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Abstract. A superelliptic curve over a DVR O of residual characteristic p is a curve given
by an equation C : yn = f(x). The purpose of the present article is to describe the Galois
representation attached to such a curve under the hypothesis that f(x) has all its roots in
the fraction field of O and that p - n. Our results are inspired on the algorithm given in
[BW17] but our description is given in terms of a cluster picture as defined in [DDMM18].

Introduction

Galois representations play a crucial role in different aspects of modern number theory.
The main source of Galois representations are the geometric ones, namely the ones obtained
by looking at the étale cohomology of varieties. Among varieties, the case of curves is the
easiest one, where one can understand the local L-function of a curve at a prime of good
reduction by counting the number of points of the curve’s equation over different finite fields.
If the curve has bad reduction at the prime p, understanding the image of inertia in the `-adic
representation (for ` 6= p) is much harder. However the situation is a little better when the
curve is “semistable”. There have been very important results in this direction during the
last years (see [Dok18] and [DDM18]). Specific results for hyperelliptic curves are given in
[DDMM18] and for the so called superelliptic curves in [BW17].

Let O be a complete DVR, π be a local uniformizer, K its field of fractions and k its
residue field of characteristic p.

Definition. An n-cyclic or superelliptic curve is a non-singular curve obtained as a cyclic
cover of P1, namely it is given by an equation of the form

C : yn = f(x),

where f(x) ∈ O[x], Disc(f(x)) 6= 0.

Computing the local L-factor of C for primes of good reduction can be done quite efficiently
using for example the method described in [Sut20], which gives a full description of the
attached Galois representation in this case (as inertia acts trivially). For this reason, the
main purpose of the present article is to describe the Galois image of inertia at p of the
`-adic representation of a curve C for ` 6= p (assuming p - n). As a first step of this goal, we
restrict to the case when f(x) has all its roots in K (which is not a semistable situation, but

closed to it). Over an extension K2 of K the stable model contains many components Y(i)
t

(the notation will be explained during the article) hence the Galois representation splits as

(1) V`(Jac(C )) '
⊕

V`(Y(i)
t )⊕

⊕
i

St(2)⊗ χi,
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where St(2) is the Steinberg 2-dimensional representation, and the χi are characters. To get
such a representation over K, we first study the stable model over K2, following the results
of [BW17] (where a stable model Y of C is given). Our first contribution is to relate their
description to the more combinatorial one given in [DDMM18] for hyperelliptic curves in
terms of clusters.

The way to get a stable model is to start with a stable model of a marked projective line,
and compute its normalization under the natural projection of C to P1 (giving the stable
model Y ). The use of clusters provides a stable model of P1 as explained in [DDMM18] and
does not depend on the degree of the cover n. During the exposition, we make an explicit
passage from clusters to triples as considered in [BW17].

The new phenomena appearing when n > 2 is that the normalization of projective lines
might not be irreducible. This is a very interesting phenomena that we explain in Section 3.
Unlike the hyperelliptic case, components not only might have positive genus (hence each
of them contribute to the first part of (1)), but the different components intersect between
themselves in a very combinatorial way. Understanding the intersection points is crucial to
describe the component graph of the special fiber of Y . Furthermore, the Galois action on
the intersection points give rise to the characters appearing in the second part of (1) (i.e.
are the characters twisting the Steinberg representation).

Let us explain the organization of the article. Let R denote the set of roots of f(x). In
this article we assume that R ⊂ K and p - n. Since we are mostly concerned with the image

of inertia (and p - n), we also assume that ζn ∈ K. Let K2 = K[ n
√
π̃], where π̃ is a local

uniformizer of K. In the first part of the article, we assume furthermore that f(x) is a monic
polynomial, in particular f(x) =

∏
r∈R(x− r).

The first section recalls the description of the stable model (X ,D) of the marked P1 as
given in [BW17]. The second section explains its relation to the cluster picture of [DDMM18]
via a map from (X ,D) to proper clusters. In particular, we explain how points relate to
clusters, and how the different components intersect (Theorem 2.7).

In Section 3 we describe the semistable model Y over K2. In particular, we give a de-
scription of the number of components in terms of the clusters and their cardinality (Propo-
sition 3.1). The advantage of working over K2 is that the cluster picture itself is enough to
describe the representation. The last section explains how to compute the Galois represen-
tation over K. For doing that, we explain the effect of twisting the Galois representation
attached to a superelliptic curve. To describe the twist, we explain the decomposition of
V`(Jac(C )) as a module not over Z` but over Z`[ξn]. There is a contribution of the Galois
representation coming from the curves

Cn/d : yn/d = f(x),

for each divisor d of n. Then our Galois representation splits as a sum of what might be
called the d-new contributions. In Section 5 we give a precise description of how to compute
the twist on each d-new subrepresentation.

The advantage of working with general twists is that it allows to consider a general poly-
nomial f(x) (not necessarily monic) over K (with the assumption R ⊂ K). To understand
the restriction of the Galois representation to the inertia subgroup, it is very convenient to
work with the notion of weighted clusters as recalled in the same section. The complete
weighted cluster picture contains information on whether the characters χi are ramified or
not, as explained in the last part of the article.
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Notation. Let us give a small list of the principal symbols that will be used in the article:

• By π we denote a local uniformizer of O, k its residue field and v(x) denote the
π-valuation of x.
• The symbol R denotes the roots of the polynomial f(x).
• (X ,D) denotes the semistable model of the marked (P1, D) line and Y denotes its

normalization in the function field of C .
• X denotes the special fiber of X and Y

(`)

t denote the components of the special fibers
of Y .

Acknowledgments. The cluster pictures were done using the macros of [DDMM18]. We
thank Tim Dokchitser for allowing us to use this package.

1. The minimal stable model (X ,D)

The method to compute the stable minimal model is as follows: consider the cover p :
C → P1 obtained by sending (x, y) → x. This is a cyclic Galois cover of degree n ramified
precisely at the points

D =
∑
r∈R

[r] +

{
[∞] if n - deg(f(x)),

0 otherwise.

Consider the marked curve (P1, D) and compute its minimal semistable model (X ,D). A
semistable model of C is then obtained as the normalization Y of X in the function field
of C , i.e. Y fits in the following diagram

Y //

��

C

p
��

X // P1

The stable model (X ,D) is obtained by gluing open affine lines blown up at a point in the
special fiber of P1 (as explained in [DDMM18, Section 3],[BW17] and also [Liu02]). Recall
the algorithm given in [BW17] to compute (X ,D). Let

(2) S = Supp(D) = R ∪

{
∞ if n - deg(f(x)),

∅ otherwise.

Remark 1.1. The assumption that C has positive genus implies in particular that S has at
least 3 elements, as this is always the case except when f(x) has degree 1 or when f(x) has
degree 2 and n = 2. In both cases the curve C has genus 0.

Let T denote the set of triples of distinct elements of S. The coordinate function of
t = (a, b, c) ∈ T , is defined as

(3) ϕt(x) =
(b− c)
(b− a)

(x− a)

(x− c)
.

It corresponds to the Möbius transformation sending (a, b, c) to (0, 1,∞). Define the following
equivalence relation in T : two elements t1, t2 ∈ T are equivalent (which we denote t1 ∼ t2)
if the map φt2 ◦ φ−1

t1 extends to an automorphism of P1
O (i.e. it corresponds to a matrix in

PGL2(O)).
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The semistable model X consists of one component (a projective line) for each equiva-
lence class. Furthermore, the special fiber X̄ of X is a tree of projective lines where each
component contains at least 3 points (being either elements of S or singular points were two
components meet).

For each t ∈ T the map ϕt extends to a proper O-morphism ϕt : X → P1
O , whose

reduction (denoted ϕt) is a contraction morphism with contracts all but one component of

X̄ to a closed point (see [BW17, Proposition 4.2]). Furthermore, if r ∈ R then ϕt(r) = ϕt(r).
Extend the valuation v on O by setting v(∞) = −∞.

