it. If q ≡ 1 (mod 3), the

extension Kq( 6
√
−d)/Kq is an abelian extension, hence the local type of the Weil-Deligne representation at

q is that of a principal series (given by an order 3 character), while if q ≡ 2 (mod 3) the curve attains good
reduction over a non-abelian extension, hence it local type matches that of a supercuspidal representation
(obtained inducing an order 3 character from the quadratic unramified extension Kq(ζ3)/Kq).

Let NẼ denote the conductor of Ẽ and suppose that p > 3.

Lemma 5.3. Let q be a prime ideal of K dividing 2. Then:

(1) If 2 is inert in K/Q then Ẽ has type IV∗ at q with vq(NẼ) = 2.
(2) If 2 is split in K/Q then vq(NẼ) = 1, 2 at both primes above 2.

(3) If 2 ramified in K/Q but 2 - d then Ẽ has reduction type IV at q with vq(NẼ) = 2.

(4) If 2 | d then Ẽ has good reduction at q.

Proof. Consider each case separately:

• If 2 is inert, 2 - C (since C ≡ A2 +3B6 which is never divisible by 8 which contradicts our assumption
p > 3). Clearly 2 | b2, 4 | a6, 8 | b8 but since 2 - (A + B3

√
−d) the polynomial y2 + a3

4 y − a6 has
distinct roots, so Step 8 of Tate’s algorithm implies the reduction is of type IV∗ and the conductor
equals v2(∆)− 6 = 2.

• Suppose that 2 splits and let q be a prime dividing 2. The primitive hypothesis implies that either
one of A, B is even and the other is odd or both are odd. In the first case, vp(a1) ≥ 1 and vp(a3) = 2
hence we are again in Step 8 of Tate’s algorithm (type IV∗) hence the conductor exponent is 2. On
the other hand, if both A and B are odd, the model is not minimal, as vp(a1) = 1 and vp(a3) ≥ 3; its

minimal model has ã1 a unit (hence b̃2 a unit) and the curve has type In. In particular, its conductor
exponent equals 1.

• Suppose 2 ramifies but 2 - d and let π be a local uniformizer. The hypothesis (A,B,C) primitive
implies that vπ(A+B3

√
−d) = 0 (i.e. one of A or B is even but not both). The model is not minimal;

the change of variables y → π3y, x → π2x gives a minimal model with valuations vπ(ã1) ≥ 1 and

vπ(ã3) = 1. In particular, vπ(b̃6) = 2 so we are in Step 5 of Tate’s algorithm which implies that the

reduction has type IV and its conductor equals vπ(∆̃)− 2 = 2.
• If 2 | d then 2 - A (as the solution is primitive), so the change of variables x→ 22x, y → 23y gives a

non-singular curve.

�

In particular, C can be even only if 2 splits in K/Q. Suppose that p ≥ 5.

Lemma 5.4. Let q be a prime ideal of K dividing 3.

(1) If 3 is inert in K then v3(NẼ) ∈ {2, 3}.
(2) If 3 = q3q̄3 in K then vq3

(NẼ) = vq̄3
(NẼ) ∈ {2, 3} or vq3

(NẼ) = 2 and vq̄3
(NẼ) = 1 .

(3) If 3 ramifies in K then vq(NẼ) = 8.

Proof. Let’s consider the different cases:

• If 3 is inert, the primitive hypothesis implies that C is not divisible by 3 and v3(a3) = 0 hence the
singular point is not at the origin but it goes to the origin under the translation (x, y)→ (x−a6

3, y+a3)
(we are using that in the residue field raising to the eight power is the constant map). Let a1 and

a3 denote the corresponding coefficients of Ẽ (to easy notation). Then the model becomes

(25) y2 + a1xy + (3a3 − a1a
6
3)y = x3 − 3a6

3x
2 − a1a3x+ (a1a

7
3 − a18

3 − 2a2
3).
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Let ãi denote such coefficients. If 3 | B then v3(a1) ≥ 2 so v3(ã6) = 1 hence we are in Step 3 of
Tate’s algorithm, hence the curve has type II and the conductor exponent is 3. If 3 - B, v3(a1) = 1.
If 9 - a1a

7
3 − a18

3 − 2a2
3 we are again in case II (with exponent 3). Otherwise the following equality

holds:
a1

3
≡ a3

3

(
a16

3 + 2

3

)
(mod 3).

