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Abstract. The purpose of this article is to show how the root number
of a modular form changes by twisting in terms of the local Weil-Deligne
representation at each prime ideal. As an application, we show how one
can for each odd prime p, determine whether a modular form (or a
Hilbert modular form) with trivial nebentypus is Steinberg, Principal
Series or Supercuspidal at p by analyzing the change of sign under a
suitable twist. We also explain the case p = 2, where twisting is not
enough in general.

1. Introduction

The theory of local root numbers for modular forms was developed in
the well known work [AL70]. If N = pr11 · · · prtt , for each i ∈ {1, . . . , t} the
authors prove the existence of an involution Wpi in the space Sk(Γ0(N))
which commutes with the Hecke operators Tp (for p ∤ N) and such that they
commute with each other (see Lemma 8 and Lemma 10). Furthermore, the
composition of all such involutions equal the canonical involution WN (see
Lemma 9).

Recall that if f is a modular form in Sk(Γ0(N)) which is an eigenfunction
for all Hecke operator, its L-series satisfies a functional equation relating its
values at s and 1−s with a sign factor called the “root number of f”. In the
subspace of new forms, the Hecke operators prime to the level diagonalize
simultaneously into 1-dimensional eigenspaces (the so called multiplicity one
result). Since the canonical involutionWN and the Atkin-Lehner involutions
Wpi commute with such operators, they must leave each eigenspace stable.
If f is a newform, the “local factor of f at p” is the eigenvalue of the
involution Wpi . It can be shown that the root number equals minus the
eigenvalue of WN and, in particular, the root number can be read from the
local factors.

Besides the definition and properties of the root numbers, the authors also
proved some cases of the variance of the local root number under twisting.
In particular, the results proven there imply the well known result that the
variance of the global root number of a modular form of level N , by twisting
by a quadratic field corresponding to a character χ with conductor prime to
N , is given by χ(N). The case where the level and the conductor are not
prime to each other is more subtle. Some partial results were proven in the

2000 Mathematics Subject Classification. Primary: 11F70.
Key words and phrases. local factors, twisting epsilon factors.
The first author was partially supported by PIP 2010-2012 GI and UBACyT X113.

1



2 ARIEL PACETTI

same work, and some extensions with a similar perspective was obtained in
[AL78].

The existence of local factors of representations was proved by Deligne in
[Del73]. Many authors used such description to compute explicitly the local
root numbers in terms of the local representation of the Weil-Deligne group
(as in [GK80], or [Li80]), but to our knowledge, although the variation of
the local factor under twisting follows essentially from the properties of the
local factor and is known to any expert in the area, it has not being written
down explicitly in general. As will be showed in the article, it allows for
example to easily compute for an elliptic curve the local type (i.e. whether
it is Steinberg, Principal Series or Supercuspidal) at any odd prime (which
of course can also be done by looking at the reduction of the elliptic curve, as
explained in [Roh93], Section 1). For p = 2, a classification can be given in
terms of the sign variation, but this does not completely determine the type
(as is shown in Example 4.3 and Example 4.4). If one can have some other
information, for example if one is able to compute the space of modular
forms appearing in the quaternion algebra ramified at 2, then this extra
information is enough to determine the type at 2 as well.

It should be mentioned the recent article of [LW10], were the authors
give a method to compute explicitly the local data of a modular form (not
just its type) for any nebentypus. They do not use any twisting argument,
so their method is different from ours. However, they assume the modular
form to be minimal between its twists (and it is not clear how to compute
the minimal twist without computing some spaces of smaller levels with any
nebentypus, see Example 5.2) and also to get the data they need to compute
the whole space of modular forms instead of just the twist of a given one.

By the nature of the argument, the same results hold for Hilbert modular
form with trivial nebentypus as well, but the problem is that in general the
global characters to twist by, might not exist. Nevertheless, this problem
can be overcome by adding some auxiliary prime to the twist, as is shown
in the last section, so our method works for Hilbert modular forms as well.

The current article started some years ago while studying a character-
ization of the elliptic curves whose conductor is divisible by p but which
do not show up in the quaternion algebra ramified at p and at ∞. After
some numerical computations with Gonzalo Tornaŕıa we conjectured most
of the formulas proven here, and applied the formulas to find all elliptic
curves in Cremona’s tables not appearing in any quaternion algebra (an-
swering a question raised by Professor Cremona to Gonzalo). The table can
be found in http://mate.dm.uba.ar/~apacetti/. For a work in progress
with Victor Rotger, we needed an exact formula giving the sign variation of
a modular form under twisting in terms of the local type, which forced to
reconsider the problem and by lack of references, write down a proof of the
conjectures.