Lemma 1.2. The equivalence relation in T satisfies the following properties:

(1) The permutation of a triple (a, b, c) is equivalent to (a, b, c).
(2) Any triple is equivalent to one with v(b− c) = v(a− c) ≤ v(a− b).

Proof. The first assertion follows from a straightforward matrix computation. For the second
one, note that the map from triples of elements to triples of rational numbers given by
(a, b, c) → (v(b − c), v(a − c), v(a − b)) is S3 invariant, hence we can assume v(b − c) ≤
v(a− c) ≤ v(a− b). But a− b = (a− c) + (c− b) hence

v(a− b) ≥ min{v(a− c), v(b− c)} = v(b− c)

with equality if both values are different. Then the assumption v(b− c) ≤ v(a− c) ≤ v(b− c)
implies that v(a− c) = v(b− c). �

Definition 1.3. An ordered triple is a triple (a, b, c) with v(a− c) = v(b− c) ≤ v(a− b).

If (a, b, c) is an ordered triple, define its radius to be µ = v(a− b).

Proposition 1.4. Let (a, b, c) be an ordered triple.

(1) If ∞ ∈ S then any ordered triple (a, b, c) is equivalent to the ordered triple (a, b,∞).
(2) The radius µ depends only on the equivalent class of the triple.
(3) The ordered triple (a, b, c) is equivalent to the ordered triple (α, β, γ), if and only if

the following two properties hold:
• they have the same invariant, i.e. µ = v(a− b) = v(α− β),
• a ≡ b ≡ α ≡ β (mod πµ).

Proof. By the equivalence relation definition, an ordered triple T1 = (a, b, c) (with c 6=∞) is
equivalent to a triple T2 = (a, b,∞) if and only if λ2 ◦ λ−1

1 extends to an automorphism of
P1

O , where λi is the Möbius transformation sending the triple Ti to the triple (0, 1,∞). The
Möbius matrix attached to such composition equals

[λ2 ◦ λ−1
1 ] =

1

(a− c)

(
(a−c)
(b−c) 0
(a−b)
(b−c) 1

)
.

If we multiply the matrix by (a− c) we get an invertible integral matrix, since (a−c)
(b−c) is a unit

(recall the definition of an ordered triple), hence both triples are indeed equivalent.
To prove equivalence of ordered triples (a, b, c), (α, β, γ), since we can add ∞ to the set,

it is enough to restrict to the case (a, b,∞) and (α, β,∞). It is easy to check that the
transformation sending one triple to the other one is given by the matrix
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M =

(
(a− b) (α− a)

0 (α− β)

)
.

For a multiple of M to lie in GL2(O), it must happen that v(a − b) = v(α − β), hence the
two triples have the same radius, as stated. At last, under such assumption, the two triples
are equivalent if and only if v(a−α) ≥ µ (the radius of the triples). Recall that µ = v(a−b),
so a ≡ b (mod πµ) and the same holds for α and β, as stated.

�

Remark 1.5. Given a cyclic curve C : yn = f(x), there are many transformations that
preserve the model (for example translation). The combinatory behind the computation
of a stable model of P1 attached to the roots of p(x) depends on the particular equation.
However, the information obtained from it (number of components, discriminant, etc) does
not.

Before stating the relation between equivalence classes of triples and clusters, let us illus-
trate the algorithm with an example.

Example 1. Let p be an odd prime number and C /Qp be the superelliptic curve given by
the equation

C :y6 = x(x− p2)(x− p)(x− p− p2)(x− 2p)(x− 2p− p2)(x− 1)(x− 1− p)(x− 1− 2p)

Then R = {0, p2, p, p+ p2, 2p, 2p+ p2, 1, 1 + p, 1 + 2p} and S = R ∪ {∞} (since 6 - deg(f)).
By Proposition 1.4 any ordered triple (a, b, c) is equivalent to the ordered triple (a, b,∞),
and there are 36 such triples. The radii are given in Table 1.

Pair (0, 1) (0, 1 + p) (0, 1 + 2p) (p2, 1) (p2, 1 + p) (p2, 1 + 2p)
Radius 0 0 0 0 0 0
Pair (p, 1) (p, 1 + p) (p, 1 + 2p) (p+ p2, 1) (p+ p2, 1 + p) (p+ p2, 1 + 2p)
Radius 0 0 0 0 0 0
Pair (2p, 1) (2p, 1 + p) (2p, 1 + 2p) (2p+ p2, 1) (2p+ p2, 1 + p) (2p+ p2, 1 + 2p)
Radius 0 0 0 0 0 0
Pair (0, p) (0, p+ p2) (0, 2p) (0, 2p+ p2) (p2, p) (p2, p+ p2)
Radius 1 1 1 1 1 1
Pair (p2, 2p) (p2, 2p+ p2) (p, 2p) (p, 2p+ p2) (p+ p2, 2p) (p+ p2, 2p+ p2)
Radius 1 1 1 1 1 1
Pair (0, p2) (p, p+ p2) (2p, 2p+ p2) (1, 1 + p) (1, 1 + 2p) (1 + p, 1 + 2p)
Radius 2 2 2 1 1 1

Table 1.

By Proposition 1.4 (3), all elements in the first three rows are equivalent, all elements
in fourth and fifth rows are equivalent, the three first elements of the last row are not
equivalent, and the last three elements in the last row are equivalent, hence there are six
equivalent classes. The ordered triples and the charts can be taken to be:

• t0 = (0, 1,∞), ϕ0(x) = x
• t1 = (0, p,∞), ϕ1(x) = x

p

• t2 = (0, p2,∞), ϕ2(x) = x
p2

• t3 = (p, p+ p2,∞), ϕ3(x) = x−p
p2

• t4 = (2p, 2p+ p2,∞), ϕ4(x) = x−2p
p2

• t5 = (1, 1 + p,∞), ϕ4(x) = x−1
p

Then the special fiber of X looks like Figure 1.
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Xm∞

X1 X5

1 + 2p

1 + p

1

X42p 2p+ p2

X3p p+ p2

X20 p2

Figure 1. Special fiber of X

2. Clusters and their relation with X

Clusters were defined in [DDMM18] to study hyperelliptic curves. We strongly recommend
the reader to look at such article and also the expository article [BBB+20]. We follow closely
the definition and notations presented in such references.

Definition 2.1. A cluster s is a non-empty subset of R of the form s = D(z, d) ∩R, for
some disc D(z, d) = {x ∈ K : v(x− z) ≥ d} where z ∈ K and d ∈ Q. A proper cluster is a
cluster with more than one element.

We will mostly be interested in proper clusters for most of the discussions. Let Cl(R)
denote the set of proper clusters of R. For a cluster s, let |s| denote the number of elements
of R contained in s.

Lemma 2.2. Given s1, s2 clusters, then either they are disjoint or one is contained in the
other.

Proof. The result follows from the fact that any point inside the disc defining a cluster can
be taken as the ball center (see [DDMM18, Section 1.5]). �

Definition 2.3. If s, s′ are clusters with s′ ( s a maximal subcluster, we write s′ < s and
refer to s′ as a child of s and s as a parent of s′.

To a proper cluster s we associate its diameter µ(s) = min{v(z − t) : z, t ∈ s} (in
[DDMM18] the authors use term depth for such invariant).

Lemma 2.4. Let s be a proper cluster, and let a, b ∈ s two elements satisfying that v(a−b) =
µ(s). Then s = D(a, µ(s)) ∩R.

Proof. Clearly, v(a − b) ≥ µ(s) for all b ∈ s, hence s ⊂ D(a, µ(s)) ∩ R. For the other
inclusion, by definition s = D(α, d) ∩R, for some α, d. Since a ∈ s, a ∈ D(α, d), so we can
take it as center, i.e. s = D(a, d) ∩R. But µ(s) is the minimal valuation between elements
in s hence d ≥ µ(s) and D(a, µ(s)) ∩R ⊂ s. �

Definition 2.5. Let smax be the maximal cluster, i.e. the cluster containing all other clusters
and all elements of S.

