Maximal Ideals in

Semilocal Categories

Alberto Facchini
University of Padova, Italy

Córdoba, 23 May 2012

A category \mathcal{C} is preadditive if each of its Hom sets $\operatorname{Hom}_{\mathcal{C}}(A, B)(A, B \in \operatorname{Ob}(\mathcal{C}))$ is endowed with an abelian group structure in such a way that composition is \mathbb{Z}-bilinear. That is, $f \circ(h+\ell)=f \circ h+f \circ \ell$ and $(f+g) \circ h=f \circ h+f \circ \ell$ for every $f, g \in \operatorname{Hom}_{\mathcal{C}}(B, C), \quad h, \ell \in \operatorname{Hom}_{\mathcal{C}}(A, B)$, $A, B, C \in \mathrm{Ob}(\mathcal{C})$.

An additive category is a preadditive category with a zero object in which any two pair of objects has a coproduct (equivalenty, a product - in a preadditive category, product, coproduct and biproduct of any two objects coincide).

Let \mathcal{C} be a category. An object Z is called:

- An initial object of \mathcal{C} if for every $C \in$ $\mathrm{Ob}(\mathcal{C})$ there is exactly one morphism $Z \rightarrow C$.
- A terminal object of \mathcal{C} if for every $C \in \mathrm{Ob}(\mathcal{C})$ there is exactly one morphism $C \rightarrow Z$.
- A null object (or a zero object) if it is both initial and terminal.

In a preadditive category, an object is initial if and only if it is terminal.

Recall that a ring S is semisimple artinian if all right S-modules are injective; equiv., if all right S-modules are projective; equiv., if \exists positive integers $t, n_{1}, n_{2}, \ldots, n_{t}$ and division rings $k_{1}, k_{2}, \ldots, k_{t}$ such that $S \cong \prod_{i=1}^{t} M_{n_{i}}\left(k_{i}\right)$.

A commutative ring is semilocal if it has only finitely many maximal ideals.

An arbitrary (non-necessarily commutative) ring R is semilocal if $R / J(R)$ is a semisimple artinian ring.
(The two notions agree on commutative rings!)

A category \mathcal{C} is semilocal if it is a preadditive category with a non-zero object such that the endomorphism ring of every non-zero object is a semilocal ring.

Examples of semilocal categories:
(1) The full subcategory of Mod- R whose objects are all artinian R-modules.
(2) If R is a semilocal ring, the full subcategory of Mod- R whose objects are all finitely presented right R-modules.
(3) If R is a semilocal commutative ring, the full subcategory of $\operatorname{Mod}-R$ whose objects are all finitely generated R-modules.
(4) If R is a commut. noeth. semilocal domain of Krull dim. 1, the full subcategory of $\operatorname{Mod}-R$ whose objects are all torsion-free R-modules of finite rank.
(5) Recall that a module is uniserial if its lattice of submodules is linearly ordered under inclusion. The full subcategory of Mod- R whose objects are all finite direct sums of uniserial R-modules is a semilocal category.

If \mathcal{C} is a category, idempotents split in
\mathcal{C} if for every object A of \mathcal{C} and every endomorphism f of A with $f^{2}=f$, there exist an object B and morphisms $g: A \rightarrow B$ and $h: B \rightarrow A$ such that $h g=f$ and $g h=1_{B}$, where 1_{B} denotes the identity morphism of B.

The previous five examples are all examples of semilocal additive categories
in which idempotents split. (Since they are all full subcategories of $\operatorname{Mod}-R$, this simply means that their classes of objects are classes of modules closed under direct summands and finite direct sums.)

A commutative additive monoid is a set M endowed with a binary operation + (addition) that is associative, commutative and has a neutral element 0 .
\mathcal{C} additive category.
Fix a skeleton $V(\mathcal{C})$.
Then $V(\mathcal{C})$ is a commutative additive monoid: if $A, B \in V(\mathcal{C})$,

$$
A+B=A \coprod B .
$$

$(V(\mathcal{C})$ can possibly be a large monoid, i.e., it can be a proper class, not necessarily a set).