I would like to thank many people who during the last year helped in a
way or another to this article: Gonzalo Tornaŕıa, Tim Dokchitser, Lassina
Dembélé, Victor Rotger, Luis Dieulefait, Mladen Dimitrov and John Voight.
Lassina and John provided the examples of the last section, and taught me
some useful things about computing with Hilbert modular forms. Also I
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would like to thank the people from the CRM in Barcelona for the pleasant
time I spent there and the nice working environment.

Notation: Given an odd prime number p, by valp(N) we denote the p-

adic valuation of the integer N . By p⋆ we denote the element
(

−1
p

)

p, whose

square root generates the quadratic extension of Q ramified only at p. For
a positive integer r, we denote by Ur the usual filtration in the p-adic units,
given by

Ur = {x ∈ Z×
p : x ≡ 1 (mod pr)}.

If Ep is a finite extension of Qp, Tr and Norm denote the trace and norm
from Ep to Qp respectively.

2. Some useful well known results

For K a local field, let W (K) denote the Weil group of K; that is the
preimage under the map

Gal(K/K) 7→ Gal(k/k),

of the integer powers of Frobenius, where k denotes the residue field of K.
Local class field theory gives an isomorphism between W (K)ab and K×.
Furthermore, if L/K is finite, the following diagrams are commutative:

(1) W (L) //
� _

��

W (L)ab

��

≃
// L×

NL/K

��

W (K) // W (K)ab
≃

// K×,

and

(2) W (K)ab

t
��

≃
// K×

� _

��

W (L)ab
≃

// L×,

where t denotes the transfer map.
Let f ∈ Sk(Γ0(N) be a non-zero weight k and level N newform, i.e. a new

modular form which is an eigenfunction for all Hecke operators, and let ρp(f)
be the local representation of the Weil-Deligne group W ′(Qp) associated
to f at the prime p. Although it is not so easy to give a description of
the Weil-Deligne group (see [Tat79]), it is relatively easy to describe its
representations. A complex 2-dimensional representation of W ′(Qp) is a
pair (ρ,N), where:

(1) ρ is a representation ρ :W (Qp) 7→ GL2(C),
(2) N is a nilpotent endomorphism of C2 such that

wNw−1 = ω1(w)n, for all w ∈W (Qp),

where ω1 is the unramified quasi-character giving the action ofW (Qp)
on the roots of unity (and corresponds to the norm quasi-character
|| . ||p under local class field theory).



4 ARIEL PACETTI

Although representations of the Weil-Deligne group for any vector space
V are defined in a similar way, the two dimensional complex case is enough
for our purposes.

The correspondence between local components of automorphic represen-
tations for Γ0(N) and the local representations of the Weil-Deligne group,
is given as follows (using the normalization given by Carayol in [Car86]):

(1) Principal Series (reducible case): the endomorphism N = 0 and

ρp(f) = χ⊕ χ−1ω1−k
1 ,

for some quasi-character χ :W (Qp)
ab 7→ C×.

(2) Steinberg or Special Representation (indecomposable but re-
ducible as W (Qp)-representation): The endomorphism N is given
by the matrix ( 0 1

0 0 ) and the representation ρp(f) is given by

ρp(f)(w) =

(

χ(w)ω1(w) 0
0 χ(w)

)

,

for some quasi-character χ :W (Qp) 7→ C× with χ2|Z×

p
= 1.

(3) Supercuspidal Representation I (irreducible case, but inertia
acts reducibly): the endomorphism N = 0 and

ρp(f) = Ind
W (Qp)
W (Ep)

κ,

where Ep is a quadratic extension of Qp, and κ : W (Ep)
ab 7→ C×

is a quasi-character which does not factor through the norm map
with a quasi-character of W (Qp)

ab (so that ρp(f) is irreducible).
Furthermore, if ǫp denotes the quadratic character corresponding to

the extension Ep/Qp, then ǫpκ = || . ||1−k
p as quasi-characters of Q×

p .
(4) Supercuspidal Representation II (inertia acts irreducibly): this

only happens for p = 2. N = 0 and the image of ρp(f) is an excep-
tional group.

Remark 1. In the n-dimensional case, the last case occurs only for p ≤ n.

The previous description uses the assumption that the nebentypus of f is
trivial, and the third case relies on the following two facts due to Henniart
(see [Hen79] Theorem 8.2):

Theorem 2.1. Let E/F be a finite separable extension of degree n of local
fields, and ρ be a linear degree n representations of W (E). If R denotes its
induction to W (F ), then:

(1) Let ε be the character of F× that corresponds to the determinant
of the permutation representation of W (F ) acting on W (F )/W (E).
Then for x ∈ F× one has

det(R)(x) = ε(x)n det(ρ)(x).

