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Let N = 1 mod 4 be the negative of a prime, K = Q(v/N) and Ok its ring of
integers. Let D be a prime ideal in Ok of prime norm congruent to 3 modulo 4.
Under these assumptions, there exists Hecke characters ¢p of K with conductor D
and infinite type (1,0). Their L-series L(¢p, s) are associated to a CM elliptic curve
A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type
formula for L(¢p,s) of the form L(yp,1) = Q3 ;r(D,I)mip(I) where the sum
is over class ideal representatives I of a maximal order in the quaternion algebra
ramified at |N| and infinity. An application of this formula for the case N = —7

will allow us to prove the non-vanishing of a family of L-series of level 7|D| over K.
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Introduction

Given an imaginary quadratic field K the theory of complex multiplication done by
Shimura gives a relation between elliptic curves with CM given by an order of K
and L-functions associated to Hecke characters ¢¥» on K. The simplest case is when
K = Q(V/N) with N = 1 mod 4 the negative of a prime and v is a character of
conductor v/N. In this case the L-function corresponds to a CM elliptic curve A(N)
studied by Gross in [Gr], defined over H, the Hilbert class field of K. A formula for
the central value of L(1), 1) was given by Villegas in [Vi].

In this thesis we will study the central value of the L-series corresponding to
the CM elliptic curves A(N, D), twists of A(N) by ideals v/ND where D is a prime
ideal of K prime to v/N and with prime norm congruent to 3 modulo 4. The ideal
D has associated h Hecke characters 1p of K of conductor D, where h is the class
number of K. The relation between the L-series of A(N,D) and L(¢p, s) is given
explicitly by :

L(A(N, D)/H,5) = [] L(¥p, 5)L(Fp, s)
YD

where H is the Hilbert class field of K and the product is over the h Hecke characters
associated to D (see [Gr] formula (8.4.4) and Theorem 18.1.7). If we define B be
the Weil restriction of scalars of A(NN, D) to K, then B is a CM abelian variety, and
L(A(N,D)/H,s) = L(*B/K,s).

Let B be the quaternion algebra ramified at |/N| and infinity. To the ideal



D we will associate a maximal order Ojpj in B depending only on the class of D .
If {I} are representatives for left Ojp-ideals, we will prove the formula L(¢p,1) =
Q> r(D,I)m;([D]) where the sum is over the ideals {1}, Q is a period, r(D,I) is a
rational integer and the numbers m;([D]) are algebraic integers.

In the last chapter we study in detail the case when the class number of K is
one. In this case the elliptic curve A(N) is defined over Q and the numbers m; turn
out to be rational integers. In the case N = —7 using the fact that the quaternion
algebra has class number 1 for maximal ideals, we will be able to prove that the CM
elliptic curves A(N, D) defined over K have a non-vanishing L-series for all primes
D.

We finish this work with a remarkable relation between the numbers m; and the
coordinates of the eigenvector of the modular form associated to A(N) represented

in the Brandt matrices of level N2.



Chapter 1

L-series

1.1 L-series definition

Given a number field K, we will denote Ok for its ring of integers, Cl(Of) the class
group and A the class number.

Let N be a negative prime integer congruent to 1 mod 4, and K := Q(\/N) Let
D be a negative prime integer congruent to 1 mod 4 such that the ideal generated
by D splits completely in K, i.e. (D) = (D)(D). The ideal D induces a quadratic
character from Ok /D to {£1} by extending the Kronecker symbol (W) so as to

make the following diagram commute:

Ok DOk +1

Z]\D|Z
We will denote ep this character. It induces a Hecke character ip on principal

ideals by ¥p((a)) = ep(a)a.
Proposition 1.1.1. The character ¥p on principal ideals is well defined.

Proof. Since 1 and —1 are the only units in K, we must check that ep(a)a =



—ep(—a)a. This follows from the fact that ep is multiplicative and |D| = 3 mod 4,
hence ep(—1) = —-10

The character actually depends of the choice of D (i.e. we have one character
associated to D and another one associated to D). Abusing notation we will denote
just by v the character associated to D.

The character ¢ defined on principal ideals extends to h Hecke characters on I(Ok)
the set ideals of Ok. We fix an extension once and for all and we call it ¥. Then

Y I(Og) — Ty, where Ty, is a non-Galois degree h field extension of K.

Definition. The L-series associated to v is

A
L(y,s) =Y %AS) (1.1)
A
where the sum is over all ideals A of Ok .

By Hecke’s work we know that L(1), s) extends to an analytic function in the

upper half plane, and satisfies the functional equation:

(\2\%) ﬂr(s)L(w,s) = Wy <\/§%>S2F<2 —s)L($,2—5)  (12)

where wy, is the root number. The character ¢ is associated to a CM elliptic curve
A(N,D) and defines a weight 2 modular, by fy(z) = Y. , ¥(A)e?™*N4 for 2 in the
upper half plane. The modular form f,, has level N D, and actually the root number

is given by:
i 7

we = ol ) ol )

(1.3)

1.2 Choosing characters in a consistent way

Given an ideal D we choose an extension of the Hecke character ¥ defined in principal
ideals to the class group. in this way we get a field T, depending on the extension

chosen. Note that if we choose another prime ideal D’ and extend the character



associated to D’ in an arbitrary way, the image of both characters will lie in different
fields. There is a natural way of defining a Hecke character ¢ps associated to D’
such that ¢ (Cl(Ok)) C Ty. Since the class group has order h we know that any

ideal raised to the h-power is principal, hence we define:

ED/(.Ah)

Y (A) = Pp(A) en(AF)

(1.4)

Proposition 1.2.1. the character yp: defined above is a Hecke character associated

to D' taking values in Ty.

epr ()

Proof. If A is principal, say A = (), then ¥p(a) = ED(Q)QW. Since h is
odd, and ¢ takes the values 1, we get that 1,(a) = ep(a)ov.

Note that the character ¢ps is well defined for all ideal A prime to D'D, so
we need to find a way to extend it to D; then since the character is multiplicative
it will extend to any ideal A prime to D’.
Let q be a prime ideal in the same class equivalence as D and prime to DD’ (there
exists such an ideal by Tchebotarev density theorem), say q8 = D. Then ¢p/(D) =
Y (qB) = Y (q)Yp (B) = Y (q)ep (B) 8. Hence ¢pr is defined in all ideals prime
to D', and takes values in Ty,. O

Given a prime ideal p, we will denote v, the Hecke character associated to p

chosen in this consistent way.

Proposition 1.2.2. The root number in the functional equation satisfy wy =
- (ﬁ) iﬁ, where o« = +Yp (D) and the sign is chosen such that K(\/ av N)
is the quadratic extension of K associated to the character i, i.e. it is +1 if 2 is

unramified in K(v av/N) and —1 if not.

Proof. See [Bu-Gr] proposition 10.6, page 20 [



1.3 Computing the L-series value at 1

Given A an ideal of K , we will denote [A] its class in the class group. We can

decompose the L-series as

Z v (1.5)

BNA
Proposition 1.3.1. All integral ideals equivalent to A are of the form cA for some
ce AL

Proof. If B ~ A there are elements a and b in Ok such that a A = bB. Hence
¢A = B C Og; in particular § € A7l = NA;. On the other hand if ¢ € A™! |
c:NLA for some b € A. Thenca:]\bf—‘j4 €Ok forallac A. O

Two elements ¢ and ¢’ of A~! define the same integral ideal equivalent to A
if and only if they differ by a unit of Og. The only units in Ok are 1 and —1, then:

Iy Y(FaA) I QU NA 1
ZNBS_QC%%N(A&A)S_2§& P(NA) N~ 2l Z

cEA

then 1;?(7“4) = 7 A) Using the fact

Since 9 is multiplicative ¥ (A)¢(A) = (N 0
ZCEA wle 2 and we can write the

A),
that NA = NA it follows that > 5 4 NBS) =i L

YP(A)
L-series as:
1 NA® cep(c)
Lis,) = > P (1.6)
2 acciomn Y(A) i Ne

Without loss of generality, we may assume that A = aZ + %Z and D =
|D|Z + b+5/ﬁZ, hence AD = a|D|Z + %Z (see [Vi] §2.3 page 552). If c € A
then ¢ = ma + nb‘*'g/ﬁ, and ep(c) = ep(ma + an”F) Since an”F €D, ep(c) =

ep(a)ep(m) = ep(NA)ep(m). We will denote z4 the point b+2‘aﬁ (respectively zp

the point b;ﬂg and z4p the point b;; TDF| ). Also we denote by 3’ the sum removing

the zero element (or zero vector depending on the context). We have:

1 NA=Sep(NA) rep(m)(m + zap|D|n)
L(s,v) Z P(A) Z N(m + zap|D|n)s (1.7)

[AleCl(Ok) m,ne”Z



We would like to cancel the term in the numerator with one of the terms in
the denominator, but we need to end up with a point in the upper half plane. If we

rearrange the sum changing m by —m and using that ep(—1) = —1 the term in the

ep(m)
(m+(—zap)|D|n)|m+(—zap)|D|n|?*~2"

to Eisenstein series that we define below:

This sum is related

inner sum can be written as

Definition. Let p be a prime integer and e(m) := (%) We define the Fisenstein

. . / e(m
series associated to € by Ey(z,8) =3, .7 (m+zpn)(|m)+zpn|23'

By (1.7) we get the relation:

NA'"%ep(N
o=y 5 MR s ) (18)
[A]€CU(OKk)

FEi(z,s) turns out to be a modular form of weight 1 with a character. We
need to compute its value at s = 0 for a point z in the upper half plane. The
problem is that this series converge only for R(s) > %, but it can be analytically
continued to the whole plane and satisfy a functional equation. We will compute its
value at s = 0 using Hecke’s trick. Since ¢ is a character of conductor p, we break

the sum over m as:

Ei(z,s) = Z

meZ n=1r mod p

1
(zpn +r + mp)|zpn + r + mp|**

(1.9)

and dividing the last sum by p?*!

Ey(z,s) = 2L(s,¢) +2ZZ zs+1z ! 5 (L10)

n= 17"modp mEZL ZPZJFT +

we get:

For z in the upper half plane we define:

H(z,s)zz !

= (2t m)z+m|*




Lemma 1.3.1. Let z = x + iy be a point in the upper half plane, then:

o0 o0

Z (z4m)~ T (z 4 2)7% = Z Ta(y, s + 1, 8)e?™ne

m=—0oQ n=—oo

where 7,(y, s + 1, ) is given by:

n%e o (4nny, s+ 1,8)  (n > 0)
(Y, s + 1, 8)% =< |n|¥e 2"V (4ninly, s,s +1) (n < 0)
['(2s)(4my) 2 n=0

and o(y,o, B) = [5°(t + e~ le=vtdt

Proof. This is Lemma 1 page 84 [Sh] O
The right side of lemma 1.3.1 equality converges for any s > 0, so we can
compute the limit when s tends to 0 of 7,,(y, s + 1, s) in the different cases:

e Case n = 0: lims_,q (22;2::)1 2%? (47ry)_28 E—

2s+1
e Case n < 0: limg_,0 ﬁm|n|zse%|"|y JoS @+ 1)5 e trlnlvtgr = o

2s5+1, _2s
e Case n > 0: lim,_,o %e*%”y F(ls) S5 (t+ 1)t te Aty

We just need to compute limg_,q ﬁs) fol (t 4+ 1)%t>~le=4™¥t 4t Doing integration by
parts:

2sef4rmy

1 1
/ (t + 1)sts—1e—47rnytdt = _ / ts(t 4 1)8—16—47rnytdt_
0 0

S

1 1
= / t5(t 4+ 1)5e” MM (_dmnyt)dt
s Jo

The function I'(z) has a simple pole at z = 0 with residue 1. Dividing the

integral by I'(s) and taking the limit when s tends to zero we get:
lim 7, (y, s + 1, 5) = —2mie 2™ (1.11)
s—0

We just prove:

Lemma 1.3.2. limg 0 H(s,2) = —mi —2miy .~ q"



Equation (1.10) can be written as

=i 25 T A

n=1r mod p

Which by lemma 1.3.1 is the same as:

o0
elr . Tpn—+r
E1(27 3) = 2L(3,€) +2 Z Z 2(8-1-)1 ZTk(yn7 s+ 1, 8)627nk( pp )

n=1r mod p p keZ

Let G(e) 1= 3., mod p€(r)&, be the Gauss sum associated to the quadratic
271
character €. Let §, = e » . If we take the limit as s tends to zero and use lemma

(1.3.2) in the inner sum we get:

> ?(—m —2mi Y g = —@G(E) > e(k)g™
k=1

p k=1

r mod p

If p is congruent to 3 modulo 4 it is a well known result that G(e) = i,/p then:

(e o]

lim Ey(z,s) = 2L(1,¢) + A Z Ze(d) q" (1.12)

s—0
p n=1 \ d|n

Knowing the value of E1(z,0), and using equation (1.8) we get the value of
L(1,%). We will write this number in terms of theta functions so as to relate the
value for different ideals D.

Let L = Q(v/D), and A be any ideal of L. For z in the upper half plane, we
define ©4(2) = > yeu e2ENZ = 1+ Yoo ra(n)g™ where r4(n) is the number of

elements A € A of norm nN A.

Lemma 1.3.3. Let w be the number of roots of unity in L, and z a point in the

upper half plane. Then T%/FﬁEl (2,0) = EAeCl(OL) O.4(2)

Proof. We need to check that the g-expansion on both sides is the same. The

constant term first on the right side is h, the class number of Q(y/—p). On the left

side we have L(l’;izrw*/ﬁ which by the class number formula is h. Since the constant



term is the same, we can apply the Mellin transform on both sides. Dividing by w
we need to prove the equality:

i Zd|n €(d) . l

ns N
n=1 .AECl OL n=1

(1.13)

Given a number field L the zeta function associated to it is:

A NA®

where the sum is over all integral ideals of L. It follows easily from the definition
that (1(s) = 13 1ccn (©1) > ng ) which is the right hand side of (1.13).
It is a classical result that (r(s) = ((s)L(s,e) (see for example [Wa] The-

orem 4.3, page 33). If we look at the Mellin transform of this product, we get
(0 L) (ZOO elm )) which is the right hand side of (1.13) O

n=1 ns m=1 ms

Note that —Z4p = 2z 1, hence by equation (1.8) and lemma 1.3.3 we get:

2 ED(N.A)
L(1,¢) = —— —_— O8(21p)
wy/|D] [A]egfzox) ¥(A) [B]egz:oL

By the consistent way we chose the Hecke characters (see equation (1.4))

Yp(A) = Yp(A)ep(AM)ep(A") = ¢p(A) (%)h. Since h is odd it follows that

ep(NA) 1
¥p(A) — Pp(A)’

Theorem 1.3.1. The value at s =1 of L(s, 1) is given by:

27 GB(ZAﬁ)
L(1,¢) = —— —
wy/|D| [A]ego;( ) [B] E§OL) ¥p(A)

10



Chapter 2

Theta functions in several

variables

2.1 Definitions and applications

The main reference for theta functions in several variables is David Mumford’s book
([Mu]). The theory of theta functions in several variables is the natural generaliza-
tion of the classical theory of theta functions in one variable.

We define the Siegel upper-half-space b, to be the set of symmetric gxg
complex matrices {2 whose imaginary part is positive definite. Note that if g = 1
this is just the usual upper half plane.

The generalized Theta functions are functions from C9xh, — C, defined by:
0(2,Q) = > sy exp(miit Qi + 2mint.2)

Proposition 2.1.1. 6(2,) converges absolutely and uniformly in Z and in £ in
each set max; |[Imz;| < $& and Im§) > cal,

2

Proof. See ([Mu] proposition 1.1, page 118) [J

In the classical case we have an action of Si3(R) on Cxh. We define the

11



simplectic group Spag(R) to be the set of 2gx2g real matrices M such that M*AM =

0 I
A where A is the matrix 7 |. Note that if g = 1, Sp2(R) = Sl(R).
~I, 0
A B
Given an element o = € Spag(R), we define its action at a point (Z,2)
C D

in C9xh, by a.(Z,Q) = (1/(09 + D)2, (AQ + B)(CQ + D)’l)
Most of the traditional results for Sl(R) acting in b are true for Spag(R)

acting in h,. We state some of them in the next proposition.
Proposition 2.1.2. The following statements are true:

1. Spag(R) acts transitively on b4, and the stabilizer of il is isomorphic to Ugy(C).
Thus by ~ Spag(R)/Uy(C).

2. Spag(Z) C Spag(R) is discrete and acts discontinuously on b.

3. The orbit space by/Spag(Z) is called the Siegel modular variety. It is a
Hausdorff topological space.

Proof. See ([Mu] pages 177-182) OJ

Lemma 2.1.1. Given a vector mi € Z9 and zZ € CY, we have:

2. 0(Z+ Qm, Q) = exp(—mim!Qm — 2mim'z) 6(Z,Q)

Proof. The first statement follows directly from the definition of the Theta function.
Since 2 is symmetric, AT QM) — omifi' Qi g2mifi! Qi i QU Then rearranging
the sum we get the other statement. [

The Theta functions does not satisfy a functional equation for the whole

group Spag(Z) but for a finite index subgroup I' » (following Igusa notation), which

12



A B

is defined to be: a = € Spag(R) such that A'C and B'D have even
C D
diagonal.
0 1, B
Proposition 2.1.3. I'y 5 is generated by the elements , ,
0 1/A 0 I
0
with A € Gly(Z) and B any symmetric integral matriz with even
-1, 0
diagonal.

Proof. See ([Mu] proposition A4, page 208. [I.

B
Proposition 2.1.4. (Functional Equation) Given a = €,
C D
0(0.(2,Q))) = Eadet(CQ + D)/ 27 (CAUD)TICZ g7 () (2.1)

where &, is an eighth-root of unit.

Proof. A complete proof is given in ([Mu], §5, page 189). We are interested in the
special case when Z = 0, so we will sketch the proof to get some extra information
on the root of unity.

The first step in Mumford’s proof is to show that if c; and as satisfy 2.1
then so does their product, hence we skip this step here. Using proposition 2.1.3 we

will check the functional equation in each of the generators.