Theorem 1 If \mathcal{C} is a semilocal additive category in which idempotents split, the monoid $V(\mathcal{C})$ is a Krull monoid.

Krull monoids are the analogues for commutative monoids of what Krull domains are in Commutative Algebra.

Valuations of abelian groups,

 Krull monoids[Chouinard, 1981]
M additive, commutative, cancellative monoid
$M \subseteq G(M)$ and $G(M)$ is a torsion-free abelian group

A discrete valuation of an abelian group
G is a surjective homomorphism
$v: G \rightarrow \mathbb{Z}$.
$[\Rightarrow G \cong \mathbb{Z} \oplus \operatorname{ker} v]$
$\{x \in G \mid v(x) \geq 0\}$ is the valuation submonoid of v.
[\Rightarrow it is isomorphic to $\mathbb{N} \oplus \operatorname{ker} v$]

For a commutative monoid M, set $U(M)=$
$\{a \in M \mid a$ has an opposite $-a \in M\}$.
M is reduced if $U(M)=\{0\}$. For every monoid M, the monoid $M_{\text {red }}=M / U(M)$ is reduced.

A discrete valuation monoid is a monoid M with $M_{\text {red }} \cong \mathbb{N}$.
M is a Krull monoid if there exists a family $\left\{v_{i} \mid i \in I\right\}$ of discrete valuations $v_{i}: G(M) \rightarrow \mathbb{Z}$ such that:
(1) $M=\left\{x \in G(M) \mid v_{i}(x) \geq 0\right.$ for every $i \in I\}$;
(2) for every $x \in G(M)$ the set $\{i \in I \mid$ $\left.v_{i}(x) \neq 0\right\}$ is finite.

Theorem 2 [Ulrich Krause, 1989]
A commutative integral domain R is a
Krull domain if and only if the monoid $R^{*}:=R \backslash\{0\}$ is a Krull monoid.
principal fractional ideals divisorial fractional ideals
$D(M)$ the set of all divisorial fractional ideals.
$D(M)$ is a commutative monoid with respect to the operation $*$ defined, for every $I, J \in D(M)$ by $I * J:=$ the intersection of all the principal fractional ideals containing $I+J . \quad \operatorname{Prin}(M):=$ \{non-zero principal fractional ideals $\}$. It is a subgroup of $D(M)$.
divisor class semigroup $\mathrm{Cl}(M):=D(M) / \operatorname{Prin}(M)$
essential valuations (for every $x, y \in M$ with $v(x) \leq v(y)$, there exists an $s \in M$ with $x \leq y+s$ and $v(s)=0$)

There is a natural pre-order \leq on every commutative additive monoid M, called the algebraic pre-order, defined by $x \leq y$ if there exists $z \in M$ such that $x+z=y$.
M is a reduced Krull monoid if and only if there exist a set X and a subgroup G of $\mathbb{Z}^{(X)}$ such that $M \cong G \cap \mathbb{N}^{(X)}$, if and only if there is a monoid morphism f of M into a free commutative monoid $F=\mathbb{N}_{0}^{(X)}$ such that if $x, y \in M$ and $f(x) \leq f(y)$ in F implies $x \leq y$ in M. [\Rightarrow reduced Krull monoid have a regular geometric structure.]

Four submonoids of \mathbb{N}_{0}^{2} that are Krull monoids. Notice their regular geometric pattern.

Theorem. If \mathcal{C} is a semilocal additive category in which idempotents split, the monoid $V(\mathcal{C})$ is a Krull monoid. Hence, for every semilocal category \mathcal{C}, $V(\mathcal{C}) \hookrightarrow \mathbb{N}^{(X)} \Rightarrow$ every object of a semilocal category can be described up to isomorphism by finitely many non-zero positive integers.

The technique

Let \mathcal{C} be a preadditive category. An ideal \mathcal{I} of \mathcal{C} : a subgroup $\mathcal{I}(A, B)$ of $\operatorname{Hom}_{\mathcal{C}}(A, B)$ for every $A, B \in \mathrm{Ob}(\mathcal{C})$, such that, for every $\varphi \in \operatorname{Hom}_{\mathcal{C}}(A, B), \psi \in$ $\mathcal{I}(B, C), \omega \in \operatorname{Hom}_{\mathcal{C}}(C, D)$, one has that $\omega \psi \varphi \in \mathcal{I}(A, D)$.

