Maximal Ideals in Semilocal Categories

Alberto Facchini

University of Padova, Italy

Córdoba, 23 May 2012

A category C is *preadditive* if each of its Hom sets $\operatorname{Hom}_{\mathcal{C}}(A, B)$ $(A, B \in \operatorname{Ob}(\mathcal{C}))$ is endowed with an abelian group structure in such a way that composition is \mathbb{Z} -bilinear. That is, $f \circ (h+\ell) = f \circ h + f \circ \ell$ and $(f+g) \circ h = f \circ h + f \circ \ell$ for every $f,g \in \operatorname{Hom}_{\mathcal{C}}(B,C), h, \ell \in \operatorname{Hom}_{\mathcal{C}}(A,B),$ $A, B, C \in \operatorname{Ob}(\mathcal{C}).$

An *additive category* is a preadditive category with a zero object in which any two pair of objects has a coproduct (equivalenty, a product — in a preadditive category, product, coproduct and biproduct of any two objects coincide).

Let C be a category. An object Z is called:

• An *initial object* of C if for every $C \in Ob(C)$ there is exactly one morphism $Z \to C$.

• A terminal object of C if for every $C \in Ob(C)$ there is exactly one morphism $C \to Z$.

• A *null object* (or a *zero object*) if it is both initial and terminal.

In a preadditive category, an object is initial if and only if it is terminal.

Recall that a ring S is semisimple artinian if all right S-modules are injective; equiv., if all right S-modules are projective; equiv., if \exists positive integers t, n_1, n_2, \ldots, n_t and division rings k_1, k_2, \ldots, k_t such that $S \cong \prod_{i=1}^t M_{n_i}(k_i)$.

A *commutative* ring is *semilocal* if it has only finitely many maximal ideals.

An arbitrary (non-necessarily commutative) ring R is *semilocal* if R/J(R) is a semisimple artinian ring.

(The two notions agree on commutative rings!) A category C is *semilocal* if it is a preadditive category with a non-zero object such that the endomorphism ring of every non-zero object is a semilocal ring.

Examples of semilocal categories:

(1) The full subcategory of Mod-*R* whose objects are all artinian *R*-modules.
(2) If *R* is a semilocal ring, the full subcategory of Mod-*R* whose objects are all finitely presented right *R*-modules.
(3) If *R* is a semilocal commutative ring, the full subcategory of Mod-*R* whose objects are all finitely generated *R*-modules.

(4) If R is a commut. noeth. semilocal domain of Krull dim. 1, the full subcategory of Mod-R whose objects are all torsion-free R-modules of finite rank.

(5) Recall that a module is *uniserial* if its lattice of submodules is linearly ordered under inclusion. The full subcategory of Mod-R whose objects are all finite direct sums of uniserial R-modules is a semilocal category. If C is a category, *idempotents split* in C if for every object A of C and every endomorphism f of A with $f^2 = f$, there exist an object B and morphisms $g: A \rightarrow B$ and $h: B \rightarrow A$ such that hg = f and $gh = 1_B$, where 1_B denotes the identity morphism of B.

The previous five examples are all examples of semilocal additive categories in which idempotents split. (Since they are all full subcategories of Mod-R, this simply means that their classes of objects are classes of modules closed under direct summands and finite direct sums.) A commutative additive monoid is a set M endowed with a binary operation + (addition) that is associative, commutative and has a neutral element 0.

 $\ensuremath{\mathcal{C}}$ additive category.

Fix a skeleton $V(\mathcal{C})$.

Then $V(\mathcal{C})$ is a commutative additive monoid: if $A, B \in V(\mathcal{C})$,

$$A + B = A \coprod B.$$

 $(V(\mathcal{C})$ can possibly be a *large* monoid, i.e., it can be a proper class, not necessarily a set). **Theorem 1** If C is a semilocal additive category in which idempotents split, the monoid V(C) is a Krull monoid.

Krull monoids are the analogues for commutative monoids of what Krull domains are in Commutative Algebra.

Valuations of abelian groups, Krull monoids

[Chouinard, 1981] M additive, commutative, cancellative monoid $M \subseteq G(M)$ and G(M) is a torsion-free abelian group

A discrete valuation of an abelian group G is a surjective homomorphism $v: G \to \mathbb{Z}.$

 $[\Rightarrow G \cong \mathbb{Z} \oplus \ker v]$

 $\{x \in G \mid v(x) \ge 0\}$ is the valuation submonoid of v.