A 0
First case: if o = with A € Gly(Z). Then det(A) = £1, and

0 1/A
the functional equation reads §(AZ, AQA!) = £,+/det(A—1)0(Z, Q).
By definition §(AZ, AQAY) = Y, _,, ™' AQAIn2mint AZ - Gince A € Gly(Z)

it preserves Z9, hence via a change of variables §(AZ, AQAY) = 0(Z,Q) and &, =
1

V/det(A-1)’

13



I, B
Second case: if o = g with B symmetric and even diagonal,
0 I
the functional equation reads 0(2, 2 + B) = £,0(Z,2). By definition 6(Z,Q + B) =

ot ot . .
S ega €7 (@FBnt2min's - The conditions on B assure nfBn to be an even integer

if n € Z9, then &, = 1.

0 I
-1, 0
equation for the classical theta function and so is the proof. The functional equation

reads 0(Q712, —Q1) = £,1/det(Q)e™' 2 '79(Z,Q2). We need a general version of

Third case: a = This case is similar to the functional

the Poisson Summation formula.

Poisson Summation formula: let S(RY) denote the Schwartz space, i.e.
the vector space of functions f : RY — C which are bounded, smooth (i.e. all partial
derivatives exist and are continuous), and rapidly decreasing (i.e. |z|" f(z) tends
to zero if |z| tends to infinity for any N). For f € S(RY) we define the Fourier
transform f : RY — C by

fo) = [ emesois
R9
where dr denotes dz ...dx4.This integral converges for all y € RY, and f € S(RY).

Lemma 2.1.2. if f € S(RY) then Y, cz0 f(m) = 3, cz0 f(m).

Proof. See ([La] [XIII §1], page 249).0
The third case of the functional equation goes as follow: apply Poisson Sum-
mation Formula to f(z) = ¢ @e+2miz’  They > neze f(n) = 0(2,Q). Its Fourier

transform f (y) is given by:

Lemma 2.1.3. Let Q € by and 7 € CI then

~1/2
/ exp(imz'Qx + 2miz'z)dr = (det(i)> exp(—imz!Q12)
R9

14
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Figure 1 Figure 2

Proof. Since both sides are holomorphic in €2 and z, it is enough to consider the case
when they are both pure imaginary (say Q = iA'A and z = iy). Then the formula
follows from a change of variables (see [Mu] Lemma 5.8 page 195 for details).[]

We will use Lemma 2.1.3 in the particular case of ¢ = 2, z = 0 and Q =
Q7, where @) is positive definite and 7 is a point in the upper half plane. Then
det(%) = (—i)272det(Q). If we remove from C the real negative line R~ (see figure
1), then we can define the square root in a unique way there. Since 7 € b, and @ is
positive definite , (—i)272det(Q) is a non-negative real number, so we can consider
this square root (picture 2 represents the values of —72det(Q)).

Both terms of the functional equation are analytic, and by Mumford’s proof

they coincide in the case T pure imaginary hence we get the formula:

0(0,—(Qr)™") = V/det(Q) (—i)r0(0, Q) (2.2)

Following the previous chapter notation, given N a negative prime congruent
to 1 modulo 4, and D a negative prime congruent to 1 modulo 4 such that D splits
in K := Q(v/N), we denote L := Q(v/D).

The goal of this chapter is to write the identity of theorem 1.3.1 in terms of
theta functions in two variables. Then we will find relations between these theta

functions for different primes D using the functional equation proved above.

15



L is an imaginary quadratic field, so given an ideal B of C1(Op) we can asso-
ciate to it a quadratic form of discriminant D via the group isomorphism between
Cl(Op) and {quadratic forms of discriminant D}.

More specifically, given a quadratic form of discriminant D, say [a, b, ¢] where

b2 — 4ac = D, we associate the ideal {a, b*gﬁ

); and conversely given any primitive

ideal (i.e. not divisible by any rational integer greater than 1) A, we can chose

a pair of generators of the form A = (a, b+§/N ), and associate to it the quadratic
) ) a b/2
form [a, b, ¢] where ¢ = (b*> — D)/(4a). We will denote Q5 the matrix
b/2 ¢

associated to the quadratic form [a, b, c].
Given an ideal B in C1(Op), and a point z € h, Op(z) = 3, e =N (@/NB)
by definition. Let B = (a, %) with a = N(B). If o € B then it can be written

uniquely as o = ma +n (@) Hence N(a) = a(am® + mnb + n” b24;N) and

a b/2 m
Z exp 2miz(m,n) (2.3)
n)€EL

(m b/2 ¢ n

Since z € h and Qp is symmetric, 2Qp € hs. Hence Op(z) = 9(6, 2Qp). So
we can rewrite the main formula of theorem 1.3.1 as:

21 9(6,ZA13Q3)
L= 2T 00, 24pQs) (2.4
wy/| D] [A]eczzoK [B}eczl«m ¥o(A)

Although it looks like the definition of 8(0, z4p@s) depends on the generators
of A and D chosen, this is not the case. Note that a and |D| are uniquely determined,
and the number b is defined modulo 2a|D|; hence the number z4p is defined modulo

Z. Since Qg is symmetric and even diagonal, the second case of the functional

equation says that 6(0,Q + kQg) = 6(0,Q) for any k € Z.
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Chapter 3

Normalization of the Theta

function

In (2.4) we have written the value of the L-series at the point s = 1 in term of theta
functions in two variables evaluated at the points z4p@5. To compare this value
for different ideals D we will normalize the theta function and write its value as a
linear combination of certain numbers n| ) 5 5 times an eta function (or a theta
function in some cases).

For z € b, we recall the definitions:

Z 271'12/24 H 2mnz

010 Z e (wik?/4)z

k odd
Where 6 is one of the classical Jacobi theta functions. Following the ideas

of [Ha-Vi] we want to define this two functions on ideals. Let us assume that
N # —3 to avoid some technicalities coming from the fact that the Hilbert class
field has extra roots of unity in this case. Given an ideal A of K prime to (6), say
A = (a, b+;/ﬁ>’ define n(A) := eqg(a(3 — b))n(bg‘gﬁ) where ey (a) = exp(2mia/n),
and 010(A) = exg(a(l — b))f1o(P52Y).
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It is easy to check that this functions are well defined (i.e. do not depend on
the generators for A chosen). The 7 case is done in [Ha-Vi] definition 8 page 502
(note that their definition of eta corresponds to n(A) with our definition) and the
010 follows from the equation 619(z + 1) = 010(2)es(1).

Without loss of generality any time we write a basis for an ideal we will
assume that b congruent to 3 modulo 48 while working with eta functions and that
b =1 mod 8 while working with 61y to avoid keep track of roots of unity.

Given a point z 55, we define the normalizer:

010(D)010(O )Yp(A) if N =1mod 8
1(D)n(Or ) (A) for any N

Then the main formula (2.4) can be written as:

Y(zap) :=

=2 ¥ > M%) ymyon @)

Dl [AJECI(OK) [BleC(OL) T(24p)

Also an analogous formula for the case N = 1 mod 8 replacing n by 619. We

are interested in studying the number:

nasp =000,245Q8)/YT(24p)

The normalizer Y is chosen so as to make this quotient an algebraic integer.
The character 1) p(.A) makes this quotient depend only on the class of A but not on A
itself. To probe this results we will need to use the theory of complex multiplication,

hence we give a summary of the main results.

3.1 Complex Multiplication

This theory was developed by Goro Shimura, but we will use basic notions and

results which can be found in [St] pages 211-218.
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Let Fjs be the field of all modular functions of level M whose g-expansion at
every cusp have coefficients in Q((ys), and K = Q(v/d), with d < 0 a discriminant.
Let K (M) denote the ray class field of K mod M, and for a prime ideal p in K
relative prime to M (say of norm p), o(p) denotes the Frobenius automorphism of
K(M)/K corresponding to p.

Far turns out to be a normal extension of F; = Q(j(z)) (the j-invariant)
and the Galois group Gal(Fys/F1) is isomorphic to Gla(Z/MZ)/ +1, i.e. given f(z)
a function on Fj; and an integral matrix A of determinant relatively prime to M,

we have an action of A on f(z). This action is characterized by the two rules:

o if A€ Sly(Z), then (f o A)(z) = f(Az)

10
o if A= then (foA)(z) = (fooy)(2); where o4 is the automorphism
0 d

of Q(¢y)/Q defined by o4(Car) = (4, and o4 acts on f by acting on its

g-expansion at infinity.

Theorem 3.1.1. let f(z) be in Far and suppose that (p) = pp in K where p is a
rational prime such that (p,dM) = 1. Suppose that A = [u,v] is a fractional ideal
of K with 9 = p/v in b and let B(") be a basis for pA. Then f(0) is in K(M) and
7)o o) = [f o (pB)](BY).

If in addition f is analytic in the interior of b and has algebraic integer

coefficients in its q-expansion at every cusp, then f(9) is an algebraic integer.

Proof. This is Theorem 3 of [St] page 213. J

Proposition 3.1.1. Following the previous notation, 6(0, a‘ZD|Q3)/77(ﬁ)n(z) is in

Fouap2 (respectively 0(6, ﬁ@g)/ﬁm(ﬁ)ﬁlo(z) is in Fouqp2 ).

For the proof we need an auxiliary lemma, hence first we will state and prove

it.
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Lemma 3.1.1. if f(2) is a modular form of weight k and level N and D is a positive
integer then f(f5) is a modular form of weight k and level at most ND.

a b
c d

in G5 (Q) (the two by two invertible matrices with positive determinant), we define

F)|Ak = f(y2)(cz + d)~F(det v)*/2.
Let g(z) := f($) and k be the weight of f(z). Up to a constant, g = f|[7]x
1 0

where v = 0ol If @ € y7'T'(N)y N Sla(Z) then g|[a] = f|[yy 'T(N )Y =

fl[v]lk = g hence g(z) is a modular form of the same weight as f(z) invariant under

Y IT(N)y N Siy(Z). Tt is easy to check that T'(ND) C v~ 'T'(N)y N Siy(Z). O

Proof. Given a modular form f(z), a positive integer k and a matrix v =

Proof of proposition 3.1.1. Let B be the ideal B := Za + Z%. Then the

quadratic form associated to B is [a, b, ¢] with b> — 4ac = D and the matrix of the

2a
bilinear form is . The theta series 0p is the theta series associated to

b 2c
this quadratic form hence it has level |D|, weight 1 and a character €(d) = (£) (see

[Ogg] Theorem 20, page VI-25). Using the previous lemma, we have that 93(a|ZD\)
is a modular form of weight 1 and level aD?.

The eta function is a modular form of weight 1/2 and level 24 (respectively
the Jacobi theta function 619 has weight 1/2 and level 8), then n(ﬁ) has weight
1/2 and level 24|D| (respectively Glg(ﬁ) has weight 1/2 and level 8| D), so their
product has weight 1 and level 24|D| (respectively weight 1 and level 8/D|). Then
the quotient has weight 0 and level at most 24aD? in both cases. We do not need
a sharp estimate of the g-expansion, hence the real level is not important.

From the g-expansion of the functions 03, 619 and 7 it is clear that the
g-expansion of 0(0, ﬁ@g)/n(ﬁ)n(z) at infinity is in Q(&yy,p2) (and so is the ¢-
expansion of 8(0, ﬁQB)/Qlo(ﬁ)elo(z)), hence we just need to check this condition

at the other cusps. For that purpose we will study the g-expansion of each form
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separately.
Since the theta function 65 is a modular form for I'g(|D|), there are just two

inequivalent cusps which may be taken to be 0 and co. One transformation that

0 1
send infinity to zero is given by the matrix S = sending z to —1/z.

-1 0
In the second case of the functional equation (2.2) we proved:

0 (5.Q5'(~1/2)) = det(Qu)"/*(~1)20(0. Q2) = VIDI(~)26(0,Qs2)  (32)

Since Qz' = Adj (Qg)/|D|, if we replace z by z/|D| in the previous equation
we get

6 (0. Adj (Qs)(<1/2)) = (=i)2/ /DI 6(0. Qs2/|D)) (3.3)

Replacing @ by its adjoint matrix, we see that the g-expansion at 0 includes
a 4-th root of unity and the square root of |D| (the z factor actually cancels out a fac-
tor coming from the eta function). Since v'D € Q(£p), the g-expansion of (0, Q)
has coefficients in Q(&sp) at all cusps. Replacing z by z/a|D| we add at most
(aD?)-th roots of unity to the g-expansions, hence the g-expansion of 6(0, ﬁQB)

has coefficients in Q(&y4,p2) at all cusps.

a
Lemma 3.1.2. Let B € Sly(Z) with ~ even, 0 positive (and odd), and
v 9
T €bh. Then
at + 8 v
= 0 A4
1(2255) = (5 ) eastrvam s ontr) (3.4)
and

01 <O” +5 ) _ (g) es(p)\/77 + 8010(7) (3.5)

YT+ 4
where kK =3(6 — 1)+ 6(B—7) — (62 = D)ya and p =35 — 1+ 8.

Proof. This is Theorem 4.3 in [Vi] page 560 OJ
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Then if we consider any matrix in I'y(2), the modular forms 7 and 6y change
by a 24-th root of unity, hence their g-expansion at the cusps equivalent module
I'p(2) have coefficients in Q(§24) and the g-expansion of n(rpr) and Hlo(ﬁ) have
coefficients in Q(&y4,p2). But modulo I'y(2) there are just two not equivalent cusps
which may be taken to be zero and infinity also, so we will study their g-expansion
at zero.

The eta function satisfies the functional equation n(—1/z) = +/z/in(2).
Hence its g-expansion at zero has coefficients in Q(&s) and n(ﬁ) certainly has
a g-expansion with coefficients in Q(&yy,p2) at zero.

The Jacobi theta function satisfies the functional equation 610(—1/z) =
vV =iz 001(z), where 0p1(2) = >,y e™in®=tTin  This function also has a g-expansion
at infinity with rational coefficients, hence the g-expansion of 19 at any cusp has

coefficients in Q(§24) and in particular 910(‘—5‘) has a g-expansion with coeflicients

in Q(&yu,p2) at all cusps. O

3.2 Field of definition

Theorem 3.2.1. The number 0(0, 2 45Q85)/1(25)1(Ok) is in H, the Hilbert class
field of K. If N =1 mod 8 then so is 0(0, 2 45Q5)/010(25)010(OK ).

Proof. Since the eta function does not vanish in the upper half plane, by Theorem
3.1.1 6(0, 2q/p|®@B)/M(2p|)n(2) is an algebraic integer in F' some field extension of
K containing H for any z in the upper half plane. We will make the eta case, and
make some comments of how to prove the other case.

Since A and D are prime to each other (we can assume also that N.A is

bV ) D = (BN D)) and

prime to |D|) we can choose basis such that A = (5

Ok = <M, 1). We will denote z the point %.
Let g(z) := 6(0, ﬁ@g)/n(ﬁ)n(z). Given an element o of Gal(F'/K) by

complex multiplication theory there exists a prime ideal p in K such that ¢ =
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op, where o, is the element in Gal(F/K) corresponding to p via the Artin map.
Using Tchebotarev density theorem we may assume without loss of generality that
p is principal and prime to A ,D and (6). By theorem 3.1.1, g(29) o o(p) = [g o
(pB~1)](Bzp), where B is the matrix that sends O to p.
Since p, A and D are prime to each other, we can also choose b such that
p = (bJﬂF,p) Then pAD = <b+gﬁ,pa\D|>, and with this basis B is given by
1 0 p
. Now Bzy = ZO and pB~! =
0 p 0 1
Let g*(2) = g0 S(2) = g(~1/2) = 6(0, =1/(a|D|2)Qs) /n(151;)n(3H)- I in
(3.3) we replace z by za|D| and Qp by Adj (Qp), we get the equation:

= S71BS.

0(0,Qp(—1/a|D|z)) = (—i)\/|D]az0(0, Adj (Qp)az) (3.6)

The eta function satisfies the functional equation n(—1/z) = \/z/in(z). Re-

placing z by |D|z and multiplying both equations:

n(=1/2)n(=1/(ID|2)) = V/IDI=n(=)n(D2)

Note that since |D| is positive, the branch of square root is the same for both

equations so it cancels. Hence:

0(0,Adj (Qp)az)
n(z)n(|D|z)

The g-expansion of this quotient has rational coefficients hence it is fixed by

9(=1/z) =

the action of oy, i.e. 0,0 g* = g*. Then [go (pB~!)] = g and (g(20))°" = g(20/p).

The case of N = 1 mod 8 follows analogously from the functional equation
910 -1 / Z) = 1\/Z (901

Proposition 3.2.1. with the notation as above, g(zo/p) = g(20).

Proof. The proposition follows easily from the next three lemmas. [J

This proposition completes the proof of theorem 3.2.1. [J
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Lemma 3.2.1. Let p = (u) be a principal ideal prime to A and D. Then the theta

function Op satisfies the formula:

b++VN — fien(p) P o b++vVN
#\ 2aplD] ) ~PYIN[D]) 7F \ 20D
Note: since ep(p)ep(in) = <|%|), the formula may be written as 93(32
v (1)Os(5)

Proof. Op is a modular form of weight 1 for T'¢(|D|) with a quadratic charac-

ter. We chose b such that AD = <b+;/N,a|D|> and p = <b+gﬁ,p> then pAD =

a
<b+§/ﬁ’pa’D|> = <:“b+§/N7MG|D|>. Hence there exists a matrix M = b in
v 0
« e otV .IN
Sly(Z) such that p 2 B
v 9 ap|D| pal|D]

If p = %‘/ﬁ, an easy computation shows that § = m;p"b and v = n|D|a.

In particular M is in I'g(|D]) and by modularity of ©5 we have:
b+ VN bt VN b+ VN b+ VN
=063 gl +0)x(0)08 | -7
2a|D| 2ap]D| 2ap|D| 2ap|D|

And the formula:
b++VN W b++VN
eB< o) ) = vwen ( ] (37)

where x(d) = (%) for any prime ¢ which is sufficiently large and satisfies ¢ =

d mod |D|. ([Ogg] Theorem 20, Chapter VI, page 25). Let ¢ be a prime congruent

to 1 modulo 4 and congruent to 6 modulo |D|. Then x(§) = (%) = (%) =

m—nb m— nb
<ﬁ) = < |2[1)" ) ( |D| > (%) Then the proof follows from the definition of
ep and the fact that £ = (1) -1.0O

Lemma 3.2.2. With the same assumptions as in the previous lemma, the eta func-

tion satisfies the equation 77(b+‘/ﬁ)77(b+‘/ﬁ) = nep () (\%l) n(b+\/ﬁ)n(b+§/ﬁ).