The coefficient b̃2 equals −4a2
1a

18
3 + 6a1a

13
3 + 12a24

3 −3a8
3. Using the above equation a simple compu-

tation shows its valuation at 3 equals 2 hence the reduction type is III and the conductor exponent
equals 2.

• If 3 splits in K, let q3 be a prime dividing it. If 3 | A then 3 - B hence vq3
(a1) = 1 and vq3

(a3) = 0.
This situation matches the previous case and a similar computation proves that the type is II or
III and the exponent valuation 3 or 2 at both q and q̄. If 3 | B then 3 - A hence vq3

(a1) ≥ 2 and
vq3(a3) = 0 and as in the previous case this corresponds to type II with conductor exponent 3.

Suppose then that 3 - AB. Then one of the primes (say q3) divides A + B3
√
−d while the other

does not. Since Cp = (A + B3
√
−d)(A− B3

√
−d) the assumption p ≥ 5 implies that (without loss

of generality) vq(A+B3
√
−d) > 3 so q divides the denominator of the j-invariant. Furthermore, the

model is not minimal, and under the usual change of variables (sending (x, y)→ (32x, 33y) we get a
curve with multiplicative reduction, hence the discriminant exponent equals 1. At the prime q3 the
curve is a quadratic twist (by the character of conductor 3) of a curve with multiplicative reduction,
hence the statement.

• If 3 ramifies in K then 3 | d and the primitive hypothesis implies that 3 - A. Let p denote the prime
ideal dividing 3 in K. Then vp(a1) ≥ 2 and vp(a3) = 2 hence we are in Step 8 of Tate’s algorithm,
the reduction type is IV∗ and the conductor exponent equals 14− 6 = 8.

�

Remark 12. If 3 is inert in K/Q and the curve has type III reduction (the case of conductor valuation 2),

the change of variables (x, y) → ( 4
√

3x,
√

3y) in equation (25) gives a curve with good reduction. Since the
fourth roots of unity are in K3, the local type of the Weil-Deligne representation is that of a principal series
(whose inertia is given by an order 4 character).

Lemma 5.5. Let q be an odd prime ramified in K/Q and not dividing 3. Then E has reduction type IV∗ at
q and vq(NẼ) = 2.

Proof. Since (A,B,C) is a primitive solution, if q denotes the norm of q, then q - A so vq(a3) = 2 and
vq(b6) = 4. Also, vq(b2) ≥ 2 which implies that we are in Step 8 of Tate’s algorithm so the result follows
from Lemma 5.2. �

6. Constructing the Hecke character for a prime t ≡ 3 (mod 4)

Let K = Q(
√
−d) with d > 0 (square-free). The computation is similar to the previous case. Define the

following sets:

• Q++ = {p | d, p - 2t, p ≡ � (mod 4), p ≡ � (mod t)}.
• Q+− = {p | d, p - 2t, p ≡ � (mod 4), p 6≡ � (mod t)}.
• Q−+ = {p | d, p - 2t, p 6≡ � (mod 4), p ≡ � (mod t)}.
• Q−− = {p | d, p - 2t, p 6≡ � (mod 4), p 6≡ � (mod t)}.

We have the following elementary result (that will clarify later computations).

Lemma 6.1. The prime t splits in K when one of the following two conditions are satisfied:

• the value #Q+− + #Q−− + v2(d) is odd and t ≡ 3 (mod 8) or,
• the value #Q+− + #Q−− is odd and t ≡ 7 (mod 8).

Similarly, it is inert when the opposite parity holds.

Proof. Follows easily from quadratic reciprocity. �

The character ε: Define an even character ε : IQ → C× ramified at the primes in Q++, Q−+, Q+− and
eventually at 2. Its local components εp are defined as follows:
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• For primes p ∈ Q++ ∪Q−+, the character εp : Z×p → Q× is quadratic, i.e, εp = δp.