 $[\Rightarrow it is isomorphic to \mathbb{N} \oplus \ker v]$

For a commutative monoid M, set $U(M) = \{a \in M \mid a \text{ has an opposite } -a \in M\}.$

M is *reduced* if $U(M) = \{0\}$. For every monoid *M*, the monoid $M_{red} = M/U(M)$ is reduced.

A discrete valuation monoid is a monoid M with $M_{red} \cong \mathbb{N}$. *M* is a *Krull monoid* if there exists a family $\{v_i \mid i \in I\}$ of discrete valuations $v_i: G(M) \to \mathbb{Z}$ such that: (1) $M = \{x \in G(M) \mid v_i(x) \ge 0 \text{ for}$ every $i \in I\}$; (2) for every $x \in G(M)$ the set $\{i \in I \mid v_i(x) \ne 0\}$ is finite.

Theorem 2 [Ulrich Krause, 1989] A commutative integral domain R is a Krull domain if and only if the monoid $R^* := R \setminus \{0\}$ is a Krull monoid.

principal fractional ideals divisorial fractional ideals D(M) the set of all divisorial fractional ideals.

D(M) is a commutative monoid with respect to the operation * defined, for every $I, J \in D(M)$ by I * J := the intersection of all the principal fractional ideals containing I + J. Prin(M) :={non-zero principal fractional ideals}. It is a subgroup of D(M).

divisor class semigroup Cl(M) := D(M)/Prin(M)

essential valuations (for every $x, y \in M$ with $v(x) \le v(y)$, there exists an $s \in M$ with $x \le y + s$ and v(s) = 0) There is a natural pre-order \leq on every commutative additive monoid M, called the *algebraic pre-order*, defined by $x \leq y$ if there exists $z \in M$ such that x + z = y.

M is a reduced Krull monoid if and only if there exist a set *X* and a subgroup *G* of $\mathbb{Z}^{(X)}$ such that $M \cong G \cap \mathbb{N}^{(X)}$, if and only if there is a monoid morphism *f* of *M* into a free commutative monoid $F = \mathbb{N}_0^{(X)}$ such that if $x, y \in M$ and $f(x) \leq f(y)$ in *F* implies $x \leq y$ in *M*. [\Rightarrow reduced Krull monoid have a regular geometric structure.]

Four submonoids of \mathbb{N}_0^2 that are Krull monoids. Notice their regular geometric pattern.

Theorem. If C is a semilocal additive category in which idempotents split, the monoid V(C) is a Krull monoid.

Hence, for every semilocal category C, $V(C) \hookrightarrow \mathbb{N}^{(X)} \Rightarrow$ every object of a semilocal category can be described up to isomorphism by finitely many non-zero positive integers.

The technique

Let C be a preadditive category. An *ideal* \mathcal{I} of C: a subgroup $\mathcal{I}(A, B)$ of $\text{Hom}_{\mathcal{C}}(A, B)$ for every $A, B \in \text{Ob}(\mathcal{C})$, such that, for every $\varphi \in \text{Hom}_{\mathcal{C}}(A, B)$, $\psi \in$ $\mathcal{I}(B, C)$, $\omega \in \text{Hom}_{\mathcal{C}}(C, D)$, one has that $\omega \psi \varphi \in \mathcal{I}(A, D)$.

The factor category C/\mathcal{I} : $Ob(C) = Ob(C/\mathcal{I})$ and, for every $A, B \in Ob(C) = Ob(C/\mathcal{I})$, $Hom_{C/\mathcal{I}}(A, B) := Hom_{C}(A, B)/\mathcal{I}(A, B).$ Two examples:

(1) The Jacobson radical. It is the ideal \mathcal{J} of \mathcal{C} defined as follows. If A, B are objects of $\mathcal{A}, \mathcal{J}(A, B) := \{ f \in \operatorname{Hom}_{\mathcal{C}}(A, B) \mid 1_A - gf \text{ has a left inverse for all } g \in \operatorname{Hom}_{\mathcal{C}}(B, A) \}.$

(2) The ideal of C associated to an ideal I of $End_{\mathcal{C}}(A)$, where A is a non-zero object of C [F.-Příhoda].