2p| D 2p 2[D|
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In term of ideals:

n(ED)n(p) = ien (1) (p) (Dn(Ox) (3.8)

Proof. Since we choose |N| = 3 mod 4, and |N| # 3, the number of units in H is 2
(see [Ha-Vi] tables 3 and 4 of page 507). Given p € Ok, define:

1 7 (u)
in?*(Ok)

Since the number of units in H is 2, x is a quadratic character (see [Ha-Vi], Lemma

k() = xa(Np)

14).We can write the left hand side of (3.8) as:

- B n(pﬁ) n(Ok) 772(]3)
n(pD)n(p) = < n(D) n(p) > n*(Ok)

1(Ox)n(D) (3.9)

If i is a generator of p, ngfgl)() = k(u)izxa(p). By proposition 10 of [Ha-Vi]

(n?gi))@ = (fﬁ) 7;((‘%@)). Then we get:

<7Z7(?§))n7(7((919[)()> - <|&) (JZ&))W - <\;> ( "‘J(N)[w«;(p))%71

By lemma 12 of [Ha-Vi], k(—1) = —1. Since the right term of (3.8) remains

unchanged replacing p by —p, without loss of generality we can choose p such that

k(1) = xa(p). Replacing each term on the right hand side of (3.9) we get:

n(pD)(p) = (,;) () fin(Ox (D) (3.10)

Since ep(f1) = ep(p) we get the result. O

Lemma 3.2.3. If N = 1 mod 8 the Jacobi theta function 61 satisfies the equation:

610 (ﬂ) 10 (T) = jep(p) <‘g|> 10 (%ﬁ) 10 (W)
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Proof. Let p = %‘/ﬁ be a generator of p. Then m? + n?|N| = 4p. Looking this
equation modulo 8 we get m? + 7n? = 4 mod 8. The only squares modulo 8 are 0, 1

and 4, hence both m and n are even numbers. Also 4|m or 4|n, but not both.

%”b aDnc

The ideal p = (%,p) = <,u,%, 1). The matrix M =
n m;nb
is the change of basis matrix (where c is such that b> — 4aDpc = N). If we chose b

such that mQ;p”b > 0, since n is even we can apply Lemma 3.1.2 and get:

bro (b *ﬁ) - ( m”b> es(on)y B 0 (b;ﬁ) (3.11)
2p

m—nb m—nb : : m—nb :
5 — 1+aDnc™3 2. Since 4 | nor 4 | m and just one of them, ™12 is
),

where p; =

odd and p; is even. Replacing u by —pu has the effect of changing p1 by p1 +2(m2_p nb
hence changing p by —pu if necessary we can assume that p; = 0 mod 4.

Looking at the ideal Dp = (b+g/ﬁ, |Dlp) = <N%7M’D‘> we see that the
m+nb
2

- —anc
change of basis matrix is given by M = . Hence applying Lemma

—nb

3.1.2 again we get:

610 <b—2|—u\)/‘ﬁ> = (Z;L) 68(/)2)\/5910 (b;};fl/)’N) (3.12)

where py = mz;p”b -1- (mch;p"b. Since 2|n and 21 D, aDnc = —anc mod 4. Then

p1 = p2 mod 4 and by the way we chose p, p1 + p2 = 0 mod 8.
Multiplying equation (3.11) and equation (3.12) we get:

. b+\/ﬁe b+VN\ [ |D| Iy b+\/ﬁe b+ VN
10 5 10 2D =\ o |, 010 2% 10 D[

2p

Since we are assuming N = b = 1 mod 8 and b?> — 4aDpc = N, ¢ must be

even. Also p; = m;"b — 1 = 0mod 4, then m%”b = 1 mod 4. By the reciprocity

v, (2 ) = (7 ) (fr) = =000 ()0

Note: While defining the normalization we ask an extra condition for the Jacobi

theta function. The problem is that if N = 5 mod 8 then the matrix M constructed
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while proving the last lemma is usually not in I'g(2) hence we cannot compare the

value of 019(p) and 019(Ok) and here is where the restriction on N appears.

Theorem 3.2.2. The number ny g p is in the field M = HT. It corresponds to
the fields diagram:

HyMXT
N A

2

Q

Proof. By theorem 3.2.1 the number 6(0,z45Q5)/1(25)1(OF) is in H and T
contains the image of ¢5(C1lOk) hence ny g p is in M. [J

Proposition 3.2.2. The quotient 0, (2 45)/¢5(A) depends only on the class of B
and the class of A.

Proof. Independence of B is clear since ©5 depends only in the class of B.
To prove independence of A, let a € Ok be an element with prime norm ¢ such

that ¢ 1 6a|D|. By definition ©p(zqap) = @B(SL}@\)- Then by lemma 3.2.1:

b+ VN B b+ VN
s <2anD|) = ¥p(@)®s < 24| D| >

Since ¥p(@A) = ¥p(a)ps(A) we get the result. O
Since the number n 4 g 5 depends only on the equivalent classes of Aand B

we will denote it by n4 5 p-
Proposition 3.2.3. The number njy 5 p is an algebraic integer.
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Proof. We already proved that 0g,(245)/m(25)/1(20,) is an algebraic integer
(see theorem 3.2.1). The number 15 (A) has norm N.A. Since the quotient depends
on the class of the ideal A but not A itself, using Tchebotarev density theorem
we can choose two prime ideals p; and po in the same class of A of prime norms
p1 and po. Looking at p; we see that the minimal polynomial of Np,],[B],D has
rational coefficients with only 1 or p; in the denominator. Considering po we see
that the minimal polynomial of Np,),18),0 Only has 1 or pp in the denominator. Since

Npy],[B,D = Npy),(8),D 1ts minimal polynomial must have integer coefficients.[]
Proposition 3.2.4. np 4 3 5 = 74,80

Proof. It is easy to check that the theta function ©p associated to B is the same as
the theta function ©aqjp associated to the adjoint matrix of B. Clearly the point

Z 2p and the number ¢5(A) are independent of B. [

Lemma 3.2.4. The character 15 satisfy: Yp(A) = 1¥p(A)

By the coherent way we chose the characters,

Proof. Clearly ¥p(A)yp(A) = NA. Also NA = ¢p(A)p(A)ep(N.A) hence
o) = (3t) vn(4).

(NA)h>

¢mm=wmwm%mW=WM%|w

Since |N| is prime, the class number A is odd. O

PI‘OpOSitiOH 3.2.5. n[AL[B];D = n[/ﬂ’[B]"D

Proof. It is clear from their definition that ©g(z4p5) = O5(—Z1p) and n(z4p) =

n(—Z4p) (respectively 610(z45) = 610(—Z4p))- Since —Z,15 = 2z 1p and Yp(A) =
1¥5(A) by lemma 3.2.4 the result follows. .

Proposition 3.2.6. If the ideal D is principal in Ok, T4 5D = N.4),[8),D
Proof. Replacing in equation (3.3) z by a|D|z/c we get:
Op(—c/alD|z) = (—1i) z\/|D Oadj(B)(az/c) (3.13)
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Also |z4p|? = ¢/(a|D|), then —Z 45 = . Evaluating equation 3.13 at z 45

I
alD|zap

we get:
. .a a
O8(—Zap) = (_Z)EZAﬁ\/ |D|© pqg; (B)(EZAﬁ)

Since ©g = Oaqjg we can replace Adj (B) by B in the last equation.

If A= (a, b*ﬁ), there is a natural ideal associated to it defined by C := (c, b*ﬁ),

where b2 — N = 4ac|D|. Then it is clear that 22 4p = Zep and we get the functional
equation:

O5(~Z4p) = (~i)2¢pV/|D|Os(2cp) (3.14)

Also ACD = <%> Then if D is principal (which is the same as D being
principal), [C] = [A].

The denominator part is not that straightforward hence we will break the
proof into several steps and lemmas to make it easier. We will just consider the
case of the eta function since the Jacobi theta function case follows from similar
computations.

First we need to study the term 7(zp,). We chose zp, = b*gﬁ, then

n(zox) = N(—zo,) = n(—b+ zo,). Since b = 3 mod 24 and the eta function

satisfies the transformation 7(z 4+ 1) = ea4 n(2),

N(zox) = n(zox Jes(—1) (3.15)

The other eta term is n(zp) = n(—zp) = n(ngB/'N)

one corresponding to the ideal D, but —b # 3 mod 24. Note that _I’QTI‘)/IN +|DJb =

%#‘/ﬁ, and since b = 3 mod 24 it follows that (2D? — 1)b = 3 mod 24 hence:

. This number is the

n(=2p) = n(zp)es(—|D|) (3.16)

Lemma 3.2.5. let A be a principal ideal of norm a. For a positive integer n let

¥ _ _ n(An(A)
Vn* = y/neg(n — 1), then Ta (O = 1
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Proof. Since we are assuming N # —3 the number of units in the Hilbert class field
is 2. Then this is just Lemma 23 part (i) and (ii) of [Ha-Vi], where w = w/2 =1
and A is principal. [

Since |D| = 3 mod 4, \/|D[* = /|D]es(|D| — 1). Then lemma 3.2.5 on the

principal ideal D says:

W = es(ID| — 1) /D]

And it follows that:

D 2 2
(D) = B (D) = es(1D] = 1) VDT A (D)

Since es(—1) es(~| D)) es(|D] — 1) = es(~2) = —i, we get:

. 2
WOR) (D) = (—i)v/IDIn(O n(D) 1OK) (3.17)

Let v be a generator of D. Then k(v) = X4(]D|)%ng?((9’2). Since x4(|D]) = -1

we can rewrite equation (3.17) as:

1(Ok)n(D) = (=i)/IDIn(Ok)n(D) /v + (—k(v))

Although x(v) should be in the denominator, it makes no difference since it is +1.

Finally we need to study the character term 15(A). Since ¥p(A)hps(A) =
NA, and NA = ¢55(A)¢vp(A)eps(NA) we conclude that

5o = (51 ) ol

Clearly ACD = <b+‘/ﬁ>, then A = C (bJ”/N) v. Since NA is prime to |D|,

2 2¢|D)|
b+v N
2c| D]

C is prime to D and also < ) v is prime to |D|, then we can split the character

as:
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If we denote £ :=¢p (NA (%tﬁ) ﬁ) =¢€p ((%) D) (%), we get:

1(Ok) n(D) ¥p(A) = (=i)zepV/ [P (O )n(D)p(C)(—k(r))E (3.18)

From equations (3.14) and (3.18) we are led to prove that (—x(v)){ = 1,

which will be done in the next two lemmas. O

Lemma 3.2.6. Ifv = M and a = NA, then £ :=¢ep (@;g:m) = <|%|>

Proof. Clearly (H‘/N)E = (H‘/ﬁ) (mfm/ﬁ> = (GmonN)+(bndm)VN - gy 0

2¢| D] 2¢|D| 2 D]
D = = D _ _ n(?=N) _ _
D = (D], t5yN), YN = b mod D. Then (5N} = "C2¥) = 4 mod D and
Eﬁ(bgtgﬁ) = (%) as stated.Od

Lemma 3.2.7. Ifv = %‘/ﬁ then —k(v) = <|%‘)
Proof. We know that () is 1, then we can restrict our attention on a transfor-
mation formula concerning the 4-th roots of unity of the eta function. We have:

a b
Lemma 3.2.8. Let M := be a matriz in Sla(Z) and ps(M) the polyno-

c d
mial (b?> —a + 2)c+ (a? — b+ 2)d + ad. Then:

n*(Mz) = (cz + d) &€’ (2)

where &3 is a third root of unity and &4 a fourth root of unity given by the formula

£y = e—2mipa(M)/4

Proof. See page 498 of [Ha-Vi].

The ideal D satisfies D = <b+g/ﬁ, |D|) = (m+721\/ﬁ) <b+§/N, 1), so there is a

m+4nb —anc
matrix M in Sls(Z) making the change of basis given by M := 2 ,
no D]
. _ —nb _ . .
Since nzp + "5‘3" = ﬁ, using lemma 3.2.8 we get:
v 1°(2p) 2mipa (M) /4
—k(V) = — D] — o= 2mipa(M)/ (3.19)

 DIn* (o)
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Let k = ”;ﬁ;l‘b, then py(M) = (a®n?c® — |D|k — nb + 2)n + ((|D|k + nb)? +
anc + 2)k + |D|k? + nbk. Since 2t a|D| reducing ps(M) modulo 4 we get:

pa(M) = (n* +k —3n+2)n+ ((3n — k)* + anc + 2)k + 3k* + 3nk mod 4
or equivalently:
pa(M) = n3c* — 3n + 2n + n?k 4 2nk* + k* + anck + 2k + 3k* mod 4 (3.20)

We want to know between v and —v which one makes ps(M) = 0 mod 4.
Since we know already that —k(v)v satisfies this, the strategy will be to prove that

the good generator written as % satisfies ( 5 ) = +1. This implies that if we

D]
start with v, then (%) v is the correct generator, and —k(v) = (ﬁ)

Since v is a generator of D it satisfies:

(5" 3 1o o2

Observations:

1. Since v is an integer, if 2|n then 2|m. If 4|n looking equation (3.21) modulo 4
we would have that |D| = 0,1 mod 4 which is not the case, hence 4 { n. Also
reducing (3.21) modulo 4 we see that 4 divides m, since |D| = |[N| = 3 mod 4.

Then &k := ";B"b is odd.

2. Since b? — 4ac|D| = N and 2 { aD looking modulo 8: 1 + |N| = 4c mod 8

To prove the equality we will need to consider different cases.

Case 2|n: Since k is odd by the observation equation (3.20) reads:
pa(M) = k* + 2ck + 2k + 3k* =k + 2c + 1 mod 4

We can write (ﬁ) as (ﬁ) <%T) Equation (3.21) says that (%) =1,

then since n/2 is odd, we can use the quadratic reciprocity law to get:

() ()
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Which gives the two cases:
. n=6mod8 when |D| =3 mod8
(i) = +1if
n=2mod 8 when |D|=7mod8
Let n be chosen such that (ﬁ) = +1. To prove with this choice of n,

pa(M) = 0 mod 4, we consider the sub-cases:

e If |[N| =3 mod 8, cis odd by the second observation and
pa(M) =k + 3 mod 4

The possibilities for |D| are:

* |D| = 3mod 8, in which case 8m by looking at (3.21) modulo 8. Then
|D|k = —3% mod 4. Since n =6 mod 8, kK = 1 mod 4 and p4(M) = 0 mod 4.

* |D| = 7mod 8, in which case 4|m and 8 { m by looking at (3.21) modulo
8. Then % =2mod 4 and |D|k =2 — 35 mod 4. Since n = 2mod 8, [D|k =
3 mod 4. Then k£ =1 mod 4 and ps(M) = 0 mod 4.

e If [N| =7 mod 8, cis even by the second observation and
pa(M) =k +1mod4

The possibilities for |D| are:

* |D| = 3mod 8, in which case 4/m and 8 { m by looking at (3.21) modulo
8. Then % =2 mod 4 and |D|k = 2 — 3% mod 4. Since n = 6 mod 8, [D|k =
1 mod 4. Then k = 3 mod 4 and ps(M) = 0 mod 4.

* |D| = 7Tmod 8, in which case 8m by looking at (3.21) modulo 8. Then
|D|k = —3% mod 4. Since n =2 mod 8, k = 3 mod 4 and p4(M) = 0 mod 4.

Case 2 { n: Since 2 { m, if we look at (3.21) modulo 8 we see that |N| cannot
be congruent to 7 modulo 8 (or |D| would be even) hence ¢ is odd by the second

observation.
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n

By the quadratic reciprocity law (ﬁ) = (—1)%1, so if we pick n = 1 mod 4
the quadratic symbol is +1. Then:

pa(M) = k(k* + k + 3 + ac) mod 4
e If 2|k, since ac is odd it is clear that ps(M) = 0 mod 4.

e If 21k we need to show that k + ac = 0 mod 4. Since k is odd, 2 = 2k|D| =
m—3 mod 4 i.e. m =1 mod 4. Also since b = 3 mod 48 and 4|D| = 12 mod 16
we get the equation:

94 |N| = 12ac mod 16 (3.22)

Then reducing (3.21) modulo 16 gives:

m? 4+ n?|N| = 4|D| = 12 mod 16 (3.23)

So we consider the two different cases for |N|:
*If IN| = 3 mod 16, by (3.22) ac = 1 mod 4.

The integers m and n are congruent to 1 modulo 4 and they satisfy equation
(3.23). Since 1 and 9 are the only odd squares modulo 16 then m? # n? mod
16. Hence m = n+4 mod 8 and 2|D|k =m—bn =n+4—3n =4—2n mod 8.
Since n = 1 mod 4, k = 3 mod 4 and k + ac = 0 mod 4.

*If IN| = 11 mod 16, by ( 3.22) ac = 3 mod 4.

Since m and n are congruent to 1 modulo 4 and they satisfy (3.23) it must be
the case that m = n mod 8. Then 2k|D| = —2n mod 8. Since n = 1 mod 4,
k=1mod 1 and k£ + ac =0 mod 4. U

Proposition 3.2.6 implies that if A and D are both principal then the number
npa,8),p lives in a subfield of M which we note M (following [Bu-Gr| notation,

see page 13) and corresponds to the field diagram

34



The next step will be to relate the numbers n(y) 5 p for different ideals D.

Lemma 3.2.9. Let D and D’ be two prime ideals of Q(v/N) with norm |D| and

|D'| respectively, and let p € Q(vV'N) be such that uD = D'. Then 7722((“}41;)) =

() xa(N ).