(2) Assume that ρ is semi-simple, then R is semi-simple as well and one
has

cond(R) = f(E/F )(n · d(E/F ) + cond(ρ)),

where cond() denotes the exponent of the Artin conductor of the
representation, f(E/F ) denotes the inertial degree and d(E/F ) is
the discriminant.
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3. The case of an odd prime

The previous description and the fact that the unique order two character
of Z/pr has conductor p, gives the well know condition on the exponents of
the distinct types:

Corollary 3.1. If f ∈ Sk(Γ0(N)) and p 6= 2, we have:

(1) If ρp(f) is principal series then vp(N) is even.
(2) If ρp(f) is Steinberg then valp(N) = 1 or 2.
(3) If ρp(f) is supercuspidal then valp(N) ≥ 2.

Furthermore, in the last case if Ep/Qp is unramified then valp(N) is even.
If Ep/Qp is ramified, then valp(N) is odd unless κ has conductor 1, p ≡ 3
(mod 4) and κ|Z×

p
= ǫp, in which case the conductor is 2.

Proof. The first two statements are clear. For the last statement, we know
that our representation is the induced representation from a quadratic ex-
tension Ep of Qp of a character κ. Then Theorem 2.1 implies that since f
has trivial nebentypus, we must have

(3) κ|Z×

p
ǫp = 1,

where ǫp is the quadratic character that corresponds via class field theory to
the quadratic extension Ep/Qp. If such extension is unramified, the conduc-
tor of κ must be non-zero, since otherwise it will factor through the norm
map. Hence the even condition in the exponent comes from the fact that
the inertial degree is 2 in this case.

In the case where the extension is ramified, d(Ep/Qp) = 1, hence Theo-
rem 2.1 implies that the conductor of the representation equals 1+cond(κ).

The conductor of ǫp is 1, so condition (3) implies that cond(κ) = 1 and
κ|Z×

p
= ǫp or its conductor is even, which implies the statement. Note that

in the first case, κ|Z×

p
is quadratic, and it factors through the norm map

if and only if there is a character of order 4 in Z×
p with conductor p. This

is indeed the case if and only if p ≡ 1 (mod 4), so the representation is
irreducible only when p ≡ 3 (mod 4). �

Remark 2. If the form f has CM by the extension Q[
√−p], then its lo-

cal component at p corresponds exactly to Ep/Qp being ramified and κ of
conductor 1.

Let χ be the quadratic character associated to the quadratic extension
of Q ramified only at p. By class field theory, it can be identified with a
character of the idèle group, i.e. characters {χq}q, with χq : Q×

q 7→ C×

satisfying the following conditions:

• If q 6= p, then χq is unramified, and χq(q) =
(

q
p

)

.

• χp is ramified with conductor p, and its value in Z×
p factors through

the unique quadratic character of F×
p . Furthermore, χp(p) = 1.

Given a modular form f in Sk(Γ0(N)), we want to study how the local
factors of f change while twisting by χ. Denote by εq the variation of the
local factor of f at q while twisting by χq, where we choose the same additive
character and Haar measure on both computations.
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Remark 3. In the correspondence between automorphic forms and represen-
tations of the Weil-Deligne group, twisting an automorphic representation
by a quasi-character, has the effect of twisting the Weil-Deligne represen-
tation by the inverse of the quasi-character, but since our character χp is
quadratic, we can avoid this technical detail.

Theorem 3.2. The number εq is given by:

(1) If q 6= p, then εq =
(

q
p

)valq(N)
.

(2) If ρp(f) is principal series, then

εp =







(

−1
p

)

if valp(N) 6= 0,
(

−1
p

)

pk if valp(N) = 0.

(3) If ρp(f) is supercuspidal and Ep/Qp is unramified, then εp = −
(

−1
p

)

.

(4) If ρp(f) is supercuspidal and Ep/Qp is ramified, then

εp =











1 if valp(N) = 2,

1 if Ep = Qp[
√
p⋆],

−1 elsewhere.

(5) If ρp(f) is Steinberg with valp(N) = 1, choosing the additive charac-
ter ψ unramified and the Haar measure normalized such that

∫

Zp
dx =

1, the local sign is given by

ε(ρp(f), ψ, dx) =
−1

χ(p)
;

while the local sign of ρp(f)⊗ χp is given by

ε(ρp(f)⊗ χp, ψ, dx) =

(−1

p

)

.

