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It is not easy to choose the topics of a course when the audience is
not homogeneous. I will review some subjects which may be well
known to some participants. With goodwill, the review could be
considered a crash course for those students who have not seen the
issues before.
I will try to be sparse with the notation, for instance I have
managed without the exterior product. I will try to concentrate on
the main ideas. I will not give many details and cheat a little,
mostly avoiding orientation issues (easy but time consuming).
I will make some very informal comments, at risk of
oversimplification.
I take the opportunity to include subjects that are central in
Mathematics, such as octonions and the Hopf map from the 3- to
the 2-sphere.

If you have not taken a course on smooth manifolds yet: When I
say M is a submanifold of N, you can think of a curve M in a
surface N or a surface M in R3 = N (or higher dimensional
analogues).
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Homologically volume minimizing submanifolds

A calibration is a tool which allows us to prove that a submanifold
M of a Riemannian manifold N has minimum volume among all
submanifolds of N homologous to M.

Notation:
1-volume = length, 2-volume = area, 3-volume = usual volume

I will write k-volume or simply volume if k is understood from the
context.

I do not have time to give the definition of homology class. I will
give some examples that will help getting the feeling of it, I hope.



Definition

Let M be a closed oriented m-dimensional submanifold of N. One
says that M is volume minimizing in N if for any open subset U of
M with compact closure and smooth border ∂U (possibly empty),
one has that

volm (U) ≤ volm (V )

for any submanifold V of N of dimension m with compact closure
and ∂V = ∂U.

Moreover, M is said to be homologically volume minimizing in N if
in addition V is required to be homologous to U.



















M̄ with minimum length in the homology class of M in N is K ∪ L.

We actually need oriented submanifolds. I am cheating with that.



Remarks

a) Finding manifolds of minimum volume means looking for the
minimum of a functional on an infinite dimensional space.

b) Advantage of calibrations over the calculus of variations. The
latter provides only local minima.



Alternating multilinear algebra

det : Rn×n = Rn × · · · × Rn → R is n-linear and alternating

det (u1, . . . , un) = ± volume (P) ,

where P is the parallelepiped determined by u1, . . . , un.

The sign ± gives a notion of orientation.

Comments. (Multilinearity versus linearity)

If only one side of a parallelogram is doubled, the area of the
parallelogram is doubled: det (2u1, u2) = 2 det (u1, u2)

A parallelepiped whose edges lie on a plane is degenerated and has
zero volume: det (u, v ,w) = 0 if {u, v ,w} is l.d.



Alternating bilinear form:

ω : Rn × Rn → R

ω is bilinear and satisfies ω (u, u) = 0 for any u ∈ Rn.

Example

For 1 ≤ i < j ≤ n, define

e i ,j (u, v) = det

(
ui vi
uj vj

)
(project u, v onto the i-j wall of Rn and take determinant).





Any alternating bilinear form ω : Rn × Rn → R can be written as

ω =
∑

1≤i<j≤n
aije

i ,j

for some aij ∈ R. With respect to another basis the expression for
ω may have fewer terms.

A bilinear alternating form assigns to the pair u, v a multiple of the
area of the parallelogram determined by u, v , in a consistent way.

Analogous statements hold for alternating m-linear forms. We call
then simply m-forms.

An example of a 3-form ω on R5: ω = 2e123 − e125 + e345



Definition

An m-calibration ω on Rn is an m-form on Rn such that for any
m-dimensional subspace W of Rn one has that

|ω (u1, . . . , um)| ≤ 1 (1)

for some (or equivalently, any) orthonormal basis u1, . . . , um of W .

If equality holds in (1), W is said to be calibrated by ω.

The same if one substitutes Rn for a vector space V with an inner
product.



Example

The m-form e1...m is an m-calibration on Rn.

Idea of the proof. Call Wo = span {e1, . . . , em}. Let W be any
m-dimensional subspace of Rn. We consider the angles between W
and Wo .

The first, smaller, angle between W and Wo is θ1, where

cos θ1 = máx {〈u, v〉 | u ∈Wo , v ∈W , |u| = |v | = 1} .

(maximum inner product between unit vectors = minimum angle).





