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A category C is preadditive if each of its

Hom sets HomC(A,B) (A,B ∈ Ob(C)) is

endowed with an abelian group struc-

ture in such a way that composition is

Z-bilinear. That is, f◦(h+`) = f◦h+f◦`

and (f + g) ◦ h = f ◦ h + f ◦ ` for every

f, g ∈ HomC(B,C), h, ` ∈ HomC(A,B),

A,B,C ∈ Ob(C).

An additive category is a preadditive

category with a zero object in which

any two pair of objects has a coproduct

(equivalenty, a product — in a pread-

ditive category, product, coproduct and

biproduct of any two objects coincide).



Let C be a category. An object Z is

called:

• An initial object of C if for every C ∈

Ob(C) there is exactly one morphism

Z → C.

• A terminal object of C if for every

C ∈ Ob(C) there is exactly one mor-

phism C → Z.

• A null object (or a zero object) if it

is both initial and terminal.

In a preadditive category, an object is

initial if and only if it is terminal.



Recall that a ring S is semisimple ar-

tinian if all right S-modules are injec-

tive; equiv., if all right S-modules are

projective; equiv., if ∃ positive integers

t, n1, n2, . . . , nt and division rings k1, k2, . . . , kt

such that S ∼=
∏t
i=1Mni(ki).

A commutative ring is semilocal if it has

only finitely many maximal ideals.

An arbitrary (non-necessarily commuta-

tive) ring R is semilocal if R/J(R) is a

semisimple artinian ring.

(The two notions agree on commuta-

tive rings!)



A category C is semilocal if it is a pread-

ditive category with a non-zero object

such that the endomorphism ring of ev-

ery non-zero object is a semilocal ring.

Examples of semilocal categories:

(1) The full subcategory of Mod-R whose

objects are all artinian R-modules.

(2) If R is a semilocal ring, the full sub-

category of Mod-R whose objects are

all finitely presented right R-modules.

(3) If R is a semilocal commutative ring,

the full subcategory of Mod-R whose

objects are all finitely generated R-modules.



(4) If R is a commut. noeth. semilocal

domain of Krull dim. 1, the full subcat-

egory of Mod-R whose objects are all

torsion-free R-modules of finite rank.

(5) Recall that a module is uniserial if

its lattice of submodules is linearly or-

dered under inclusion. The full subcat-

egory of Mod-R whose objects are all fi-

nite direct sums of uniserial R-modules

is a semilocal category.



If C is a category, idempotents split in

C if for every object A of C and ev-

ery endomorphism f of A with f2 = f ,

there exist an object B and morphisms

g : A → B and h : B → A such that

hg = f and gh = 1B, where 1B denotes

the identity morphism of B.

The previous five examples are all

examples of semilocal additive categories

in which idempotents split. (Since they are

all full subcategories of Mod-R, this sim-

ply means that their classes of objects

are classes of modules closed under di-

rect summands and finite direct sums.)



A commutative additive monoid is a set

M endowed with a binary operation +

(addition) that is associative, commu-

tative and has a neutral element 0.

C additive category.

Fix a skeleton V (C).

Then V (C) is a commutative additive

monoid: if A,B ∈ V (C),

A+B = A
∐
B.

(V (C) can possibly be a large monoid,

i.e., it can be a proper class, not

necessarily a set).



Theorem 1 If C is a semilocal additive

category in which idempotents split, the

monoid V (C) is a Krull monoid.

Krull monoids are the analogues for com-

mutative monoids of what Krull domains

are in Commutative Algebra.



Valuations of abelian groups,

Krull monoids

[Chouinard, 1981]

M additive, commutative, cancellative

monoid

M ⊆ G(M) and G(M) is a torsion-free

abelian group

A discrete valuation of an abelian group

G is a surjective homomorphism

v : G→ Z.

[⇒ G ∼= Z⊕ ker v ]



{x ∈ G | v(x) ≥ 0 } is the valuation

submonoid of v.

[⇒ it is isomorphic to N⊕ ker v ]

For a commutative monoid M , set U(M) =

{ a ∈M | a has an opposite −a ∈M }.

M is reduced if U(M) = {0}. For every

monoid M , the monoid Mred = M/U(M)

is reduced.

A discrete valuation monoid is a monoid

M with Mred
∼= N.



M is a Krull monoid if there exists a

family { vi | i ∈ I } of discrete valuations

vi : G(M)→ Z such that:

(1) M = {x ∈ G(M) | vi(x) ≥ 0 for

every i ∈ I};

(2) for every x ∈ G(M) the set { i ∈ I |

vi(x) 6= 0 } is finite.

