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Abstract. In the article [PT20] a general procedure to study solutions of the equations x4− dy2 = zp was
presented for negative values of d. The purpose of the present article is to extend our previous results to

positive values of d. On doing so, we give a description of the extension Q(
√
d,
√
ε)/Q(

√
d) (where ε is a

fundamental unit) needed to prove the existence of a Hecke character over Q(
√
d) with fixed local conditions.

We also extend some “large image” results regarding images of Galois representations coming from Q-curves

(due to Ellenberg in [Ell04]) from imaginary to real quadratic fields.

Introduction

The study of solutions of Diophantine equations has been a very active research field since Wile’s proof
of Fermat’s last theorem. There are still many open conjectures on understanding solutions of a generalized
equation

Axp +Byq = Czr,

for 1
p + 1

q + 1
r < 1. A particular interesting example occurs for exponents (p, q, r) = (4, 2, r) and (A,B,C) =

(1, 1, 1) studied by Darmon and Ellenberg independently (see [Ell04]). The Frey curve attached to a solution
of such an equation happens to be a so called Q-curve, having the special property that (a twist of) its
Galois representation descends to Q. Then one can follow the classical approach to compute (via a lowering
the level argument) a fixed space of level N and weight two modular forms (with a Nebentypus ε) and try
to discard the ones that cannot match a possible solution (due to a so called “local” obstruction). In [PT20]
the generalized curve

(1) x4 − dy2 = zp

was studied for different negative values of d. The novelty was to use the theory of Hecke characters over
imaginary quadratic fields to give a precise formula for the value of N and the character ε. A natural question
is the following: what happens if we take positive values of d?

As explained in [DU09], to a primitive solution (A,B,C) of (1) one associates the elliptic curve

(2) E(A,B) : y2 = x3 + 4Ax2 + 2(A2 + rB)x,

where r2 = d over the field K = Q(
√
d). When d is positive (and not a square) K is a real quadratic field. It

is known that all elliptic curves over real quadratic fields are modular ([FLHS15]) hence one can follow the
classical approach working with Hilbert modular forms. It turns out that such approach becomes impractical
very soon, due to the huge dimension of the corresponding spaces. However, the Q-curves approach is still
practical in many circumstances, which motivates the present article. This article should be thought as a
continuation of our previous one, where we settle the following problems:

• Prove the existence of Hecke characters over real quadratic fields with prescribed local behavior.
• Give a precise recipe for the level N and the Nebentypus ε.
• Show how Ellenberg’s “large image” result can be adapted (under some hypothesis) to real quadratic

fields and discard modular forms with complex multiplication.
• Explain why the case d positive is harder due to potential existence of non-trivial solutions for all

exponents p.
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Section 4 contains different examples aiming to explain the difference between the Hilbert/Q-curves compu-
tational effort. We also explain why in some cases there exist non-trivial solutions of (1) with C = ±1, which
are valid for all exponents p, making the modular approach to fail. At last, we explain why when there are
modular forms with complex multiplication, classical results give a partial result for all primes satisfying
some congruence. We provide an example (d = 3 · 43) where Ellenberg’s large image result applies, and a
non-existence result for all large enough primes can be obtained.

The article is organized as follows: after a quick review of the strategy developed in [PT20], Section 1 solves
the first problem described above, namely the existence of a Hecke character with the desired properties.
The good definition of the character is related to a very interesting problem of class field theory, namely
suppose that K = Q(

√
d) is a real quadratic field, and ε is a totally positive fundamental unit congruent to 1

modulo 8 (such assumption is for expository purposes only, we consider the general case in the article). Then
the extension K(

√
ε) is a quadratic unramified extension of K, hence it corresponds to a genus character. Is

there a natural description for such character? Can the extension K(
√
ε) be described in terms of d?

We give a positive answer to this problem, which plays a crucial role in the proof of the good definition
of our Hecke character. The second section settles the second issue, namely it gives a precise recipe for N
and ε. A proof of such statement was given in [PT20] when K is imaginary quadratic, since the Nebentypus
had a unique candidate due to the fact that it was odd. For real quadratic fields, the hard part is to prove
the formula for the Nebentypus! We do so by computing explicitly an action on 3-torsion points. The proof
might be of independent interest.

The third section gives an explicit version of Ellenberg’s result for real quadratic fields where the prime 2
splits. The proof follows from an “explicit” version of the main result of [LF17]; our little contribution being
making the constants explicit. The last section contains the examples, were the cases d = 6 and d = 129 are
specially considered along with other values of d between 1 and 20. We prove the following results:

Theorem 4.1. Let p > 19 such that p 6= 97 and p ≡ 1, 3 (mod 8). Then, (±7,±20, 1) are the only non-trivial
solutions of the equation

x4 − 6y2 = zp.

Theorem 4.2. Let p > 19 be a prime number satisfying that either p > 64690 or p ≡ 1, 3 (mod 8). Then
there are no non-trivial solutions of the equation

x4 − 129y2 = zp.

We want to remark that the techniques and methods developed in the present article can be used to study
the equation x2 − dy6 = zp for positive values of d following the results of [PT20].

Acknowledgments. We would like to thank Yingkun Li for sharing with us a proof of Theorem 1.2 and
to Harald Helfgott for providing some bounds used in Section 3. This research was partially supported by
FonCyT BID-PICT 2018-02073 and by the Portuguese Foundation for Science and Technology (FCT) within
project UIDB/04106/2020 (CIDMA).