The factor category $\mathcal{C} / \mathcal{I}: \operatorname{Ob}(\mathcal{C})=\operatorname{Ob}(\mathcal{C} / \mathcal{I})$
and, for every $A, B \in \operatorname{Ob}(\mathcal{C})=\operatorname{Ob}(\mathcal{C} / \mathcal{I})$,
$\operatorname{Hom}_{\mathcal{C} / \mathcal{I}}(A, B):=\operatorname{Hom}_{\mathcal{C}}(A, B) / \mathcal{I}(A, B)$.

Two examples:
(1) The Jacobson radical. It is the ideal \mathcal{J} of \mathcal{C} defined as follows. If A, B are objects of $\mathcal{A}, \mathcal{J}(A, B):=\left\{f \in \operatorname{Hom}_{\mathcal{C}}(A, B) \mid\right.$ $1_{A}-g f$ has a left inverse for all $\left.g \in \operatorname{Hom}_{\mathcal{C}}(B, A)\right\}$.
(2) The ideal of \mathcal{C} associated to an ideal I of $\operatorname{End}_{\mathcal{C}}(A)$, where A is a non-zero object of \mathcal{C} [F.-Příhoda].

For a non-zero object A of \mathcal{C} and a two-sided ideal I of $\operatorname{End}_{\mathcal{C}}(A)$, let \mathcal{A}_{I} be the ideal of the category \mathcal{C} defined as follows: a morphism $f: X \rightarrow Y$ in \mathcal{C} is in $\mathcal{A}_{I}(X, Y)$ if and only if $\beta f \alpha \in I$ for every pair of morphisms $\alpha: A \rightarrow X$ and $\beta: Y \rightarrow A$ in \mathcal{C}. We call \mathcal{A}_{I} the ideal of \mathcal{C} associated to I. The ideal \mathcal{A}_{I} is the greatest of the ideals \mathcal{I} of \mathcal{C} with $\mathcal{I}(A, A) \subseteq I$. It is easily seen that $\mathcal{A}_{I}(A, A)=I$. Clearly, the ideals associated to two distinct ideals of $\operatorname{End}_{\mathcal{C}}(A)$ are two distinct ideals of the category \mathcal{C}.

What about the maximal ideals of \mathcal{C} ?

Lemma 3 [F.-Perone] Let \mathcal{C} be a preadditive category and \mathcal{M} be a proper ideal of \mathcal{C}. Then \mathcal{M} is a maximal ideal if and only if, for every object A of \mathcal{C} with $\mathcal{M}(A, A) \neq \operatorname{End}_{\mathcal{C}}(A)$, one has that:
(1) $\mathcal{M}(A, A)$ is a maximal ideal of End $_{\mathcal{C}}(A)$, and (2) \mathcal{M} is the ideal of \mathcal{C} associated to $\mathcal{M}(A, A)$.

A preadditive category is simple if it has exactly two ideals, necessarily the trivial ones.

The factor category $\mathcal{C} / \mathcal{M}$ is simple for every preadditive category \mathcal{C} and every maximal ideal \mathcal{M}.

Proposition 4 The following conditions are equivalent for a preadditive category \mathcal{C} :
(1) \mathcal{C} is a simple category.
(2) \mathcal{C} has a non-zero object, and every non-zero object of \mathcal{C} is a generator and a cogenerator for \mathcal{C} and has a simple endomorphism ring.
(3) \mathcal{C} has a non-zero object and there exists a simple ring R such that \mathcal{C} is equivalent to a full subcategory of the category proj- R of all finitely generated projective right R-modules.

Maximal ideals may not exist (even in small preadditive categories).

