REPRESENTATIONS OF THE CATEGORY OF MODULES OVER POINTED HOPF ALGEBRAS OVER S_3 AND S_4

AGUSTÍN GARCÍA IGLESIAS

ABSTRACT

This is a joint work with Martín Mombelli. It has been submitted for publication. A preprint is available at arXiv:1006.1857v1[math.QA].

We shall denote by \Bbbk an algebraically closed field of characteristic zero.

Given a tensor category \mathcal{C} , an *exact module category* [EO] over \mathcal{C} is an Abelian category \mathcal{M} equipped with a biexact functor $\otimes : \mathcal{C} \times \mathcal{M} \to \mathcal{M}$ subject to natural associativity and unity axioms, such that for any projective object $P \in \mathcal{C}$ and any $M \in \mathcal{M}$ the object $P \otimes M$ is again projective.

We will recall the basic results on module categories over finite-dimensional Hopf algebras [AM]. We recall the main result of [M] that gives an isomorphism between Loewy-graded comodule algebras and a semidirect product of a twisted group algebra and an homogeneous coideal subalgebra inside the Nichols algebra. We will also recall the classification of finite-dimensional Hopf algebras with coradical $\&S_3$ or $\&S_4$ from [AHS], [GG], respectively.

Using these results, we will show that if n = 3, 4, 5 and H is a finite dimensional pointed Hopf algebra over S_n , then for every exact indecomposable module category \mathcal{M} over $\operatorname{Rep}(\operatorname{gr} H)$ there exists

- a subgroup $F < \mathbb{S}_n$ and a 2-cocycle $\psi \in Z^2(F, \mathbb{k}^{\times})$,
- a subset $Y \subseteq X$ invariant under the action of F,
- a family of scalars $\{\xi_C\}$ compatible with (F, ψ, Y) ,

such that $\mathcal{M} \simeq_{\mathcal{A}(Y,F,\psi,\xi)}\mathcal{M}$, where $\mathcal{A}(Y,F,\psi,\xi)$ is a left gr *H*-comodule algebra constructed from data (Y,F,ψ,ξ) . We also show a classification of connected homogeneous left coideal subalgebras $\mathcal{A}(Y,F,\psi,\xi)$ of gr *H* and together with a presentation by generators and relations.

Finally we prove that if H is a finite-dimensional Hopf algebra with coradical $\Bbbk S_3$ or $\Bbbk S_4$ then H and gr H are cocycle deformations of each other, a result analogous to a theorem of Masuoka [Ma] for abelian groups. This implies that there is a bijective correspondence between module categories over $\operatorname{Rep}(H)$ and $\operatorname{Rep}(\operatorname{gr} H)$.

References

- [AHS] N. ANDRUSKIEWITSCH, I. HECKENBERGER and H.J. SCHNEIDER, The Nichols algebra of a semisimple Yetter-Drinfeld module, arXiv:0803.2430.
- [AM] N. ANDRUSKIEWITSCH and M. MOMBELLI, On module categories over finite-dimensional Hopf algebras, J. Algebra 314 (2007), 383–418.
- [EO] P. ETINGOF and V. OSTRIK, Finite tensor categories, Mosc. Math. J. 4 (2004), no. 3, 627–654.
- [GG] G. A. GARCÍA and A. GARCÍA IGLESIAS, Pointed Hopf algebras over S₄, accepted in Israel Journal of Mathematics, preprint arXiv:0904.2558.
- [Ma] A. MASUOKA, Abelian and non-abelian second cohomologies of quantized enveloping algebras, J. Algebra 320 (2008), 1–47.
- [M] M. MOMBELLI, Representations of tensor categories coming from quantum linear spaces, preprint arxiv:0907.4517.

FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA, UNIVERSIDAD NACIONAL DE CÓRDOBA, CIEM, MEDINA ALLENDE S/N, (5000) CIUDAD UNIVERSITARIA, CÓRDOBA, ARGENTINA.

The work was partially supported by CONICET, FONCyT-ANPCyT, Secyt (UNC), Mincyt (Córdoba).