1. Construction of the Hecke character

The elliptic curve E(A,B) is what is called a Q-curve, namely its Galois conjugate is isogenous (via the
order 2 isogeny whose kernel is the point (0, 0)) to itself. The problem is that the isogeny is not defined over K
but over K(

√
−2), hence the Galois representation ρE,p does not extend to a 2-dimensional representation

of GalQ. Let τ be an element of GalQ whose restriction to K is not the identity and let δ−2 denote the
quadratic character of GalQ corresponding to the extension Q(

√
−2)/Q. If χ : GalK → C× is a Hecke

character satisfying τχ(σ) := χ(τστ−1) = χ(σ)δ−2(σ) then the twisted representation ρE,p ⊗ χ does extend
to a 2-dimensional representation of GalQ. The main strategy of [PT20] was to give an explicit construction
for such a character. From the short exact sequence

(3) 0 // K× · (
∏

q O
×
q × (R×)2) //// IK // Cl(K) // 0,

it is enough to define the character on
∏

q O
×
q × (R×)2, on K× (where the character is trivial) and on idèles

representing the class group of K. The intersection of these two subgroups (
∏

q O
×
q × (R×)2) ∩K× = O×K

imposes a compatibility condition on its definition, namely the product of the local components evaluated at
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a unit equals 1. When d > 0 the ring O×K = 〈−1, ε〉, where ε denotes a fundamental unit, hence it is enough
to check compatibility at both such elements (the compatibility was proven in [PT20, Theorem 2.2] when
the fundamental unit has norm −1, so we assume that ε is totally positive).

Let us briefly recall the construction given in [PT20] (there is a discrepancy with the definitions used in
[PT20], namely d needs to be changed to −d in such article). Split the odd prime divisors of d into four
different sets, namely:

Qi = {p prime : p | d, p ≡ i (mod 8)},
for i = 1, 3, 5, 7. Let δ−1, δ2, δ−2 be the characters of Z corresponding to the quadratic extensions Q(

√
−1),

Q(
√

2) and Q(
√
−2) respectively and (abusing notation) let δ−1, δ2, δ−2 also denote their local component

at the prime 2. Define a character ε : IQ → Q× (that will be the Nebentypus of the Galois representation
extension) as follows:

• For primes p ∈ Q1 ∪Q7, the character εp : Z×p → C× is trivial.

• For primes p ∈ Q3, the character εp(n) =
(
n
p

)
(quadratic).

• For p ∈ Q5, let εp be a character of order 4 and conductor p.
• The character ε∞ (the archimidean component) is trivial.

• Define ε2 = δ#Q3+#Q5

−1 .

This gives a well defined Hecke character ε of IQ corresponding to a totally real field L whose degree equals
1 if Q3 = Q5 = ∅, 2 if Q3 6= Q5 = ∅ and 4 otherwise. By class field theory, ε gets identified with a character
ε : GQ → Q. Let Nε denote its conductor, given by Nε = 2e

∏
p∈Q3∪Q5

p, where e = 0 if #Q5 + #Q7 is even
and 2 otherwise.

Theorem 1.1. There exists a Hecke character χ : GalK → Q such that:

(1) χ2 = ε as characters of GalK ,
(2) χ is unramified at primes not dividing 2

∏
p∈Q1∪Q5∪Q7

p,

(3) for τ in the above hypothesis, τχ = χ · ψ−2 as characters of GalK .

Furthermore, its conductor equals 2a
∏
p∈Q1∪Q5∪Q7

p, where

a =



3 if d ≡ 5 (mod 8),

5 if d/4 ≡ 3 (mod 4),

0 if d/4 ≡ 14 (mod 16),

4 if d/4 ≡ 6 (mod 16),

3 if d/4 ≡ 2 (mod 16),

4 if d/4 ≡ 10 (mod 16),

The theorem was proved in [PT20] (Theorem 2.1) for d < 0 and for d > 0 when the fundamental unit ε
has norm −1. The main obstacle in the remaining case is to have some understanding on the reduction of a
positive fundamental unit modulo ramified primes of K. Let us state the following related natural problem.

Problem: Let K/Q be a real quadratic field, and let ε be a totally positive fundamental unit. What can
be said of the extension K(

√
ε)/K?

Suppose that K = Q(
√
d) with d a positive fundamental discriminant. Let p | d be an odd prime and let

p denote the unique prime ideal of K dividing it. The hypothesis N(ε) = 1 implies that ε ≡ ±1 (mod p).
Let

Pδ = {p | d, p odd : ε ≡ δ (mod p)},
where δ = ±1. If 2 ramifies in K/Q, let p2 denote the unique prime of K dividing it.

Theorem 1.2. Let d0 :=
∏
p∈P−

p. Then if 2 is unramified in K/Q, K(
√
ε) = K(

√
d0) while if 2 is ramified

in K/Q, K(
√
ε) = K(

√
2d0) or K(

√
ε) = K(

√
d0). Furthermore, when 8 | d, the later case occurs precisely

when ε ≡ −1 (mod p32).

Proof. Let us recall some well known results on quadratic fields and binary quadratic forms (due mostly to
Gauss [Gau86]; see also [Bue89] for a more modern presentation). There is a correspondence between strict
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equivalence classes of indefinite binary quadratic forms of discriminant d and ideal classes for the narrow
class group of K. The ramified prime ideals of K (indexed by divisors of d) are precisely the ideals of
order 2 [Bue89, Corollary 4.9]. Under the correspondence, they match the so called “ambiguous forms” (see
[Bue89] page 7 Chapter 1 and page 24 Chapter 3) The total number of ambiguous classes (including the
trivial one) equals 2t−1, where t is the number of prime divisors of d (by [Bue89, Proposition 4.7] and its
proof). Equivalently, the number of order two ideals in the narrow class group equals 2t−1. In particular,
there exists a unique principal ideal D0 (generated by a totally positive element α) dividing the different D
of K. Let ND0 = N(α) = αα = d0 | d.

Since D0 = D0, the quotient α
α ∈ OK is a totally positive unit hence equals εk for some integer k.

Substituting α by εkα changes the quotient α
α by a factor of ε2k, hence we can assume that

(4)
α

α
= ε

(clearly such quotient cannot be trivial). Then
√
ε =

√
αα
α and hence K(

√
ε) = K(

√
d0). We are led to

determine the set of primes dividing d0. Let p be a prime ideal dividing D and assume that p - 2.

• The fact that α + α ∈ D0 ∩ Z = (d0) implies that α + α ∈ D2
0, hence ε + 1 = α

α + 1 = α+α
α ∈ D0

hence ε ≡ −1 (mod D0). In particular, ε ≡ −1 (mod p) for all odd prime ideals p | D0.
• On the other hand, if p | D but p - D0 (in particular p - α), ε − 1 = α−α

α ≡ 0 (mod p) hence ε ≡ 1
(mod p).