Remark 4. Although in the second case, the local root number is not just a
sign, the power of the prime p appearing comes from the fact that the level
of the form and its twists are different.

Remark 5. The result for the Steinberg representation and for the Principal
series when p ∤ N are well known, and can be found for example in [AL70]
(Lemma 30 and Theorem 6), although the way to prove it uses the theory of
the Atkin-Lehner involutions as global actions, while the proof we present
is just of local nature.

The proof of the result is quite elementary, and is mainly based in the
properties that the local constant satisfies, as explained in [Del73]. One of
the main properties that determine the local constant is the following:

Property. Let ρ be a virtual 0-dimensional representation of a finite exten-
sion Ep/Qp, then

ε(Ind
W (Qp)
W (Ep)

ρ, ψ) = ε(ρ, ψ ◦ TrEp/Qp
).
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See [Del73], Theorem 4.1 for a proof of the existence of local constants
with the appropriate 4 conditions.

Proof of Theorem 3.2. We consider each case separately:

(1) If q 6= p, the character χq is unramified, hence by (5.5.1) of [Del73],

ε(ρq(f)⊗ χq, ψ, dx) = χq

(

qvalq(N)+q dim(ρq(f))
)

ε(ρq(f), ψ, dx).

Since χq(q) =
(

q
p

)

and dim(ρq(f)) = 2, the statement follows.

(2) Since ρp(f) is reducible in the principal series case, we need to see how
the local constant of a quasi-character changes under twisting by χp. Let
a = cond(χ1) be the conductor of the quasi-character χ1; chose ψ to be an
additive character of Qp with cond(ψ) = 0 (i.e. ψ|Zp = 1 but ψ| 1

p
Zp

6= 1)

and the Haar measure dx such that
∫

Zp
dx = 1. The local epsilon factor is

then given by

∫

Z×

p

χ−1
1

(

x

pa

)

ψ

(

x

pa

)

d
x

pa
= χ1(p)

apa
∑

b∈Z×

p /Ua

χ−1
1 (b)ψ

(

b

pa

)∫

Ua

dx.

The normalization
∫

Zp
dx = 1 implies that

∫

Z×

p
dx = p−1

p and
∫

Ua
dx = 1

pa .

Since the conductor of ψ is 0, ψ
(

1
pa

)

= exp(2πi/pa)c for some c prime to p.

Then

G(χ−1
1 , c) = χ−1

1 (c)





∑

b∈Z×

p /Ua

χ−1
1 (b) exp

(

2πib

pa

)



 ,

is a Gauss sum. If we compute the product of the epsilon factor correspond-
ing to χ1 and the one corresponding to χ−1

1 || . ||1−k
p , we get that the local

factor is given by

||pa||1−k
p G(χ−1

1 , c)G(χ1, c) =
pak

pa
paχ1(−1) = pakχ1(−1).

The middle equality is a classical result of Gauss sums, see for example
[Dav00] (Ex. 13(9), p. 295). If we replace χ1 by χ1χp in the previous

computation, we get that the two numbers differ by χp(−1) =
(

−1
p

)

and a

power of p if the level of f and that of f ⊗ χ are not equal, as claimed.

(3) Since (Ind
W (Qp)
W (Ep)

κ)χp = Ind
W (Qp)
W (Ep)

(χpκ) (where in the second term of the

equality we are considering the restriction of χp to W (Ep)), we can apply
the Property stated before to ρ = χpκ − κ. Then

ε(Ind
W (Qp)
W (Ep)

χpκ, ψ)

ε(Ind
W (Qp)
W (Ep)

κ, ψ)
=
ε(χpκ, ψ ◦ TrEp/Qp

)

ε(κ, ψ ◦ TrEp/Qp
)
.

This allows to restrict to the 1-dimensional case. Recall that since Ep/Qp is
unramified, κ is ramified (as was pointed out in the proof of Corollary 3.1).
Let Op denote the ring of integers of Ep, take p as a local uniformizer, and
let a = cond(κ) be the conductor of κ. Recall that since the nebentypus
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of f is trivial, κ|Z×

p
= 1. Let ψ be an additive character with cond(ψ) = 0

as before, and dx a Haar measure such that
∫

Op
dx = 1. To easy notation

we will denote by ψ̃ the additive character ψ ◦ TrEp/Qp
. The local factor is

given by

ε(κ, ψ̃, dx) =

∫

O
×

p

κ−1

(

x

pa

)

ψ̃

(

x

pa

)

d
x

pa
=

κ(p)ap2a





∑

b∈O×

p /Ua

κ−1(b)ψ̃

(

b

pa

)





∫

Ua

dx.