Example 5 Let k be a division ring and V_{n} a right vector space of dimension \aleph_{n} for every $n<\omega$. Let \mathcal{C} be the full subcategory of Mod- k whose objects are the vector spaces $V_{n}, n<\omega$, so that \mathcal{C} is a small preadditive category with countably many objects. For every $V_{k}, W_{k} \in$ $\operatorname{Ob}(\mathcal{C})$ and $c \leq \aleph_{\omega}$, set $\mathcal{I}_{c}\left(V_{k}, W_{k}\right):=$ $\left\{f \in \operatorname{Hom}\left(V_{k}, W_{k}\right) \mid \operatorname{rank}(f)<c\right\}$. The ideals of \mathcal{C} are
$0=\mathcal{I}_{1} \subset \mathcal{I}_{\aleph_{0}} \subset \mathcal{I}_{\aleph_{1}} \subset \mathcal{I}_{\aleph_{2}} \subset \cdots \subset \mathcal{I}_{\aleph_{\omega}}$. Maximal ideals do not exist in \mathcal{C}.

This example also shows that, though every maximal ideal of a category \mathcal{C} is the ideal associated to a maximal ideal of the endomorphism ring of a non-zero object of \mathcal{C} (Lemma 2), the converse is not always true.

The converse is true when the category \mathcal{C} is semilocal.

Proposition 6 Let \mathcal{C} be a semilocal category. Then:
(1) Every ideal of \mathcal{C} associated to a maximal ideal of the endomorphism ring of a non-zero object of \mathcal{C} is a maximal ideal of \mathcal{C}.
(2) In \mathcal{C}, every proper ideal is contained in a maximal ideal.
(3) Maximal ideals exist in \mathcal{C}.

Let $\operatorname{Max}(\mathcal{C})$ be the maximal spectrum of a preadditive category \mathcal{C}, that is, the "class" of all maximal ideals of \mathcal{C}.
\mathcal{C}_{λ} a preadditive category for every $\lambda \in \Lambda$, where Λ is a class. Define the weak direct sum $\oplus_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$ of the categories \mathcal{C}_{λ} as follows. The objects of $\oplus_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$ are the finite sets $\left\{\left(\lambda_{1}, A_{1}\right),\left(\lambda_{2}, A_{2}\right), \ldots,\left(\lambda_{n}, A_{n}\right)\right\}$, where $n \geq 0$ is an integer, $\lambda_{1}, \ldots, \lambda_{n}$ are distinct elements of Λ and A_{i} is a non-zero object of $\mathcal{C}_{\lambda_{i}}$ for every $i=$ $1,2, \ldots, n$. The set of all morphisms between two objects $\left\{\left(\lambda_{1}, A_{1}\right),\left(\lambda_{2}, A_{2}\right), \ldots,\left(\lambda_{n}, A_{n}\right)\right\}$ and $\left\{\left(\mu_{1}, B_{1}\right),\left(\mu_{2}, B_{2}\right), \ldots,\left(\mu_{m}, B_{m}\right)\right\}$ of
the category $\oplus_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$ is

$$
\oplus \underset{\substack{i=1, \ldots, n \\ j=1, \ldots, m \\ \lambda_{i}=\mu_{j}}}{i} \operatorname{Hom}_{\mathcal{C}_{\lambda_{i}}}\left(A_{i}, B_{j}\right) .
$$

Theorem 7 Let \mathcal{C} be a semilocal category. Then the Jacobson radical of \mathcal{C} is the intersection of all maximal ideals of \mathcal{C} and, for every object A in \mathcal{C}, there exist finitely many maximal ideals $\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}(n \geq 0)$ such that, for every maximal ideal \mathcal{M} in \mathcal{C}, A is a non-zero object in $\mathcal{C} / \mathcal{M}$ if and only if $\mathcal{M}=\mathcal{M}_{i}$ for some $i \in\{1, \ldots, n\}$.
\mathcal{C} a semilocal category \Rightarrow complete \mathcal{C} to an additive category $\operatorname{add}(\mathcal{C})$ in which idempotents split (category of motives)
$\Rightarrow \operatorname{add}(\mathcal{C})$ also is semilocal and $\operatorname{Max}(\mathcal{C})=$ $\operatorname{Max}(\operatorname{add}(\mathcal{C})) \Rightarrow$ apply the functor

