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A General Principle

If a group (class of groups) acts nicely on a
nice space, then the action should reveal so-

me algebraic structure (~> nice theorem).
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I ——
Assume a finitely-generated group faithfully acts by diffeomor-
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algebraic structure from this action ?

Warning: not every group acts this way (example 7).

Conjecture (Zimmer)

The group SL(n + 2,R) has no action by homeomorphisms on a
compact n-dimensional manifold with infinite image.
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The Burnside groups

Question (Burnside)

Let ' be a finitely-generated group in which every element has fi-
nite order (perhaps uniformly bounded). Is I necessarily finite 7

e YES for linear groups (Burnside).

e The Burnside groups:
B(n) :=(a, b: w" = id for all w)

- B(2), B(3), B(4) and B(6) are finite.
- B(7) should be infinite (hyperbolic; obvious for Gromov).

- B(5) should still be infinite (Zelmanov).

- For n>666 odd, B(n) is infinite (non-amenable; Adian-Novikov).
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A basic question in dimension 2

Question (Farb)

Let I € Homeo, (S?) be a finitely-generated group in which every
element has finite (uniformly bounded) order. Must I be finite ?

e For Homeo  (S!), the answer is affirmative (exercise).

e According to a theorem of Kerékjarté (based on the work of
Brouwer), every finite-order homeomorphism of the sphere is
conjugate to a rotation.
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Groups acting on 1-dimensional manifolds

Algebraic description of groups that act faithfully by orientation-
preserving homeomorphisms:

— of the real line: such an action comes from a left-order (folklore).

— of the circle without a finite orbit: such an action comes from a
bounded-cohomology class with coefficients in Z having a repre-
sentative taking only the values 0 and 1 (Poincaré-Ghys).

Question

Does there exist an algebraic characterization of groups that do act
faithfully by homeomorphisms of a certain 2-manifold ?
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Ordering braids

The braid group Bj, is left-orderable.

An element is “positive” if it may be written as a word in the gene-
rators such that the generator o; with smallest index / that appears
is raised only to positive exponents (ex: 0_1—2000_201 = 02010;200).
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This comes from the work on codimension-1 foliations Sacksteder,
Plante, Thurston, Ghys, Tsuboi,... (inspired on Denjoy's work).

Theorem (Thurston)

Every nontrivial finitely-generated subgroup of Diff? ([0,1]) admits
a nontrivial homomorphism into R (i.e. Diff! ([0,1]) is locally in-
dicable).

“Proof”: Take g — log(Dg(0)).

Local indicability does not hold for Homeo ([0, 1]) (even for the
group of Lipschitz homeomorphisms). An example (also due to
Thurston) is the lifting to 15§i(2,R) of the (2,3,7)-triangle sub-
group of PSL(2,R).
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A tiling of the hyperbolic disk induced
by the action of the (2,3,7)-triangle group.

Theorem (N)

Local indicability is not the only obstruction for embeddings into
Diff? ([0, 1]).
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More results

Theorem (N)

Every finitely-generated subgroup of Diff1**([0, 1]) has either
polynomial or exponential growth. This is false for Diff! ([0, 1]).

Theorem (Witte Morris)

If T is a finite-index subgroup of SL(3,7Z), then every C action of
I on S! (resp. [0,1]) has a finite image (resp. is trivial).

Theorem (N)

If I is a finitely-generated subgroup of Diffi/z(Sl) having Kazh-
dan’s property (T), then it is finite.
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Groups acting on the Cantor set

]
Every group I acts on {0,1}" by shifting coordinates. For infinite
countable I', this is a Cantor set. This action contains lots of
information.

The group of piecewise dyadic homeomorphisms of the binary Can-
tor set is finitely presented and simple (Thompson's group V). It
contains a copy of every finite group.
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Automorphisms of V

Theorem (Bleak, Navas, Yonah)

Out(V) consists of two elements. The nontrivial element comes
from interchanging zeros and ones.

— Every automorphism of V is induced by conjugacy of a certain
homeomorphism of the Cantor set (Rubin, Epstein...)

— Such a homeomorphism must have some “regularity”.

— For Lipschitz homeomorphisms, rigidity comes from the asso-
ciated cohomological equation.
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