Proof. Note that although « is defined on integer elements, since it is a character

on (O /120k)*, we can extend it multiplicatively to all elements in Q(v/N) with

both numerator and denominator prime to 12. By definition () = % Xa(Nu) 77727?((9“ ;)

then we are led to prove:
1 (AD') n*(Ok)
1 (AD) 1 (p)
By Proposition 10 of [Ha-Vi] we can write the left hand side of (3.24) as
(nz(AD)>J(75’f>‘1)_1
7*(Ok) ’

Since Z;Eéﬁg is in H (by theorem 20 of [Ha-Vi]) then o4 represents the classical

Artin map from Cl(Ok) to Gal(H/K), and since D'D~! is principal, 0pp-1 is the

=1 (3.24)

identity. [J

Lemma 3.2.10. Let D and D' be two prime ideals of Q(v/N) such that D ~ D'.
AD')n(D i 1

Then WapiiS) = ep(AM)ep (A")

Proof. By proposition 10 of [Ha-Vi] we have:
onan =~ Giow) (iog) (o) (57) @
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Since the Artin-Frobenius map is an homomorphism:

(nngg) ) - <(n72g2) ) U<D/(D>_1)1> :

T/~ ) — —1
But (;Zgi%) L (see the proof of lemma 3.2.9), then o5 acts

trivially on it.

Let € Q(v/N) be such that D'D~! = % then using theorem 19 of [Ha-Vi]

Gaw)™™ " =) (R)

Since |D] is prime to 12, and k is a multiplicative quadratic character,

we get:

/@(ﬁ) = k(u)k(|D]). The character x defined on (O /120K )™ factors as a product
of two characters, x3 from (O /30k)™ to the group of third roots of unity and x4
from (O /40k)™ to the group of fourth roots of unity (see lemma 14 of [Ha-Vi]).
In our case k3 = 1 and the character is completely determined from the congruence

modulo 4. Then k(|D|) = k(—1) = —1. Using the quadratic reciprocity law,

(;Zgg))aml(ml)_l — k()T (%) (yg) (3.27)

Also since x(p)k() = «(|D||D']) = 1, k() = k(i) and we can rewrite

equation (3.25) as:

n(AD")n(D) ezt (a
UADIND) _ (o5 () (2
n(AD)n(D’) A\ |D'|

Since DD’ = ;i and ¢ is a multiplicative quadratic character:

a 1h
en( e (1) = ep(A)ep(Wenn (4 = (17) (4) 29

The last equality comes from the fact that since N is a prime number, h is odd.

Using the reciprocity law in Q(v/N) (see for example theorem 21 of [Ha-Vi]):

(f) = (45) k@ = (5) =) =n(@" (5) (W) (3.29)

Then the lemma follows from (%) = (ﬁ) (| B’I)‘ O
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Theorem 3.2.3. Let z4pQp and zap'Qp be two points in by such that they are
equivalent modulo Spy(Z) and D ~ D' in Q(v/N). Then N[ALBl,D = TNaLB),D

Proof. By proposition 3.2.5 and proposition 3.2.6 we may restrict to the case
D' # D (i.e. D not principal). For simplicity we will denote Qp = 24pQ5

and Qp = z4pQp. Since Qp is equivalent to 2ps there exists a matrix v =
A B

¢ D

in Sp4(Z) such that v+ (2p) = Qpr. Thinking as the action on lattices

(where it acts by multiplication on the left by 1/4%) we have that ~ % (—IT2D> =

_DB _AC (_89) - (*(Cf‘?f?bi%)) - (—5112@/) (Cp+ D)

By the coherent way we chose characters, $Z((él)) = ep(AM)ep (A") hence:

" 8,6 _ () (D)
na o 0(Qo) n(D)

DA ) = Glay D

~—

Where the last equality follows from lemma 3.2.10. We claim that:

0°(Qp)
Q)

-1 _ 772(«47))
- P(AD)

= Det(CQ + D) (3.30)

The first equality follows at once from the functional equation (see proposi-
tion 2.1).
Since |D| is prime and Det(Q) = |D| there exists matrices U,V € Sly(Z)

1 0
such that UQV = (respectively U" and V' for Q). Then:
0 [D|
1 0
V=t I v L _ 0 1
0 U —QD —UQVZAD —ZAD 0
0 —2ZA
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Similarly:

1 0
vi=too I\ I _ 0 1
0 U/ —QD/ —U/Q/V/ZAD/ —ZAD! 0

0 —2A

Since D’ # D, we may choose basis D = (]D\,%% D = <\D’\,%>

and A = (a, b"'%/N). If 4 is such that yD = D’ then AD' = <a|D’|,%> =

o'
<,ua\D|,,u(b+%/N)> = pAD hence there exists a matrix M = f in Siy(Z)
Y
such that:
M(b+\/ﬁ ) b+VN
M 2 _ 2
pal D) al D'l
6 0 — 0
0 1 0 0
Defining N := it follows that:
-6 0 a 0
0 0 0 1
1 0 1 0
ulD|
N 0 1 o7 O _ 0 1
—zap O 0 1 —zapr O
0 —2zA 0 —2A

-1 -1 ulD|
1% 0 N Vv 0 I D] 0 . Iy
0 U’ 0 U —QOp 0 1 —Qpr
and
I D -C I
2 = 2 (CQD + D)_l
—Qp -B A —QOp
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But both lattices have the same volume then | Det(CQp + D)|~! = |l|11|y:|)"
>(AD D -
By lemma 3.2.9 7;72((AD’)) = %m(u) = Tg,“n(u). Now Det(CQp + D)~! and

k() ’r |D]?|| have the same absolute value and both lie in Q(v/N) hence they differ by

+1. Then

6(Qp) n(AD)\* _ I
(9(%/) n(AD) ) = Det(CQp + D)™ fir(p) = £1

Or taking square roots:
0(Qp) n(AD')
0(Qpr) n(AD)

Q%)
n(D")n(Ok)

VEL =

(3.31)

By theorem 3.2.2 we know that ) and

n(D)n(Ok) are in H. Since /-1 ¢ H

the theorem follows. [J

It is not clear how to determine the sign a priori, and we are not able to give any

answer in this direction.
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Chapter 4

Quaternion algebras

The problem of determining whether two points in §o are equivalent or not is com-
plicated in general. For our case we will get this equivalence via ideals in quaternion
algebras. We start with the basic definitions and some elementary facts about

quaternion algebras. A good reference for these results is Pizer’s paper ([P1i]).

4.1 Definitions

Let F' denote either the field Q of rational numbers, the field Q, of p-adic numbers, or
the field R. A quaternion algebra B over F is a central simple algebra of dimension

4. Any such B has a basis 1,1, j, k over F', and multiplication in B is defined by the

relations:
o i’=q
o j2=0
o ij=—ji=k

where a and b are nonzero elements of F. Conversely, given any a,b € F*

(i.e. invertible elements of F') the previous relations define a quaternion algebra
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over F. We denote this quaternion algebra (a,b) if F' = Q, (a,b), if F = Q,
and (a,b)s if FF = R. Classical examples of quaternion algebras are Hamilton’s
quaternion algebra, which is given by (—1,—1) and M2(Q) the two by two matrices
with rational coefficients.

Let B be a quaternion algebra over F' and o = x+yi+ zj +wk be an element
of B. We define conjugation on B by & = x — yi — zj — wk. It is easy to check it is
an involution and an anti-automorphism, i.e. a8 = Ba.

Although we define conjugation in terms of a basis chosen, it is a canonical
anti-automorphism, i.e. it depends only on B and not on the particular choice of a
and b used to define it.

The reduced norm on B is defined by N(a) = aa = 22 — ay? — b2 + abw?,
and the reduced trace Tr(«a) = a + a = 2z.

Given a quaternion algebra B over Q, we denote B, := B ®g Q) the corre-
sponding algebra over Q,. To avoid separate statements, abusing notation we will
denote p = oo the real case, and when we talk about primes, we will include the
case p = oo unless explicitly stated. Over Q, there are up to isomorphism only
two quaternion algebras depending on whether the quadratic form norm represents
zero or not. The corresponding quaternion algebras are M (2,Q)) (the two by two
matrices with coefficients in @Q,) and a division algebra respectively. B is said to
ramify at the prime p if B), is a division algebra, and it splits at p if B,, is isomorphic
to the matrix algebra M (2, Q). If B ramifies at infinity, we said that B is a definite
quaternion algebra (and this is so if @ < 0 and b < 0).

The way to determine if a prime is split or ramified is to consider the reduced
norm, which is a quadratic form in four variables, and check weather it represents
zero or not, and this question may be answer in terms of the Hilbert symbol.

Given a field F' and a,b € F* the Hilbert symbol (a,b) is defined by:
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(a.b) 1 if 22 — az? — by? = 0 has a non-trivial solution in F?
a,b) =
—1 otherwise

The importance of the Hilbert symbol is that a prime p is ramified if and
only if (a,b), = —1, where with (a,b), we mean the Hilbert symbol over Q, (see
[Se], Corollary of theorem 7 page 38). The convenience of this characterization of
ramified primes is that the Hilbert symbol is in practice easy to compute, and it

satisfies the product formula.

Theorem 4.1.1. (Hilbert) If a,b € Q*, then (a,b), = 1 for almost all primes p

and Hp(a, b)p = 1, where the product is over all primes including infinity.

This is a classical result and there is a proof in [Se| page 23. For quater-
nion algebras this implies that the number of ramified primes is finite and even.
Furthermore the even number of ramified primes determines B uniquely up to iso-
morphisms, and given any set consisting of an even number of primes , there exists
a quaternion algebra over Q ramified exactly at those primes.

There is a nice exposition due to Martin Eichler where he proves by hand
that the possible ramified primes are the ones that divide a or b in [Ei] Theorem 4,
page 7.

From now on, let B be a quaternion algebra over Q. A lattice on B is a free
Z-module of rank 4, and an order on B is a lattice which is also a subring containing
the identity. An order is said to be maximal if it is not properly contained in any
other order of B. If p is a ramified prime then there is a unique maximal order, given
by Op := {z € By|N(x) € Zy,} (see [Ei] Theorem 4, page 21); if p is split, then all
maximal orders are conjugate to each other by an element of B* (see [Ei] Theorem
5, page 3). Given a lattice L on B we will note L, := L ®y Z, the corresponding
lattice of B,,.

An important tool on proving things on quaternion algebras are the ’local-

global’ properties; for example an order O of B is maximal if and only if O, is
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maximal for all finite primes p (see [Ei] Theorem 3, page 19; furthermore Eichler

proves that any order O = Q N, O,).

Proposition 4.1.1. Let B be the quaternion algebra over Q ramified precisely at
Ply...,pn and co. Then an order O of B is mazimal if and only if disc(O)=

(p1...pn)%, where the discriminant is taken with respect to the reduced norm of B.

Proof. See [Pi] Proposition 1.1, page 344 [

Given a lattice L on B, it has a left (respectively right) order associated to
it, defined by O;(L) := {« € BlaL C L} (respectively O,(L) := {a € B|La C L}).

Given a lattice L, we can define an inverse L™! := {« € B|LaL C L} and it
turns out that O)(L~1) = O,(L), O.(L™%) = Oy(L), and LL~! = Oy(L). The norm
of a lattice N (L) is defined to be the unique positive rational number such that the
quotients N(a)/N(L) is integer for all o« € L. We say that a lattice L is an ideal if

it is locally principal, i.e. if for all primes ¢, Ly = Oy(L )4y for some a4 € B.

Proposition 4.1.2. Let B be the quaternion algebra over Q as in Proposition 4.1.1,
and let L be an ideal in B. Then Oi(L) is a mazimal order if and only if disc(L)=

(p1...pn)?N(L)*

Proof. By definition disc(L) is the determinant of the bilinear associated to L
on any basis. Since L is locally principal at all primes, given a finite prime q,
Ly = Oy(L)40y. Clearly disc(L,) = N(ay)* disc(O,) and the statement follows from
proposition 4.1.1 and the fact that the norm of L is the product over all primes ¢

of qvq (Nag)

where v,4(n) is the g-valuation. O

The general theory of ideals turns out to be complicated in the general case,
so we will restrict our attention to the two cases we will need (see [P1i] for the theory
of ideals with square free level, and [Vig] or [Ei] for the general theory of locally

principal ideals).
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From now on B will denote a quaternion algebra over Q ramified at a prime
p and at infinity. Given any order R we will call a left R-ideal to a lattice L such
that its left order is R.

Maximal order

We will review the theory for ideals I such that its left order is maximal. We fix a
maximal order once and for all and denote it O. It is easy to see that if I is a left

O-ideal, then its right order is also maximal.

Proposition 4.1.3. Let I be a lattice such that Oy(I) = O. Then I is an ideal (i.e.

I is locally principal).

Proof. see [Vig] page 86.
By scaling the ideal I, we may always assume that the ideal is contained in
its left order (and hence in its right order as well), in which case the norm of the

ideal is an integer.

Proposition 4.1.4. If I is a left O-ideal then I=' = I/N(I) where bar denotes

conjugation.

Proof. This is just an easy local computation and is true for some more general
orders, see [Pi] proposition 1.17. O

Given two left O-ideals I and J we define them to be equivalent if there exists
8 € B* such that I = JB. This defines an equivalence relation on left O-ideals, and
the class number h(O) is defined to be the number of distinct classes of such ideals.
Furthermore I and J belongs to the same class if and only if there exists an element
a € JI with Nao = N(I)N(J).

The type number for maximal orders is defined to be the number of distinct

isomorphism classes of maximal orders in B.

Proposition 4.1.5. Let Iy,...1; be a complete set of representatives of all dis-

tinct left O-ideal classes. Let O; be the right order of I; for j = 1,...,h. Then
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I;lll, ey I;llh is a complete set of representatives of all the distinct left Oj-ideals
classes. Furthermore the {O;} represent all the isomorphisms classes of mazimal

orders, and each one appears once or twice.

Proof. See Proposition 1.21, page 348 of [Pi] OJ
Note that this implies that the class number is finite, independent of the
maximal ideal chosen and that the type number is smaller or equal than the class

number.
Orders of level p?

An order is said to have order p? if it has index p in a maximal order. We fix an

order of level p? once and for all and denote it O.
Proposition 4.1.6. Any maximal order contains a unique order of indez p.

Proof. see Lemma 1.4 [Pi2]. O

Then there are as many orders of level p? as maximal ones. An ideal I is
called of level p? if its left order has level p?. The equivalence relation between left
O-ideals, the class number, and the type number are defined in an analogous way to
the maximal case. There is an analogous of Proposition 4.1.5 coming from the fact

that left O-ideals are in close relation with left O-ideals (see [Pa-Vi] for details).

To a lattice L, we can associate the quadratic form @ : L — Z defined
by Qr(x) = N(x)/N(L) (and the bilinear form which we will denote @, also by
Qr(z,y) = Tr(zy)/N(L)). We define the Theta function associated to L as the

Theta function associated to @y, i.e. :

Or(z) =) exp(2mizN(Z)/N(L)) (4.1)
TeL
If L is a left O-ideal (respectively a left O-ideal) , the Theta function ©7, turns out

to be a modular form of weight 2 and level p (respectively of level p?) with trivial
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character (see [Ogg] Chapter VI for the theory of theta series and [Pi] Proposition
2.11 to compute the level of the quadratic forms).
Let {I1,Is,..., Iy} be a set of representatives of left O-ideals classes (respec-

tively left O-ideals), R; := O,(I;) for j = 1,...,h be the right order of I; and

ej = \R]X\ for j = 1,..., h the number of units in R;. For a non negative integer n
define:
1 _
bij(n) == ;]{a € I;'1; : N(a) = nN(L;) /N (I;)}|
J

Note that I 7; is a left Rj-ideal, hence the number b;;(n) is the coefficient
of the term with ¢" in the g-expansion of the Theta series (4.1) associated to the
ideal Ij_IIi divided by the constant 1/e;.

For each non negative integer n we define an h x h matrix, called the Brandt
matrix by B(n) := (b;j(n)).Actually we should write B(n;p) (respectively B(n;p?))
since the definition depends of the level we are considering, but we will drop the
level from the notation if it is clear which case we are considering.

Note that the definition of the Brandt matrices depends on choosing ideals
representatives. Let J = {Ji,...,Jp} be another set of left O-ideals representa-
tives (respectively left O-ideals), and B(n,.J) the Brandt matrix associated to J.
Then there exist an h x h permutation matrix P such that B(n,J) = PB(n)P~!.
Furthermore the Brandt matrix is independent of the maximal order O chosen (re-
spectively the order O of level p?). For a proof of this facts, see [Pi2] Proposition
4.2 and Proposition 4.3.

From the Brandt matrices we form a Theta series
O(z) = Z B(n) exp(2mizn) (4.2)

i.e. O(z) is a matrix such that the (i-th,j-th) coordinate is 6;;(2) := 1/e; © -1, (2)
J 2

which is a modular form of weight 2 and level p (respectively p?).
Proposition 4.1.7. The Brandt matrices have the following properties:
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2
=
~

=
Z

N(In)

B(g")B(g") = S ¥) gk B(qvti=2k) for q # p

o B(p")B(p") = B(p"™)
And they generate a semi-simple commutative ring.

Proof. See Theorem 2, page 32 of [Ei2].0J

Proposition 4.1.8. The action of the Hecke operators To(n) with (n,p) = 1 on
the 0;5(z) is given by the Brandt matrices B(n), i.e., To(n)(6;;(2)) is the (i-th, j-th)
entry of the matriz ), B(n)B(m)exp(2mimz).

Proof. See Proposition 2.23 of [P1i].

We will use the Brandt matrices to relate its eigenvector corresponding to
the CM elliptic curve of level N? with the numbers np4y,8),p 10 the case when the
class number of Q(\/N ) is 1. We will consider just this case since it is the only case

when such elliptic curve is defined over Q.

4.2 Some results on quaternion algebras

Given an order R and a left R-ideal I, we say that [ is bilateral (or ambigue) if
O,(I) =R.

Proposition 4.2.1. Given O a mazimal order, there exists only one bilateral ideal
P with the property P? = |N|. Also all bilateral ideals form an abelian group, and

each such ideal has the form P'm where i is 0 or 1, and m is a rational number.
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Proof: see [Ei2] proposition 1, page 92. O

Lemma 4.2.1. Let O be a mazimal order, {I1,...,I5} a set of left O-ideals repre-
sentatives, and {Ry,...,Rp} be the right orders of {I1,..., Iy} respectively. Then
for a given i = 1,..., h the mazimal order R; appears twice on the list if and only

if there is no embedding of Z[v/N] into R;.