If 2 - d then d0 is odd and the statement follows, while if d is even the only ambiguity is whether d0 is

even or not. Suppose that 8 | d, so α = a + b
√
d/4 with a, b ∈ Z. Let p denote the prime ideal dividing

2 (p = 〈2,
√
d/4〉). Clearly vp(α) = vp(ᾱ) = v2(d0). An elementary case by case analysis shows that

vp(α) ∈ {0, 2} if and only if vp(ε − 1) ≥ 3 and vp(ε + 1) = 2. Similarly, vp(α) ∈ {1, 3} if and only if
vp(ε+ 1) ≥ 3 and vp(ε− 1) = 2 as stated. �

Proof of Theorem 1.1. If p is a prime ideal of K, let Op denote the completion of OK at p. Let χp : O×p → C×
be the character given by

• If p is an odd (i.e. p - 2) unramified prime, χp is the trivial character. The same applies to primes
in K dividing the primes in Q3.

• If p is an odd prime ramifying in K/Q and p | p, clearly (Op/p)× ' (Z/p)×. If p ∈ Q1 ∪Q7, let χp

correspond to the quadratic character δp of (Z/p)×.
• If p ∈ Q5, using the previous item isomorphism, let χp = εp · δp.

At the archimidean places {v1, v2}, let χv1 be the trivial character and χv2 be the sign function (the order
of the archimidean places does not matter, both choices work). At a prime p dividing 2, the character χp

has conductor at most 23; its definition on a set of generators of OK/2
3 is the following:

• If d ≡ 1 (mod 8), the prime 2 splits as 2 = p2p2. Let χp2
:= δ−2 and χp2

:= 1 (trivial) or take
χp2

:= δ2 and χp2
:= δ−1. To make the proofs consistent, we denote by χ2 = χp2

χp2
= δ−2.

• If d ≡ 5 (mod 8), χp(ζ3) = 1, χp(
√
d) = i, χp(3 + 2

√
d) = 1, χp(−1) = 1.

• If d/4 ≡ 7 (mod 16), χp(
√
d/4) = −1, χp(1 + 2

√
d/4) = 1, χp(5) = −1.

• If d/4 ≡ 15 (mod 16), χp(
√
d/4) = 1, χp(1 + 2

√
d/4) = 1, χp(5) = −1.

• If d/4 ≡ 3 (mod 16), χp(
√
d/4) = −1, χp(1 + 2

√
d/4) = 1, χp(−1) = −1.

• If d/4 ≡ 11 (mod 16), χp(
√
d/4) = 1, χp(1 + 2

√
d/4) = 1, χp(−1) = −1.

• If d/4 ≡ 6 (mod 8) and #Q3 + #Q5 is even, χp(1 +
√
d/4) = 1, χp(−1) = 1.

• If d/4 ≡ 6 (mod 8) and #Q3 + #Q5 is odd, χp(1 +
√
d/4) = i, χp(−1) = −1

• If d/4 ≡ 2 (mod 8) and #Q3 + #Q5 is even, χp(1 +
√
d/4) = 1, χp(−1) = −1.

• If d/4 ≡ 2 (mod 8) and #Q3 + #Q5 is odd, χp(1 +
√
d/4) = i, χp(−1) = 1.

It is important to notice that in all cases

(5) χ2|Z×
2

= δ
v2(d)+1
2 δ#Q5+#Q7+1

−1 .

Extend χ to K× · (
∏

q O
×
q × C×) by making it trivial on K×. It is easy to verify that χ2 = ε ◦N.
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Compatibility: the subgroup of units in K is generated by {−1, ε} hence it is enough to prove the compat-
ibility at both elements. Replacing d by −d we interchange real quadratic fields with imaginary quadratic
ones. The local part of the character χ is invariant under such transformation for all odd primes, but not
at primes dividing 2. For such places, the restriction of the local character to Z×2 differs by δ−1. In [PT20,
Theorem 2.1] we proved the compatibility at −1 for imaginary quadratic fields K; since δ−1(−1) = −1, the
compatibility relation for real quadratic fields at −1 follows from the extra sign coming from the archimedean
contribution.

Proving the compatibility for ε takes more effort. The character χp(ε) = 1 for all unramified primes and
for primes in P− ∩ (Q1 ∪Q3). Its value at primes in P− ∩ (Q5 ∪Q7) equals −1 hence we need to prove the
following identity

(6) χ2(ε) · (−1)#(P−∩(Q5∪Q7)) = χ2(ε)δ−2(d0) = 1,

where d0 =
∏
p∈P−

p as before. The proof of Theorem 1.2 implies that there exists α ∈ OK such that

d0 = εα2 or 2d0 = εα2. In the first case,

χ2(α2) = χ2
2(α) = ε2(N(α)) = ε2(d0).

Since ε2 is at most quadratic, it equals its inverse hence χ2(ε) = χ2(d0)ε2(d0), then equation (6) is equivalent
to the statement

(7) χ2(d0)ε2(d0)δ−2(d0) = 1.

A key fact is that the hypothesis N(α) = d0 imposes a constrain on its possible values. Using equation (5),
the proof follows from the following case by case study:

• If d ≡ 1 (mod 8), then χ2 = δ−2 and ε2 is trivial hence (7) holds.
• If d/4 ≡ 3 (mod 8), the norm condition implies that d0 is congruent to 1 or 5 modulo 8. By definition
χ2|Z×

2
= δ−2 and ε2 = δ−1, which is trivial on both 1, 5 hence (7) holds.

• If d ≡ 5 (mod 8), by definition χ2|Z×
2

= δ2 and ε2 = δ−1 hence (7) holds.

• If d/4 ≡ 7 (mod 8), the norm condition implies that d0 is congruent to 1 or 5 modulo 8. By definition
χ2|Z×

2
= δ2 and ε2 = 1. But δ2 = δ−2 take the same values at {1, 5} hence (7) holds.

• If d/4 ≡ 2 (mod 8), the norm condition implies that d0 is congruent to 1 or 7 modulo 8. By definition
χ2|Z×

2
· ε2 = δ−1, which coincides with δ−2 on {1, 7} hence (7) holds.