• For primes p ∈ Q+−, the character εp : Z×p → Q× is any character of order 2v2(p−1).

• For p = t define εt =

{
δ

#Q+−+#Q−−+vt(d)+v2(d)+1
t if t ≡ 3 (mod 8),

δ
#Q+−+#Q−−+vt(d)+1
t if t ≡ 7 (mod 8).

By Lemma 6.1 εt is trivial if t splits in K and equals δt if t is inert in K.

• For p = 2 define ε2 =

{
δ

#Q−++#Q−−+vt(d)+v2(d)+1
−1 if t ≡ 3 (mod 8),

δ
#Q−++#Q−−+vt(d)+1
−1 if t ≡ 7 (mod 8).

• At all other primes, εp is trivial.

An easy computation from the above definitions shows that∏
p

εp(−1)ε∞(−1) = (−1)#Q−++#Q+−ε2(−1)εt(−1) = 1.

Theorem 6.2. There exists a Hecke character χ : GalK → Q such that:

(1) χ2 = ε as characters of GalK ,
(2) χ is unramified at primes not dividing 2t

∏
p∈Q+−∪Q−− p,

(3) τχ = χ · ψ−t as characters of GalK .

Proof. Once again, we follow the general strategy to define the local components of the character χ at primes
not dividing 2t:

• If p is an odd unramified prime, let χp be the trivial character. The same applies to primes in K
dividing the primes in Q++ ∪Q−+.

• If p is an odd prime of norm p ∈ Q−−, let χp correspond to the quadratic character δp (identifying
(Op/p)× ' (Z/p)×).

• If p is an odd prime of norm p ∈ Q+−, let χp be the character εpδp (identifying (Op/p)× ' (Z/p)×).
• Let p be a prime (take one) in K dividing t and define χp by

(1) If t ramifies in K, χt = εt.
(2) If t splits in K, χt = δt and χp is the trivial character.

(3) If t is inert in K, χt is an order 4 character (hence its restriction to F×t is trivial).
• At primes dividing 2, define the character as follows:

(1) If 2 is not ramified in K/Q it is trivial.
(2) If 2 ramifies in K/Q but 2 - d, it equals the character of conductor 2 sending

√
−d to −1.

(3) If 2 | d and t ≡ 3 (mod 8), it equals the order four character of conductor p5
2 sending 1 +

√
−d

to
√
−1, −1 to −1 and 5 to −1. In particular, its restriction to Z×2 equals δ−2.

(4) If 2 | d and t ≡ 7 (mod 8), it equals the order four character of conductor p5
2 sending 1 +

√
−d

to
√
−1, −1 to 1 and 5 to −1. In particular, its restriction to Z×2 equals δ2.

Then the local components of χ satisfy the theorem conditions.

(1) Is proven in the general strategy for primes not diving 2t. For primes dividing 2 it is clear because
all the characters have at most order 2. For primes dividing t, the first two cases are trivial, as both
χ2
t and ε ◦N are trivial. In the inert case, it is enough to check the condition at a generator g of F×t2 ;

χ2
t (g) = −1 (as χt has order 4), and εt(N(g)) = −1 because N(g) generates F×t .

(2) The ramification statement is clear from the definition.
(3) For primes p not dividing t the statement is clear since (ψ−t ◦ N)p is trivial, and τχp = χp. As for

the prime t, if it ramifies in K, (ψ−t ◦N)t is trivial while τχt = χt, hence the statement. Otherwise,
the norm map is surjective. If t splits, one of χp matches (ψ−t ◦ N)p and the other one is trivial
(hence the statement). At last, if t is inert, note that χt restricted to F×t is trivial (since p ≡ 3
(mod 4)). Let g be a generator of F×t2 , then τχ(g)χ(g) = χ(N(g)) = 1 and δt(N(g)) = −1 since N(g)

is a generator of F×t . Since χ has order 4, τχ = χ · ψ−t ◦N as claimed.