Suppose cos θ1 = 〈u1, v1〉. Then the second angle is θ2, where

cos θ2 = máx
{
〈u, v〉 | u ∈ (u1)⊥ , v ∈ (v1)⊥ , |u| = |v | = 1

}
(here (u1)⊥ and (v1)⊥ are the orthogonal complements of u1 and
v1 in Wo and W , respectively).
Suppose cos θ2 = 〈u2, v2〉 and continue in this manner, obtaining
orthonormal bases {u1, . . . , um} and {v1, . . . , vm} of Wo and W ,
respectively.
One computes∣∣e1...m (v1, . . . , vm)

∣∣ =
∣∣cos θ1 . . . cos θm e1...m (u1, . . . , um)

∣∣
=

∣∣cos θ1 . . . cos θm e1...m (e1, . . . , em)
∣∣ ≤ 1.

This also shows that span {e1, . . . , em} is the unique
m-dimensional subspace calibrated by e1...m. �



Example

Let {e1, . . . , en} be the canonical basis of Cn. Then

{e1, . . . , en, ie1, . . . , ien} =notation {e1, . . . , en, en+1, . . . , e2n}

is a basis of Cn = R2n as an R-vector space.

We consider the 2m-Wirtinger form ωm,n on R2n, whose summands
are associated to the complex m-dimensional coordinate subspaces.

For instance, ω2,4 is the 4-form on R8 = C4 given by

e1526 + e1537 + e1548 + e2637 + e2648 + e3748.

Recall that in this case the basis is

{e1, e2, e3, e4, e5 = ie1, e6 = ie2, e7 = ie3, e8 = ie4} .



Proposition

The 2m-form ωm,n is a 2m-calibration on R2n and the calibrated
(real) 2m-dimensional subspaces are exactly the complex
m-dimensional subspaces of Cn = R2n.

Idea of the proof. Let W be any 2m-dimensional subspace of
R2n. There is a complex m-dimensional subspace Wo of Cn = R2n

which is closest to W (in some sense). The angles between W and
Wo turn out to be

0, . . . 0, θ1, . . . , θm (m zeros)

and on a certain basis v1, . . . , v2m of W one has

|ωm,n (v1, . . . , v2m)| = |cos θ1 . . . cos θm| ≤ 1,

with equality only if W = Wo (complex). �



An important example of calibration is the so called special
Lagrangian calibration on R2n. We won’t deal with it in this
course. Tomorrow more examples, related to the octonions.



Smooth Differential forms on manifolds

Let N be a smooth manifold. A smooth m-form Ω on N: At any
point p ∈ N we have an m-form Ωp on TpN depending smoothly
on p ∈ N.
If Ω is a smooth m-form on N and M is a compact m-dimensional
submanifold of N, then Ω can be integrated over M, that is,∫

M
Ω

makes sense, as follows. Write M as an almost disjoint union of
open sets A with compact closures A contained in coordinate
patches (U, φ = (x1, . . . , xm)). Then∫

A
Ω =

∫
φ(A)

Ω

(
∂

∂x1
, . . . ,

∂

∂xm

)
.

This is well defined by the theorem of change of variables, or more
informally, because Ωp is consistently a multiple of the m-volume
at each p ∈ M.





There is a differential operator d , called the exterior derivative,
such that if Ω is a smooth m-form on N, then dΩ is a smooth
(m + 1)-form on N. I do not recall the definition.

The smooth m-form Ω is said to be closed if dΩ = 0.
For instance, if Ω is a constant m-form on Rn, that is, Ωp = ω for
all p, then dΩ = 0.

Informal comment. The exterior derivative is in some sense the
limit of an incremental quotient. Before taking the limit we have
the following situation:

Case m = 1: The exterior derivative of a 1-form Ω is a 2-form dΩ.
The arguments of Ω are segments and those of Ω parallelograms.
The value of dΩ on a parallelogram is an alternate sum of Ω
applied to its sides.





Case m = 2: The exterior derivative of a 2-form Ω is a 3-form dΩ.
The arguments of Ω are parallelograms and those of dΩ
parallelepipeds. The value of dΩ on a parallelepiped is an alternate
sum of Ω applied to its faces.





As a consequence of Stoke’s Theorem we have:

Proposition

Let Ω be a closed smooth m-form on N and let U,V compact
m-dimensional submanifolds of N with the same border which are
homologous.Then ∫

U
Ω =

∫
V

Ω.