• If d/4 ≡ 6 (mod 8), the norm condition implies that d0 is congruent to 1 or 3 modulo 8. By definition
χ2|Z×

2
· ε2 = 1 but δ−2 is trivial on {1, 3} hence (7) holds.

If d is odd, the equality d0 = εᾱ2 always holds hence the result follows. Assume then that 2 ramifies in
K/Q and that 2d0 = εᾱ2. Let p2 denote the unique prime of K dividing 2. To easy notation, let d̃ = d/4.
Recall that K(

√
ε) is unramified at p2 if and only if ε ≡ � (mod 4) (see for example [CP19, Lemma 3.4]).

The equality 2d0 = εα2 implies that

(8)

(
2

α

)2

d0 = 2ε.

Note that 2
α has positive valuation at p2, hence we can reduce equality (8) modulo 16 to compute for each

possible value of ε the corresponding value of d0 (up to squares) via a finite computation. Not all elements
of (OK/8)× do correspond to a possible value of ε, since the fact that K(

√
ε)/Q is biquadratic imposes a big

constrain. Before presenting the results of the finite computation, note the following: if d1 ≡ d2 (mod 16),
then Z[

√
d1]/24 ' Z[

√
d2]/24 (as rings) via the natural map sending

√
d1 to

√
d2. Applying it to equality

(8) proves that the value d0 attached to a fundamental unit of the form a + b
√
d1 equals that of a + b

√
d2.

In particular, it is enough to perform the finite computation for d̃ modulo 16.
If d̃ ≡ 3 (mod 4) and t | d the extension K(

√
t) is ramified at p2 precisely when t is even (and not divisible

by 4). Then under our hypothesis, the extension K(
√
ε)/K is ramified at p2. Take {

√
d/2, 1 +

√
d,−1} as

generators for the group of invertible elements modulo 16. Consider the different cases:

• If d̃ ≡ 3, 7 (mod 16), the possible values for ε (given as generators’ exponents) and the values of d0 are
given in Table 1.1. Since χ2((a, b, c)) = (−1)a+c (again as exponents) the equality χ2(ε) = δ−2(d0)
follows recalling that δ−2(1) = δ−2(3) = 1 and δ−2(5) = δ−2(7) = −1.
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d̃ (mod 16) Exp. d0 Exp. d0 Exp. d0 Exp. d0
3 (1, 1, 0) {5, 7} (1, 1, 1) {1, 3} (1, 3, 0) {5, 7} (1, 3, 1) {1, 3}
3 (3, 1, 0) {5, 7} (3, 1, 1) {1, 3} (3, 3, 0) {5, 7} (3, 3, 1) {1, 3}
7 (1, 0, 0) 5 (1, 0, 1) 1 (1, 2, 0) 5 (1, 2, 1) 1
7 (3, 0, 0) 5 (3, 0, 1) 1 (3, 2, 0) 5 (3, 2, 1) 1

Table 1.1. Relation ε and d0 for d̃ ≡ 3, 7 (mod 16)

• If d̃ ≡ 11, 15 (mod 16) the possible values for ε and the values of d0 are given in Table 1.2. Since
χ2((a, b, c)) = (−1)c in this case, the equality χ2(ε) = δ−2(d0) holds.

d̃ (mod 16) Exp. d0 Exp. d0 Exp. d0 Exp. d0
11 (1, 1, 0) {1, 3} (1, 1, 1) {5, 7} (1, 3, 0) {1, 3} (1, 3, 1) {5, 7}
11 (3, 1, 0) {1, 3} (3, 1, 1) {5, 7} (3, 3, 0) {1, 3} (3, 3, 1) {5, 7}
15 (1, 0, 0) 1 (1, 0, 1) 5 (1, 2, 0) 1 (1, 2, 1) 5
15 (3, 0, 0) 1 (3, 0, 1) 5 (3, 2, 0) 1 (3, 2, 1) 5

Table 1.2. Relation ε and d0 for d̃ ≡ 11, 15 (mod 16)

When 8 | d, Theorem 1.2 implies that the case 2d0 = εᾱ2 occurs precisely for ε ≡ −1 (mod p32). Recall

that (OK/2
3)× is generated by the elements {−1, 5, 1 +

√
d/4} (of order 2, 2, 8). Using the congruence of

ε modulo p32, the condition (8) and the fact that 2d0 is the norm of an element, we search for all possible
values of ε and d0.

• If d̃ ≡ 2 (mod 16) (respectively d ≡ 10 (mod 16)) then #Q3 + #Q5 even (respectively odd). The
assumption that 2d0 is a norm implies that d0 ≡ 1, 7 (mod 8) (respectively d0 ≡ 3, 5 (mod 8)). All
the possibles values of ε for each d0 are given in Table (1.3) from which it follows that (6) holds.

d̃ (mod 16) ε d0 ε d0 ε d0 ε d0
2 −1 7 (1 +

√
d)2 1 −(1 +

√
d)4 7 (1 +

√
d)6 1

10 −1 3 (1 +
√
d)2 5 −(1 +

√
d)4 3 (1 +

√
d)6 5

6 −1 5 5(1 +
√
d)2 7 −(1 +

√
d)4 5 5(1 +

√
d)6 7

Table 1.3. Relation ε and d0 for d̃ ≡ 2, 6, 10 (mod 16)

• If d̃ ≡ 6 (mod 16) then #Q3 + #Q5 is odd. The norm condition implies that d0 ≡ 1, 7 (mod 8).
The possibles values of ε and d0 are given in Table (1.3).

• If d̃ ≡ 14 (mod 16) then #Q3 + #Q5 is even, hence χ2 is trivial. The norm condition implies that
d0 ≡ 1, 3 (mod 8) so formula (6) holds.

Once the compatibility is verified, the proof of Theorem 2.1 in [PT20] works mutatis mutandis. �

2. The conductor and Nebentypus of the extended representation

The properties imposed on χ imply that the twisted representation ρE,` ⊗ χ extends to a 2-dimensional
representation of GalQ.