The middle sum can be written as

∑

α∈(Op/pa)×/(Zp/pa)×

∑

β∈(Zp/pa)×

κ−1(αβ)ψ

(

Tr(α)β

pa

)

=

∑

α

κ−1(α)
∑

β

ψ

(

Tr(α)β

pa

)

.

If pa−1 ∤ Tr(α), the last sum is zero, since it is a sum over all primitive
roots of unity of order at least p2. For elements where pa−1||Tr(α) (i.e.
pa−1 | Tr(α) but pa ∤ Tr(α)), the last sum is −1. Such elements are of the
form

r(pa−1 + β
√
δ), r ∈ (Zp/p

a)× and p ∤ β.

Modulo multiplication by elements of (Zp/p
a)× in Op/p

a, for p ∤ s, we have
that

(pa−1 + β
√
δ)s ∼ (pa−1 + s−1β

√
δ),

so the sum with these terms is

(−1) ·
∑

pa−1||Tr(α)
κ−1(α) = (−1) ·

∑

s∈(Zp/pa)×

κ−1(pa−1 +
√
δ)s.

Since the conductor of κ is pa, κ is non-trivial on such elements and the last
sum is zero. Then the only remaining terms are the ones with Tr(α) = 0

(i.e. α =
√
δ for a non-square element δ), and in this case all terms of the

last sum are 1 so we get that

ε(κ, ψ̃, dx) = pa−1(p− 1)κ(
√
δ)−1κ(p)a,

where δ is a non-square in Qp. If we make the same computation with χpκ,
we get that

εp =
pa−1(p− 1)κ(

√
δ)−1χp(−δ)κ(p)a

pa−1(p− 1)κ(
√
δ)−1κ(p)a

= −
(−1

p

)

.

(4) This case is similar to the previous one, the main difference is that using
the commutative diagram (1), we need to compose our character with the
norm map. This gives another character (that abusing notation we also
denote χp) which satisfies χp|O×

p
= 1, because the conductor of χp is p

and the norm map from O
×
p to Z×

p gives only squares modulo p. Then the
terms in the sum are the same for κ and χpκ. Since Ep/Qp is ramified, the
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conductor of ψ ◦ Tr = 1, hence if we take π =
√
pδ as a local uniformizer,

the local factor is given by

ε(κ, ψ̃, dx) = κ(πcond(κ)+1)

∫

O
×

p

κ−1(x)ψ̃
( x

π2r+1

)

d
x

π2r+1
.

The local factor of the twisted representation is given by

ε(χ̃pκ, ψ̃, dx) = χp(Norm(π))cond(κ)+1ε(κ, ψ̃, dx).

Hence the quotient equals 1 if cond(κ) = 1 or

εp =

(

Norm(π)/p

p

)

=

(−δ
p

)

.

In particular, if δ =
(

−1
p

)

up to squares, εp = 1, while if it does not, then

εp = −1 as claimed.

(5) Comes from the definition of the local epsilon factor attached to the
representations where the nilpotent endomorphism is not trivial and how
the local epsilon factors changes for the principal series. �

Let f be in Sk(Γ0(N)), where N = prN ′, with p ∤ N , and let ε(f) be
its functional equation sign. Let χp be as before, and let f ⊗ χp denote the
newform obtained while twisting f by χp. Denote by N(f ⊗ χp) its level.
The previous statement allows the following classification:

Corollary 3.3. With the previous notation, we have the following compu-
tational criteria to compute the local type:

• πp(f) is Steinberg if valp(N) = 1 or valp(N(f ⊗ χp)) = 1.
• πp(f) is Principal Series if it is not Steinberg, 2 | valp(N) and

ε(f ⊗ χp) = χp(N
′)ε(f)

(−1

p

)

.

• πp(f) is Supercuspidal if it is not of the above type. Furthermore,
if valp(N) is even and greater than 2, πp(f) is induced from the
unramified quadratic extension of Qp, while if valp(N) is odd and
greater than 2,

– πp(f) is induced from the extension Qp[
√
p⋆] if ε(f ⊗ χp) =

χp(N
′)ε(f).

– πp(f) is induced from the extension Qp[δ
√
p⋆] (for any non-

square δ) if ε(f ⊗ χp) = −χp(N
′)ε(f).

Remark 6. In the case valp(N) = 2, twisting only allows to determine the
type, but does not distinguishes from which quadratic extension the repre-
sentations is induced from.