Informal comment. If U and V are homologous, we think of
them as the border of an (m + 1)-dimensional manifold K . Write
K as an almost disjoint union of cubes of dimension m + 1.

Since dΩ = 0 (Ω is closed), for each cube, the sum of the
alternate values of Ω on m-dimensional faces is approximately zero.

Sum over all the cubes. The values of Ω on adjacent faces cancel
and only the values of Ω on faces on the border remain.





Let N be an oriented Riemannian manifold, that is, at any point
p ∈ N we have an inner product gp = 〈., .〉p on TpN varying
smoothly with p.

We have in particular the notion of length of curves in N and also
the volume of open sets in N with compact closure, by integrating
a smooth n-form Ωg on N defined by

(Ωg )p (u1, . . . , un) = 1

for u1, . . . , un a positive orthonormal basis of TpN.

Submanifolds of N inherit a Riemannian structures.



Definition

Let N be smooth Riemannian manifold. A smooth m-form Ω on N
is said to be a smooth m-calibration on N if

a) Ω is closed (that is, dΩ = 0) and

b) Ωp is an m-calibration on TpN for any p ∈ N

(since N is Riemannian, TpN is an inner product vector space).

An m-dimensional submanifold M of N is said to be calibrated by
Ω if |Ωq (u1, . . . , um)| = 1 for some (or equivalently any)
orthonormal basis u1, . . . , um of TqM, for any q ∈ M.

Looking for calibrated submanifolds M is posing a PDE
(constraints on the tangent spaces of M). The PDE may look
awful in coordinates. If the problem has many symmetries,
coordinates can be sometimes avoided.



Theorem

Fundamental Theorem of Calibrations. Let N be a Riemannian
manifold and let Ω be a smooth m-calibration on N. Then
m-dimensional closed manifolds calibrated by Ω are homologically
volume minimizing in N. If N = Rn, they are volume minimizing.

Proof. Let U be an open subset of M with compact closure and
smooth border ∂U (possibly ∂U = ∅) and let V be a compact
submanifold V (same dimension) homologous to U in N with
∂V = ∂U. We compute

vol (U)
(1)
=

∫
U

Ωg (2)
=

∫
U

Ω
(3)
=

∫
V

Ω
(4)

≤
∫
V

Ωg (5)
= vol (V ) .

Equalities (1) and (5) are just the definition of the volume of a
compact submanifold of a Riemannian manifold (N, g). Equality
(3) follows from the corollary of Stokes Theorem we saw above.
Equality (2) and inequality (4) follow from the facts that Ω is a
smooth calibration and M is calibrated by Ω. �



Example

Rm ×{0} has minimum volume in Rn. Use the constant calibration
Ω ≡ e1...m.

Example

Any closed m-dimensional complex submanifold M of N = Cn is
homologically volume minimizing. Use the constant 2m-Wirtinger
calibration Ω ≡ ωm,n.

More generally, any closed complex submanifold of a Kähler
manifold is homologically volume minimizing.

We recall that a Kähler manifold N is a Riemannian manifold such
that at any p ∈ N we have a rotation Jp through the angle π/2 on
TpN (that is, J is orthogonal with J2

p = − id) in such a way that if
V is parallel vector field along a curve γ in N, then J (V ) is also
parallel along γ.





Calibrations related to the octonions

Definition

A normed division algebra (A,+, ·, 〈, 〉) is a finite dimensional
algebra (A,+, ·) with an inner product such that

a) ‖xy‖ = ‖x‖ ‖y‖ for any x , y ∈ A,

b) any x 6= 0 has an inverse.

There are only four of them: R, C, the quaternions H and the
octonions O.

They have dimensions 1,2,4 and 8, respectively.

C is not ordered, H is not commutative and O is not even
associative.



Each one can be constructed from the preceding:

C = R + Ri , H = C + Cj .

Writing z ,w ∈ C as z = a + bi , w = c + di , we have

H 3 q = z + wj = a + bi + (c + di) j

= a + bi + cj + dk = a + Im(q),

where i , j , k are as usual anticommuting square roots of −1.



The octonions are O = H + He with e2 = −1.
They have 7 independent anticommuting square roots of −1.
The general octonion has the form

x = a + bi + cj + dk + αe + βie + γje + δke = a + Im(x)

One can write a table with the values of the multiplication of the
generators, for instance

j (ie) = ke.

Lack of associativity: j (ie) = ke is not equal to (ji) e = −ke.