Theorem 2.1. Suppose there exists a prime p > 3 ramifying in K. Then the twisted representation ρE,`⊗χ
descends to a 2-dimensional representation of GalQ attached to a newform of weight 2, Nebentypus ε and
level N given by

N = 2e
∏
q

qvq(NE) ·
∏
q∈Q3

q ·
∏

q∈Q1∪Q5∪Q7

q2,
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where the product is over odd primes, and q denotes a prime of K dividing q. The value of e is one of:

e =


1, 8 if 2 splits,

8 if 2 is inert,

6, 7 if 2 ramifies but 2 - d,
8, 9 if 2 | d.

Proof. The extension result is well known although a proof was recalled in [PT20, Theorem 2.3]. To easy
notation let ρ′` = ρE,` ⊗ χ and ρ̃` denote its extension to GalQ. The Nebentypus assertion was only proved
under the hypothesis that K/Q is quadratic imaginary. The reason is the following: we know that ρ′ has
determinant the cyclotomic character times ε, hence the determinant of ρ̃` equals (up to the cyclotomic
factor) ε or ε · δK (where δK denotes the quadratic character corresponding to the extension K/Q). But
Ribet’s result ([Rib04]) implies that the determinant of ρ̃ is even hence the statement. When K/Q is real
quadratic both characters take the same value at complex conjugation! The solution is to work with other
element of the inertia group of K/Q.

Let S denote the set of primes ramifying in K/Q, and for each odd p ∈ S let p denote the prime of K
dividing it. Take ` an odd prime that does not belong to S. Let Ip ⊂ GalQ denote an inertia subgroup at p
and Ip its index two subgroup. By [PT20, Lemma 1.3] the curve E(A,B) has good reduction at p hence (by

the Néron-Ogg-Shafarevich criterion) ρ′|Ip is a scalar matrix. Let σp ∈ Ip \ Ip and let σpρ′(τ) := ρ′(σ−1p τσp).
The character χ was constructed so that σpρ′ ' ρ′, hence both representations are conjugate under a matrix
of GL2(Q`). Since ρ̃ extends ρ′, ρ̃(σp) is such a matrix. Consider the following two different cases:

• If σpρ′ = ρ′, then ρ̃(σp) is a scalar matrix. In particular, det(ρ̃(σp)) equals the value of the scalar
matrix ρ̃(σp)

2 = ρ′(σ2
p) = χ(σ2

p) = (δK · ε)(σp) (the last statement can easily be verified using the
fact that σp is not a square). Then det(ρ̃) = δK · ε · χ`.

• If σpρ′ 6= ρ′, ρ̃(σp)
2 = ρ′(σ2

p) is a scalar matrix, hence we can assume that ρ̃(σp) equals a scalar

matrix times
(
1 0
0 −1

)
and the same proof as before gives that det(ρ̃) = ε · χ`.

Then we are left to prove that σpρ′ 6= ρ′ (a result independent of the prime p ∈ S). Recall that ρ′ = ρ⊗ χ,
hence the statement is equivalent to prove that σpρ 6= ρ · δ−2 (since σpχ = χδ−2). The isogeny φ : E(A,B) →
E(A,B) is given by

(9) φ(x, y) =

(
−y2

2x2
,
y(2A2 + 2

√
dB − x2)

2
√
−2x2

)
,

hence τ ◦ φ = φ ◦ τ · δ−2(τ) for all τ ∈ GalK .
Abusing notation, we will denote by φ the map it induces on the Galois group Gal(K(E[`n])/K). In

particular, it makes sense to talk about φ−1, which (under our assumption ` odd) coincides with the map
φ∗

2 (where φ∗ denotes the dual isogeny). Take ` = 3 and n large so that the 3-adic representation modulo
3n is absolutely irreducible. Let τ ∈ Gal(K(E[3n])/K), then

(10) σ−1p τσp = (φ−1σp)
−1(φ−1τφ)(φ−1σp) = δ−2(τ)(φ−1σp)

−1τ(φ−1σp).

Its action matches δ−2(τ)τ if and only if φ−1σp acts as a scalar matrix (by our absolutely irreducible
hypothesis). But det(φ−1σp)

2 = det(φ−1φδ−2σ
2
p) = 1, hence det(φ−1σp) = ±1 and since φ−1σp is a scalar

matrix its determinant equals 1 so φ−1σp = ±1.
Let L = K(x(E(A,B)[3])) denote the extension of K obtained by adding all the x-coordinates of the 3-

torsion points of E(A,B). It is a degree 2-subextension of K(E[3]) invariant under φ (from its definition (9))
hence L/Q is a Galois extension. Note that multiplication by −1 acts as the identity on Gal(L/K), hence
it is enough to prove that φ 6= σp as elements of Gal(L/Q). For a generic curve y2 = x3 + ax2 + bx, the
3-division polynomial (whose roots generate the extension L/K) is given by

(11) ψ3(x) = 3x4 + 4ax3 + 6bx2 − b2.
An easy study of PGL2(F3) shows that L contains precisely 3 degree two extensions of Q, namely K,Q(

√
−3)

and Q(
√
−3d). Since the ramification degree of p in L/Q is two, if we prove that φ fixes

√
−3d, then L/Lφ

is unramified at primes dividing p hence φ 6= σp as desired.
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Let θ1, . . . , θ4 be the roots of ψ3 and let b̄ = a2−4b
4 (in our case b̄ matches the conjugate of b). Then

(12)
∆(ψ3)

28 · 32 · b4 · b̄2
=

(∏
i<j(θi − θj)

24 · 3 · b2 · b̄

)2

= −3.

Note that φ1(θi − θj) = 1
2 · (θi − θj) ·

(
b−θiθj
θiθj

)
. Then, since φ1 acts as conjugation on K,

φ1

(∏
i<j(θi − θj)

24 · 3 · b2 · b̄

)
=

∏
i<j(θi − θj)

24 · 3 · b2 · b̄
·
(
−33

b6
·
b
∏
i<j(b− θiθj)

26b̄

)
.