Proof. Let P be the bilateral O-ideal of norm |N| . For a given left O-ideal I;, the
ideal PI; is another left O-ideal. Note that if P; is the ideal of norm |N|in R;, then
1 j—lpj j = Pj by the uniqueness of such a bilateral ideal. Then the ideals I; and PI;
are equivalent if and only if there exists § € ij such that I;3 = PI;. Multiplying
on the left by I;l we see that R;3 = 2;173]]- = P; hence P; is principal, and the
element 8 has norm |N]|.

To see that this is the only way in which a maximal order R appears twice
in the list of right orders, suppose that I and J are two nonequivalent left O-ideals
with same right order R. Then I~'J is a non-principal bilateral ideal for R. Let Pr
be the ideal of norm |N| in R, then by proposition 4.2.1, Pg is non-principal and J
is equivalent to PI. I

In (4.1) we saw how to associate a quadratic form to any lattice L. If L is
a lattice in B, we can define a bilinear form associated to the lattice L, over Z,
by Qr,(x,y) = Tr(xy)/N(L) where x and y are elements in L, and N(L) is the
reduced norm of L. Note that a change of basis of L, corresponds to equivalence of
quadratic forms over Z,.

Note that if we multiply a lattice L, on the right by an element of B the
quadratic form does not change. Also the quadratic form of L, (the conjugate
lattice) is the same as the one of L,. Given two lattices L, and J,, we define them to
be in the “same class” if there are elements a and 3 in B such that J, = aL,a™'
or J, = afpa_lﬁ.

We define two quadratic forms to be “equivalent” if they are equivalent in the

48



traditional sense plus considering equivalent two forms that differ by a non-square
element. For example, if r is a non-square modulo p we consider “equivalent” the
forms with diagonals (1,p,p,p?) and (r, rp, rp, rp?) although they are not equivalent

over Zy.

Lemma 4.2.2. Let L and J be two lattices in B. Then L, and J, have “equivalent”

quadratic forms over Zjy, if and only if they are in the “same class”.

Proof. If L, and J, have equivalent quadratic forms over Z,, then there is a matrix
M € Sl4(Z,) such that
M'Qr,M =Qy, (4.3)

If z € Ly then Qr,(v) = x((i)) ie. M is such that NJ\(,%Q)C) = %8)) Let

v : B, — B, be the linear transformation defined by the matrix M, and § =
¥(1). Clearly N(8) = {5 Define ¥(v) = (v)3~!, then it is clear that W is
an isomorphism, ¥(1) = 1 and ¥ is an isommetry, i.e. N(¥(z)) = N(z) hence
by lemma 6.1.2 there exists o € B}y such that ¥(v) = ava™ (or ¥(v) = ava™?).
Therefore J, = ¢(L,) = aLya™ !B (respectively J, = aL,a™18).
If the two quadratic forms differ by a non-square r modulo p , say Qr, =
rQ,, since N : B, — Z, is surjective, there is an element u € B), such that
1 ifg#p
u ifg=p
Then the full rank lattice I := L(U), has the same norm as L. Also I, is in

N(u) =r. Let (U), be the idéle defined by U, :=

the same equivalence class as L, and Qp, = rQr,. Since I and J have “equivalent”
quadratic forms ,I, and J,, are in the same “equivalence class” hence L, and J, are
in the same “equivalence class”.

The other implication is trivial.[J
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Chapter 5

Constructing a non-ideal lattice

In the next chapter we will associate a lattice to a Siegel point, and prove that
this lattice is actually an ideal for a maximal order. While trying to prove this
we had to understand the idea of locally principal ideals and ways of checking this
condition. At the same time an interesting question arise: how can we construct a
lattice not locally principal for its left order? In this chapter we will construct one
such a lattice, using the classification of quadratic forms. Also we will study some

particular orders. We do not know at this time if this results are well known or not.

5.1 Classification of quadratic forms over Z,

Definition. Let f be a quadratic form over a local field Q,. We say that f is integral
if f(m) = ZZj:l fijxixj with fij = fji € Zp.

Given an integral form, we say that it is primitive if max; ;| fi;| = 1. In the
case p = 2 we say that f is properly primitive if it is primitive and max; | fi;| = 1.

If f is primitive but not properly primitive, we say that f is improperly primitive.

Given an integral quadratic form f in n variables over Z,, we define its

discriminant, D(f) as the determinant of the bilinear form matrix in any basis of
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Zy,. Also we define the reduced discriminant as the square root of the discriminant.
Given a lattice L in a quaternion algebra B we define its discriminant D(L) as the

determinant of the quadratic form Q.

Proposition 5.1.1. Let p # 2 be a prime, and suppose that f and g are integral
forms in n-variables over Q, such that D(f) = D(g) is a unit. Then f and g are

ZLyp-equivalent.
Proof. This is the Corollary of Theorem 3.1 of [Cas], page 116. [J

Proposition 5.1.2. For the prime p = 2, let f and g be two improperly primitive
integral forms over Zy and suppose that D(f) = D(g) is a unit. Then f and g are

Zs-equivalent.

Proof. This is the Corollary of Lemma 4.1 of [Cas] page 119. O
We will state the classification theorem of quadratic forms in Q, over Z, and

we will use it later to construct a not locally principal ideal.

Proposition 5.1.3. Let p # 2 and let r be some fized quadratic non-residue of p,
that is |r] = 1 and r & (Q})?. Fore = 0 or 1 and for m = 1,2,... let h(y) =
h(e,m,y) be the form

2 2 2 :
oy g+ ife=0
h(e,m, y) _ Y1 Ym—1 Ym f (51)

Y1+ YR Tyl ife=1

Then every non-singular f(x) € Qp(x) is Zy-equivalent to a form
J - -
g(x) = Zpemh(q, my,y¥)
j=1

for some J, some e(j) with e(1) < e(2) < ... < e(J) and some €j, m; with m; +

oot my=nandz = (yD,. . . y).
Proof. This is Theorem 3.1 page 115 of [Cas]. [
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5.2 Orders in quaternion algebras

Given a quaternion algebra B ramified at p and infinity, we are going to study orders
of index p” in a maximal one.

Given u a non-square of Z,, let L := Q,(y/u). Then we can represent the
quaternion algebra B, as the subalgebra of the 2 x 2 matrix algebra over L given
by:

B, = pgg fa lo, B e L

We denote by [« 8] the previous matrix. Let R, be the ring of integers of L

(i.e. Ry :=Zp+ Zp\/u) and define Do, 11 = {[r,p" ] € Byl , B € Ry}

Definition. An order O’ of B, is said to have level p*"*1 for r =0,1,... if O, is

isomorphic over Zy, to Dary1

Proposition 5.2.1. An order O’ in B has level p>"*1 for some r if and only if O’

contains a subring isomorphic to R,.

Proof. See [Pi3] Proposition 2. [J

Lemma 5.2.1. Let O’ be an order of discriminant p?*+2

in the quaternion algebra
ramified at p and infinity. If k > 2 then there exists an order O such that O' C O

with index p or p?.

Proof. We know that there exists a maximal order O such that O’ C O with
index p*. Using the Smith normal form, we can find basis of O and O’ such that
O = (1,v1,v9,v3) and O" = (1, p"t vy, p"2vg, p"3v3) where 11 + ro + r3 = k. Without
loss of generality assume that r1 > r9 > r3. We consider two different cases:

e If r1 > 79 > r3 or r3 > 1 then writing down the conditions for O to be an order it
follows that the lattice O = (1,p" vy, p"2vg, p3us3) is an order and clearly contains

O’ with index p.
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o If | =1y and r3 = 0 then O’ = (1, pFv1, pFug, v3). Let O = (1, pF vy, pF~1ug, v3).

It is easy to check that this is an order and O’ has index p? in it. O

Note: this inclusion is sharp in the sense that in the algebra ramified at 7 and
infinity, the order O’ = (1,1, —% + %j, —%i + %k‘> has index p? in the maximal one (it
is the order used in [Pi] of level p®) but it is not contained in (1, 3 + 4, Zi + 2k, k)

which is the unique order of index p in the maximal one.

Lemma 5.2.2. Let O' be an order of index p* in Dopy1 for some r then O is

isomorphic to one of the followings:
1. O' = {([1,0], [Vu,al, [0,p" 1, [0, p" T\ /u]) such that o & p" TR,
2. 0" = ([1,0], [pv/u, 0], [0,p"], [0, p" 1 /u])
3. O = ([1,0], [p/i, o], [0,p7), 0,57 Vil such that o & p'Z, +p7 ' Zy /i
4. 0" =([1,0], [p*v/u, 0], [0, "], [0, p"v/u])

5. ©2r+3

Proof. We embed R, into B, as [R,,0]. Let T := R, N O,. We know that
T is an order of index at most p? in R, It T'= R, then by proposition 5.2.1
O’ has level p"*1. If T has index p in Ry, then T = Z, + pZ,/u. Let V :=
{B € Ry||a,B] € O for some a}. Clearly V is a T-module. Here we distinguish
two cases:

e If O' =T @V, since O’ has index p? in Dy, then V has index p in p"R,
and is a T-module hence V = p"T and we get case (2).

e If O’ is not a direct sum there exists an element [vgy/u, @] in O" such that
p {vo. Multiplying by v, ' we get that [/u,a] € O' and we can find a basis for O’
of the kind O" = ([1, 0], [\/u,a], [0, 5], [0,7]). In this case V = (f3,7) is a T-module

and has index p? in p"R,, hence V = p" 1R, and we get case (1).
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If T has index p? in R, then T = Z, + p*Z,\/u. If we can write O’ =
T @V then we get case (4). The case O’ = ([1,0], [v/u, a],[0,p"], [0, p"2\/u]) cannot
happen since Z, + p2Zp u is not an R,-module. Then the only possibility is that if
[, B] € O" then a = ugpy/u mod T (as additive groups) and we get case (3). O

Proposition 5.2.2. Let O’ be an order of discriminant p** in the quaternion algebra
ramified at p and infinity. Then O’ has no index p orders over it if and only if O

has level p*r+1.

Proof. By lemma 5.2.1 it is clear that such an order has reduced discriminant

p* ! for some r € Z>(. It is also clear that there are no orders between an order

2r+1 2r—1

of level p and an order of level p , so we just need to check that if an order
has no index p orders over it then it is isomorphic to Dg,41. By lemma 5.2.1 it is
enough to prove that an order O' = (1, p" vy, p"ve, v3) with no index p orders over it is
isomorphic to Do, 1. We do this by induction on r. If r = 0 it is obvious since O’ is

2743 with no index p orders over it and let O

maximal. So let O" have discriminant p
be the index p? order over it as on lemma 5.2.1. To check the “inductive hypothesis”,
assume that there is an order containing O with index p, then we can write basis
such that 0" = (1, p" vy, p oy, v3) € O = (1, p vy, p va, v3) C (1,p" o1, pvg, v3).
But then clearly (1, p"v1,p" " tvg, v3) is an order containing O’ with index p.

Then by inductive hypothesis O is isomorphic to ®9,41. Then by lemma

5.2.2 we have five possibilities for the order O’. On the first four cases:

L ([1,0], [, af, [0, ], [0, p" /) < ([1,0], [V, o, [0, p7], [0, P Vi)
2. {[1, 0], [pv/u, 0], [0, p"], [0, p" ' v/ul) € ([1,0], [pv/ui, O], [0, 7], [0, " V/u]).

3. ([1,0], [pv/u, ], [0,p7], [0, p" 1 /ul) € ([1, 0], [pv/u, o], [0, 7], [0, p"v/u))-
4. ([1,0], [p*/u, 0], [0,p"], [0, p" v/ul) € ([1,0], [pv/u, 0, [0, "], [0, p" VVu])
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each inclusion with index p (it is easy to check that the lattices are actually

orders) hence O’ is isomorphic to Dg,43. O

5.3 Locally Principal Ideals

Lemma 5.3.1. If u € Do, is such that p*" T2 | N(u) then p | u.

o T

Proof. If u = 'p then N(u) = N(a)+ p> T N(B). It is clear that
pr-l—lﬂg af

if @« € R, is such that p | N(a) then p | «, i.e. a = pa for some & € R,. By

r+1 2r+42

a recursive argument, since p?" ! divides N(a), p divides o and p divides
N(a). Dividing by p**! and looking modulo p we get that p also divides N(3)

hence 8 and u. O

Lemma 5.3.2. Let I be a full rank lattice such that its left order is Daor41 for some

r>1. Then N(I) = N(Dq,_11).

Proof. We have to check that the g-valuation of both norms is the same for all
primes g. For all primes ¢ # p the result follows from the fact that (Dg,-1)q =
(D2r41)q- Without loss of generality we may assume that I C D9, and that the
p-valuation of T is less or equal than 2r + 1 (otherwise by lemma 5.3.1 I = p*I with

I C ©g,41 and norm less or equal than 2r +1). Let s be the p-valuation of N(I).

plzla prB
If w € D9,41 has norm divisible by p® then v = . v e Do
pr+1/8cr p[ﬂ o
S ) . . .
then v = and vu = [p[EW (« —l—pTH_[ﬂﬁU),pT*l(paﬁ +p[5W5a")].
pr(sa ,.YO'

Since r > 1, N(uv) has p-valuation at least s. [J

Proposition 5.3.1. Let I be a full rank lattice such that its left order is ®op41 for

some r , then I s locally principal.
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Proof. Since (D2;,41), is maximal for all ¢ # p, it is enough to consider the ramified
prime p. We go by induction on r.

If r =0, ©; is maximal, and this is a well known result (see [Vig] page 86).

Let I be a full rank lattice such that its left order is ®,43. For v € Z, we
denote v,(v) its p-valuation. Let L := ®y,111. Since its left order contains Do, 1,
by proposition 5.2.1 O;(L) = @941 for some ¢ < r. Then by inductive hypothesis
Dop411 is locally principal. Let §, € (Dor4+11), such that (Do, 411)p = (Da2rt1)pdp-

Since Q, is non-archimedian there exists u, € I, such that v,(N(I,)) =
Vp(N(up)). Then by lemma 5.3.2, I and D411 have the same norms which implies
that vp(N(up)) = vp(N(6p)). Since (Dapy1)ptp C (Da2r41)pdp with same norm,
they are equal. Then we have a chain of ideals (Day13)ptup C (Dopt1)ptp C ... C
(D2t41)pUp-

Since (Dari3)pup C Ip C (Dat1)pup, there exists r < s < ¢ such that
(Das43)pup C I C (Dogy1)pup. If both containments are strict then Ipugl would
be a lattice between (Das13), and (Das41)p. The p + 1 such lattices are:

o ([1,0], [v/u, 0], [0,p"], [0, p**/u])

e ([1,0], [v/u, 0], [0, tp® + p*/u], [0,p*T1]) for t = 0,1,...,p— 1.
Clearly none of them has an embedding of R, on its left order and since the

left order of I, is 9,43 we must have I, = (Doy43)pup. O

Proposition 5.3.2. Let I be a lattice in a quaternion algebra ramified at infinity.

Then I is locally principal if and only if D(I) = D(O;(I)).

Proof. Let R = O;([). If I is locally principal then for any prime ¢, I, = R0 and
Bil(1,) = N(oy) Bil(R,). Dividing by N(I) we see that v4(N(a1)/N(I)) = 0 hence
vy(Det(Bil(L,)/N(1))) = vy (Bil(R,)).

Assume that D(I) = D(O), and let ¢ be any prime. There exists an element
aq € I, such that N(I;) = N(oy). Clearly Rya, C I, say with index ¢". Then it
is easy to check that det(Bil(I,)) = det(Bil(R,0y))¢*" (via the Smith normal form
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for example). Since N(I;) = N(aq) = N(R40y), dividing by N(I;) we get that
D(1,) = D(R,)¢*" hence r = 0. O
Note that this proposition gives a computational way to check if a lattice is locally
principal.

We start by studying the quadratic forms with discriminant p? (with p =

3 mod 4). By proposition 5.1.3 we have four different choices:
o fi(z) =23 + 23 + 23 + p*a?
o fo(x) =2} + 23+ rad + rp’a?
o f3(z) = 23 + 2% + pai + pal
o fi(z) =23+ ra3 + pxl + rpx}

Note that all quadratic forms coming from lattices are the restriction of the quadratic
form norm in B, hence they have to be equivalent over Q,. A complete set of
invariants for a quadratic form f over Q, are n(f), d(f) and c(f). Here n(f)
is the number of variables, d(f) is the discriminant modulo squares and c¢(f) :=
[1i<;(ai, aj) where f(z) = a1z? + -+ + apr? (see [Cas] Theorem 1.1 page 55).

The four quadratic forms f; have the same discriminant (modulo squares)

and same number of variables. The ¢ invariants are:
o c(fi) = (L1)*(1,p?)° =1L
o c(f2) = (L1)(A,r)*(L,rp*)*(r,rp?) = (r,rp?) = (r,7) = 1.
o c(fs) = (1,1)(1,p)'(p,p) = 1.
e c(fa) = (L,7)(A,p)(A,rp)(r,p)(r,7p)(p,Tp) = 1.

We compute the quadratic symbols using the table:
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b\a |1| r| p| pr
1 |1 1 1
r |1 1|—-1]-1
p |1]|—-1]-1 1
pr | 1] -1 1] -1

(5.2)

Where the numbers in the i-th column and j-th row correspond to the Hilbert

symbol (i, 7). See [Cas] page 43 for details of how to compute it.

Since the maximal order corresponds to f3(x) we have:

Proposition 5.3.3. All ideals with discriminant p* are locally principal

Note that in this case equivalence modulo Z, is the same as equivalence

modulo Q, for quadratic forms coming from lattices in B.

Then we should study the lattices with discriminant p? to find a not locally

principal ideal. In this case we have thirteen non-equivalent quadratic forms over

Lp:

o fi(z) = x% +pa:§ + px% + p%i

o folz) = rm% +px% + Tpm% —1—pzx?l

o f3(x) = ra} + px3 + pa3 + rp’a

o fi(x)= x% —|—px§ + rpx% + rp%:i

o f5(z) =23 + 23 + p?2% + p?2?

o fo(z) = x% + ms% + p%% + 7'10233?1

fr(z) = pa? + pad + pz} + pa?

o fs(r) = 2% + 23 + px3 + p3a?
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o fo(r) =2+ 23+ rp:n% + rpia?
o fio(z) = 2% +ra3 +rpa3 + pia}
o fii(z) = 2% +ra3 + pa3 + rpdai
o fio(x) = 2% + 23 + 2} + p'a?

o fis(z) = 2} + 2% + rak + rpia?