Extend χ to K× · (
∏

q O
×
q ×C×) by making it trivial in K×, so all the above properties continue to hold.

Compatibility: since all characters have order a power of 2, the compatibility relation at roots of order 3
(if K has one) is trivial. If K = Q(

√
−1), all sets Q±,± are empty and the compatibility at

√
−1 follows
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from two facts: χ̃2(
√
−1) = −1, and the fact that p ≡ 3 (mod 4) implies that

√
−1 6∈ Fp, but it square does,

hence χt(
√
−1) = −1 as well.

To check the compatibility at −1, abusing notation we have

χ(−1) =
∏

p∈Q+−∪Q−−

χp(−1)χp2(−1)χt(−1) = (−1)#Q+−+#Q−−χp2(−1)χt(−1) = 1.

By quadratic reciprocity (see Lemma 6.1), t splits in K (respectively is inert in K) if and only if
(−1)#Q+−+#Q−−δt(2)v2(d) = −1 (respectively 1). In the first case χt(−1) = −1 while in the second it
equals 1 giving the compatibility when d is odd. When 2 | d, the compatibility follows from the fact that
δt(2) = χp2(−1).

At last, when t ramifies in K, by definition χt = εt whose value at −1 equals (−1)#Q+−+#Q−−δt(2)v2(d).
Also χp2

(−1) = δt(2)v2(d) hence the equality.

Extension: We proceed as for t = 2, but equation (12) becomes

χ(q2
i ) = εq(d)

(
χ−1

2 (q)χ−1
t (q)εq(−1)ε2(q)εt(q)δq(2)v2(d)δq(t)

vt(d)
)
·

δq(t)vt(d)δq(2)v2(d)δq

(
−d
q

) ∏
p∈Q±±
p 6=q

δp(q)

 .

If q ≡ 1 (mod 4) (hence a square) the last product is 1 by quadratic reciprocity, while if q ≡ 3 (mod 4)
it equals (−1)#Q−++#Q−− , i.e. it equals δ−1(q)#Q−++#Q−− . We make the following claim (note that the
factor εq(−1) is removed):

(26)
(
χ−1

2 (q)χ−1
t (q)ε2(q)εt(q)δq(2)v2(d)δq(t)

vt(d)
)
δ−1(q)#Q−++#Q−− = δq(t).

Note that δq(2) = δ2(q); for the first factor we have the following equalities:

• χ−1
t (q)εt(q) = δt(q)

1+vt(d) = δq(t)
1+vt(d)δ−1(q)1+vt(d), so χ−1

t (q)εt(q)δq(t)
vt(d) = δq(t)δ−1(q)1+vt(d).

• If t ≡ 3 (mod 8), χ−1
2 (q)δ2(q)v2(d) = δ−1(q)v2(d).

• If t ≡ 7 (mod 8), χ−1
2 (q)δ2(q)v2(d) = 1.

Then the first factor equals δq(t)δ−1(q)1+vt(d)ε2(q) if t ≡ 7 (mod 8) and the same with an extra factor

δ−1(q)v2(d) otherwise so the claim follows from the definition of ε2.
Then we are led to prove that δq(t)εq(−1) = 1, an equality that follows from the definitions (that are

collected in Table 6.1).

q (mod 4) q (mod t) εq(−1) δq(t) q (mod 4) q (mod t) εq(−1) δq(t)

1 � 1 1 3 � −1 −1
1 6� −1 −1 3 6� 1 1

Table 6.1. Table

Finally, by a consequence of an analogous analysis that has been done for the case t = 2, to verify that
τχ = χ · ψ−t ◦N on IK we have to check (following the previous notation) that