An easy computation using elementary symmetric polynomials (and their relation with the coefficients of
(11)) prove that the last term equals −1, hence φ(

√
−3) = −

√
−3 so

√
−3d ∈ Lφ and the claim follows. �

Remark 1. The same result holds for K = Q(
√

3) or Q(
√

6) replacing the 3-torsion points computation with
the 5-torsion ones (for the prime p = 3 ∈ S). While working with 5-torsion points, formula (12) becomes

∆(ψ5)

288 · 510 · b44 · (a2 − 4b)22
= 5.

The case K = Q(
√

2) is more subtle as there is no clear choice of an order two element in the Galois group
Gal(K(E[`])/Q). In particular computed examples the result holds (but we do not have a general proof).

3. Ellenberg’s result

Let K/Q be a quadratic extension, and let E/K be a Q-curve with a prime ` > 3 of potentially multi-
plicative reduction. Then following ideas of Darmon-Merel, Ellenberg proved ([Ell04, Theorem 3.14]) that
the residual p-representation of E has large image (i.e. not contained in the normalizer of a non-split cartan
group) if either:

• there exists f ∈ S2(Γ0(p2)) such that wpf = f , or
• there exists f ∈ S2(Γ0(2p2) such that wpf = f and w2f = −f ,

with L(f ⊗ δK , 1) 6= 0. An important result of Ellenberg ([Ell04, Proposition 3.9]) proves that if K is an
imaginary quadratic field then there is always a modular form satisfying the first hypothesis for p large
enough.

Proposition 3.1. If K/Q is a real quadratic field in which p is unramified, there does not exist a newform
satisfying any of the two previous conditions unless 2 splits in K/Q.

Proof. For a newform f , let ε(f) denote its root number (i.e. the sign of the functional equation). Recall
from [Bum97] (§I.5) that if f ∈ S2(Γ0(N)) is a newform and χ is a Dirichlet character whose conductor is
prime to N then ε(f ⊗ χ) = ε(f)χ(−N). Under the assumption p unramified in K/Q, this result rules out
the existence of a newform of level p2 such that L(f,⊗δK , 1) 6= 0 (since δK(−1) = 1 for K real quadratic).

Suppose that f is a newform of level 2p2. The Atkin-Lehner eigenvalues hypotheses imply that ε(f) = 1.
Suppose that 2 is unramified in K/Q, hence ε(f⊗δK) = δK(−2p2) = δK(2) = 1 if and only if 2 splits in K/Q.
When 2 ramifies in K/Q, we can write dK = d1 · d2, where d1 ∈ {−4,±8} and d2 is an odd fundamental
discriminant. Suppose d1 = −4; writing f ⊗ δK = (f ⊗ δd1)⊗ δd2 , it is enough to understand the sign change
for the first twist (the form f ⊗ δ−4 being a form of level 16p2). By a result of Atkin-Lehner (see [AL70,
Theorem 7]) w2(f ⊗ δ−4) = −1 while wp(f ⊗ δ−4) = wp(f), hence ε(f ⊗ δ−4) = ε(f) = 1 and since d2 is
negative (hence δd2(−1) = −1) ε(f ⊗ δK) = −1. A similar computation (using that w2(f ⊗ δ8) = 1 and
w2(f ⊗ δ−8) = −1) proves the remaining cases. �

Suppose then that 2 splits in K/Q. Ellenberg’s proof of the existence of a newform with prescribed
properties consists on bounding an average of twisted central values in the whole space of level p2 modular
forms (since the forms with the wrong Atkin-Lehner involution sign in such space have zero central value).
While considering the space S2(Γ0(2p2))new the computations are harder, as one needs to compute an average
not over the whole space, but over the subspace with a chosen Atkin-Lehner sign at p (therefore imposing
also a condition to the Atkin-Lehner sign at 2). Such computation was carried out in [LF17] (see the proof
of Corollary 4). Unfortunately, explicit constants are not presented in Le Fourn’s article, hence we need to
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add some (minor) extra details to its proof (we suggest the reader to have a copy of such article in hand for
the rest of this section as we follow its notations and definitions; specially Section 6).

The inequality J1(x) ≤ |x|2 and |S(1, n; c)| <
√
cτ(c) (used in Ellenberg’s article) turns inequality (30) of

[LF17] into

(13) |AN,Q,c(x)| ≤ π

3
· xe

−2π/xτ(c)

Qc3/2
,

for x ≥ 71 (using that (1−e−2π/x)−1 ≤ x
6 when x ≥ 71). The same bound for J1 gives the explicit inequality

for equation (31)

(14) |AN,Q,c(x)| ≤ 12

π

(log(Dc) + 1)
√
D

cQ
e−2π/x.

To get a bound for AN,Q(x) = 2π
∑
c>0,(N/Q)|c,(c,Q)=1AN,Q,c(x) we split the sum as in [LF17]:

|AN,Q(x)| ≤ 12

π

√
De−2π/x

Q

∑
c<x2

(N/Q)|c

(log(Dc) + 1)

c
+
π

3

∑
c>x2

(N/Q)|c

xe−2π/xτ(c)

Qc3/2
.

For the first inner sum, writing c = (N/Q)b, we get the inequality

(15)
∑
c<x2

(N/Q)|c

(log(Dc) + 1)

c
≤ Q

N

(
(log(

DN

Q
) + 1) log(

x2N

Q
) +

log2(x
2N
Q )

2

)
.

To bound the sum
∑
c>X2

τ(c)
c3/2

, recall the following inequalities:∑
n≥X

1

ns
≤ −X

1−s

1− s
+
X−s

2
, and

∑
d≤X

1

d
≤ log(X) + γ +

7

12X
,

where γ is the Euler-Mascheroni constant (γ ≤ 0.58). If s > 1,

∑
n≥X

τ(n)

ns
=
∑
n≥X

∑
d|n

1

ns

 =
∑
d

1

ds

∑
m≥X/d

1

ms
≤ ζ(s)

∑
d>X

1

ds
+
∑
d≤X

1

ds

(
− (X/d)1−s

(1− s)
+

(X/d)−s

2

)
≤

ζ(s)

(
− X1−s

(1− s)
+
X−s

2

)
− X1−s

(1− s)
∑
d≤X

1

d
+
X1−s

2
≤

ζ(s)

(
− X1−s

(1− s)
+
X−s

2

)
− X1−s

(1− s)
(log(X) + γ +

7

12X
) +

X1−s

2
.