Remark 7. We can replace the global functional equation sign in the last
two corollaries by the local Atkin-Lehner involution Wp. Then the same
statements are true replacing ε() by the eigenvalue of Wp and removing the
factor χp(N

′).

Remark 8. If f ∈ Sk(Γ1(N), ǫ) and for p | N the character ǫp = 1, the same
result holds.
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4. The case p = 2

When p = 2, there are more representations of the Weil group. It is a
classical result that all subgroups of PGL2(C) are isomorphic to: a cyclic
group, a dihedral group, A4, S4 or A5. The A5 case cannot happen since
the Galois group Gal(Q̄p/Qp) is solvable.

The case p 6= 2 did not include exceptional cases since for odd charac-
teristic all 2-dimensional representations of W (Qp) are of dihedral type as
mentioned in Remark 1. But for p = 2, the A4 and S4 case might occur.
Weil proved in [Wei74] that over Q, the A4 case actually does not occur, so
the only exceptional case has image S4. Furthermore, there are only 8 cases
with projective image S4 and all cases it corresponds to the field extension of
Q2 obtained by adding the coordinates of the 3-torsion points of the elliptic
curves (see also [BR99], Section 8):

(4) E
(r)
1 : ry2 = x3 + 3x+ 2, r ∈ {±1,±2},

and

(5) E
(r)
2 : ry2 = x3 − 3x+ 1, r ∈ {±1,±2}.

Note that there are 3 quadratic extensions of Q which ramify only at
2. We will denote by χ−1, χ2 and χ−2 the quadratic character that corre-
sponds to the such quadratic extensions, where χi corresponds to Q[

√
i] (of

conductor 4 the first one and 8 the last two ones). Then the 4 curves of each

type are twists of each other, where E
(r)
i ⊗ χj = E

(rj)
i (abusing notation

and considering the supra-indices modulo the equivalence relation given by
squares). Furthermore, by [Rio06] (Section 6), the level of the modular form

is 27 in the case of the curve E
(r)
1 (with r ∈ {±1,±2}), 24 for the curve E(1)

2 ,

23 for the curve E
(−1)
2 and 26 for the curve E

(±2)
2 .

Before stating the equivalent of Corollary 3.1, recall that there are 7
quadratic extensions of Q2. One of them is unramified, two of them have
discriminant with valuation 2 (corresponding to

√
3 and

√
7) and four of

them have discriminant with valuation 3 (corresponding to
√
2,

√
10,

√
−2

and
√
−10). With the previous notations, we have

Corollary 4.1. For p = 2, we have:

• If ρ2(f) is principal series then v2(N) is even (but not 2).
• If ρ2(f) is Steinberg then val2(N) ∈ {1, 4, 6}.
• If ρ2(f) is supercuspidal then val2(N) ≥ 2. Furthermore, depending
on the different extensions we have:

– If E2/Q2 is unramified then val2(N) is even and greater or equal
to 2.

– If E2/Q2 is ramified with valuation 2 then val2(N) = 5 or it is
even and greater or equal to 6.

– If E2/Q2 is ramified with valuation 3, then val2(N) = 8 or it is
odd and greater or equal to 9.

• If ρ2(f) is supercuspidal of type II, then val2(N) ∈ {3, 4, 6, 7}.

Proof. The proof is the same as before for the first two cases. The super-
cuspidal dihedral case is also the same for the unramified extension, while
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for the ramified extension, note that if κ|Z×

2

= ǫ2, then the conductor of κ

is 2 · cond(ǫ2)−1 or it is even (and greater). Then Theorem 2.1 implies that
the conductor of the induced representation is 3 · cond(ǫ2)− 1 or congruent
to cond(ǫ2) modulo 2. �

Remark 9. Note that in the supercuspidal dihedral case induced from rami-
fied quadratic extensions, all the representations are irreducible, since there
are no characters of order 4 and conductor 4 nor characters of order 4 and
conductor 8.

Remark 10. In the principal series case, the levels 1, 4 and 6 are twists of
each other, since all characters of conductor 1, 2 or 3 are at most quadratic.

We summarize the previous corollary in Table 4.1 (where we used the
notation: PS meaning principal series, ST meaning Steinberg, SCIa, SCIb,
SCIc meaning Supercuspidal of dihedral type and the index a, b of c meaning
induced from an extension with discriminant 0, 2 and 3 respectively; and
SCII meaning supercuspidal of second type).

val2(N) Types val2(N) Types

0 PS 6 PS, ST, SCIa, SCIb, SCII
1 ST 7 SCII
2 SCIa 8 PS, SCIa, SCIb, SCIc
3 SCII odd ≥ 9 SCIc
4 PS, ST, SCIa, SCII even ≥ 10 PS, SCIa, SCIb
5 SCIb

Table 4.1. Possible types for p = 2.

