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Groups

“Les mathématiques ne sont qu’une histoire de groupes”
(Poincaré).

A group is a set endowed with a multiplication and an inversion sa-
tisfying certain formal rules/axioms (Cayley).

Theorem (Cayley)

Every group is a subgroup of the group of automorphisms of a cer-
tain space (the group itself / its Cayley graph).

Vertices: elements of the group.

Edges: connect any two elements
that differ by (right) multiplication
by a generator.
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Full symmetry groups

Theorem (Frucht)

Every finitely-generated group is the full group of symmetries of a
certain graph. (There are uncountably many such graphs for any
prescribed group.)
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A General Principle

If a group (class of groups) acts nicely on a

nice space, then the action should reveal so-

me algebraic structure ( nice theorem).



Groups acting on manifolds

Assume a finitely-generated group faithfully acts by diffeomor-
phisms of a compact manifold. What can be deduced on its
algebraic structure from this action ?

Warning: not every group acts this way (example ?).

Conjecture (Zimmer)

The group SL(n + 2,R) has no action by homeomorphisms on a
compact n-dimensional manifold with infinite image.
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The Burnside groups

Question (Burnside)

Let Γ be a finitely-generated group in which every element has fi-
nite order (perhaps uniformly bounded). Is Γ necessarily finite ?

• YES for linear groups (Burnside).

• The Burnside groups:

B(n) := 〈a, b : wn = id for all w〉

- B(2),B(3),B(4) and B(6) are finite.

- B(7) should be infinite (hyperbolic; obvious for Gromov).

- B(5) should still be infinite (Zelmanov).

- For n>666 odd, B(n) is infinite (non-amenable; Adian-Novikov).
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A basic question in dimension 2

Question (Farb)

Let Γ ⊂ Homeo+(S2) be a finitely-generated group in which every
element has finite (uniformly bounded) order. Must Γ be finite ?

• For Homeo+(S1), the answer is affirmative (exercise).

• According to a theorem of Kerékjártó (based on the work of
Brouwer), every finite-order homeomorphism of the sphere is
conjugate to a rotation.
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Groups acting on 1-dimensional manifolds

Algebraic description of groups that act faithfully by orientation-
preserving homeomorphisms:

– of the real line: such an action comes from a left-order (folklore).

– of the circle without a finite orbit: such an action comes from a
bounded-cohomology class with coefficients in Z having a repre-
sentative taking only the values 0 and 1 (Poincaré-Ghys).

Question

Does there exist an algebraic characterization of groups that do act
faithfully by homeomorphisms of a certain 2-manifold ?
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Ordering braids

Bn = 〈σ1, . . . , σn−1: σiσi+1σi =σi+1σiσi+1, σiσj =σjσi if |i − j | > 1〉

Theorem (Dehornoy; Nielsen-Thurston)

The braid group Bn is left-orderable.

An element is “positive” if it may be written as a word in the gene-
rators such that the generator σi with smallest index i that appears
is raised only to positive exponents (ex: σ2σ

7
4σ

2
2σ

−500
3 ).
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Ordering braids

Bn = 〈σ1, . . . , σn−1: σiσi+1σi =σi+1σiσi+1, σiσj =σjσi if |i − j | > 1〉
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The regularity enters into the game

This comes from the work on codimension-1 foliations Sacksteder,
Plante, Thurston, Ghys, Tsuboi,... (inspired on Denjoy’s work).

Theorem (Thurston)

Every nontrivial finitely-generated subgroup of Diff1
+([0, 1]) admits

a nontrivial homomorphism into R (i.e. Diff1
+([0, 1]) is locally in-

dicable).

“Proof”: Take g 7→ log(Dg(0)).

Local indicability does not hold for Homeo+([0, 1]) (even for the
group of Lipschitz homeomorphisms). An example (also due to

Thurston) is the lifting to P̃SL(2,R) of the (2,3,7)-triangle sub-
group of PSL(2,R).
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Local indicability

A tiling of the hyperbolic disk induced
by the action of the (2,3,7)-triangle group.

Theorem (N)

Local indicability is not the only obstruction for embeddings into
Diff1

+([0, 1]).
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More results

Theorem (N)

Every finitely-generated subgroup of Diff1+α
+ ([0, 1]) has either

polynomial or exponential growth. This is false for Diff1
+([0, 1]).

Theorem (Witte Morris)

If Γ is a finite-index subgroup of SL(3,Z), then every C 0 action of
Γ on S1 (resp. [0, 1]) has a finite image (resp. is trivial).

Theorem (N)

If Γ is a finitely-generated subgroup of Diff
3/2
+ (S1) having Kazh-

dan’s property (T), then it is finite.



More results

Theorem (N)

Every finitely-generated subgroup of Diff1+α
+ ([0, 1]) has either

polynomial or exponential growth. This is false for Diff1
+([0, 1]).

Theorem (Witte Morris)

If Γ is a finite-index subgroup of SL(3,Z), then every C 0 action of
Γ on S1 (resp. [0, 1]) has a finite image (resp. is trivial).

Theorem (N)

If Γ is a finitely-generated subgroup of Diff
3/2
+ (S1) having Kazh-

dan’s property (T), then it is finite.



More results

Theorem (N)

Every finitely-generated subgroup of Diff1+α
+ ([0, 1]) has either

polynomial or exponential growth. This is false for Diff1
+([0, 1]).

Theorem (Witte Morris)

If Γ is a finite-index subgroup of SL(3,Z), then every C 0 action of
Γ on S1 (resp. [0, 1]) has a finite image (resp. is trivial).

Theorem (N)

If Γ is a finitely-generated subgroup of Diff
3/2
+ (S1) having Kazh-

dan’s property (T), then it is finite.



More results

Theorem (N)

Every finitely-generated subgroup of Diff1+α
+ ([0, 1]) has either

polynomial or exponential growth. This is false for Diff1
+([0, 1]).

Theorem (Witte Morris)

If Γ is a finite-index subgroup of SL(3,Z), then every C 0 action of
Γ on S1 (resp. [0, 1]) has a finite image (resp. is trivial).

Theorem (N)

If Γ is a finitely-generated subgroup of Diff
3/2
+ (S1) having Kazh-

dan’s property (T), then it is finite.



Groups acting on the Cantor set

Every group Γ acts on {0, 1}Γ by shifting coordinates. For infinite
countable Γ, this is a Cantor set. This action contains lots of
information.

The group of piecewise dyadic homeomorphisms of the binary Can-
tor set is finitely presented and simple (Thompson’s group V ). It
contains a copy of every finite group.
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R.Thompson’s groups

• The elements of V that respect the cyclic order form the sub-
group T ; this may be seen also as a group of piecewise-affine,
orientation-preserving homeomorphisms of the circle.

• The elements of T that respect the linear order form the sub-
group F ; this may be seen also as a group of piecewise-affine,
orientation-preserving homeomorphisms of the unit interval.
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Automorphisms of V

Theorem (Bleak, Navas, Yonah)

Out(V ) consists of two elements. The nontrivial element comes
from interchanging zeros and ones.

– Every automorphism of V is induced by conjugacy of a certain
homeomorphism of the Cantor set (Rubin, Epstein...)

– Such a homeomorphism must have some “regularity”.

– For Lipschitz homeomorphisms, rigidity comes from the asso-
ciated cohomological equation.
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