χ−1
2 (qi)χ

−1
t (qi)ε2(qi)εt(qi)δqi(2)v2(d)δqi(t)

vt(d)δ−1(qi)
#Q−++#Q−−+1 = δt(qi),

which follows directly from (26) . �

We want to apply the previous result to our curve Ẽ. Let us make some remarks on the conductor of
twisted representation ρẼ,p ⊗χ. Let q be an odd prime ramifying in K/Q not dividing 3. Recall that Ẽ has

additive reduction at all such primes and its local type (by Remark 11) is that of a principal series (given
by a character whose inertial part has order 3) or a supercuspidal representation. Since the inertial part of
χq has order a power of two, it cannot cancel the inertial contribution of ρẼ,p, hence the conductor of the
twisted representation at q is still 2.
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At primes dividing 2, the conductor never decreases (from the definition of χt and the conductor of Ẽ
given in Lemma 5.3). At primes dividing 3 there is a situation where the twisted representation has smaller

conductor than the elliptic curve. It happens precisely when 3 is inert in K/ and Ẽ has conductor valuation
2. In such case, the local type of the Weil-Deligne representation is that of a principal series whose inertia
is given by an order 4 character (by Remark 12). Then twisting by χ3 (also a character whose inertia has
order 4) cancels one of the characters, hence the twisted representation has conductor valuation 1.

Theorem 6.3. Suppose that K/Q is imaginary quadratic. Then the twisted representation ρẼ,p⊗χ descends

to a 2-dimensional representation of Gal(Q/Q) attached to a newform g of weight 2, Nebentypus ε, level N
given by

N = 2a3b
∏
q

qvq(NE) ·
∏

q∈Q±±

q2,

where the product is over odd primes, and q is any prime of K dividing q. The value of a is one of:

a =


2 if 2 is inert,

1, 2 if 2 splits,

4 if 2 ramifies but 2 - d,
8 if 2 | d.

and the value of b is one of

b =


2, 3 if 3 is split,

1, 3 if 3 is inert,

5 if 3 ramifies.

Furthermore, the coefficient field is some quadratic extension of Q(χ).

Proof. The existence of the extension, and its Nebentypus follows the proof of Theorem 2.3. Regarding the
conductor of the representation, recall (by Lemma 5.5) that if q | q is an odd ramified prime ideal not dividing
3, then vq(ρẼ,p) = 2. The same holds for ρẼ,p ⊗ χ (as explained before). Then the conductor formula (18)
implies that the four dimensional representation has conductor with valuation 3 or 4 at such primes, so the
valuation vq(N) = 1, 2. The same argument gives the exponent at the prime 2 (using Lemma 5.3) and at
the prime 3 (using Lemma 5.4 and Remark 12). �

Using Ribet’s lowering the level, we can remove the primes dividing the conductor of the curve.

7. Solving equation (3)

We follow closely the tools of Section 4. In particular, Theorem 4.1 holds as does Ribet’s lowering the
level and Ellenberg’s big image result. Theorem 4.1 is true in this setting, and to make it effective, we search
for a prime ` such that ` ≡ 1 (mod 32 · d̃) (since v2(cond(ε2)) ≤ 4, we can assume ν is unramified at 2),

where d̃ is the prime to 6 part of d, and p > 2
√
`+ `+ 1 is enough for it to hold.

7.1. Some cases of (3). In this section we apply the previous results to solve some cases of equation (1).

7.1.1. The equation x2+2y6 = zp. The sets Q±,± are all empty; ε is the trivial character (i.e. the form g does
not have Nebentypus) while the character χ corresponds to the quadratic character δ3 at one of the primes

dividing 3 in Q(
√
−2). This is a very interesting example, as the curve Ẽ has always good reduction at 2 and

the 3-part of the conductor equals 3(1+
√
−2), 3(1−

√
−2), 9 or 27. In particular, it is more efficient to work

with Bianchi modular forms than with rational ones (to avoid high powers of 2 in the level). The newform
g attached to a primitive solution satisfies that its base extension to K and its twist by χ−1 (which equals
χ as it is quadratic) gets only bad reduction at primes dividing 3. Computing the respective spaces (using
Cremona’s algorithm, also available in the lmfdb) it turns out that there are no Bianchi modular forms in any
level but 33, whose space contains three elliptic curves (2.0.8.1-729.4-a1, 2.0.8.1-729.4-b1, 2.0.8.1-729.4-c1),
one of which has complex multiplication and is the base change of a rational elliptic curve (hence cannot be

congruent to Ẽ). The other two ones satisfy that a5 = −1. It is easy to compute for each possible value of

(A,B) modulo 5 the value of a5(Ẽ(A,B)) and verify it belongs to the set {2, 0,−7,−10} hence both curves
cannot be congruent if p > 5.
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Theorem 7.1. Let p > 23 be a prime number. Then there are no non-trivial solutions of the equation

x2 + 2y6 = zp.