Let (a, b, c) be an ordered triple in T , and let µ = v(a− b) be its invariant. Define a map
Φ : T → Cl(R) by

(4) Φ((a, b, c)) = Dµ(a) ∩R.
6



Theorem 2.6. The map Φ gives a well defined map between the equivalence classes of
triples in T/ ∼ and the set of clusters of R. Furthermore, the map Φ satisfies the following
properties:

(1) It is injective.
(2) The set Cl(R) \ {smax} ⊂ Im(Φ).
(3) The cluster smax lies in the image of Φ if either one of the following properties hold:

i. The element ∞ ∈ S,
ii. there are three different elements a, b, c ∈ R satisfying

µ(smax) = v(a− b) = v(b− c) = v(a− c)
(equivalently, smax has more than two childs).

Proof. For Φ to descend to a map on the quotient T/ ∼, we need to prove that if t1 = (a, b, c)
and t2 = (α, β, γ) are equivalent ordered triples of T then Φ(t1) = Φ(t2). By Proposition 1.4,
the condition t1 ∼ t2 implies that µ = v(a − b) = v(α − β) and a ≡ b ≡ α ≡ β mod πµ.
Then α ∈ Dµ(a) hence Dµ(a) = Dµ(α) and Φ(t1) = Φ(t2).

(1) Injectivity: let t1 = (a, b, c) and t2 = (α, β, γ) be two ordered triples such that
Φ(t1) = Φ(t2). Note that

(5) v(a− b) = µ(Φ(t1)) = min{v(z − t) : z, t ∈ Φ(t1)}.
Then we can recover the invariant µ of the triple t1 as the diameter of Φ(t1). Since
Φ(t1) = Φ(t2), the µ invariant of Φ(t2) equals that of Φ(t1). On the other hand,
since Φ(t1) = Φ(t2), {α, β} ⊂ Φ(t2) so a ≡ b ≡ α ≡ β (mod πµ) and t1 ∼ t2 by
Proposition 1.4.

(2) Let s ∈ Cl(R) be a proper cluster which is not maximal. Let a, b ∈ s be a pair such
that v(a− b) = µ(s). Clearly s = Dµ(a) ∩R. Let c 6∈ s, then s = Φ(a, b, c).

(3) As before, given smax, let a, b ∈ smax be a pair such that v(a− b) = µ(smax).
i. If ∞ ∈ S, then smax = Φ(a, b,∞).

ii. If there exists a, b, c ∈ smax with v(a − b) = v(a − c) = v(b − c) then smax =
Φ(a, b, c).

Finally, if smax has precisely two childs, we need to prove it does not lie in the image.
Let s1 and s2 be the maximal subclusters. Any triple (a, b, c) satisfies (without loss
of generality) that two elements lie in s1 and the other in s2 or the three of them lie
in s1. In both cases it is easy to check that Φ(a, b, c) ⊂ s1, hence smax is not in the
image.

�

Example 2. The case when smax is not in the image of Φ corresponds to a model (X ,D)
with precisely two lines intersecting in a single point. For example, if p > 3 is a prime
number, the curve with equation:

C : y6 = x(x− p)(x− 1)(x− 1 + p)(x− 1 + 2p)(x− 1 + 3p).

In Figure 2 we present its cluster picture as well as the model (X ,D).

Following the description in Section 1, we know that the components of X correspond
to elements in T/ ∼, hence to get a complete description of X we need to understand how
the components intersect with each other and how the points of S distribute between the
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Figure 2. Special fiber of X

s1 s2

Figure 3. Attached clusters

components. Representing elements as clusters gives the natural answer, namely in general
two components will intersect precisely when the cluster attached to one of them is a child
of the other. More concretely,

Theorem 2.7. The components attached to clusters s1, s2 in the image of Φ intersect if and
only if one of the following holds:

(1) s1 is a maximal subcluster of s2 or vice-versa, or
(2) s1 ∩ s2 = ∅ and both s1, s2 are maximal clusters.

The second case corresponds precisely to the case explained in Example 2. The statement
is implicit in [DDMM18] (see Section 5 and Theorem 1.10) as well as in [BW17], but we
present a different proof which depends on understanding especial points on clusters and the
coordinate functions evaluated at them.

Definition 2.8. Let s ∈ Cl(R). A point of s is one of the following:

• a child of s (i.e. maximal subclusters of s),
• a parent of s (i.e. a minimal supercluster of s),
• If ∞ ∈ S, one point (denoted ∞) in smax.
• If smax 6∈ Im(Φ) one extra point in each maximal cluster of Im(Φ) (corresponding to

the intersection point of the two components, see Example 2).

Note that we did not ask the clusters to be proper while defining points. In particular, the
elements of S will be points in some clusters. The component graph of the special fiber X̄ of
X is a stably marked tree (see section 4.2 of [BW17]). In particular, each cluster contains
at least 3 points. Let P be the disjoint union of points in proper clusters s ∈ Cl(R), i.e.

P =
⊔

s∈Cl(R)

{points in s}.

In particular, the set R ⊂ P . To make computations easier, we can (and will) assume that
if s is a non-maximal cluster, then the ordered triple t = (a, b, c) ∈ T mapping to it via Φ
satisfies that its last coordinate does not lie in s (this is always the case up to an equivalent
triple). Furthermore, if ∞ ∈ S, we assume that c =∞.

Lemma 2.9. Let t ∈ T , and x1, x2 ∈ R be roots. Let s = Φ(t) be the associate cluster.
Then the coordinate function ϕt satisfies:

(1) if there exists a proper subcluster s̃ ( s such that x1, x2 ∈ s̃ then ϕt(x1) = ϕt(x2).

(2) if x1, x2 ∈ s but they do not lie in a common maximal subcluster then ϕt(x1) 6= ϕt(x2).

(3) if x1 6∈ s then ϕt(x1) =∞.
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Proof. Let t = (a, b, c), and consider first the case when Φ(t) is not the maximal cluster
(hence c 6∈ s). By definition,

(6) ϕt(x1)− ϕt(x2) =
(b− c)
(b− a)

(x1 − x2)(c− a)

(x1 − c)(x2 − c)
.

(1) Let x1, x2 ∈ s̃. Recall that the valuation of the difference between one element in
s and one element outside s is constant, then since c 6∈ s, v(b − c) = v(c − a) =
v(x1 − c) = v(x2 − c). The hypothesis that x1, x2 lie in a proper subcluster implies
that v(x1 − x2) > v(a − b) = µ(Φ(t)) so the right hand side of (6) is divisible by π
and ϕt(x1) ≡ ϕt(x2) (mod π).

(2) If x1 and x2 do not lie in a proper subcluster, then v(x1 − x2) = v(a− b), hence the
right hand side of (6) is a unit, hence ϕt(x1) 6≡ ϕt(x2) (mod π).

(3) If x1 6∈ s, ϕt(x1) = (b−c)
(b−a)

(x1−a)
(x1−c) . The non-arquimedean triangle inequality implies

that v(x1 − c) = min{v(x1 − a), v(b − c)} (recall that v(a − c) = v(b − c)). On
the other hand, since (a, b, c) is an ordered triple, v(b − a) is the cluster’s diameter.
The hypothesis x1, c 6∈ s imply that v(b − a) > max{v(b − c), v(x1 − a)}. Then

v(x1 − c)v(b− a) > v(x1 − a)v(b− c) and consequently ϕt(x1) =∞.

Assume on the contrary that Φ(t) is the maximal cluster, hence v(b−c) = v(a−b) = v(a−c).
Distinguish two cases depending on whether x1, x2, c belong to a common proper subcluster
or not. In the first case, v(x1−c) > v(x1−a) for i = 1, 2 since xi lies in the same subcluster as

c, so ϕt(xi) =∞. In particular, if x1, x2 lie in a common proper subcluster, ϕt(x1) = ϕt(x2).
In the second case, if x1 is not in the same proper subcluster as c, v(x1 − c) ≤ v(x1 − a)

hence ϕt(x1) 6=∞. If x1, x2 are two roots not in the same proper subcluster as c, v(b− c) =
v(c− a) = v(b− a) = v(x1 − c) = v(x2 − c) and the same proof as before applies. �

2.1. Functions on clusters. If s ∈ Cl(R) lies in the image of Φ, define a function ϕs :
P → P1 extending the coordinate function ϕt to P as follows.