The unique order of level p? under the maximal one corresponds to the first
quadratic form. Computing the equivalent classes over Q, (using table 5.2) we get

just two equivalence classes:
o c(f1) =c(f3) = c(fs) =c(fo) = -1
o c(f2) = c(fa) = c(fs) = c(fo) = c(fr) = c(fr0) = c(f11) = c(f12) = c(f13) = 1

Note that the forms f; = (1,p, p,p?) and f3 = (r,p,p,7p?) = (r,rp, D, TP?)
differ by a non-square, hence they correspond to lattices in the same “equivalence
class”. The same is true with the forms fgs = (1,1,p,p%) and fo = (1,1,7p,rp?)
hence there are just two “equivalent classes” of lattices of discriminant p*, the ones
corresponding to the form f; and the ones corresponding to the form fg.

Claim: lattices corresponding to fg are not locally principal.

Let O;, be the unique order of discriminant p* in B, (which has index p in
the maximal order). If I is a full rank lattice corresponding to the quadratic form
fs and locally principal, by Lemma 4.2.2 and proposition 5.3.2, I, is “equivalent”

”

to O;. Then the quadratic forms fg and fi; would be “equivalent” over Z,, which is
not the case.
Then we have two different lattices, the principal ones corresponding to the

quadratic form f; and the not principal ones corresponding to the quadratic form

fs.
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5.3.1 A not locally principal lattice

Let p = 3 and consider the quaternion algebra ramified at 3 and infinity given by
B =(-1,-3).

By a small search we find that the lattice:

has norm 1 and discriminant 3. Its diagonalized quadratic form over Zs is the
vector (2,2,2 % 3,2 % 33) which is “equivalent” to fg in the previous notation (they
differ by a non-square). Then I is not locally principal.

Its left order is given by:

1 35 3 3k
J 9420 g5

O =5 55ty

Since D(O;(I)) = 3% we can double check by proposition 5.3.2 that I is not locally

principal.
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Chapter 6

Siegel Space and applications

In chapter 3 we defined the Siegel space with the main purpose of defining generalized
Theta functions over it and write the value of L(¢, s) at s = 1 in terms of such Theta
functions. In this chapter we will give different interpretations of the Siegel space and

construct Siegel points associated to ideals in the quaternion algebra B = (—1, N).

Definition. A complex torus is a complex variety isomorphic to CI/L, where L is

a full rank lattice on C9.

A complex torus is a projective variety if it can be embedded into some
projective space as an algebraic subvariety. In the case of genus 1, a complex torus
is just an elliptic curves, and it is easy to see that all elliptic curves are algebraic
varieties (an embedding into P? can actually be written using Riemann-Roch). This
fact is not true in higher genus, so we will recall criteria for a complex torus to be
an algebraic variety.

Let €2 be a point in h,. To Q we associate the lattice Lo C C9 by Lq :=
79 +Q79. As we saw in Lemma 2.1.1 the Theta function 6(Z, Q) is “quasi-periodic”
for translation by Lq, i.e. periodic up to a single multiplication factor.

Fix Q € hy. An entire function f(2) onto CY is Lo-quasi periodic of weight

[ if:
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o J(Z+ i) = exp(—milm!Qm — 2rilz'm) f (2)

for all m € Z9. Let RlQ denote the vector space of such functions.

If {fo,...,fn} is a basis of RlQ such that for every @ € CY there is an iy
with f; (@) # 0, we can define an holomorphic map ¥ : C9/Lg — P™ by 2 —
(fo(2),..., fn(2)). Then the problem of embedding a complex torus is equivalent to
find enough functions in RZQ for some [.

Following [Mu] we define a slight generalization of the theta functions, the

so called theta functions with rational characteristic, by the formula:

ST

=, —

0 (2,Q) = exp(mid'Qa + 2mid" (2 + b))0(Z + Q@ + b, Q)

S

where @, be Q9.
To the point 2 we can associate the “complex structure”:

Define agq : RY x RY — C9 by (Z,7) — QF + 3. This gives an identification
of RY x RY with C9.

Let A be the real skew-symmetric form of determinant 1 on R?9 x R?9 defined

0 I

-1, 0
R29 — C* by e(Z,¥) := exp(2miA(Z, 7)).

Let L+ be the dual lattice of L with respect to e, i.e. L+ := {x € Q% :
e(r,a) =1Va € L}.

by the matrix A := , and define the bi-multiplicative map e : R%9 x

Let L C Z?9 be a sublattice with index s. By duality, Z?¢ ¢ L with index s also.

Consider {(a;,b;)} € L* for i = 1,...,s be coset representatives of L*/Z%9, and
a;

define the map ¢, : C9/aq(L) =Pt by 2+ (...,0 (2,9),...).
bi

Theorem 6.0.1. (Lefschetz): Let L C Z%9 be a lattice of index s, and assume that

L C rL* for somer € N. Then:
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1. if r > 2 then ¢r, is well defined on all of CI/aq(L).

2. if r > 3, then ¢r, is an embedding and the image is an algebraic subvariety of
P51, i.e. the complex torus C9/aq(L) is embedded as an algebraic subvariety

of P51

3. every complex torus that can be embedded in a projective space is isomorphic

to C9/aq(L) for some Q € by and some L.
Proof. See Theorem 1.3 page 128 of [Mu]. O

Lemma 6.0.3. Let A : R?9 x R?Y — R be the skew-symmetric form given by the

0 1
matriz A := 7). Then the following data on R?9 are equivalent:
—I, 0
1. a complex structure U : R* — R?9 (i.e. a linear map with U> = —I) such

that there exists a positive definite Hermitian H for this complex structure,

and A = SH (the imaginary part).

2. a homomorphism i : 729 — V, where V is a complex space, plus a positive

definite Hermitian form H on'V such that SH (ix,iy) = A(z,y).

3. a g-dimensional complex subspace P C C?9 such that if we note Ac the complex

linear extension of A, we have:
e Ac(z,y) =0 for all z,y € P

o iAc(z,z) <0 for all x € P — {0}.

4. a complex matriz £ in by

Note: we can rewrite condition (1) as:
o A(Uz,Uy) = A(z,y) for all z,y € R?9 (C-linearity)
e A(Ux,z) > 0 for all z € R?9 — {0} (positive definite)
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Proof. This statement is Lemma 4.1 of [Mu]. We will need the relations between
the matrices A, U, H and 2. For this purpose we will sketch the equivalence between
the first and last conditions.

If U is a complex structure, the bilinear form H(z,y) := A(Ux,y) +iA(z,y)
is a positive definite Hermitian form with imaginary part A.
(3. = 1.) Given Q € bh, we have Q = R + i3, where R = R(Q2) and I = I(Q).

Consider the matrix:

SR S
U=
“RITIR-F RS
It is easy to check that U? = —Iy and U'AU = A. Since 371 is real,
symmetric and positive definite, there exists a real matrix C' such that 3! = C*C.

From this it follows easily that A(Uz,y) is positive definite. Then from Q we know
how to construct the matrices U and H.

(1. = 3.) A complex structure U as in (1) is a linear map U : R? — R29 such
that U? = —I,. This induces an isomorphism between R?9 and C9 in the following
way: we can extend U by C-linearity to get an isomorphism U : C?9 — C?9. Since
U(% = —Iy4 the eigenvalues of Uc are £i, and since Uc is defined over the reals,
it is easy to check that both eigenvalues appear with the same multiplicity. Let

{v1,...,v4} C C* be the eigenvectors with eigenvalue —i. Clearly:
Ucvj = (=i)v; itf UR(v;)) = I(v;) and U(S(vj)) = =R(v;)

Since C* = (v1,...,v4) ® (V1,...,7g) it is clear that {R(v;),3(vj)}I_; is a basis
for R%. Then if we define the isomorphism Iy : R% — C9 by Iy(Rv;) = e; and
Iy (S(vj)) = ey, it satisfies Iy (U(x)) = ily(x).

Given the isomorphism I : R?9 — C9, we extend it by C-linearity to get
a C-linear map Iy : C?9 — CY, and define P be the kernel of it. P is a subspace

or C¥ of rank g, which can be written as P = {iz — Uz|z € R*}. Then P is
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isomorphic to C9 via II;, the projection on the first g- coordinates. Let Il denote
the projection on the last g-coordinates, i.e. II2(Z) = (xg41,...,224). We define Q2
as a linear function from CY to CY by Q(Z) = —IIx(II; (%)), or in other words, € is
such that P = {(Z, —(Q(Z))")|# € C}. O

Note that by definition Spag(Z) are the matrices S such that S*AS = A. This
corresponds to make a change of basis in the ambient space keeping the Hermitian
form matrix unchanged. We should think the Siegel space not just as the space of
positive definite Hermitian forms H but as pairs (V, H) such that the matrix of the
imaginary part of H on the basis V' is reduced.

Thinking the action of Spay(Z) on the Siegel space as a change of basis, it is
clear how to define this action on the Hermitian form H and on U, which in matrix
notation can be written as S« H = S'HS and SxU = S~'US.

We would like to generalize the definition of the Siegel space so as to become
independent of basis. For that purpose, note that given a non-degenerate skew

symmetric matrix A, there exists a basis W (which we will call a skew symmetric

O 1
reduced basis) such that (A)y = 7], where by (A) we mean the matrix
~1, 0

of A on the basis W.

Definition. Let V' be a real vector space of even dimension 2n. We call o triple

(P, J,U) a Siegel point if:

e P is a positive definite real symmetric 2n X 2n form (that will correspond to

the real part of H ).

e J is a real 2n x 2n non-degenerate skew symmetric matriz (that will correspond

to the imaginary part of H ).

o U € R s such that U? = —Iy,. (complex structure)

With the relation:
~-JU=U"J=P (6.1)
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Via the matrix U we can put a complex structure on the vector space V. Let
H be the bilinear form H(z,y) := P(z,y) + iJ(x,y). The condition (6.1) implies
that H(iz,y) = iH(z,y). Since J is skew symmetric and P symmetric, it follows
that H(x,y) = H(y,z). Then H defined in this way is a positive definite Hermitian
form, and satisfies the condition of Lemma 6.0.3 hence gives a point in the Siegel
space.

We will call a quasi-morphism of B to a map ® : B — B such that it is
R-linear (in the sense that ®(z + y) = ®(x) + ®(y) and ®(Az) = AP(z) if A € R,
but not necessarily ®(1) = 1). Given v a quasi-isomorphism of the vector space V,
we define an action of  on a Siegel point (P, J,U) as (P, J',U’) where P' = ~'P~,

J' =~tJy and U’ = 4~ 1U~. If we choose a skew symmetric reduced base of V, i.e.

0 I
a base where J is of the form " , and we restrict v to an automorphism

-1, 0
that preserves the matrix J, then v € Spo,(Z) and the action of v on the Siegel

point 2 associated to (P, J,U) is the usual action of Spy,(Z) on the Siegel space b,,.

6.1 Siegel Points from Quaternion algebras

Let N be a negative prime congruent to 1 modulo 4, and B = (—1, N) the quaternion
algebra ramified at N and infinity. Let O be a maximal order in B such that there
exists an embedding (not necessarily optimal) of Z + Z+v/N into O. Let u € O be
the image of VN, i.e. u?> = N and Tr(u) = 0. To a left O-ideal I we associate a
Siegel point (P, J,U) as follows:

e We take V the real vector space V := B ®qg R.

u

VINT

e Define U acting on V' as left multiplication by
e We think of I as a full rank lattice in V.
e For z,y € I define P(z,y) := —~=Tr(xgy)/N(I).

VIN
o For x,y € I define J(z,y) := Tr(utay)/N(I).
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Proposition 6.1.1. The triple (P, J,U) defined as before is a Siegel point.

Proof. We start checking the properties of the matrices P, J and U:

o Clearly P is real. Since T'r(xy) is real, T'r(zy) = Tr(yz) which implies that P(x,y)
is symmetric. At last, P(z,x) = \/ﬁN(m)/N(I) then P is positive definite.

e Clearly J is real. Since w is pure imaginary, v+ is also. Then J(z,z) =

Tr(u=tN(z))/N(I) = 0.

1

Clearly J(z,y) is non-degenerate, since for any non-zero z € V, J(x,u~'x) #

0. So we are led to prove that J(z,y) = —J(y,x). We have the trace identity:
Tr(zy) = Tr(yx) (6.2)

By definition, N(I)J(y,z) = Tr(u~'yz) = Tr(zyu~"'). Since u is pure imaginary,
@ = —u. Then Tr(zyut) = —Tr(zyu=t) = —Tr(u=tzy) by (6.2) and J(y,z) =
—J(iL', y)

o Let 2 € V, then U?(2) = U(—4=z) = % —.

As for the relation, it is clear that J( z,y) = P(x,y). Using (6.2) and that

@ = —u, it is also clear that J(z, Tle) = —P(z,y). O

Definition. Given a lattice I in B we define its dual by I* := {b € B : Tr(bI) C Z}.
Given an order R we define its different by R* := NR¥.

Proposition 6.1.2. If O is a mazimal order, O* is a bilateral ideal for O of index

N2, and %O cO*CoO.
Proof. See [Vig] Lemma 4.7, page 24.

Proposition 6.1.3. If x,y € I then J(x,y) € Z. Also the matriz of J on the basis

given by I has determinant 1.

Proof. Since we are considering the reduced norm, if V' is the matrix associated

to multiplication (on the left or on the right) by v, then N(v) = (/det(V). Let
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W (x,y) := Tr(zy) be the bilinear form of B. If we denote W the matrix of W (z,y)
on the basis given by I, J = ﬁ(U—l)tW. Then det(J) = N(I)~*N(u) =2 det(W).
By definition det(W) = disc(I), which is an ideal for a maximal order, then by
Proposition 4.1.2 disc(I) = N2N(I)* and det(J) = 1.

Since the trace is linear, J(z,y) = Tr(u_lx%). By proposition 4.1.4,
I71 = I/N(I) and II=' = O, hence J(z,y) € Z for all z,y € I if and only if
Tr(u='w) € Z for all v € O. By proposition 6.1.2 this is the same as u™' € O7.
But v~ ! = — and since u € O it follows that § € %O co*. O

This gives a method for assigning to every left O-ideal a Siegel point. Note

that choosing a skew symmetric reduced basis of I we get a Siegel point in the

classical sense. We fixed a maximal order O with an embedding of Z[v/N].

Proposition 6.1.4. Let u € O with N(u) = |N| and Tr(u) = 0, and denote by U
the complex multiplication associated to u. If I, I' are two equivalent left O-ideals,

then the Siegel points (P, J,U)r and (P, J,U)p are equivalent.

Proof. Since I ~ I’ there exists & € B* such that I = I'a. Let W denote the quasi-

isomorphism of B given by W (v) = va. We claim that W is the quasi-isomorphism

that makes the two Siegel points equivalent.

Clearly W (I') = I, then we need to check that W*P = P/, W*J = J and W*U = U.
o If z,y € I by definition W*P(z,y) := P(W(x),W(y)) = P(za,ya) =

Lies) — fesTr(ag) = P'(x,y),

e The equality W*J = J’ follows from a similar argument.

e By definition U is given by multiplying on the left by u/ \/W while W is
given by multiplying on the right by a then clearly this maps commute with each
other and W*U :=WloUoW =U. O

Lemma 6.1.1. Let U be the complex multiplication associated to u and oo € B
be such that aOa~' = O. Let I' := ala™" and ' = aua~t. Then (P,J,U) ~
(P, J,U").
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Proof. Let W : B — B be the quasi-isomorphism defined by W(z) = aza™!.
By hypothesis W(R) = R, W(I) = I' and it is easily seen that W*P = P’ and
w*J=J.

As for the complex multiplication, if z € B then W= loUo W (z) = Wlo
Ulara™) = Wl (uvaza™)/y/IN| = a tuaz//|N| = U'(z). O

This lemma suggest that while looking at equivalence classes of Siegel points
we should consider not just elements u in O corresponding to VN (i.e. u?> = N
and Tr(u) = 0) but modulo conjugation by the normalizer of O. It is clear that
N(O) = {h € B|Oh is bilateral}. By proposition 4.2.1 and the fact that u € O
with N(u) = |N|, we know that all bilateral ideals are principal, generated by u®m
where s = 0,1 and m is a rational number. In term of elements, the generator is

well defined up to units in O then :
N(©O) ={¢u’m|s=0o0r1,me Qand (€O is a unit} (6.3)

Corollary. If I and I' are left O-ideals with the same right order then the Siegel
points (P, J,U)r and (P, J,U)p are equivalent.

Proof. If I and I’ are equivalent this follows from proposition 6.1.4. If I and I’ are
not equivalent, we know by proposition 4.2.1 that O,.(I) has no embedding of Z[v/N].
Let u be the element in O giving the complex multiplication. Then ul has the same
left and right order as I but they are not equivalent, hence ul ~ I’ ~ ulu~'. By
proposition 6.1.1 the Siegel points (P, J,U); and (P, J,U’),; are equivalent. Note

byu =w. O

that U’ is given by u~
This means that we should index the Siegel points not by the class number
of ideals, but by the type number of maximal orders.
We still have equivalent Siegel points coming from conjugation by units of O
and this are all the possibilities for A'(O). For counting equivalent classes of Siegel

points, fixed a maximal order O we have to count the number of embeddings of

Z[v/N] into O modulo conjugation by units of O.
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Given a maximal ideal O, let V' := {I1,..., I} be a set of left O-ideal
representatives and T := {Ry,..., Ry} the distinct right orders of the ideals in V/,
where we assume that O,(I;) = R;. We index the Siegel points by pairs (¢, R;)
where ¢ is an embedding from Z[v/N] to some R; and R; is an order in 7. By this
we mean the Siegel point obtained with the complex multiplication given by ¢(v/N),
and an ideal I with left order R; and right order R;.