Substituting at s = 3/2, X by X2 and assuming X ≥ 32, we obtain

(16)
∑
n≥X2

τ(n)

n3/2
≤ 6 log(X)

X
.

Using both inequalities, we get (for N 6= Q)

(17) |AN,Q(x)| ≤ 12
√
De−2π/x

Nπ

(
(log(

DN

Q
) + 1) log(

x2N

Q
) +

log2(x
2N
Q )

2

)
+

+
2π

N

√
Q/Nτ(N/Q) log(x)e−2π/x.

Using the fact that BN,Q(x) = AN,Q(D2N/x), we get the bound

(18) |BN,Q(x)| ≤ |AN,Q(D2N/x)|+ δQ=N
π

3

√
D

x
τ(D)e

−2πx

ND2 .
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Recall that (a1, Lχ)
+p2 ,new

2p2 = (a1, Lχ)
+p2

2p2 −
1
p−1 (a1, Lχ)

χ(p)p
2p ([LF17, Lemma 7]), hence formulas (28), (29)

of [LF17] give

(19)
1

2π
(a1, Lχ)

+p2 ,new

2p2 ≥ (p− 2)

(p− 1)
e−2π/x − (|A2p2,1(x)|+ |A2p2,p2(x)|+ |A2p,1(x)|+ |A2p,p(x)|+

+ |B2p2,2p2(x)|+ |B2p2,2(x)|+ |B2p,2p(x)|+ |B2p,2(x)|).

Taking x of the same magnitude of p2 (in our applications we will take x = p2 · κ for a numerical computed
constant κ), the right hand side is an increasing function of p, hence as soon as we find a positive value for
it, we get an explicit bound.

4. Examples

Let us recall briefly how the modular method works: attach to a primitive solution (A,B,C) of (1) the
Frey curve E(A,B). It has the property that all odd primes dividing its conductor have exponent divisible
by p. Since E(A,B) is a Q-curve, there exists a weight 2, level N and Nebentypus ε newform attached to
its extension to GalQ (by Serre’s conjectures). Suppose that p is a prime number such that the residual
representation of ρ̃ is absolutely irreducible, then Ribet’s lowering the level result ([Rib91]) implies that
all primes but 2 and the ones ramifying in K/Q can be removed from the level. In particular we have a
congruence modulo p between the Galois representation attached to E(A,B) and a newform in a concrete
space. Discard each newform in the given space via the so called “Maruz’s trick”, namely check whether the
eigenvalues are consistent with a “local” solution of the original equation. If no newform passes the test, we
can conclude that no such solution exists.

If there exists a solution of equation (1) for all primes p, then the above method fails. This is the case
for solutions with C = ±1. When d < 0 this only happens when B = 0, namely for the trivial solution
(±1, 0, 1). The Frey curve attached to it has the particular property that it corresponds to a Q-curve with
complex multiplication. Here is where Ellenberg’s large image result is useful! The Frey curve attached to a
non-trivial solution does not have complex multiplication, hence it cannot be congruent to a trivial solution!
This is the reason why we could prove non-existence of non-trivial solutions of (1) for some negative values
of d (in [PT20]).

There are two unfortunate situations when the previous approach cannot be applied. On of them is
when Ellenberg’s result cannot be applied. Then we can only hope to prove non-existence of solutions for
primes satisfying certain congruence properties (the ones where the curve coming from the trivial solution
has small image, namely its projectivization is contained in the normalizer of a non-split Cartan subgroup).
The second one (which only occurs when d > 0) is when the curve

(20) x4 − dy2 = ±1

admits non-trivial solutions. For 1 < d < 20, a non-trivial solution for such equation exists precisely for

(A,B,C, d) ∈ {(±1,±1,−1, 2), (±3,±4, 1, 5), (±7,±20, 1, 6), (±2,±1, 1, 15), (±2,±1,−1, 17)}.
Equation (20) was studied in several articles (see for example [Wal00]). It is known that the equation with
+1 on the right hand side has at most one non-trivial solution ([Lju42]) except when d = 1785. Furthermore,
in ([Coh97]) all solutions for 1 ≤ d ≤ 150000 are computed. The equation with −1 on the right hand side
was studied in [Lju54], where it is also shown that in all cases there is at most one non-trivial solution, and a
condition for the existence is presented. A priori, the modular method should not work in cases when there
exists a solution from solutions of (20) (although we will soon prove it does work for d = 6).

Before giving a detailed study of equation (1) for d = 6 and d = 129 (for computational reasons, while
describing the fields we do not assume that d is a discriminant, but that it is square-free), let us explain

why we chose such values. The field Q(
√

6) is the first one where the fundamental unit has norm 1 (and
also it contains a non-trivial solution for all primes p). The case d = 129 is the first field where 2 splits (so
Ellenberg’s result can be applied) and we could discard all newforms using Mazur’s trick. For d ∈ {3, 5, 7, 14}
there are modular forms without CM that cannot be discarded with the aforementioned strategy (so the
modular method fails). For the other square-free values of d, the modular method does give a positive
answer for primes p > M (an explicit constant) with a prescribed congruence condition. The results are
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d M Condition on p dim(S2(N, ε)) Hilbert space
6 19 p 6= 97; p ≡ 1, 3 (mod 8) 28, 64 96, 384
10 19 p 6= 41, 89; p ≡ 1, 3 (mod 8) 140, 288 448, 1792
11 19 p ≡ 1, 3 (mod 8) 22, 92 224, 896
19 19 p 6= 41, 43; p ≡ 1, 3 (mod 8) 38, 156 608, 2432
129 19 p > 64690 or p ≡ 1, 3 (mod 8) 16, 1400 100, 600, 38400

Table 4.1.

shown in Table 4.1. The table contains also the dimension of the weight two newform space (computed to
discard possible solutions) as well as the dimension of the Hilbert parallel weight 2 modular forms space (if
one would follow the classical approach over K). Note the dimension of the Hilbert space becomes almost
infeasible from a computational point of view very soon.