Definition 2.10. Let s ∈ Cl(R) be in the image of Φ, say s = Φ(t) and let p ∈ P be a
point, i.e. p is a point in a cluster s̃ ∈ Cl(R). In particular, p is either a root (i.e. an element
of R) or p = s′ a parent/child of s̃. Define

ϕs(p) =


ϕt(α) if p = α ∈ R and α ∈ s,

ϕt(a) if s′ = Φ((a, b, c)) ⊂ s,

∞ otherwise.

Remark 2.11. If ∞ ∈ S, the point ∞ ∈ smax evaluates to ∞ at all functions. This is clear
for the function ϕs when s is not the maximal cluster, and for the maximal cluster it follows
from the assumption c =∞ of the ordered triple attached to it.

Lemma 2.12. Let s ∈ Cl(R) be an element in the image of Φ.

• If s′ ∈ Cl(R) is cluster not contained in s, the map ϕs takes the same value at all
points of s′.
• If s1, s2 are two different childs of s, then ϕs takes different values at points of s1 and

of s2.

Proof. The statements follow easily from Lemma 2.9. �
9



Suppose that p, q ∈ P satisfy one of the following hypothesis:

• s = s′ and p = q,
• s is a child/parent of s′, p = s′ and q = s,
• smax is not in the image of Φ, in which case we identify the extra points of the two

maximal proper clusters of Im(Φ) (see Example 2).

Then Lemma 2.12 implies that ϕs(p) = ϕs(q). In particular, all coordinate functions do not
distinguish them (which explains why they are identified in the model X ). By definition,
the function attached to a cluster s = Φ(t) equals the one attached to t hence they share
the same properties; for example ϕs contracts all components different from t to points (see
[BW17, Proposition 4.2]). We extend the function ϕs to clusters defining

ϕs(s
′) =

{
∞ if s ⊂ s′,

ϕs(p) otherwise

Proposition 2.13. Let X1, X2 be two components of X . Then they do not intersect if and
only if there exists a component Xt whose coordinate function ϕt collapses X1 and X2 to two
different points.

Proof. If X1 and X2 do not intersect, then since X is connected, there exists a component
Xt in the path connecting them which is not equal to X1 nor X2. Then ϕt collapses X1 to
one point in P1(Fp) and X2 to a different one. �

We can now give a proof of how the components intersect.

Proof of Theorem 2.7. By Proposition 2.13, the clusters si = Φ(ti) do not intersect if and
only if there exists t3 such that ϕt3 takes different values at s1 and s2. Distinguish the
following cases:

• Suppose that s1 ∩ s2 = ∅ and they are maximal subclusters. In such case, smax is not
in the image of Φ. In particular, if s3 is any other subcluster, s3 ⊂ s1 or s3 ⊂ s2 by
Theorem 2.6. Then by Proposition 2.13 (4), ϕs3(si) = ∞ hence by Proposition 2.13
s1 and s2 do intersect.
• Suppose that s1 ∩ s2 = ∅ and s1, s2 are maximal subclusters of s̃, ϕs̃ takes different

values at s1 and s2, hence they do not intersect. Otherwise, let s̃ be the minimal
cluster containing both of them, and s̃i, i = 1, 2, be a maximal subcluster of s̃
containing si. Then the coordinate function ϕs̃ takes different values at s1 and s2 by
Lemma 2.12.
• Suppose that s1 is a subcluster of s2. If it is not maximal, there exists s3 subcluster

such that s1 ( s3 ( s2. Then ϕs3 takes the value ∞ at s2 and sends s1 to an element
in Fp, hence they do not intersect.
• Suppose s1 is a maximal subcluster of s2. If they do not intersect, then there exists
s3 cluster such that ϕs3 takes different values at s1 and s2. Then Lemma 2.12 gives
the following implications

– If s1 ⊂ s2 ⊂ s3, ϕs3(s1) = ϕs3(s2).
– If s3 ⊂ s1 ⊂ s2, ϕs3(s1) = ϕs3(s2) =∞.
– If s3 ∩ s2 = ∅, ϕs3(s1) = ϕs3(s2).

Then s1 and s2 must intersect.

�
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Example 1 (Continued). Let us go back to Example 1. The set of proper cluster equals:

s1 = {0, p2, p, p+ p2, 2p, 2p+ p2}, s2 = {0, p2}, s3 = {p, p+ p2},
s4 = {2p, 2p+ p2}, s5 = {1, 1 + p, 1 + 2p}, smax = R.

Keeping the notation of Example 1, the map Φ maps the triples ti to si for i = 1, . . . , 5 and
t0 to smax. The cluster picture is given in Figure 4, where the roots follow the same order as
the one given for R.

s2 s3 s4

s1

s5

smax

Figure 4. Cluster of C .
Xm∞

X1 X5

1 + 2p

1 + p

1

X42p 2p+ p2

X3p p+ p2

X20 p2

3. The semistable model

Recall that C is a cyclic cover of P1, coming from the natural map φ : C → A1 sending
(x, y) to x. Let K2 = K(π1/d) and Y be the normalization of X in the function field of
YK2 . The hypothesis R ⊂ K and π1/d ∈ K2 implies that Y is a semistable model of Y (by
[BW17, Corollary 3.6]). The special fiber Ȳ of Y is obtained as follows: let t ∈ T with
Φ(t) = s = D(r, d) (we can assume r ∈ R). The cluster s corresponds to a component of the
special fiber of X̄. Let xt := φ∗t (x) be the pullback of the standard coordinate x of X. The
two variables are related via x = πdxt + r. Consider the polynomial f(xt) and let et be its
content valuation (in Section 5.1 we will explain how to compute such value from a weighted
cluster). Let ft(xt) = f(xt)π

−et and define the curve:

(7) Y t : ynt = ft(xt).

The curve Yt is defined as the normalization of Y t. Note that the curve Yt might be reducible,
and even its components might not be defined over K (but they are over an unramified
extension of degree at most n). Explicitly, let s̃1, . . . , s̃N be the children of s. Let αi ∈ s̃i be
any root and let ai = |s̃i|. Each cluster s̃i correspond to a factor of ft and the number ai to

the multiplicity of the root αi. Let also ct =
∏

β∈R\{s}
(r−β)
‖(r−β)‖p .

Proposition 3.1. Let d := gcd(n, a1, . . . , aN) and keep the previous notation. Then the

curve Yt has d irreducible components defined over the extension K(c
1/d
t ). In particular the

same holds for Yt.

Proof. If β ∈ R is a root not contained in s then the term x − β = πdxt + r − β reduces

to (r−β)
‖r−β‖p up to a power of π (which can be removed from the equation by the assumption

π1/d ∈ K2). Then the reduction of the polynomial ft(xt) equals ft(xt) = ct
∏N

i=1(xt − αi)ai .
For ` = 0, . . . , d− 1 let

(8) Y(`)
t : y

n/d
t = ζ`dc

1/d
t

N∏
i=1

(xt − αi)ai/d,

11



where ζd denotes a d-th root of unity. Then clearly Y t =
∏d−1

`=0 Y
(`)
t . Each curve Y(`)

t is
irreducible, because the cover K[xt, yt]/(y

n
t −ft(xt)) of K[x] is Galois, hence the ramification

degree is the same on all its components. In particular, the number of components divide ai
for all i. �

To understand the semistable model Y we are led to describe how different compo-
nents intersect. If P is a point in X t, then number of points of ϕ−1

t (P ) in Yt equals
r = gcd(n, v(ft)) each of them with ramification degree n

gcd(n,v(ft))
. In particular, each com-

ponent gets gcd(n,v(ft))
d

different points.
If P ∈ R (to easy notation suppose that P = α1 = 0, which can always be done after a

translation) then the normalization of (7) in an open set around 0 is given by the equations
zrt = ct

N∏
i=2

(xt − αi)ai

ztx
a1/r
t = y

n/r
t .