$$
F: \operatorname{add}(\mathcal{C}) \rightarrow \oplus_{\mathcal{M} \in \operatorname{Max}(\mathcal{C})} \operatorname{add}(\mathcal{C}) / \mathcal{M}
$$

which is isomorphism reflecting and direct summand reflecting \Rightarrow apply the functor V to get a monoid homomorphism
$V(F): V(\operatorname{add}(\mathcal{C})) \rightarrow V\left(\oplus_{\mathcal{M} \in \operatorname{Max}(\mathcal{C})} \operatorname{add}(\mathcal{C}) / \mathcal{M}\right)=$ $\oplus_{\mathcal{M} \in \operatorname{Max}(\mathcal{C})} V(\operatorname{add}(\mathcal{C}) / \mathcal{M})$, which is injective and a divisor homomorphism. Now each $\operatorname{add}(\mathcal{C}) / \mathcal{M}$ is $\cong \bmod -R$ for some simple artinian ring \Rightarrow each object A of the factor category $\operatorname{add}(\mathcal{C}) / \mathcal{M} \cong \bmod -R$ is completely determined by its Goldie dimension (equal to the Goldie dimension of the semisimple artinian ring $\left.E^{\text {nd }_{\mathcal{C}}}{ }_{\mathcal{M}}(A)\right)$.
That is, $V(\operatorname{add}(\mathcal{C}) / \mathcal{M}) \cong \mathbb{N}_{0} \Rightarrow$ there is a divisor homomorphism $V(\operatorname{add}(\mathcal{C})) \rightarrow$ $\mathbb{N}_{\mathrm{O}}^{(\operatorname{Max}(\mathcal{C}))} \Rightarrow V(\operatorname{add}(\mathcal{C}))$ is a Krull monoid, every object of \mathcal{C} can be described up to iso. with natural numbers, geometric regularity of finite d.-s. decompositions.

Example

Theorem 8 [F., TAMS 1996] Let U_{R} be a uniserial module over an arbitrary ring R, let $E=\operatorname{End}\left(U_{R}\right)$ denote its endomorphism ring, and set $I:=\{f \in E \mid f$ is not injective $\}$ and $K:=\{f \in E \mid f$ is not surjective $\}$. Then I and K are two two-sided completely prime ideals of E, and every proper right ideal of E and every proper left ideal of E is contained either in I or in K. Moreover, exactly one of the following two conditions hold:
(a) Either I and K are comparable (that is, $I \subseteq K$ or $K \subseteq I$), in which case E is a local ring with maximal ideal $I \cup K$, or
(b) I and K are not comparable, and in this case E / I and E / K are division rings, and $E / J(E) \cong E / I \times E / K$.

Two modules U and V are said to have

1. the same monogeny class, denoted
$[U]_{m}=[V]_{m}$, if there exist a monomorphism $U \rightarrow V$ and a monomorphism $V \rightarrow U ;$
2. the same epigeny class, denoted $[U]_{e}=$ $[V]_{e}$, if there exist an epimorphism $U \rightarrow V$ and an epimorphism $V \rightarrow U$.

Theorem 9 [F., TAMS 1996] Let U_{1},
$\ldots, U_{n}, V_{1}, \ldots, V_{t}$ be $n+t$ non-zero uniserial right modules over a ring R.

Then the direct sums $U_{1} \oplus \cdots \oplus U_{n}$ and $V_{1} \oplus \cdots \oplus V_{t}$ are isomorphic R-modules if and only if $n=t$ and there exist two permutations σ and τ of $\{1,2, \ldots, n\}$ such that $\left[U_{i}\right]_{m}=\left[V_{\sigma(i)}\right]_{m}$ and $\left[U_{i}\right]_{e}=$ $\left[V_{\tau(i)}\right]_{e}$ for every $i=1,2, \ldots, n$.

If $\mathcal{C}=\{$ uniserial R-modules $\}$, then
$V(\mathcal{C}) \hookrightarrow F_{m} \times F_{e}$ is a subdirect product of two free commutative monoids F_{m} and F_{e}.