4.1. The case d = 6. As mentioned before, although the case d = 6 seems to be out of reach of the modular
method, it turns out that the Frey curve attached to the solution (±7,±20, 1) does also have complex
multiplication! (this seems like a very fortunate coincidence, but will not occur for other values). The trivial

solution gives an elliptic curve with j-invariant 8000 (with CM by Z[
√
−2]). Over Q(

√
6) there are only two

extra isomorphism classes of elliptic curves with CM whose j-invariant is not rational (see [DLR15]), with

j-invariant 188837384000± 77092288000
√

6. The Frey curve E(±7,±20) has precisely such a j-invariant!

Theorem 4.1. Let p > 19 such that p 6= 97 and p ≡ 1, 3 (mod 8). Then, (±7,±20, 1) are the only non-trivial
solutions of the equation

x4 − 6y2 = zp.

Proof. Suppose that (A,B,C) is a solution with C 6= ±1 (in particular C is divisible by a prime number
greater than 3). In order to apply Ribet’s lowering the level result, we need to probe that the residual
representation of E(A,B) modulo p is absolutely irreducible. For that purpose we apply Theorem 1 of [FS15].

Let ε = 5 + 2
√

6 be a fundamental unit. The value lcm(N(ε12 − 1),N(ε12 − 1)) = 27 · 35 · 52 · 112 · 972.
Next we need to compute the characteristic polynomial at a prime of good reduction. Since E(A,B) has good

reduction at primes ramifying in K/Q, q = 3 is a good candidate so let q = 〈3 +
√

6〉. The curve E(A,B)

modulo p is one of y2 = x3 ± x2 + 2x, hence aq(E) = ±2. The resultant between x2 ± 2x + 3 and x12 − 1
is only divisible by the primes {2, 3, 19, 97}, hence the residual image is absolutely irreducible for all primes
except the ones in one of these two sets. Using Theorem 2.1 (and Remark 1) and Ribet’s lowering the level
result, we have to compute the spaces S2(28 · 3, ε) and S2(29 · 3, ε), where ε is the character corresponding

to the quadratic field Q(
√

3). Such spaces have 10 and 13 conjugacy classes respectively. Mazur’s trick for
q = 5, 7, 17 discards all classes in both spaces except from three in the first space coming from the solutions
(±1, 0, 1) and (±7,±20, 1) with CM by Z[

√
−2]. If p ≡ 1, 3 (mod 8), it splits in Q(

√
−2) hence the residual

representation of the forms with CM modulo p have projective image lying in the normalizer of a split Cartan
subgroup. This contradicts [Ell04, Proposition 3.4] (as C is divisible by a prime greater than 3). �

Remark 2. While proving big image, [FS15, Theorem 1] was used with q = 3, since we know that the curve
has good reduction for odd primes ramifying in K. Although we do not know a priori other primes of good
reduction, if the obtained bound is large not everything is lost. Let q > 5 be a prime inert in K and suppose
p > 71. If q divides C, the curve has multiplicative reduction at q hence [NT20, Theorem 1.2] implies that
the residual representation is irreducible. Otherwise, the curve has good reduction at q hence we can apply
the above strategy to the prime q. This method was used for d ∈ {10, 11, 19}.

4.2. The case d = 129. The prime 2 splits in Q(
√

129), hence Ellenberg’s result can be applied to discard
the trivial solutions as well.

Theorem 4.2. Let p > 19 be a prime number satisfying that either p > 64690 or p ≡ 1, 3 (mod 8). Then
there are no non-trivial solutions of the equation

x4 − 129y2 = zp.

11



Proof. As before, let (A,B,C) be a non-trivial solution, and E(A,B) the Frey curve attached to it. [FS15, The-
orem 1] proves that the residual image is absolutely irreducible for primes not in {2, 3, 5, 7, 11, 13, 17, 43, 53,
251, 313, 661, 2593, 3371, 411577}. As this bound is a little large, we follow the strategy described in [MR21,
Lemma 3.2]. Suppose that the residual representation at a prime p is reducible, say its semisimplification
is given by θ1 ⊕ θ2. The curve E(A,B) has additive reduction only at primes dividing 2, hence a priori the
characters θi are only ramified at such primes and probably at primes dividing p. The fact that E ⊗ χ de-
scends to a rational representation, and that χ is only ramified at 3, 43, imply that if p 6= 3, 43 the characters
θi cannot be ramified at primes dividing p. The prime 2 splits in Q(

√
129/Q), say 2 = pp̄. The conductor

of E(A,B) at (p, p̄) equals one of (8, 8), (1, 6) or (4, 6), hence the character θ1 has conductor 24, p3 or 4 · p.
The ray class group for such conductors have exponent 4 (in the first case) and 2 (in the other two ones)
(computed using [PAR19]). In particular the curve (or a quadratic twist of it) has a rational point over an
extension of degree 2 or 4 over Q, hence p ≤ 17 by [DKSS17, Theorem 1.2].

Theorem 2.1 and Ribet’s lowering the level imply our solution gives a newform in S2(Γ0(2 ·3 ·43), ε) (when

C is even) and S2(Γ0(28 · 3 · 43), ε) (when C is odd), where ε corresponds to Q(
√

129). The first space has 4
conjugacy classes while the second one has 36. Using Mazur’s trick all forms in the first space and all forms
in the second space without CM can be discarded (using primes up to 19). Clearly we cannot discard the
remaining forms with complex multiplication by Z[

√
−2]. To discard them, we use the results of Section 3.

In this case, we know that C is odd, not divisible by 3 (since 3 ramifies in K/Q) and since there are no
other solutions with C = ±1 than the trivial ones, C is divisible by an odd prime greater than 3. After a

computer search for the minimum x of the form x = p2 · κ we obtained that taking x = p2

90000 in (19) makes
the right hand side positive for p > 64690. For small primes, the same argument as in the previous example
proves that the CM forms can be discarded for primes p ≡ 1, 3 (mod 8). �

Remark 3. Ellenberg’s bound obtained in the last example could probably be slightly improved if better
bounds are given in the computations of Section 3. If the final value is not too large, a newform f ∈
S2(Γ0(2p2)) with the desired properties could be found in the intermediate range via a computer search.
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