In particular, the set of r points in ϕ−1
t (0), with coordinates (xt, yt, zt) is given byQi =

0, 0, ζ ir

(
ct

N∏
i=2

(−αi)ai
)1/r

 : 0 ≤ i ≤ r − 1

 .

Recall that d = gcd(n, a1, . . . , aN), in particular d | r = gcd(n, a1). From the decompo-
sition (8), and choosing the roots of unity in a consistent way (i.e. such that they satisfy

ζnnm = ζm) it follows that Qi ∈ Y (`)
t precisely when i ≡ ` (mod d). In particular, Q0 belongs

to the zeroth curve, Q1 to the first one, and so on.

Let s̃ be a child of s (corresponding to t̃ ∈ T ); say s̃ = s̃1 in the above notation and
the center is again 0. Then the curve Yt̃ has an equation as in (7), more concretely, let

c̃ = ct
∏N

i=2(−αi)ai , then

(9) Yt̃ : ynt̃ = c̃
Ñ∏
i=1

(xt̃ − βi)bi ,

where the product is over childs of s̃, the numbers bi equal the number of roots in each

child, and βi is a root in each of them. Note that
∑Ñ

i=1 bi = a1. The gluing (as described in
[DDMM18] before Remark 3.9) corresponds in our coordinates to identify the infinity point
in the chart t̃ with the zero point in the chart t. Then equation (9) can be written as

(10)

(
y
n/r

t̃

x
a1/r

t̃

)r

= c̃

Ñ∏
i=1

(
1− βi

xt̃

)bi
.

This equation is the key to identify the points Qi in s with r-points in (10) (or its components
if it happens to be reducible) and gives the intersection points of s and s̃ (see the formulas
in [DDMM18, Proposition 5.5]).

Let d̃ = gcd(n, b1, . . . , bÑ), then the curve Yt̃ consists on d̃ components (ordered according

to powers of d̃-th roots of unity) and with the compatible choice of roots of unity, the point
12



Q0 lies at the infinity part of the zeroth component, and so on. Let us illustrate the situation
with some examples.

Example 1 (Continued II). Recall that there are six components (see Figures 1 and 4):

• Ym : y6
m = x6

m(xm − 1)3 (with relations xm = x, ),
• Y1 : y6

1 = (−1)x2
1(x1 − 1)2(x1 − 2)2 (with relations x1 = x/p, y1 = y/p),

• Y2 : y6
2 = (−4)x2(x2 − 1) (with relations x2 = x/p2, y2 = y/p4/3),

• Y3 : y6
3 = (−4)x3(x3 − 1) (with relations x3 = (x− p)/p2, y3 = y/p4/3),

• Y4 : y6
4 = (−4)x4(x4 − 1) (with relations x4 = (x− 2p)/p2, y4 = y/p4/3),

• Y5 : y6
5 = x5(x5 − 1)(x5 − 2) (with relations x5 = (x− 1)/p, y5 = y/p1/2).

The curves Y2,Y3,Y4, are non-singular irreducible curves of genus 2, while Y5 is a non-
singular curve of genus 4. On the other hand, the curves Ym and Y1 are reducible. The

curve Ym consists of the union of three (genus 0) curves Y(`)
m , ` = 0, 1, 2 with equations

Y(`)
m : y2

m = ζ`3x
2
m(xm − 1) (ym = y),

where ζ3 is a third root of unity in Fp. The curve Y1 consists of the union of two genus 1

curves Y(`)
1 , ` = 0, 1 with equation

Y(`)
1 : y3

1 = (−1)`
√
−1x1(x1 − 1)(x1 − 2) (y1 = y/p).

Note that the components of Y1 need not be defined over K2, but at most over an unramified
extension (since p - 6, K2(

√
−1)/K2 is unramified). The normalization explained in the

previous section, in an open neighborhood of 0 (but not of 1) of the curve Y(`)
m has equation{

z2
m = ζ`3(xm − 1)

zmxm = ym.

The preimage of 0 in the `-th component corresponds to the points P±` =
(
0, 0,±

√
−1ζ2`

3

)
.

In particular, it intersects Y1 in 2 points. The component graph of the special fiber of Y is
given in Figure 5.

Y(1)
m

Y(2)
m

Y(3)
m

Y5 Y(1)
1 Y(2)

1

Y4
Y3
Y2

Figure 5. Special Fiber of Y
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Example 3. Let p be an odd prime greater than 3 and C /Zp be the curve with equation

y6 = x(x− p2)(x− p)(x− p− p2)(x− 2p)(x− 2p− p2)(x− 1)(x− 1− p2)(x− 1− 2p2)

(x− 1− p)(x− 1− p− p2)(x− 1− p− 2p2)(x− 2)(x− 2− p)(x− 2− 2p).

It is a curve of genus 34. The set of roots of f(x) equals R = {0, p, p2, p+p2, 2p, 2p+p2, 1, 1+
p, 1 + p2, 1 + 2p2, 1 + p + p2, 1 + p + 2p2, 2, 2 + p, 2 + 2p}. There are nine clusters as shown
in Figure 6. They give the components:

1

s6

1

s7

1

s8

1

s5

1

s3

1

s4

1

s2

1

s1

0

smax

Figure 6. Cluster picture

• smax is the disc with center rm = 0 and diameter µ = 0. It corresponds to a component

Ym : y6
m = x6

m(xm − 1)6(xm − 2)3 consisting of 3 irreducible components Y(i)
m : y2

m =
ζ i3x

2
m(xm − 1)2(xm − 2), 0 ≤ i ≤ 2 of genus 0 (see Proposition 3.2).

• s1 = {2, 2 + p, 2 + 2p} = D(2, 1), with variable x = px1 + 2, y = p1/2y1 and equation
Y1 : y6

1 = 26x1(x1 − 1)(x1 − 2). It is an irreducible curve of genus 4.
• s2 = {1, 1 + p, 1 + p2, 1 + 2p2, 1 + p + p2, 1 + p + 2p2} = D(1, 1), with variable
x = px2 + 1, y = py2 and equation Y2 : y6

2 = −x3
2(x2 − 1)3. It consists of three

irreducible components Y(i)
2 : y2

1 = −ζ i3x1(x1 − 1), 0 ≤ i ≤ 2 of genus 0.
• s3 = {1, 1+p2, 1+2p2} = D(1, 2), with variable x = p2x3 +1, y = p3/2y3 and equation
Y3 : y6

3 = x3(x3 − 1)(x3 − 2). It is an irreducible curve of genus 4.
• s4 = {1 + p, 1 + p + p2, 1 + p + 2p2} = D(1 + p, 2), with variable x = p2x4 + 1 + p,
y = p3/2y4 and equation Y4 : y6

4 = −x4(x4 − 1)(x4 − 2). It is an irreducible curve of
genus 4.
• s5 = {0, p, p2, p + p2, 2p, 2p + 2p2} = D(0, 1), with variable x = px5, y = py5 and

equation Y5 : y6
5 = −8x2

5(x5− 1)2(x5− 2)2. It consists of two irreducible components

Y(i)
5 : y3

5 = (−1)i2
√
−2x5(x5 − 1)(x5 − 2), i = 0, 1 of genus 1.

• s6 = {0, p2} = D(0, 2), with variable x = p2x6, y = p4/3y6 and equation Y6 : y6
6 =

−32x6(x6 − 1). It is an irreducible curve of genus 2.
• s7 = {p, p + p2} = D(p, 2), with variable x = p2x7 + p, y = p4/3y7 and equation
Y7 : y6

7 = −8x7(x7 − 1). It is an irreducible curve of genus 2.
• s8 = {2p, 2p + p2} = D(2p, 2), with variable x = p2x8 + 2p, y = p4/3y8 and equation
Y8 : y6

8 = −32x8(x8 − 1). It is an irreducible curve of genus 2.

The special fiber of X and Y are given in Figure 7 and Figure 8 respectively.

3.1. Genus of Yt. To get a complete understanding of the special fiber of Y we only need to
explain how to get the genus of each component from the cluster and describe the component
graph. Keeping the previous notations, let Yt be a component of the special fiber of Y (we
do not assume that it is irreducible), above a component X of X , corresponding to a cluster
s.