Let χ denote the character associated by class field theory to any of the
characters χi, i ∈ {−1,±2} and denote by εq the change of the variation of
the local factor at q under twisting by χ. Then εq it is given by:

Theorem 4.2. The number εq (up to a power of 2) is given by:

(1) If q 6= 2, then εq = χ(q)valq(N).
(2) If ρ2(f) is principal series, then ε2 = χ(−1).
(3) If ρ2(f) is supercuspidal and E2/Q2 is unramified, then ε2 = −χ(−1).
(4) If ρ2(f) is supercuspidal and E2/Q2 is ramified, then

ε2 =











1 if cond(κ) = 2 · cond(ǫ2)− 1,

1 if E2 corresponds to χ2,

−1 elsewhere.

(5) If ρ2(f) is Steinberg with val2(N) = 1, choosing the additive charac-
ter ψ unramified and the Haar measure normalized such that

∫

Z2
dx =

1, the local sign is given by

ε(ρ2(f), ψ, dx) =
−1

χ(2)
;

while the local sign of ρ2(f)⊗ χ2 is given by

ε(ρ2(f)⊗ χ2, ψ, dx) = χ2(−1).
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Proof. The proof is almost the same as the odd case, and can easily be
checked. �

Remark 11. The computation in the non-dihedral supercuspidal case is
straight forward, since one can compute for each elliptic curve the local
root number and use the relations between the curves under twisting. In
Table 4.2 we list the local root numbers of each curve at 2.

Curve Root Number Curve Root Number

E
(1)
1 1 E

(1)
2 1

E
(−1)
1 1 E

(−1)
2 1

E
(2)
1 −1 E

(2)
2 −1

E
(−2)
1 1 E

(−2)
2 1

Table 4.2. Root numbers in the non-dihedral supercuspidal case.

Remark 12. Contrary to the odd case, where the variation of the sign under
twisting allows to compute the exact type of a representation, for p = 2
this is no longer the case. The only cases that cannot be distinguished
are those of a Principal Series representation and a dihedral supercuspidal
representation induced from the quadratic extension Q2(

√
2), in the case

they are not twists of lower level so in particular val2(N) is even and greater
than 8. This is so by Theorem 4.2 since, following the previous notation,
χ−1(−1) = −1, χ−2(−1) = −1 and χ2(−1) = 1.

Example 4.3. Consider the curve E768b in Cremona’s notation. Its qua-
dratic twists by χ−1, χ2 and χ−2 are the curves E768h, E768d and E768f
respectively (an online table of the curves and their first twists can be found
in [Tor04]). Looking at the local root number at 2 in such tables, we see
that they change by −1, 1 and −1 respectively so we are in the condition
of the last Remark. To see whether we are in the Principal Series case or in
the Supercuspidal one, we can search for the curve in the quaternion algebra
ramified at 2 and infinity. This can be done by choosing the correct order
in such algebra (see [HPS89]) and constructing ideal representatives for it
in order to compute the Brandt matrices (see [PS10] for an effective way
to construct the ideals). It turns out that all four curves appear in such
algebra (although it is clear that if one does the others do as well), hence
the component at 2 of all of them is supercuspidal.

Example 4.4. Consider the elliptic curve E3840c in Cremona’s notation. Its
quadratic twists by χ−1, χ2 and χ−2 are the curves E3840w, E3840n and
E3840t respectively. Their local root numbers at 2 show that we are again
in the condition of Remark 12. However, this curve does not show up in the
quaternion algebra ramified at 2, hence it is Principal Series at 2.

The last two examples show that both cases actually do occur, as was
expected, and in particular proves that by only considering the variation of
the local root number under twisting is not enough to determine the local
factor at the prime 2.
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5. Some remarks on Hilbert modular forms

Although in all the previous sections we worked only with classical mod-
ular forms, the correspondence between Weil-Deligne representations and
Hilbert modular forms works just as well. The properties/existence of the
local root numbers do also, so we could just started with a Hilbert modular
form over a totally positive number field K in the first case. All the local
computations are the same but the problem is that there might be no global
Hecke character χ to twist by. This comes from the fact that a totally posi-
tive number field K (other than Q) does have totally positive units different
from 1, which does not happen over Q, so for a character χp to be well
defined, it needs to be trivial at totally positive units.