If d is a negative discriminant we denote by h(d) the class number of binary
quadratic forms of discriminant d. Let u(d) = 1 unless d = —3, —4 when u(d) = 3,2
respectively (half the number of units in the ring of integers of discriminant d). For
D > 0 we define the Hurwitz’s class number H (D) by:

HD) = Y ZEZ; (6.4)
df2=—D

Given D > 0 let L = Q[v/—D] and O its ring of integers. Define Hy (D) be

the modified invariant by:

0 if N splits in O
H(D) if N is inert in O
Hyn (D) = %H(D) if NV is ramified in @ but does not divide (6.5)

the conductor of O
| Hy(D/N?) if N divides the conductor of O

Then the number of embeddings of O into R; (i = 1,...,n) modulo conjugation by
R /{£1} is Hy(D) (see [Gr2] the proof of Proposition 1.9, page 122).
In the case N a negative prime and D = —4N, we get :
Lh(4N) if N =1mod 4
Hy(4N) =14 h(N) if N=7mod8 (6.6)
2h(N) if N=3mod8and N > 11
Note that in the case D = 4N an order R; on I appears twice as a right order if

and only if it has no embedding of O4n. In this case it does not contribute to the
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sum, and hence the number of embeddings of Z[v/N] into the ¢ orders in T is also
Hy(4N). With this we proved:

Proposition 6.1.5. The number of non-equivalent Siegel points constructed is at

most Hy(4N)t.

Proposition 6.1.6. Let B be a quaternion algebra over a commutative field K,
and let By :== {8 € B|Tr(B) = 0}. Ifv : By — By is an isommetry of K-
vector spaces then there exists an element B € B* such that o(x) = BxB~1 or

o(x) = =P~ = pEs".
Proof. See [Vig] Theorem 3.3, page 12 O

Lemma 6.1.2. Let ¢ : B — B be an isomorphism of Q-vector spaces (respectively
o : By = By an isomorphism of Qq-vector spaces) such that o(1) =1 and o is an
isommetry. Then there evists an o € B* (respectively a € By) such that o(x) =

ara~t or o(r) = aza~t.

Proof. Since (1) =1 and o is a morphism, 0(Q) = Q. Denoting By the trace zero
elements, o(By) = By and o|p, : By — By is an isommetry. By proposition 6.1.6

we get two different cases:

1. op,(x) = aza~! for some a € B*. Then ¢ is the antiautomorphism given by

o(x) = aza~t.

2. op,(r) = aza~! for some a € B*. Then o is an automorphism given by

o(z) = ara~t. O

Theorem 6.1.1. The Hy(4N)t Siegel points {(¢, R;)} constructed above are non-

equivalent.

Proof. The proof breaks in two steps. First we will prove that for a fixed embedding

of Z[v/N] into R (say u is the image of v/N), the t left R-ideals give non-equivalent
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points (P, J,U) where U is multiplication by u/y/|N|. Then we will prove that
different embeddings give non-equivalent Siegel points.

Let I, Is two left R-ideals. Abusing notation we will denote P; the symmetric
form P, and the same with J. Suppose there exists W : V' — V" a quasi-isomorphism
making the Siegel points (Py, J1,U) and (P, J2, U) equivalent. Let 5 = W(1), o be
the map: o(v) = W(v)B~! and V; the trace zero elements space. We claim that o
is an isommetry.

By hypothesis W*P; = P then evaluating at (1,1) we have

(W*P)(1,1) = Py(1,1) = Nf”

By definition, (W*P;)(1,1) = TT(W(I)’I;V(I)) =235 pence

N(I N(I)
N(I)
N(I)

N(B) =

Then [z = P(z,2)N(I)/2 = W*(P'(z,2))N(D)/2 = Igln = Il =

|lo(x)], i.e. o is an isommetry. Since o is an isommetry and o(1) = 1, by lemma

6.1.2 we have two different cases:

1. o(z) = aza™! for some a € B, i.e. ¢ is an antiautomorphism and W (z) =
aza st

2. o(z) = ara~! for some a € B* and W(z) = ara 1p7 %

We know that W preserves the complex multiplication, i.e. W loUoW (x) = U(z).
If we are in the first case, W1 (z) = a~!Bza. Then W*U(z) = W H(uaza 1871) =
a 1B 'a lzatia = ra"'aa. It must be the case that ux = za 'ua for all x € B

! = za~'a) which would imply that v € Q

(which is the same as saying that uxa™
and is not the case. Then we are in the second case.

Since W(I1) = Iz, I = alija'f~!. In particular aRa™! = R, i.e. a €
N(R). Then I; and I have the same right order and represent the same class

between the t left R-ideals we started with.
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Assume that there is a left R-ideal I and a left R’-ideal I’ such that R and
R’ are non-conjugate maximal orders and the Siegel points (P, J,U) and (P’,J',U")
are equivalent. Then there exist a quasi-isomorphism W : V — V that sends one
point to the other. Arguing as before we get the same two possible cases for W. In

L= ga 1l for all z € V.

the first case, since W*U = U’ we would get that u/za~
Taking x = « we would get that v/ = @ and it commutes with all elements of V,
then it is rational which is not the case.

Then W (z) = aza~!87! and I’ = ala~'3. In particular the orders R and R’ are

conjugate which is a contradiction. [

6.2 Ideals associated to Siegel points

We want to find relations between the numbers N AL,[B),D- For this purpose to each
point z45@p on the Siegel space hy we will assign a left O-ideal I in B (for some
maximal order O) and an embedding of Z[v/N]| into O such that the Siegel point
(P, J,U) is z 4p@p in the right basis. This implies that there are at most Hy (4N )t

different values (up to a sign) for n) 5 p-

Proposition 6.2.1. Given a negative prime number N congruent to 1 modulo 4,
let B be the quaternion algebra ramified at |N| and co. Let D be a negative prime

number such that |D| splits in Q(v/N). Then there exists u and v in B such that:
o Tr(uv) =0, Tr(u) =0 and Tr(v) =0
e N(u) =|N|
e N(w)=ID|
e u and v are in a maximal order R of B

Proof. Since |[N| = 3 mod 4, we can assume B = (—1,N). Choosing u = j it is

clear that Tr(u) = 0 and N(u) = |N|, hence we are looking for v in B such that
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Tr(uv) = 0 and Tr(v) = 0 and N(v) = |D|. This conditions forces v to have the

form v = zi4yk and we are looking for an integer solution of the quadratic equation:
22+ |N|y* — |D|2* = 0 (6.8)

We can assume that the solution is primitive (i.e. ged(z,y,z) = 1). If (z,y,2) is a
solution, clearly ged(z, N) =1 = ged(z, N) and ged(x, D) = 1 = ged(y, D).

To prove the existence of such a solution we use the Hasse-Minkowski principle.
Clearly (6.8) has a non-zero solution over R, so we need to prove the existence of

local non-zero solutions for all primes. We consider the different cases:

e For a prime p # N and p # D the quadratic form clearly has a local solution
(see [Se] corollary 2, page 6).

e For the prime |N| by Hensel’s Lemma it is enough to look for solutions of (6.8)

modulo |N|:

22 — |D|22 = 0 mod |N| iff (zz~%)* = |D| mod |N|

This equation has solution if and only if (%) = 1. By quadratic reciprocity

law and the fact that |[N| = 3 mod 4 this last condition is equivalent to ask
that |D| splits in Q(v/N) which is the case.

e For the prime |D|, looking at (6.8) modulo |D]|:

N
22 + |N|y? = 0 mod |D| iff N = (:cy_l)2 mod | D| iff (|D|> =1

Which is the case since |D| splits in Q(v/N).

Given u and v as before, consider the rank 4 lattice R = (1, u,v,uv). It is easy to
see that R is actually an order, hence contained in a maximal one. [

Remark: if we define R = (1, %,v, (1%) v) it is easy to see that this is also an
order. The advantage of this order is that it contains an embedding of the ring of

integers of Q(v/N), but is not maximal.
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2a b
Let 2z ,pQ@B = (b1+\/ﬁ) , u = 7 and v as in proposition 6.2.1.

2a1]D] b 2c
Let wy = _b;’” , wy = a and define
by —j by —j
I, = 2 b 2 6.9
. <<2a1|D> (2aws + bwy), (QallD\ (bws + 2cwy), w3, wy (6.9)

This definition makes sense for any pair of generators if the ideal B. With the choice

we made it is the same as:

b1 —3j b1 —j |D| + bv v—2b
I, = , , , 1
() e (zemr) (7 7 (6.10)

Proposition 6.2.2. The element 1% 1s in the left order of I,.

Proof. This is an easy but tedious computation, so we will write the product of

1+] with each element of the basis as a linear combination of the basis of I,.

(o=t (2 o2 (25) (252) - (52) .t o .

bl;r 1] which clearly are integers.

o (%) (43 = (20) (k) oo+ bon (i) (P257) + (M5 (35 s

follows from the fact that > — 4ac = D. In the basis of I, it is given by the

it is given by the coordinates [ba;, —2aay, 0,

bl;r L 0] which are integers. For the first two elements we

will use that(%) <2211‘_g|> = <%) Then:

° (%) (25;11‘_[];') av = (1*21’1) (2211‘_17)‘0 av + 2ac; ( ) + bcia. This follows from

the fact that b3 — 4aic1|D| = N. In the basis of I, it is given by the coordinates
1-b
[+

coordinates [—2cay, bay,

,0,2acy, bey] which are clearly integers.

145 b1—j |D|+b _ (1=b b1—j D|+b —b .
° (TJ) (2a11|1j)\> ( 2 U) = ( 2 1) <2a11|zj)\> (‘ 3 U) + ber (U32) + 2cera. This
follows from b2 — 4ajc1|D| = N and b — 4ac = D. In the basis of I, it is given by
1-b1
2

the coordinates [0, ,bci, 2¢eq] which clearly are integers. [
Proposition 6.2.3. The clement aqv is in the left order of I,.

Proof. Since B is an ideal, it is clear that v{ws,ws) C (ws,w4). By the way we
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choose v, it satisfies vj = —jv, then

b1 —j bl —j bl
= - — 6.11
) (garzr) = (g o+ (o-10
For the part corresponding to the first two elements of I, note that they can be

written as (2211@%') v(a) and (22116') v (%52). Since B is an ideal, vB C B and the

assertion follows from equation (6.11). OJ

Corollary. The order R = (1, %, a1v, %aw) is contained in the left order of I,

and has discriminant (a2 N D)? or index a?|D| in a maximal order.

Proof. It is clear that R is in the left order of I, by the previous two propositions.
It is also clear that it is an order. To compute its discriminant, note that the bilinear

matrix associated to it is:
2 1 0 0

1 550 0
0 0 2D a2D|

0 af|D| aiD[FY

Then note that the index in a maximal order (which has discriminant N?) is the

)

square root of the discriminant. [J

Theorem 6.2.1. Let U be the complex multiplication associated to \/_IJWI Then the
Siegel point (P, J,U) associated to the ideal I, in the given basis is z 4pQB-
Proof. By proposition 6.2.2 the element —j is in the left order of I,. On proving

that the Siegel points are the same we need to prove that the given basis of I, is

simplectic, i.e. that the matrix J(x,y) in the given basis is a multiple of the matrix
0 I

—Ir 0
same as the complex multiplication matrix on I,.

, and check that the matrix U associated to the point z,p5Qp is the

By definition J(z,y) is skewsymmetric so we have less conditions to check.

For simplicity we denote {v1, v2, v3,v4} the given basis of I, and note that u=! = IJW\
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Clearly J(z,y) has zero in the diagonal, since J(ﬁvi,vi) = Tr(‘N| (vi)) = 0 for
i =1,...,4. The other entries of J(z,y) on the basis I, are given by:

e (3,4) J(%A',lvg,w;) ™ |T7"(jw3w4) = 0 since Tr(j) = 0 and Tr(jv) = 0.
e (1,2) J(%M’Ul,vg) = |J{7|N(2Z11\D\)Tr( (2aws + bwy) (bws + 2civy)).

Since we will prove that this number is zero, we restrict to the trace part which by
the distributive law is: Tr(j(2abN (w3) + 4acwsiwy + b*w4w3 + 2bdN (wy))).
Clearly that the first and last terms are zero. The middle terms are also zero because
of the previous case.

o (1,3) J(ihyvr,vs) = g Tr((GEE) (2aws + bwa)ag).

The part corresponding to the term with jb; in the distributive is zero by the

previous computation, so we just consider the other part to get:

[V 1

J _ _
J(== = —T 2aN b = —(4aN or
(’N”UI;'U?;) N (2a1!D\( aN (w3)+bwyws)) 2a1\D|( alN (w3)+bTr(wqws))
Note that:
b2 +|D
N(ws) = —Z‘| =ac (6.12)
Then the (1,3)-th entry is ﬁ(éla c—ab?) = o

o (1,4) J(chyvr,va) = g Tr((BEED (2aws + bwa)ay).

As before, the part corresponding to b1j in the distributive is zero, so we are left
with: |D| (aTr(wswy) + N (wy)).

By definition, wy = a and Tr(ws) = —b then aTr(wsw,)+bN (wy) = —ba?®+ba® = 0.

o (2,3) J(if7v2,v3) = g Tr((BEE) (bws + 2cw4)53).

In the distributive the terms with b5 are zero, while the other terms are:
|D\ (DN (w3) + cI'r(waws)) = |D|(bN(w3) + I'r(waws)) = ﬁ(bac —cab) =0
using (6.12).

o (2,4) J(if7v2,0) = g Tr((BEE) (bws + 2cw4)m4).

In the distributive the terms with b5 are zero, while the other terms are:

_ b2 2
e ‘D|Tr(bw3w4 + 2cN(ws)) = 5 ‘D|(5TT(?U3’UJ4) +4cN(wy)) = 4ﬂl2a1T]431|1 ¢ =2
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We have to divide this matrix by the norm of I, and end up with a skew-
symmetric matrix of determinant one. This implies that N(I.) = 57~ and that I, is
a simplectic basis.

To prove that the Siegel point (U, I.) point is the same as z 45@Q3 it is enough
to compute the matrix of complex multiplication on the basis I, and compare it with

the complex multiplication matrix of the point z 45@5, which by lemma 6.1.4 is:

by 0 4ar1c —2a1b
1 b1l 2a1le o 0 b1 —2a1b  4daaq
VN Coc0s bl | YN Cdaey -2 by 0
—2bcy  —4dacy 0 —by

This is a straight forward computation, so we will just compute Ur(v;) and

U;(v3) since the other ones are analogous. We drop the term \/IIWI to make compu-

tations easier. By definition we have the equations:
b2 —4ayc1|D| = N (6.13)

and:

b’ — 4ac = D (6.14)

e The vector v; case:
N bi—j b b3
Ur(vy) = (=) (ﬁ) (2aws +bwa) = b1(557 ‘D|)(2aw3—|—bw4) W(Qaw3+bw4)+
N-b?
%1 ‘D| (2(111)3 + bw4) =bjv1 + <2a |D‘> (20w3 + bw4).
Using (6.13) to relate the second term, we get the equality:

U[(Ul) = blvl - 201(2aw3 + bw4)

e The vector v3 case:
4aicv1 —2a1bvg —biws = (2211|D\) (8aaycws +4aibcwy — 2a1b*ws —4aibewy) —bjws =

(212111|D\> 2a1 (4ac — b*)ws — biws = —jws = Ur(vs).

Where the last equation comes from (6.14). O

Theorem 6.2.2. The lattice I, is an ideal for a maximal order.
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Proof. The strategy is to prove that the quadratic form associated to the ideal I,
is locally equivalent to the maximal order one for all primes different. We need the

next lemma:
Lemma 6.2.1. The quadratic form associated to the lattice I, has discriminant N2.

Proof. The bilinear form is the same as the Siegel point z ,5@Qs hence its bilinear

form matrix is:

B — 2¢1Q8 bily (6.15)
bl 2a1DQy"
Since Qg has determinant D, it is an easy computation to prove that the determinant
of this matrix is N? (using that b? — 4ajci|D| = N). O
For the negative prime N congruent to 1 modulo 4, the quaternion algebra
B = (=1, N) ramifies at | N| and oco. In this representation, a maximal ideal is given

by O = (1%, #,j, k) (see Proposition 5.2, page 369 of [Pi]), then the matrix of the

quadratic form is:

INEL 0 IN] 0
0 |N‘+1 0 ’N’

Bo = 2 (6.16)
IN| 0 2IN] 0

0 [Nl 0 2[N|

In particular it has discriminant N2, and is an improperly primitive integral
form. By Proposition 5.1.1 and 5.1.2 we know that the forms By and Bg are locally
equivalent for all primes p # |N|. In particular by lemma 4.2.2 we know that (1),
is locally principal for all primes p # |N|.

As for the ramified prime |N|, by proposition 5.3.3 all ideals of discriminant
p? are locally principal. Then I, is locally principal and its left order has discriminant

N2 hence is maximal. [J
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6.3 Comparing Siegel Points

In the previous section we saw one way to associate an ideal to a Siegel point. Note
that if I is an ideal for a maximal order, and U a complex multiplication, the Siegel
point associated to (U, ) is the same as the one associated to the point (U, I«a) for
any a € B*. Suppose two Siegel points z and 2’ have equivalent ideals I, and I/,
say I, = I/« for some o € B*. Then since the complex multiplication is the same
for all the ideals we construct, the two Siegel points are equivalent by proposition
6.1.4. The equivalence of the Siegel points is given by the matrix M in Sp4(Z)

making the change of basis between the lattices I, and I, c.

Lemma 6.3.1. .The matriz M of change of basis is in the subspace I'1 .

B
Proof. Let M = . Then we know that the action of M sends the
C D

bilinear form associated to the ideal I, to the bilinear form associated to the ideal

Lo, ie. M'B.M = By,o = By, Let z = (M) Q and 2 = <b3+,N) Q'

2a1 2a3

where @ and @’ have even diagonal. Then we have:

t
A B 2c bol A B 2c) bl I
2@ 242 _ QQ 2142 (617)
C D bols 2a2Q_1 C D b/2_[2 2&’2@/_1

By the way we choose generators, b; = 1 mod 4 i = 1,2 (also b, = 1 mod 4

0 2 0 1
i = 1,2) hence 2Q = mod 4. Let J := . Looking at the first

20 10
2 x 2 matrix of equation (6.17) modulo 4 we get:

200 A JA + CTA + A'C + 2a5,C*JC = 2J mod 4

Which means that 4 divides the diagonal of the left hand side. Note that if

a b 2ac  ad+ be
A= then A'JA = hence 4 divides the diagonal

c d ad + be 2bd
of 2c9A*JA and 2a,C'JC. Also A'C is symmetric hence A'C + C*A = 2A'C and
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we get that 2 divides the diagonal of A'C. The proof for B'D is analogous looking

at the last 2 x 2 matrix. OJ

Proposition 6.3.1. Fized the ideals A and D, the left order of I,
dent of the ideal B.