14



Xm∞

X5 X2X1

1 + 2p

1 + p

1

X82p 2p+ p2

X7p p+ p2

X60 p2

X3 1 1 + p2 1 + 2p2

X4 1 + p 1 + p+ p21 + p+ 2p2

Figure 7. Special Fiber of X

Y(2)
m

Y(1)
m

Y(0)
m

Y(1)
5 Y(2)

5
Y1

Y6

Y7

Y8

Y(1)
2

Y(2)
2

Y(0)
2

Y3 Y4

Figure 8. Special Fiber of Y

Proposition 3.2. Let s̃1, . . . , s̃N be the children of s, let ai = |̃si| and let d := gcd(n, a1, . . . , aN).
Then irreducible components of Yt have genus

1

2d

(
n(N − 2)−

N∑
i=1

gcd(n, ai)

)
+ 1 +

{
0 if n |

∑N
i=1 ai

n
2d
− gcd(n,

∑N
i=1 ai)

2d
if n -

∑N
i=1 ai

Proof. Since the genus of a curve equals that of its normalization, we can look at the com-
ponents of Yt. By Proposition 3.1, we know that the components are given by an equation

of the form Y`t : y
n/d
t = ζ`dc

1/d
∏N

i=1(xt − αi)ai/d.
If π : X → X ′ is a general degree D map between non-singular curves, The Riemann-

Hurwitz formula (see for example [Har77, Corollary 2.4]) implies that

2g(X)− 2 = D(2g(X ′)− 2) +
∑
P

(eP − 1),

where g(X) denotes the genus of X and eP denotes the ramification degree of P . Taking

X = Y`t and X ′ = P1, g(X ′) = 0, D = n
d

and

• eP = 1 for all points P 6= αi and P 6=∞,
• as mentioned before, each point αi has ramification degree n

gcd(n,ai)
and there are

gcd(n,ai)
d

points above it.

• If n |
∑N

i=1 ai = deg(ft(xt)), ∞ is not ramified. Otherwise, it is a ramified point,

with ramification degree n

gcd(n,deg(ft(xt)))
and gcd(n,deg(ft(xt)))

d
points.

Then Riemann-Hurwitz gives that the genus of Y(`)
t equals

1

2

(
n

d
(N − 2)−

N∑
i=1

gcd(n, ai)

d

)
+ 1 +

{
0 if n |

∑N
i=1 ai,

n
2d
− gcd(n,

∑N
i=1 ai)

2d
if n -

∑N
i=1 ai.

�

4. The Galois representation of C

4.1. Computing the Galois representation over K2. Let Υ = (V,E) denote the dual
graph of the special fiber of Y (also referred as the graph of components in [BW17]); it
is an undirected graph whose vertices V are the irreducible components of Y . The set E

15



contains an edge joining a pair of vertices for each intersection point of the corresponding
components. Under our hypothesis, the action of Gal(k/k) on the set X is trivial, but its
action on the set of irreducible components of Yt (and on Υ) might not be. Let ` be a prime
with ` - p. Then by [BW17, Lemma 2.7] (see also [DDM18, Corollary 1.6]) it follows that as
Q`[GK ]-modules

(11) H1
ét(Y ,Q`) =

∑
Ỹ ∈V

H1
ét(Ỹ ,Q`)⊕ H1(Υ,Z)⊗Z Q`.

If we consider the Picard group Pic0(Y ), it contains an abelian part and a toric one (see
for example [BLR90], Example 8, page 246). The rank of the toric part equals the rank
of H1(Υ,Z), and its Galois representation consists of Jordan blocks of size 2 (see [Gro72,
Proposition 3.5], page 350). The action of Gal(K/K) on Y (K) extends to a semilinear action
on the geometric points of Y (see [DDMM18, Equation (2,18)], [DDM18, Corollary 1.6] and
page 13 of [CFKS10]). In particular, we have an isomorphism of GK-representations

V`(Pic0(Y )) '
((

H1(Υ,Z)⊗Z Q`

)
⊗ Sp2

)
⊕
⊕
Ỹ ∈V

V`(Pic0(Ỹ )).

Recall that the rank of H1(Υ,Z) equals |E| − |V |+ 1 (because the graph is connected).

Remark 4.1. Since inertia acts trivially on H1(Υ,Z), the image of inertia consists of a matrix
with rankZ H1(Υ,Z) Jordan blocks of 2 × 2 and the identity elsewhere. The values of the
Frobenius element is given by its (permutation) action on the components.

Theorem 4.2. The rank of H1(Υ,Z) equals∑
s̃

gcd(n, |s̃|)−
∑
s

gcd(n, |s̃1|, . . . , |s̃N |) + 1,

where the first sum runs over all proper clusters except the maximal one, the second sum
runs over all proper clusters, and the elements s̃1, . . . , s̃N denote the children of s (which
might not be proper).

Proof. Recall that the rank of H1(Υ,Z) equals |E| − |V | + 1. The value |V | (the number
of irreducible components) equals the second term by Proposition 3.1. The number of in-
tersection points follows from the discussion after the same proposition, that states that
#ϕ−1

t (P ) = gcd(n, vP (ft)). Since vP (ft) = |s̃| the result follows. �

Example 1. (Continued III). The graph of components (which can be read from Figure 5)
is given in Figure 9. Its rank can be computed using the previous theorem, from the cluster
description in Figure 4, implying that H1(Υ,Z) has rank 7 (which can be easily verified from
the graph picture since the component graph Υ contains 9 vertices and 15 edges.). The
advantage of Theorem 4.2 is that we do not need to know the graph of components! (the
cluster picture is enough).

In particular, the image of inertia (of the Galois representation) equals 7 Jordan blocks of
the form ( 1 1

0 1 ), and the identity elsewhere.
Recall by (11) that the Galois representation of C has two parts, one coming from the

components and one coming from the graph of components. Let σ denotes the Frobenius
automorphism of Gal(Kur

2 /K2). If we want to understand its action on the component graph,
we need to consider two different cases: if

√
−1 ∈ K2, then all components are defined overK2
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and so are the intersection points, hence its action is trivial (and the 2×2 blocks correspond
precisely to the classical Steinberg representation). However, if

√
−1 6∈ K2, then Frobenius

interchanges the two components Y(1)
1 and Y(2)

1 . A basis for the graph cohomology are the
cycles:

• e1 = {,Y(1)
m ,Y(1)

1 ,Y4,Y(2)
1 },

• e2 = {,Y(1)
m ,Y(1)

1 ,Y3,Y(2)
1 },

• e3 = {,Y(1)
m ,Y(1)

1 ,Y2,Y(2)
1 },

• e4 = {,Y(1)
m ,Y(1)

1 ,Y(2)
m ,Y5},

• e5 = {,Y(1)
m ,Y(2)

1 ,Y(2)
m ,Y5},

• e6 = {,Y(1)
m ,Y(1)

1 ,Y(3)
m ,Y5},

• e7 = {,Y(1)
m ,Y(2)

1 ,Y(3)
m ,Y5}.

Clearly σ fixes e1, e2, e3, while it interchanges e4 ↔ e5 and e6 ↔ e7. Then {e1, e2, e3, e4 +
e5, e6 + e7, e4 − e5, e6 − e7} is a basis of eigenvectors for σ and the Galois representation on
this basis consists of 4 copies of the Steinberg representation, and 3 copies of a twist of the
Steinberg representation by the unramified quadratic extension K2(

√
−1)/K2.

Note that the sum of the genera of the components equals 12, and 7 + 12 = 19 which is
the genus of C (as it should be).

Y5

Y(1)
m

Y(2)
m

Y(3)
m

Y(1)
1

Y(2)
1

Y2

Y3

Y4

Figure 9. The component graph Υ.

Example 3 (Continued). From the cluster picture (see Figure 6) and Theorem 4.2 we get
that H1(Υ,Z) has rank 14, hence the image of inertia equals 14 Jordan blocks of size 2× 2.
The component graph Υ contains 14 vertices and 27 edges (which can be read from Figure 8).
The sum of the genera of the components equals 20, and 20 + 14 = 34 which is the genus of
C .