To overcome this problem, starting from the character χp, we chose an
auxiliary prime q which does not divide the level of the Hilbert modular form,
and such that χpχq is trivial on totally positive units. Such primes always
exist, since if χp is non-trivial on units, we can chose a basis {ν1, . . . , νr}
of the totally positive units such that χp(ν1) = −1 and χp(νi) = 1 for all
2 ≤ i ≤ r. This is equivalent to saying that our prime p is inert in the (ring
of integers of the) quadratic extension K[

√
ν1] and splits in the extension

K[
√
νi], for 2 ≤ i ≤ r. Then any prime q with the same splitting behavior

satisfies our hypothesis (and they always exist by Tchebotarev).
The behavior of twisting by χq is computed using the first case of The-

orem 3.2, where we need to replace the quadratic symbol by χq(π) for π a
local uniformizer of Kp. In this way, we can extract the information needed
to compute the local factor at p.

Example 5.1. Let K = Q[
√
5]. The group of totally positive units is gener-

ated by the element 〈3+
√
5

2 〉. Let P31 = (6 +
√
5) be a prime ideal of norm

31 in K. In this case, χP31

(

3+
√
5

2

)

= χ31(14) = 1, so no auxiliary prime is

needed and everything works as over Q. For example, consider the space of
weight (2, 2) and level P2

31 Hilbert modular forms. This can be computed
using Dembélé algorithm (see [Dem05]) which is implemented in Magma. It
turns out that there are 3 forms having Q as coefficient field. One of them is
the twist of the elliptic curve of conductor P31 given in [Dem08], Example
1, hence both curves are Steinberg at the prime P31.

The other two curves are one twist of the other, and have Weierstrass
equation:

E : y2 + y = x3 − x2 −
(

7 + 3
√
5

2

)

x,

(this equation was computed by Lassina Dembélé for us) and its twist has
global minimal model:

EP31
: y2+

√
5y = x3−

(

1−
√
5

2

)

x2−(639+285
√
5)x−

(

4733 + 2113
√
5

2

)

.

If we compute the sign of their L-series, we see that E has sign −1 while
EP31

has sign +1 (actually using SAGE, [sag], one can check that E has

rank 1 while EP31
has rank 0). Since

(−1
31

)

= −1, we conclude that E is
principal series at P31.
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Example 5.2. Let K be the totally real field of discriminant 257 obtained
by adding to Q a root of the polynomial t3 + 2t2 − 3t− 1 (it is not a Galois
extension, since the discriminant is a non-square). The units in the ring of
integer are generated by 〈t, t− 1〉, with signatures (−1,−1, 1) both of them.
The class number of K is 1, but the ray class number is 2. The totally
positive units are generated by

〈

t(t− 1), t2
〉

. Let P3 = 〈t+ 1〉. It is a
non-principal ideal for the ray class group (the sign of t+1 under the three
embeddings are (+,−,+)). Also, χP3

(x(x− 1)) =
(

2
3

)

= −1, so it does not

define a global character. The space of parallel weight 2 forms of level P2
3

has dimension 2, and it splits into two eigenforms with rational coefficients
(this space was computed to us by John Voight). One form is a twist of the
other one by the narrow class character. One of the forms correspond to the
elliptic curve

E : y2+(t2+3t+3)xy+y = x3+(t2+t−1)x2+(4t2+19t+4)x+(4t2+9t+2).

One way to prove that the curve is modular for the above modular form, is
to notice that the curve has torsion Z/6Z, so it is modular and since there
are no other forms in the space, it matches one of the two forms in our
space (this argument and the equation for the elliptic curve is due to John
Voight). Now we search for a prime ideal P such that it has the same sign in
the totally positive units as P3. A small search reveals that the prime ideal
P7 = 〈2t+ 1〉 satisfies the required property, since χP7

(t(t − 1)) =
(−1

7

)

=

−1. So we can compute the twist of E by the ideal P3P7 =
〈

2t2 + 3t+ 1
〉

.
It is given by the equation (in global minimal model)

EP3P7
: y2 + (t+ 1)xy = x3 + (t+ 1)x2+

(−863t2 − 1791t− 442)x+ (18919t2 + 40953t+ 10179).

Its conductor has valuation 1 at the prime ideal P3, hence both modular
forms of level P2

3 are Steinberg at P3. Note that in this case, p23 is the
smallest conductor of any twist of the curve and has valuation 2 at p3 (so it
is not in any table precomputed before).
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Norm. Sup. (4), 13(3):349–384, 1980.

[Hen79] Guy Henniart. Représentations du groupe de Weil d’un corps local, volume 2
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