For a non-zero object A of C and a two-sided ideal I of $End_{\mathcal{C}}(A)$, let \mathcal{A}_{I} be the ideal of the category C defined as follows: a morphism $f \colon X \to Y$ in \mathcal{C} is in $\mathcal{A}_I(X,Y)$ if and only if $\beta f \alpha \in I$ for every pair of morphisms $\alpha \colon A \to X$ and $\beta: Y \to A$ in \mathcal{C} . We call \mathcal{A}_I the ideal of C associated to I. The ideal \mathcal{A}_I is the greatest of the ideals \mathcal{I} of \mathcal{C} with $\mathcal{I}(A, A) \subseteq I$. It is easily seen that $\mathcal{A}_I(A,A) = I$. Clearly, the ideals associated to two distinct ideals of $End_{\mathcal{C}}(A)$ are two distinct ideals of the category C.

What about the maximal ideals of C?

Lemma 3 [F.-Perone] Let C be a preadditive category and \mathcal{M} be a proper ideal of C. Then \mathcal{M} is a maximal ideal if and only if, for every object A of C with $\mathcal{M}(A, A) \neq \operatorname{End}_{\mathcal{C}}(A)$, one has that: (1) $\mathcal{M}(A, A)$ is a maximal ideal of $\operatorname{End}_{\mathcal{C}}(A)$, and (2) \mathcal{M} is the ideal of C associated to $\mathcal{M}(A, A)$.

A preadditive category is *simple* if it has exactly two ideals, necessarily the trivial ones.

The factor category C/M is simple for every preadditive category C and every maximal ideal M. **Proposition 4** The following conditions are equivalent for a preadditive category C:

(1) C is a simple category.

(2) *C* has a non-zero object, and every non-zero object of *C* is a generator and a cogenerator for *C* and has a simple endomorphism ring.

(3) C has a non-zero object and there exists a simple ring R such that C is equivalent to a full subcategory of the category proj-R of all finitely generated projective right R-modules. Maximal ideals may not exist (even in small preadditive categories).

Example 5 Let k be a division ring and V_n a right vector space of dimension \aleph_n for every $n < \omega$. Let \mathcal{C} be the full subcategory of Mod-k whose objects are the vector spaces V_n , $n < \omega$, so that \mathcal{C} is a small preadditive category with countably many objects. For every $V_k, W_k \in$ $\mathsf{Ob}(\mathcal{C})$ and $c \leq \aleph_{\omega}$, set $\mathcal{I}_c(V_k, W_k)$:= $\{ f \in \operatorname{Hom}(V_k, W_k) \mid \operatorname{rank}(f) < c \}.$ The ideals of $\ensuremath{\mathcal{C}}$ are

 $0 = \mathcal{I}_1 \subset \mathcal{I}_{\aleph_0} \subset \mathcal{I}_{\aleph_1} \subset \mathcal{I}_{\aleph_2} \subset \cdots \subset \mathcal{I}_{\aleph_{\omega}}.$ Maximal ideals do not exist in \mathcal{C} . This example also shows that, though every maximal ideal of a category C is the ideal associated to a maximal ideal of the endomorphism ring of a non-zero object of C (Lemma 2), the converse is not always true.

The converse is true when the category C is semilocal.

Proposition 6 Let C be a semilocal category. Then:

(1) Every ideal of *C* associated to a maximal ideal of the endomorphism ring of a non-zero object of *C* is a maximal ideal of *C*.

(2) In C, every proper ideal is contained in a maximal ideal.

(3) Maximal ideals exist in C.

Let $Max(\mathcal{C})$ be the maximal spectrum of a preadditive category \mathcal{C} , that is, the "class" of all maximal ideals of \mathcal{C} .

 \mathcal{C}_{λ} a preadditive category for every $\lambda \in \Lambda$, where Λ is a class. Define the weak direct sum $\oplus_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$ of the categories \mathcal{C}_{λ} as follows. The objects of $\oplus_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$ are the finite sets { $(\lambda_1, A_1), (\lambda_2, A_2), ..., (\lambda_n, A_n)$ }, where $n \geq 0$ is an integer, $\lambda_1, \ldots, \lambda_n$ are distinct elements of Λ and A_i is a non-zero object of \mathcal{C}_{λ_i} for every i = $1, 2, \ldots, n$. The set of all morphisms between two objects { $(\lambda_1, A_1), (\lambda_2, A_2), \dots, (\lambda_n, A_n)$ } and $\{(\mu_1, B_1), (\mu_2, B_2), \dots, (\mu_m, B_m)\}$ of

the category $\oplus_{\lambda\in\Lambda}\mathcal{C}_{\lambda}$ is

$$\bigoplus_{\substack{i=1,\ldots,n\\j=1,\ldots,m\\\lambda_i=\mu_j}} \operatorname{Hom}_{\mathcal{C}_{\lambda_i}}(A_i,B_j).$$