A similar analysis as the one made in the previous example can be used to determine the

graph component representation. For the components Y(i)
m and Y(j)

5 be defined over K we
need

√
−2 be in K2. Start supposing this is the case. The group GK2 fixes the vertices of

the graph, but still might not fix the edges (corresponding to the intersection points). The

intersection of Y(i)
m with Y(j)

5 correspond to two points with coordinates in K2(
√
−2ζ i3) which

is fixed by GK1 under our hypothesis, but the intersection of Y(i)
m with Y(i)

2 correspond to

two points with coordinates in K2(
√
−ζ i3).

In particular, if
√
−1 also belongs to K2, the Galois representation attached to C decom-

poses as a direct sum of dimensions 8 + 8 + 8 + 2 + 2 + 4 + 4 + 4 (corresponding to the

curves Y1, Y3, Y4, Y(0)
5 , Y(1)

5 , Y6, Y7 and Y8 respectively) and 14 blocks where the action
17



of Frobenius is trivial and a generator of inertia acts as ( 1 1
0 1 ) (corresponding to the Stein-

berg representation). However, if
√
−1 6∈ K2, then GK2 permutes the two edges joining the

vertices Y(i)
m and Y(i)

2 . This implies that three of the fourteen blocks have Frobenius acting
by −1, while the other eleven ones keep the trivial action. Note that since p - 6 all the
extensions are unramified, so the image of inertia does not change.

Suppose that
√
−2 6∈ K2, then GK2 permutes the two components Y(0)

5 and Y(1)
5 (with its

respective intersection points), which induces another involution on the graph of components.
In this case, if

√
−1 ∈ K2, five Jordan blocks have Frobenius acting by −1 while the other

seven ones have trivial action while if
√
−1 6∈ K2, eight blocks have Frobenius acting by −1

and by 1 on the other five blocks. The remaining cases can be studied similarly.

Remark 4.3. We want to emphasize that when restricting the Galois representation to K2,
the image of inertia depends only on the components graph, which can easily be read from
the cluster picture. The same is true over K considering weighted clusters that will be
introduced in the next section.

5. The Galois representation over K

5.1. Weighted Cluster. Recall from Proposition 3.1 that the components Yt correspond
to equations where the leading coefficient of f(x) might not be 1. This corresponds to a
“twist” of the representation. To determine whether the involved character is ramified or
not it is important the notion of weighted clusters.

Definition 5.1. Let s be a proper cluster (i.e. s 6= R). Define its relative diameter (that
will be denoted ds) by

ds = µs − µP (s)

where P (s) denotes the parent of s.

Following[DDMM18], in a cluster picture we include the relative diameters as follows: in
a maximal cluster include a subscript denoting its diameter; for all other clusters include a
subscript given by their relative diameter (that is the difference between their diameters and
that of their parent cluster).

Example 1. Recall that Table 1 gives the diameters µsmax = 0, µs1 = µs5 = 1, µs2 = µs3 =
µs4 = 2. Then their relative diameter equal

ds1 = µs1 − µsmax = 1, ds5 = µs5 − µsmax ,

ds2 = µs2 − µs1 = 1, ds3 = µs3 − µs1 = 1, ds4 = µs4 − µs1 = 1.

giving the following weighted cluster.

1

s2

1

s3

1

s4

1

s1

1

s5

0

smax

Given s1, s2 two clusters (or roots) let s1 ∧ s2 denote the smallest cluster that contains
both of them. For instance, in the previous example 0∧ 1 = R, s2∧ s3 = s1, s2∧ p+ p2 = s1.
Keep the notation of the previous sections, and let et be the valuation of the content of the
polynomial f(xt) (in particular et = v(ct)).
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Proposition 5.2. If t ∈ T corresponds to a component of the special fiber of X associated
to a cluster s, the content valuation of the polynomial f(xt) equals

et =
∑
r∈R

µr∧s.

Proof. Recall that if t corresponds to a cluster s = D(α, µs) then x = πµsxt +α where α ∈ s
and

f(xt) =
∏
r∈R

(πµsxt + α− r).

Each factor (πµsxt + α − r) has content valuation min{µs, v(α − r)} contributing to the
content valuation ct of f(xt). Consider the following two cases:

• If r ∈ s then min{µs, v(α− r)} = µs = µs∧r.
• Otherwise, min{µs, v(α− r)} = v(α− r) = µs∧r as well.

Then the formula follows. �

5.2. Decomposing the representation of C . A good reference for details on this section
is [Kan85]. Let G denote the group µn of n-th roots of unity, whose group algebra equals

(12) Q[G] = Q[t]/(tn − 1) '
∏
d|n

Q[t]/φd(t),

where φd(t) denotes the d-th cyclotomic polynomial (with complex roots the primitive d-th
roots of unity). Fix ζn a primitive n-th root of unity (which belongs to K). The group G acts
on C via t · (x, y) = (x, ζny). This action extends to an action of Q[G] in Aut0(Jac(C )) :=
Aut(Jac(C )) ⊗Z Q. Let V`(Jac(C )) denote the Q` Tate module T`(Jac(C )) ⊗Z`

Q`. The
natural injective morphism End(Jac(C )) ⊗ Q` ↪→ End(V`(Jac(C )) gives an action of Q`[G]
on V`(Jac(C )).

If H is a subgroup of G (corresponding necessarily to the group of d-th roots of unity
for some d | n) we have a natural surjective map πH : C → C /H := CH . In particular, if
H = Hn/d (corresponding to µn/d), denote the quotient curve C /H by Cd, with equation:

(13) Cd : yd = f(x).

The quotient map is given explicitly by πd(x, y) = (x, yn/d) (an n/d to 1 map). This induces
two morphisms between Jac(C ) and Jac(Cd) namely the push-forward π∗ : Jac(C )→ Jac(Cd)
and the pullback π∗d : Jac(Cd) → Jac(C ) whose kernel is contained in the n/d-torsion of
Jac(Cd). Let Ad denote the connected component of ker(π∗). For any prime ` we get an
injective morphism on the Q`-Tate modules π∗` : V`(Jac(Cd))→ V`(Jac(C )) and

V`(Jac(C )) = V`(Ad)⊕ π∗` (V`(Jac(Cd))).

The group µd acts on Cd. For any α ∈ Q[µd] let π∗(α) = d
n
(π∗d ◦ α ◦ π∗). Then (see the proof

of Proposition 2 in [Kan85]) π∗(α)|V`(A) = 0 and π∗(α)|π∗
` (V`(Jac(Cd))) = α.

In particular, the Galois representation attached to the curve yn = f(x) contains for
each d | n what might be called a d-new part coming from the curve yd = f(x) and
V`(Jac(C )) =

⊕
d|n V`(Jac(Cd))

d-new. Then in the decomposition (12) the action of the group

algebra Q`[t]/φd(t) on V`(Jac(C )) is non-trivial precisely in the subspace corresponding to
V`(Jac(Cd))

d-new.
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Example. Suppose that n = p · q with p, q distinct prime numbers. Then

V`(Jac(C )) = V`(Jac(C ))pq-new ⊕ V`(Jac(Cp))⊕ V`(Jac(Cq)),

where V`(Jac(C ))pq-new = V`(Ap) ∩ V`(Aq). The group algebra Q[t]/φpq(t) acts non-trivially
on the first summand, Q[t]/φp(t) on the second and Q[t]/φq(t) on the third one.

An explicit description of V`(Jac(C ))n-new can be given as virtual representations using
the inclusion-exclusion principle.

Remark 5.3. The contribution from H = G in the above formula is trivial, as it corresponds
to a genus 0 curve. This is the reason why one can remove the term with d = 1 in (12).

5.3. Twisting. Let c ∈ K be a non-zero element, f(x) ∈ K[x] and consider the following
two curves:

C : yn = f(x),

and

C ′ : yn = c · f(x).