The associative calibration.

Consider the 3-form φ on ImO = R7 defined by

φ (x , y , z) = 〈x , yz〉

(it is in fact alternating). Putting

(i , j , k , e, ie, je, ke) = (e1, e2, e3, e4, e5, e6, e7)

(the canonical basis of R7), then

φ = e123 + e145 + e176 + e246 + e257 + e347 + e365.

The first term e123 corresponds to the fact that ij = k , or
equivalently, e1e2 = e3.
The fifth term e257 corresponds to the fact that j (ie) = ke, or
equivalently, e2e5 = e7.



There are many ways of injecting C into H:

Take any u ∈ ImH with ‖u‖ = 1, then u2 = −1 and this implies
that {a + bu | a, b ∈ R} is a copy of C in H.

There is an S2 worth of injections of C into H.

In the same way, there are many (an 8 dimensional manifold,
G2/S3 × S3) subspaces of O isomorphic to H.

They are called the associative subspaces of O.



Proposition

φ is a 3-calibration on ImO = R7 and the calibrated subspaces are
exactly the imaginary parts of the associative subspaces of O.

Proof. If follows from the following algebraic identity:

φ (x , y , z)2 +
1

4
‖(xy) z − x (yz)‖2 = 1

holds for any orthonormal set {x , y , z} in ImO. �





Volume minimizing cones

In higher dimensions and codimensions the singularity at the origin
of some cones does not prevent them from being volume
minimizing.

In fact, we will give examples of volume minimizing 3-dimensional
cones in R7 with a singularity at the origin.

Before, we need the almost complex structure on S6, the sphere of
dimension 6 in R7 = ImH.

At any point x ∈ S6 consider the linear operator

Lx : TxS6 = x⊥ → TxS6 = x⊥, Lx (y) = xy .

It is orthogonal and satisfies (Lx)2 = − id (a rotation through
angle π/2 on each tangent space TxS6).

Comment:
(
S6, L

)
is not Kähler.





Given a compact surface M in S6, the cone M in R7 generated by
K is defined by

M = {ty | y ∈ K , t > 0} .

Proposition

Let K be a complex surface in S6 (that is, TyK ⊂ TyS6 is
invariant for Ly for each y ∈ K ). Then the cone M in R7

generated by K is volume minimizing.

Proof. The cone M is calibrated by the associative calibration φ.
This follows from the fact that a plane W in x⊥ = TxS6 is
invariant by Lx if and only if span {1, x ,W } is associative. �

Remark. Robert Bryant proved that any compact Riemann surface
(in particular, of any genus) can be taken as K above.





Next, we give an example of a function F : R4 → R3 which is not
of class C 1 but whose graph ⊂ R7 is volume minimizing.

The coassociative calibration

Consider the 4-form ψ = ∗φ in R7, that is

ψ = e4567 + e2367 + e2345 + e1357 + e1346 + e1256 + e1274.

(compare with φ = e123 + e145 + e176 + e246 + e257 + e347 + e365).

Proposition

ψ is a 4-calibration of R7 and the calibrated subspaces are exactly
the orthogonal complements of the associative subspaces.



Proposition

The function F : H = R4 → ImH = R3 defined by

F (q) =

√
5

2

qiq

‖q‖
for q 6= 0, F (0) = 0

is Lipschitz continuous but not of class C 1.

The tangent spaces to its graph are calibrated by ψ anf hence
graph (F ) is volume minimizing.

Remark. A classical result says that if the graph of a C 1 function
is volume minimizing, then the function is real analytic.



Comment. The function f : S3 ⊂ H→ S2 ⊂ ImH, defined by

f (q) = qiq

(the restriction of F to S3, except for the constant
√

5/2) is the
Hopf map, whose level sets are the great circles in S3 obtained as
the intersection of S3 with complex lines (one dimensional complex
subspaces) in C2 = H.



Visualization of the Hopf map

F : R3 ∪ {∞} → S3 stereographic map.

F (z-axis ∪ {∞}) = great circle ({0} × C) ∩ S3 ⊂ C2

The complement of the z-axis in R3 can be written as the smooth
disjoint union of those circles C such that F (C ) are the remaining
great circles in S3 obtained by intersecting S3 with complex lines.







Invariant calibrations on homogeneous spaces

Let G be a Lie group acting transitively by isometries on a
Riemannian manifold N.