Theorem 2 [Ulrich Krause, 1989]

A commutative integral domain R is a

Krull domain if and only if the monoid

R∗ := R \ {0} is a Krull monoid.

principal fractional ideals

divisorial fractional ideals



D(M) the set of all divisorial fractional

ideals.

D(M) is a commutative monoid with

respect to the operation ∗ defined, for

every I, J ∈ D(M) by I ∗ J := the

intersection of all the principal fractional

ideals containing I + J. Prin(M) :=

{non-zero principal fractional ideals }.

It is a subgroup of D(M).

divisor class semigroup Cl(M) := D(M)/Prin(M)

essential valuations (for every x, y ∈ M

with v(x) ≤ v(y), there exists an s ∈ M

with x ≤ y + s and v(s) = 0)



There is a natural pre-order ≤ on

every commutative additive monoid M ,

called the algebraic pre-order,

defined by x ≤ y if there exists z ∈ M

such that x+ z = y.

M is a reduced Krull monoid if and only

if there exist a set X and a subgroup G

of Z(X) such that M ∼= G ∩ N(X), if and

only if there is a monoid morphism f

of M into a free commutative monoid

F = N(X)
0 such that if x, y ∈ M and

f(x) ≤ f(y) in F implies x ≤ y in M .

[⇒ reduced Krull monoid have a regular

geometric structure.]



Four submonoids of N2
0 that are Krull

monoids. Notice their regular geomet-

ric pattern.



Theorem. If C is a semilocal additive

category in which idempotents split, the

monoid V (C) is a Krull monoid.

Hence, for every semilocal category C,

V (C) ↪→ N(X) ⇒ every object of a semilo-

cal category can be described up to

isomorphism by finitely many non-zero

positive integers.



The technique

Let C be a preadditive category. An

ideal I of C: a subgroup I(A,B) of

HomC(A,B) for every A,B ∈ Ob(C), such

that, for every ϕ ∈ HomC(A,B), ψ ∈

I(B,C), ω ∈ HomC(C,D), one has that

ωψϕ ∈ I(A,D).

The factor category C/I: Ob(C) = Ob(C/I)

and, for every A,B ∈ Ob(C) = Ob(C/I),

HomC/I(A,B) := HomC(A,B)/I(A,B).



Two examples:

(1) The Jacobson radical. It is the ideal

J of C defined as follows. If A,B are ob-

jects of A, J (A,B) := { f ∈ HomC(A,B) |

1A − gf has a left inverse for all

g ∈ HomC(B,A) }.

(2) The ideal of C associated to an ideal

I of EndC(A), where A is a non-zero

object of C [F.-Př́ıhoda].



For a non-zero object A of C and a

two-sided ideal I of EndC(A), let AI be

the ideal of the category C defined as

follows: a morphism f : X → Y in C

is in AI(X,Y ) if and only if βfα ∈ I

for every pair of morphisms α : A → X

and β : Y → A in C. We call AI the

ideal of C associated to I. The ideal

AI is the greatest of the ideals I of C

with I(A,A) ⊆ I. It is easily seen that

AI(A,A) = I. Clearly, the ideals asso-

ciated to two distinct ideals of EndC(A)

are two distinct ideals of the category C.

What about the maximal ideals of C?



Lemma 3 [F.-Perone] Let C be a pread-

ditive category and M be a proper ideal

of C. Then M is a maximal ideal if

and only if, for every object A of C with

M(A,A) 6= EndC(A), one has that:

(1)M(A,A) is a maximal ideal of EndC(A),

and (2) M is the ideal of C associated

to M(A,A).

A preadditive category is simple if it has

exactly two ideals, necessarily the trivial

ones.

The factor category C/M is simple for

every preadditive category C and every

maximal ideal M.



Proposition 4 The following conditions

are equivalent for a preadditive cate-

gory C:

(1) C is a simple category.

(2) C has a non-zero object, and every

non-zero object of C is a generator and

a cogenerator for C and has a simple

endomorphism ring.

(3) C has a non-zero object and there

exists a simple ring R such that C is

equivalent to a full subcategory of the

category proj-R of all finitely generated

projective right R-modules.



Maximal ideals may not exist (even in

small preadditive categories).

Example 5 Let k be a division ring and

Vn a right vector space of dimension ℵn

for every n < ω. Let C be the full sub-

category of Mod-k whose objects are

the vector spaces Vn, n < ω, so that C is

a small preadditive category with count-

ably many objects. For every Vk,Wk ∈

Ob(C) and c ≤ ℵω, set Ic(Vk,Wk) :=

{ f ∈ Hom(Vk,Wk) | rank(f) < c }. The

ideals of C are

0 = I1 ⊂ Iℵ0
⊂ Iℵ1

⊂ Iℵ2
⊂ · · · ⊂ Iℵω.

Maximal ideals do not exist in C.