It is clear that they become isomorphic over the (abelian) extension K(c1/n), in particular,
they are a twist of each other.

Problem: what is the relation between the Galois representations of C and that of C ′?

This problem appears in different contexts. For example, if we start with a monic poly-
nomial f(x) (which we assumed was the case) and want to consider a general polynomial
(with all roots in K), we need to understand twists. Also while computing the semistable
model (in Proposition 3.1) the components involve taking twists by a d-th root of ct. The
hypothesis ζn ∈ K implies that the extension associated to the twist is a Galois one, hence
the extension K( n

√
c)/K corresponds to a Hecke character.

The problem is probably known to experts (as happens for example in the case of an
elliptic curve twisted by a quadratic character, or an elliptic curve with CM by Z[ζ3] while
twisted by a cubic or sextic character) but we did not find a good reference in the literature,
so we briefly explain it.

Since both curves become isomorphic over the extension K[ n
√
c] their representations must

be related by some sort of twist. More concretely, if we base extend C to L = K[ n
√
c] (let CL

denote such curve) and we do the same to C ′ then both curves become isomorphic, hence
their Galois representations are the same. Recall that the representation attached to Jac(C )
and ResK(Jac(CL)) are related via

(14) V`(ResK(Jac(CL))) =
⊕
χ

V`(Jac(C ))⊗ χ,

where χ ranges over the characters of the (abelian) group Gal(L/K).
However this picture is a little misleading, as it is not true that V`(Jac(C ′)) equals

V`(Jac(C ))⊗χ (for some character χ) in general (note that the latter does not have the right
determinant for example). What happens is that V`(Jac(C )) (respectively V`(Jac(C ′))) has
a decomposition (as explained in Section 5.1) of the form:

V`(Jac(C )) =
⊕
d|n

V`(Jac(Cd))
d-new.
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Recall that Q`[t]/φd(t) acts on V`(Jac(Cd))
d-new, hence the latter admits a decomposition in

terms of the action of the d-th roots of unity. Concretely. pick a basis for the order `n points
(for each n) as a Z[ζd]-modules instead of taking one as a Z-module. Once a d-th root of
unity (say ζd) is chosen inside the automorphism group of Jac(C ), we get the decomposition

(15) V`(Jac(Cd))
d-new =

d⊕
i=1

gcd(i,d)=1

V
(i)
` (Jac(Cd))

d-new,

as Q`[GalK ]-modules where t acts on V
(i)
` (Jac(Cd))

d-new as ζ id. There is an explicit character
χ (depending on d and c) such that

(16) V
(i)
` (Jac(Cd))

d-new ' V
(i)
` (Jac(C ′d))

d-new ⊗ χi.
To describe it fix ζn an n-th root of unity in K. Such a choice determines an element (abusing
notation) ζn ∈ End(Jac(C )) and an element ζn (abusing notation again) in V`(Jac(C )) (its
image under the map End(Jac(C ))⊗ Z` ↪→ End(T`(Jac(C )))).

Lemma 5.4. Let L = K[ n
√
c], let r = [L : K], and let V

(i)
` (Jac(Cd))

d-new denote the subspaces

in the decomposition (15). Let σ ∈ Gal(L/K) be the generator sending n
√
c to ζ

n/r
n

n
√
c and let

χ : Gal(L/K) → Q` denote the character sending σ to ζ
n/r
n . Then for all 1 ≤ i ≤ n, prime

to n we have

V
(i)
` (Jac(Cd))

d-new ' V
(i)
` (Jac(C ′d))

d-new ⊗ χi.

Proof. Let ϕ : C → C ′ be the map ϕ(x, y) = (x, n
√
c y) and let σ̃ ∈ GalK be such that its

restriction to K[ n
√
c] equals σ. We claim that

(17) σ̃ ◦ ϕ = ζn/rn · ϕ ◦ σ̃.
If we compute both maps on a point (x, y), the left hand side equals

(σ̃( n
√
c) · σ̃(x), σ̃(y)) = (ζn/rn σ̃(x), σ̃(y)),

which clearly equals the right hand side hence the claim. The result follows easily from (17)

recalling that on V
(i)
` (Jac(Cd)

d-new) the element t acts by (ζ
n/r
n )i. �

Note that there are two different types of twisting affecting the Galois representation, and
the L-series p-th factor, namely unramified and ramified ones. Unramified twists already
appeared while computing the Galois representation of Example 1 (in page 17). They affect
the value of Frobenius, but does not change the image of inertia. To compute such twists
on the components of positive genus, it is probably easier to compute the number of points
of the components of the twisted curve rather than assuming the polynomial f(x) is monic
and then computing the twist (see [Sut20] for a fast method to count the number of points).

Ramified twists on the contrary affects the image of inertia. The use of weighted cluster
is very handful to distinguish whether the twist by ct appearing on the components of
Proposition 3.1 are ramified or not.

Proposition 5.5. Let t be a component of X corresponding to a cluster s. Then the com-

ponents of Y(`)
t are ramified twists of a non-singular superelliptic curve precisely when d - et.
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Proof. Follows from the fact that et is the valuation of ct (see Proposition 3.1 for the nota-
tion). �

In particular, Proposition 5.2 shows how to verify this condition from the weighted cluster
picture. Note that for each d | n, if d - et the image of inertia in abelian part of the d-new
part is given by t-copies of

d⊕
i=1

gcd(i,d)=1

χi,

where χ is the ramified character corresponding to the extension K( d
√
pet)/K and t =

2g(ydt =ft(xt))

φ(d)
.

Example 1. Recall the weighted cluster picture:

1

s2

1

s3

1

s4

1

s1

1

s5

0

smax

Proposition 5.2 gives that: esmax = 0, es1 = 6, es2 = es3 = es4 = 8 and es5 = 3. This implies

that no ramified twist is involved on Y
(l)

1 (its components are genus 1-curves), while the
curves Y2, Y3 and Y4 (all of them of genus 2) involve a ramified twist χ corresponding to the
extension Qp( 3

√
p)/Qp. Such curves have a 2-new part (of genus 0), a 3-new part (of genus

1) giving the representation of inertia χ⊕ χ2 and a 6-new part (also of genus 1) giving the
same representation of inertia.

Regarding the component Y5 (of genus 4), let ψ be the character attached to the represen-
tation Qp(

√
p)/Qp. The curve has a 2-new part of genus 1, giving the representation ψ ⊕ ψ

(since 2 - es5); has a 3-new part (also of genus 1) which does not involve any twist (as 3 | 3)
hence inertia acts trivially in this 2-dimensional part; and a 6-new part (of dimension 4)
where inertia acts via the quadratic character ψ.

To understand the toric part, we need to understand the action of Gal(Qp( 3
√
p)/Qp) on

the component graph. The way to compute this action is very well explained in [DDM18]
(see Examples 1.9 and 1.11). Concretely, it is given by what they call the “lift-act-reduce”
procedure. Let σ ∈ Gal(Qp/Qp) and (x̄, ȳ) a point on Ym. Any lift corresponds to a point
(x̃, tildey) (on the curve C ), hence the reduction of its action corresponds to the point

(σ(x̄), σ(ȳ). In particular, it fixes the components Y
(i)
m and its intersection points as well.

The same computation for the components of Y2 gives the action:

(x̄, ȳ)→
(
x̃− 1

p
,
ỹ

p

)
→
(
σ(x̃)− 1

p
,
σ(ỹ)

p

)
→ (σ(x̄), σ(ȳ)).

In particular it also fixes the three components as well as the intersection points. A similar
computation proves the same result for the components of Y5, hence the image of inertia is
the same over Qp than over Qp( 3

√
p) in this particular example.
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[DDMM18] Tim Dokchitser, Vladimir Dokchitser, Céline Maistret, and Adam Morgan. Arithmetic of hy-

perelliptic curves over local fields, 2018.
[Dok18] Tim Dokchitser. Models of curves over dvrs, 2018. To appear in Duke, arXiv:1807.00025.
[Gro72] Alexander Grothendieck. Groupes de monodromie en Géometrie Algégrique SGA 7I), volume
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