ApQp 18 indepen-

Proof. The way we defined the ideal I, was via embeddings ¢ : Q(v/N) — B and
¥ : Q(v/D) — B with a ’transversality condition’:

Tr(¢(VN)Y(VD)) =0

While defining I, we just made a specific choice of such embeddings. If B = (vy,v2)

(where in our notation v; = % and vy = a) then the ideal I, was defined by:

I = <¢> <m> YVD)u(m), ¢ (ﬁ) ¢<@>w<v1>,¢<v1>,w<vz>>

We can also write it as I, = <¢> (%&g) Y(VD)(B), w(b_’)>. To see that the left

order is independent of the ideal B, we will prove that for every prime ¢ the left
order of I, ® Z, is independent of the ideal B.

It is a well known result that the ideal B, := B ® Z, is principal, hence there exists
an element §, € L, := Q,(v/D) such that B, = Opd,. Then we can write I, =
<¢ (bzlc:l\/DNO (v D)p(Oy), 1/)((’),;)> 84 hence its left order is clearly independent of
B. O

Proposition 6.3.2. Let D and D' be two split prime ideals of Q[v'N] of norms |D|
and |D'| respectively such that D' = uD. Let B and B’ be ideals of Q[v/D] and of

Q[VD'] respectively. Then the ideals I, ,,q, and I, have the same left order

ap'Qp/

if following the nmotation of proposition 6.2.1 we take v' = pv.

Proof. We are abusing notation while stating this theorem, since p is an element
of Q[v/N]. We will denote indistinctly by u the element in B or in Q[v/N] via the

identification v N — j, and the case will be clear from the context.
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By proposition 6.3.1 it is enough to restrict to the case B and B principal. In this

case we will prove that the ideals associated to them are slightly different and use

this to prove the proposition. We can choose basis such that D = (| D], M> and

D = (D), B5E) 1 = (4 VN, since (154 V) (25 € D' it

follows that:

o+ Bby
——€Z (6.18)
D
The same argument with g1 = “3‘,' — %\/N says:
o — ,Bbl
Z 1
D € (6.19)

For simplicity we will note the ideals Ip and Ip/. Since b =1 in both cases (B and

B’ are principal), we can rewrite the definition of the ideals as:

by — 7 b1 — 7 v+ |D| v—1
Ip = 1 6.20
> <<2aer|> v <2a1D|> < 2 )2 (6.20)
Iry — bl_j U/ bl_j Ul+’D/| U/_l 1 (6 21)
PN \2a D)\ 201 | D) 2 Ty ‘

where v and v are the elements of norm |D| and |D’| respectively as in proposition

and:

6.2.1. We will just compare Ip with Ip and the other case follows from symmetry.

/ .
. ”2_1 in terms of Ip

Since j is the image of v/N in B and pv = v/,
v —1  (a+pBj 1 —j+ b Bb1 + a 1
2 _< 2D| >” 5 =t a16)<2a1]D| v o )Y 2

and by (6.18) mﬂo‘ € Z. As coordinates in the basis of I, this is the same as

+b +b184+D
[—a15, 0; a|D|167 = 2|1£‘ ]

s <22h_g/‘) v'is in Ip. Since pv = v, we get:
—_— y — _ . 2 _N
by —J U/:( Bbi+a) (b — 7 ot B B-N §
21| D'l D] 2a1|D)| 241 D||D'|
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By (6.19) we know that _f%f'ra € 7Z. Since b? — 4a1|D||D’|c = N the last term can
be written as 28cv = 4(¢ (”21) + 2Bc. As coordinates in the basis of I, this is the
same as [O‘|Dﬁ,?1,0 4f¢,20¢]

. (221‘_5,‘) v +2|D 1) in terms of Ip.

Clearly <2a \l%’\) (v’+2|D’|> = (bia_lj> + (%) %/ Using the last case equality:

b1 —j UI—F‘D/’ . b1 —3j —0b1 + « b1 —j v—1
(m\m)( 2 )‘( dar )*( 2D ><2a1|D>“+25C< 2 )*BC

Note that o + |N|5% = |D||D’| = 1 mod 4. Since |N| = 3 mod 4 it follows that «

is odd and g is even. In particular o — by — 1 is even, and we can rewrite the last

equality as:

a—ﬁbl—lD’] b1 —j b1 —3j U—F’D‘ v—1
< 2|0 ><2a1D\>”+<2a11D\>< 2 >+2ﬁ< 2 >+BC

So as coordinates in the basis of I, it is the vector [%'D' 1,28c¢, Bc].

We cannot say that the two ideals are the same, since the numbers « and
f may have a 2 in the denominator, but (Ip), = (Ip/), for all primes p # 2. In
particular if we denote Op and Opr the left order of Ip and Ipr respectively, we
get that (Op), = (Opr), for all p # 2. Since the denominators are at most 2 it is
easy to check that 40p + Z C Opr, and has index at most 28. By corollary 6.2,
the order R C Op with index a?|D|, which is odd. Then 40p + R = Opr. Also
40p + R = Op hence both orders are the same. [

By theorem 3.2.3 we know that the numbers n[4),[8],D depend on the equiva-
lence class of A, the equivalence class of D and the class of z4pQp modulo Spy(Z).
Fixed the class of A and the class of D we can associate ideals to the points z4p@g
such that they all have the same left order. Then we get at most h(B) different

points in the Siegel space.

Theorem 6.3.1. The number of different n 55 in T is at most h(Ok)*t(B),

where t(B) is the type number.
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Proof. This follows from corollary of lemma 6.3.2. [J

Note that this number is independent of the class number of Oy.

Proposition 6.3.3. Let A be an ideal of Q(v/N), then npaLB,D and N, B8]0

differ by a unit in a quadratic extension of M.

Proof. Let o4 be the automorphism of H corresponding to the ideal A via the

Artin map. Then we proved that (%)M = %. Hence npy 5.5 =
< n(A)n(AD)

W) (njog,8,0)°* Note that the quotient of etas squared is in H
while 15(A) is in T', hence ¢ := (%}%) is in a quadratic extension of M.
Clearly N(¢) =1 as required. [
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Chapter 7

The class number one case

In this section we will be interested in the case of imaginary quadratic fields of class
number equal to one since in this case npaLB),D 1S & rational integers for any choice
of D. There are just six such cases (we exclude the case N = —3) so we can study

all this cases by numerical computations.

7.1 Case N = -7

This case is the simplest one, since the class number in the quaternion algebra is

also one. Then the numbers n 4 5 p are integers and differ by a unit.

Theorem 7.1.1. Let N = —7 and D be any ideal of prime norm congruent to 3
modulo 4. Then L(1,v¢p) # 0.

Proof. By proposition 3.2.4 we know that the number associated to an ideal B is

the same as the one associated to B. For a prime ideal D let Q = 1(D)n(Of) \2/”@

where —D = N(D) and w is the number of units in Q[v/D]. The formula 3.1 for

L(1,%) reads:

L,w)={ > mogms | 2= (”[omonﬁ + 22”[%46}@) @ (7.1)
[BleCl(Or) ®
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where the last sum is over non-principal ideals B, with any choice of ideal represen-
tatives modulo conjugacy (since |D| is prime, the class number of L is odd and we
have such a representation).

Taking the maximal order O as left O-ideal representative, we see that the
number associated to it is 1 up to a sign, then # =1mod 2. I

In the next table, we list some of the numbers np, ) 15,5 to show the behavior

of the sign.
D 5 "AL[B)D
11 [1,-1,3] 1
23| [1,-1, 6] 1
23 | [13,-17, 6] 1
23 | [13, 17, 6] 1
43| [1,-1,11] 1
67 | [1,-1,17] 1
71| L, -1, 18] 1
71| [19,9, 2] 1
71| [19,-9, 2] 1
71| [29, 33, 10] 1
71| [29, -33, 10] 1
71 | [43, 141, 116] 1
71 | [43, -141, 116] 1
79| [1,-1, 20] 1
79 | [11, -25, 16] -1
79 | [11, 25, 16] 1
79 | [19, 61, 50] 1
79 | [19, -61, 50] 1
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7.2 Case N = —11

In this case the quaternion algebra has type number 2 for maximal orders , so we
get two different integers associated to different D’s. Each number N[Ok1,1B),D will be
associated to an ideal class. Let B = (—1,—11) be the quaternion algebra ramified

at 11 and infinity. Consider the order:

k
+*7j7k>

0 := 5

N | .

Ly
3y
It is a maximal. We can take as left O-ideals representatives O and I, where
ik 1 j
)

g 1
AT, SR SR S
s Ty Tt Tyt

Here is a table of ny, 5 p for different values of D and B, writing down the

associated ideal also.

D B npap,),p | Ideal
23| [1,-1, 6] 2 L
23 | [13,-17, 6] 0 0)
23 | [13, 17, 6] 0 0)
31 1, -1, §] -2 I
31| [5,17, 16] 0 0)
31| [5,-17, 16] 0 0)
47 | [1, -1, 12] 0 0)
A7 | [7,-17, 12] 2 L
A7 | 7,17, 12] 2 5L
47 | [17, -53, 42] 0 0)
47 | [17, 53, 42] 0 0)
59 | [1,-1, 15] 2 I
59 (7,9, 5] 0 0)
59 | [7,-9, 5] 0 0)
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D B npa o | ldeal
67 1, -1, 17] 2 I
71| 1, -1, 18] -2 L
71 (19,9, 2| 0 0
71 [19, -9, 2] 0 O
71| [29, 33, 10] 0 0
71| [29,-33, 10] 0 O
71 | [43, 141, 116] -2 I
71 | [43, -141, 116] -2 I

Note that the number 0 is associated to the principal ideal, while the number 2 is
associated to I;. With the same reasoning as in theorem 7.1.1 we can get a partial
result proving that the ideals D such that 2pQe, is associated to the ideal I; have
a non-vanishing L-series.

Following the method described in [Pa-Vi], taking {O, I;} as representatives
for the maximal order and constructing the Brandt matrices for level 112 we get
that the eigenvector associated to the modular form of weight 2 and level 112 is
[0,0,0,1,—1,0,0,0,1,—1]. The first three zeros correspond to the principal ideal,
and the £1 to I;. Then the numbers associated to each ideal are the same as the

ones associated to them via N[Og],[B],D> Since the eigenvector is well defined up to a

constant.

7.3 Case N =-19

This case is similar to the previous one, since the class number for maximal orders
in the quaternion algebra ramified at 19 and infinity is two. Again the values for
N[4],[B),D BT€ Z€ro for the principal ideal and two for the non-principal one. Also the

eigenvector corresponding to the modular form of weight 2 and level 19% has 0 in
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the first five places (corresponding to the principal ideal), and alternating +1 in the

next ten places (corresponding to the non-principal ideal).

7.4 Case N = —43

Let B = (—1,—43) be the quaternion algebra ramified at 43 and infinity. In this
case, the class number for maximal orders is 4 while the type number is 3. Consider
the order:
1 4 i k.
O := (5 + §a§ + 57]7k>

It is a maximal order. We can take as left O-ideals representatives {I j};l‘:l where
I = O and:

o Ih:=(22i, +i-4 145k

* I3 = <373Z71+%_ %7_1/2+Z+%>

o Ij:=(3,3i,5+i—4,—-1+5-5)

In this case the ideals I3 and Iy have the same right order, then the integers asso-

ciated to them have to be the same. The table for this case is:

D B npa 8o | Ideal
11| [1,-1, 3] -4 I
23 | [L,-1, 6] 4 I3
23 | [13, -17, 6] 2 I3
23 | [13, 17, 6] 2 I3
31| [1,-1, 8] 4 I
31| [5, 17, 16] 2 I3
31 | [5, -17, 16] 2 I3
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D B npa o | Ideal
47 | [1, -1, 12] 0 I
A7 | [7,-17, 12] 4 I
A7 | [7, 17, 12] 4 I
A7 | [17, -53, 42] 2 I3
A7 | [17, 53, 42] 2 I
59 | [1,-1, 15] 0 I
59 7,9, 5] -2 I3
59 | [7,-9, 5] -2 Iy
67 | [1,-1,17] 4 I
79 | [1,-1, 20] 0 I
79 | [11, -25, 16] 4 I
79 | [11, 25, 16] 4 I
79 | [19, 61, 50] 2 I3
79 | [19, -61, 50] 2 1,
83 | [1,-1, 21] -4 I
83 (7,1, 3] -2 Iy
83| [7,-1,3] -2 Iy

Note that the eigenvector of the Brandt matrix for the modular form of weight 2
and level 432 has eigenvector [0,2,1,1] with respect to the ideals Iy, I, I3, I4, i.e.
the ideals under I; have associated the number 0, the ones under I5 the numbers

+2 and so on.

7.5 Case N = —67

Let B = (—1,—67) be the quaternion algebra ramified at 67 and infinity. In this

case, the class number for maximal orders is 6 while the type number is 4. Consider
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the order:

L5

1 5
O:={,i,=+=,=
<7/L7 +72 2

2 2

It is a maximal order. A set of representatives of left O-ideals is given by {I; }?:1
with I; = O and:

o Lh:=(2,2i, +i+4,-1+1i+5)

o I3:=(3,3i, 3 +i+4,-1+1i+5

o Iy:=(3,3i, L +i+4,-1-1+5

o Iy:=(4,4i,3 +i+ 4, -1+ 4+ 5

o Ig:=(4,4i, 52 +i+4,-1-3 4k

In this case, the pair of ideals (I3, I4) and (I5, I) have the same right orders, hence

the integers associated to them will be the same. The table for np 4 5 5 for the first

primes is:
D B npa,B,p | 1deal
19 1, -1, 5] 6 I
23 1, -1, 6] 6 I
23 | [13,-17, 6] 4 I
23 | [13, 17, 6] 4 I
47 | 1, -1, 12] 6 I
47 | [7,-17, 12] 4 I
a7 | (7,17, 12] 4 Is
47 | [17, -53, 42] 2 Iy
47 | [17, 53, 42] 2 Iy
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D B npa o | ldeal
59 11, -1, 15] -6 I
59 (7,9, 5] -2 I3
59 (7, -9, 5] -2 I3
71 1, -1, 18] 0 I
71| [19,9, 2] -6 I
71 (19, -9, 2] -6 I
71| [29, 33, 10] -2 I3
71| [29,-33, 10] -2 1,
71 | [43, 141, 116] 4 Is
71 | [43, -141, 116] -4 I
83 1, -1, 21] 0 L
83 (7,1, 3] 2 1y
83 7, -1, 3] 2 I3

The eigenvector for the Brandt matrix associated to the modular form of weight
2 and level 672 is [0,3,1,1,—2,2] with respect to the ideal representatives for the

maximal order {/;}.

7.6 Case N = —-163

Let B = (—1,—163) be the quaternion algebra ramified at 163 and infinity. In this
case, the class number for maximal orders is 14 while the type number is 8. Consider
the maximal order:

0 := (1,1,

+35)

N | .

J
+ 3

N | —

A set of representatives of left O-ideals is given by {I; }}il with Iy = O and:
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o Lh:=(22i 3 +i+4,-1+1i+5

o I3:=(3,3i, 3 +i+4,-1+5+5%)

o Iy:=(3,3i, L +i+4,-1-1+5
o I:=(6,6i,3+i+%,—1+5+5%)

o Ig:=(6,6i, 5t +i+4,-1—1+5)
o I;:=(4,4i,3+i+ 4, -1+ 4+ 5
o Iy:=(4,4i, F +i+1,—1-3 4k
o Ig:=(6,6i,3+i+4, -1+ +5
o Iig:=(6,6i,%> +i+4,—1—5+%)
°111::5,5i,%+2i+%,—2+%+§>
o Iip:= (5,50, 5 +2i+ 4, -2 -1 45
o Ii3:=(7,7i,3+3i+4, -3+ 3+ 5
o Iiy:=(7,7i, 52 +3i+1,-3— 145

The pairs of ideals (I2j41, [2j4+2) with j = 1,...,6, have the same right order, hence
each pair will have the same integer associated. For the table we consider the range
of primes between 150 and 200 so as to get all the ideals {/;} associated to some

number np, 1 5,5- The table is:
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D B npa 8,0 | Ideal
151 1, -1, 3§] 20 I
151 | [29,9, 2 14 Is
151 | [29,-9, 2] 14 I
151 | [11, -5, 4] 8 L3
151 [11, 5, 4] 8 L4
151 | [43, 137, 110] 4 I
151 | [43, -137, 110] 4 Lo
167 11, -1, 42] 0 L
167 | [157, 33, 2] -20 I,
167 | [157,-33, 2] -20 I
167 | [61, 65, 18] -2 1,
167 | [61, -65, 18] -2 I3
167 | [29, 93, 76] -10 Is
167 | [29, -93, 76] -10 I
167 | [127, -177, 62] -14 I7
167 | [127, 177, 62] -14 Ig
167 | [19,-21, §] -12 Iy
167 | [19, 21, 8] -12 I
179 [1, -1, 45] 0 I
179 | [19, 45, 29] 2 I3
179 | [19, -45, 29] 2 1y
179 (13, 17, 9] 4 Io
179 | [13,-17, 9] 4 I
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D B npa o | 1deal
199 [1, -1, 50] 0 I
199 | [31, -69, 40] -20 I
199 (31, 69, 40] -20 Ip
199 | [43, -133, 104] -4 Io
199 | [43, 133, 104] 4 I
199 [13, 29, 20] -14 Ig
199 | [13, -29, 20] -14 I
199 | [131, 453, 392] -8 I
199 | [131, -453, 392] -8 I3

The eigenvector for the Brandt matrices corresponding to the form of weight 2 and
level 1672 is given by the vector [0,10,1,1,5, —5,7, =7, —6,6,2,2, —4, 4] with respect
to the maximal order representatives {/;}.

Since we consider all the class number 1 imaginary quadratic fields, the numerical

information proves:

Theorem 7.6.1. Let E be a CM elliptic curve over Q of level p>. Then the coor-

dinates of the eigenvector of the Brandt matrices associated to E are given up to a

stgn by N[O ,1Bl,D
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