Proof. We need p > 23 to apply the analogue of Theorem 4.1, while p > 11 is enough to use Ellenberg’s
result (see Remark 10). �

7.1.2. The equation x2 + 3y6 = zp. This case was already proved in [Kou20].

7.1.3. The equation x2 + 5y6 = zp. The only non-empty set is Q+− = {5}. The character ε has conductor
4 ·5, of order 4 at 5 hence χ has order 8. We compute the space S2(24 ·52 ·3a, ε) with a = 2, 3 and our form g

has coefficient field Q(
√

3,
√
−1,
√
−2) (by Remark 6). The first space has 15 Galois orbits (for a = 2), three

of them with coefficient field Q(
√
−1), three with a quadratic extension of it, and the other ones a degree 4

extension of Q(
√
−1). There are seven forms with complex multiplication.

In this case, Mazur’s trick does not work, due to the existence of many elliptic curves in the given space
(see lmfdb conductor 2916). Although such curves do not seem to come from solutions, we do not know how
to discard them. Doing a simple search for solutions with A,B at most 105 we found the unique solution
(for p > 2):

792 + 5 · 26 = 38.

7.1.4. The equation x2 + 6y6 = zp. All sets Q±,± are empty, the character ε equals the quadratic character

of conductor 12, while χ is a quadratic character of conductor 3 ·〈2,
√
−6〉5. The new subspace of S2(28 ·35, ε)

has dimension 1152 and splits in 58 conjugacy classes. Note that any primitive solution corresponds to values
(A,B,C) where C is prime to 3, hence the integer C needs to be divisible by a prime number greater than

3, hence the curve Ẽ(A,B) cannot have complex multiplication. The first six newforms (given by magma)
have complex multiplication, hence we can discard them. For the remaining ones Mazur’s trick is enough
to discard them all. Using primes q dividing the set {5, 11, 13, 17, 19} we get that p belongs to the set
{2, 3, 5, 7, 11, 13, 17, 23, 31, 37, 59, 71, 73, 107, 109}.

Theorem 7.2. Let p > 109 be a prime number. Then there are no non-trivial solutions of the equation

x2 + 6y6 = zp.

Proof. As what happened for equation (1), the fact that 6 | d implies C is prime to 6, hence the curve
attached to a primitive solution always has a prime of multiplicative reduction. The result follows from the
fact that N6 = 11 by Proposition 4.3 (and Remark 10). �

7.1.5. The equation x2 + 7y6 = zp. The set Q−+ = {7} while the other ones are empty. The character ε has
order 2 and conductor 21, while χ has order 4. A solution to our equation gives an elliptic curve congruent to
a newform in the space S2(2a · 3b · 72, ε), where a = 1, 2 and b = 1, 3. At 7, by Remark 11 the representation
ρẼ,p has local type that of a principal series, whose character restricted to inertia has order 3 (recall that

χ7 is unramified, hence the same happens for the twisted representation). In particular, since 7 ramifies in
the quadratic field, such character factors through the norm map, hence the local type of g must be that of
a ramified principal series (whose inertia is given as the sum of an order 3 and an order 6 character).

In the space S2(2 · 3 · 72, ε) we can discard all non-CM forms using Mazur’s trick, but in the space
S2(2 · 33 · 72, ε) there are three forms without CM, whose local type at 7 correspond to a principal series
representation that cannot be discarded just using Mazur’s trick.

It should be noticed that there are some solutions with exponents up to 7, namely

112 + 7 · 16 = 27.

or

1812 + 7 · 16 = 215.
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