Consider a calibration ω on TpN for some p ∈ N.

If you are lucky, ω is invariant by the isotropy subgroup at p and
then you have a smooth form Ω on N.

If you are lucky again, Ω is closed and you have a smooth
calibration on N.

Fact: Invariance and closedness are unrelated notions.



The best unit vector field on S3

Let M be a Riemannian manifold. The Sasaki metric on its unit
tangent bundle T 1M is the Riemannian metric such that for any
smooth curve v : [a, b]→ T 1M

length (v) =

∫ b

a

√
‖α′ (t)‖2 + ‖v ′ (t)‖2 dt,

where α is the foot point curve of v and v ′ means the covariant
derivative of v along α (‖v ′ (t)‖ measures to which extent v fails
to be parallel along α).

A geodesic in T 1M does not necessarily project to a geodesic in M.



The unit tangent bundle T 1S3 is diffeomorphic to S3 × S2, since
S3 is parallelizable.
The Sasaki metric on T 1S3 is not the product metric.

Theorem

(Gluck and Ziller, 1983) The image of the Hopf vector field on S3

is homologically volume minimizing in T 1S3.

Proof. They use a smooth calibration on T 1S3 invariant by the
action of the group S3 × S3, which acts transitively on T 1S3. �



A 3-calibration on R6 with exactly two calibrated subspaces

In 1983 (one year after the publication of the pioneering paper on
calibrations by Harvey and Lawson), Dadok and Harvey and
independently, the same year, Frank Morgan, studied calibrations
on R6 and found new ones, among them one the form

ω = e123 + λ
(
e156 + e426 + e453

)
+ µe456,

for some λ, µ ∈ R, which has exactly two calibrated 3-dimensional
subspaces.
This is an interesting result in multilinear algebra, but since the
calibrated subspaces are not allowed to move in a continuum, ω is
not useful to prove that a three dimensional submanifold of R6 is
volume minimizing (except, of course, for affine subspaces).



In 2001 I considered the Lie group G = S3 × S3 with an invariant
Riemannian metric (not the product metric) and the invariant
smooth calibration Ω on G such that Ωe = ω above (previous
some identification of R6 with TeG ).

The form Ω turned out to be closed. I also found the
corresponding family of calibrated submanifolds, two of them in
distinct homology classes.



Calibrations in pseudo-Riemannian Geometry

A pseudo-Riemannian manifold (N, g) is the same as a Riemannian
manifold, but the inner product gp on TpN is not necessarily
positive definite, it may have signature.

For instance N = R1,1, that is, R2 with the inner product of
signature (1, 1) given by

〈(x , y) , (x , y)〉 = x2 − y2.

On a pseudo-Riemannian manifold, from each point we have
directions of two different natures: time-like and space-like (and
also the borderline null directions).



Example

Space-time R3,1 (the fact that nothing travels faster than light).

A humbler analogue: Plane-time R2,1.

Suppose a bus travels with velocity 100 km/h.
With that bus, I can travel from La Falda to Córdoba in less than
3 h, but I cannot arrive to Buenos Aires in 3 h.

Put the origin at La Falda and a convenient inner product of
signature (2, 1) on R2 × R.
The pair ( Córdoba , 3 h) ∈ R2 × R is time-like and the pair
( Buenos Aires , 5 h) is space-like.





Example

The manifold L of all (unparametrized) straight lines of R3 has
dimension four.

Generic curves in L are of two types, those describing right handed
or left handed screws.

This induces on L a pseudo-Riemannian metric of signature (2, 2)
invariant by the group of rigid transformations of R3.

Y. Godoy, M. Salvai, Calibrated geodesic foliations of hyperbolic
space, Proc. Amer. Math. Soc., 2016.



Fact. For pseudo-Riemannian manifolds calibrations are defined in
a slightly different manner. They are useful to prove that
submanifolds maximize volume.

Example

Two space-like vectors u, v ∈ R1,1 such that ‖u + v‖ > ‖u‖+ ‖v‖.







Example

Optimal transport maps are calibrated. Given a compact
Riemannian manifold K with two measures µ and ν with the same
total volume, the graph of the optimal map transporting µ to ν is
a calibrated submanifold of K × K for some natural
pseudo-Riemannian metric of signature (k , k) on the product.
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