This example also shows that, though

every maximal ideal of a category C is

the ideal associated to a maximal ideal

of the endomorphism ring of a non-zero

object of C (Lemma 2), the converse is

not always true.

The converse is true when the category

C is semilocal.



Proposition 6 Let C be a semilocal

category. Then:

(1) Every ideal of C associated to a

maximal ideal of the endomorphism ring

of a non-zero object of C is a maximal

ideal of C.

(2) In C, every proper ideal is contained

in a maximal ideal.

(3) Maximal ideals exist in C.



Let Max(C) be the maximal spectrum

of a preadditive category C, that is, the

“class” of all maximal ideals of C.

Cλ a preadditive category for every λ ∈ Λ,

where Λ is a class. Define the weak di-

rect sum ⊕λ∈ΛCλ of the categories Cλ as

follows. The objects of ⊕λ∈ΛCλ are the

finite sets { (λ1, A1), (λ2, A2), . . . , (λn, An) },

where n ≥ 0 is an integer, λ1, . . . , λn

are distinct elements of Λ and Ai is a

non-zero object of Cλi for every i =

1,2, . . . , n. The set of all morphisms be-

tween two objects { (λ1, A1), (λ2, A2), . . . , (λn, An) }

and { (µ1, B1), (µ2, B2), . . . , (µm, Bm) } of



the category ⊕λ∈ΛCλ is

⊕ i = 1, . . . , n
j = 1, . . . ,m
λi = µj

HomCλi
(Ai, Bj).

Theorem 7 Let C be a semilocal cat-

egory. Then the Jacobson radical of C

is the intersection of all maximal ide-

als of C and, for every object A in C,

there exist finitely many maximal ideals

M1, . . . ,Mn (n ≥ 0) such that, for every

maximal ideal M in C, A is a non-zero

object in C/M if and only if M = Mi

for some i ∈ {1, . . . , n}.



C a semilocal category ⇒ complete C

to an additive category add(C) in which

idempotents split (category of motives)

⇒ add(C) also is semilocal and Max(C) =

Max(add(C)) ⇒ apply the functor

F : add(C)→ ⊕M∈Max(C)add(C)/M,

which is isomorphism reflecting and di-

rect summand reflecting ⇒ apply the

functor V to get a monoid homomor-

phism



V (F ): V (add(C))→ V (⊕M∈Max(C)add(C)/M) =

⊕M∈Max(C)V (add(C)/M), which is in-

jective and a divisor homomorphism. Now

each add(C)/M is ∼= mod-R for some

simple artinian ring ⇒ each object A of

the factor category add(C)/M ∼= mod-R

is completely determined by its Goldie

dimension (equal to the Goldie dimen-

sion of the semisimple artinian ring EndC/M(A)).

That is, V (add(C)/M) ∼= N0 ⇒ there is

a divisor homomorphism V (add(C)) →

N(Max(C))
0 ⇒ V (add(C)) is a Krull monoid,

every object of C can be described up

to iso. with natural numbers, geometric

regularity of finite d.-s. decompositions.



Example

Theorem 8 [F., TAMS 1996] Let UR

be a uniserial module over an arbitrary

ring R, let E = End(UR) denote its en-

domorphism ring, and set

I := { f ∈ E | f is not injective } and

K := { f ∈ E | f is not surjective }.

Then I and K are two two-sided com-

pletely prime ideals of E, and every proper

right ideal of E and every proper left

ideal of E is contained either in I or in

K. Moreover, exactly one of the follow-

ing two conditions hold:



(a) Either I and K are comparable (that

is, I ⊆ K or K ⊆ I), in which case E is

a local ring with maximal ideal I∪K, or

(b) I and K are not comparable, and

in this case E/I and E/K are division

rings, and E/J(E) ∼= E/I × E/K.



Two modules U and V are said to have

1. the same monogeny class, denoted

[U ]m = [V ]m, if there exist a monomor-

phism U → V and a monomorphism

V → U ;

2. the same epigeny class, denoted [U ]e =

[V ]e, if there exist an epimorphism

U → V and an epimorphism V → U .



Theorem 9 [F., TAMS 1996] Let U1,

. . . , Un, V1, . . . , Vt be n + t non-zero

uniserial right modules over a ring R.

Then the direct sums U1⊕ · · · ⊕ Un and

V1⊕· · ·⊕Vt are isomorphic R-modules if

and only if n = t and there exist two

permutations σ and τ of {1,2, . . . , n}

such that [Ui]m = [Vσ(i)]m and [Ui]e =

[Vτ(i)]e for every i = 1,2, . . . , n.

If C = {uniserial R-modules }, then

V (C) ↪→ Fm × Fe is a subdirect

product of two free commutative monoids

Fm and Fe.