Theorem 7 Let C be a semilocal category. Then the Jacobson radical of Cis the intersection of all maximal ideals of C and, for every object A in C, there exist finitely many maximal ideals $\mathcal{M}_1, \ldots, \mathcal{M}_n$ $(n \ge 0)$ such that, for every maximal ideal \mathcal{M} in C, A is a non-zero object in C/\mathcal{M} if and only if $\mathcal{M} = \mathcal{M}_i$ for some $i \in \{1, \ldots, n\}$. C a semilocal category \Rightarrow complete Cto an additive category add(C) in which idempotents split (category of motives) \Rightarrow add(C) also is semilocal and Max(C) = Max(add(C)) \Rightarrow apply the functor

$$F: \operatorname{add}(\mathcal{C}) \to \bigoplus_{\mathcal{M} \in \operatorname{Max}(\mathcal{C})} \operatorname{add}(\mathcal{C})/\mathcal{M},$$

which is isomorphism reflecting and direct summand reflecting \Rightarrow apply the functor V to get a monoid homomorphism

 $V(F): V(\operatorname{add}(\mathcal{C})) \to V(\oplus_{\mathcal{M} \in \operatorname{Max}(\mathcal{C})} \operatorname{add}(\mathcal{C})/\mathcal{M}) =$ $\oplus_{\mathcal{M}\in Max(\mathcal{C})}V(add(\mathcal{C})/\mathcal{M})$, which is injective and a divisor homomorphism. Now each $\operatorname{add}(\mathcal{C})/\mathcal{M}$ is $\cong \operatorname{mod} R$ for some simple artinian ring \Rightarrow each object A of the factor category $\operatorname{add}(\mathcal{C})/\mathcal{M} \cong \operatorname{mod-}R$ is completely determined by its Goldie dimension (equal to the Goldie dimension of the semisimple artinian ring $End_{\mathcal{C}/\mathcal{M}}(A)$). That is, $V(\operatorname{add}(\mathcal{C})/\mathcal{M}) \cong \mathbb{N}_0 \Rightarrow$ there is a divisor homomorphism $V(add(\mathcal{C})) \rightarrow$ $\mathbb{N}_{0}^{(\mathsf{Max}(\mathcal{C}))} \Rightarrow V(\mathsf{add}(\mathcal{C}))$ is a Krull monoid, every object of $\mathcal C$ can be described up to iso. with natural numbers, geometric regularity of finite d.-s. decompositions.

Example

Theorem 8 [F., TAMS 1996] Let U_R be a uniserial module over an arbitrary ring R, let $E = \text{End}(U_R)$ denote its endomorphism ring, and set $I := \{ f \in E \mid f \text{ is not injective} \}$ and $K := \{ f \in E \mid f \text{ is not surjective} \}.$ Then I and K are two two-sided completely prime ideals of E, and every proper right ideal of E and every proper left ideal of E is contained either in I or in K. Moreover, exactly one of the following two conditions hold:

(a) Either I and K are comparable (that is, $I \subseteq K$ or $K \subseteq I$), in which case E is a local ring with maximal ideal $I \cup K$, or

(b) I and K are not comparable, and in this case E/I and E/K are division rings, and $E/J(E) \cong E/I \times E/K$. Two modules U and V are said to have

- 1. the same monogeny class, denoted $[U]_m = [V]_m$, if there exist a monomorphism $U \rightarrow V$ and a monomorphism $V \rightarrow U$;
- 2. the same epigeny class, denoted $[U]_e = [V]_e$, if there exist an epimorphism $U \rightarrow V$ and an epimorphism $V \rightarrow U$.

Theorem 9 [F., TAMS 1996] Let U_1 , ..., U_n , V_1 , ..., V_t be n + t non-zero uniserial right modules over a ring R. Then the direct sums $U_1 \oplus \cdots \oplus U_n$ and $V_1 \oplus \cdots \oplus V_t$ are isomorphic R-modules if and only if n = t and there exist two permutations σ and τ of $\{1, 2, ..., n\}$ such that $[U_i]_m = [V_{\sigma(i)}]_m$ and $[U_i]_e =$ $[V_{\tau(i)}]_e$ for every i = 1, 2, ..., n.

If $C = \{ \text{uniserial } R \text{-modules} \}$, then $V(C) \hookrightarrow F_m \times F_e \text{ is a subdirect}$ product of two free commutative monoids F_m and F_e .